第四章 钢筋混凝土纵向受力构件
-第四章:钢筋混凝土受弯构件正截面承载力计算 共72页PPT资料
矩形应力图形与抛物线应力图形的形心位置相同)。
保持混凝土压应力合力C的作用点位置不变。
(等效矩形应力图形抛物线应力图形的面积相等)。
27
单筋矩形截面受压区混凝土的等效矩形应力图
等效矩形应力图受压区高度 x 与按平截面假定确定的 受压区高度 x0 之间的关系:
截面破坏。
P
P
混凝土压坏
P
P
混凝土压坏
正截面破坏
斜截面破坏
受弯构件的破坏形式
9
P
P
P
P
A
BC
D
+
CD
AB
_
M
V
BC段称为纯弯段;AB、CD段称为剪弯段。
xy
x
x
x
x
xy
3
1 10
§4.2 受弯构件正截面的受力特性 4.2.1 配筋率对正截面破坏特征的影响
AS b
as hh0
fy
…4-3
s,max 0.01 …4-4
24
4.3.2 单筋矩形截面正截面承载力计算
单筋截面:仅在受拉区配置受力钢筋的截面。 双筋截面:同时在受拉区和受压区配置受力钢筋的截面。
架立钢筋
a
单筋
b
单筋
c
单筋
d
双筋
25
1. 计算简图
单筋矩形截面计算简图
26
为简化计算,采用等效矩形应力图代替混 凝土受压区应力图。
第4章 钢筋混凝土受弯构件正截面承载力
Strength of Reinforced Concrete Flexural Members
《混凝土结构设计原理》第四章_课堂笔记
《混凝⼟结构设计原理》第四章_课堂笔记《混凝⼟结构设计原理》第四章受弯构件正截⾯承载⼒计算课堂笔记◆知识点掌握:受弯构件是⼟⽊⼯程中⽤得最普遍的构件。
与构件计算轴线垂直的截⾯称为正截⾯,受弯构件正截⾯承载⼒计算就是满⾜要求:M≤Mu。
这⾥M为受弯构件正截⾯的设计弯矩,Mu为受弯构件正截⾯受弯承载⼒,是由正截⾯上的材料所产⽣的抗⼒,其计算及应⽤是本章的中⼼问题。
◆主要内容受弯构件的⼀般构造要求受弯构件正截⾯承载⼒的试验研究受弯构件正截⾯承载⼒的计算理论单筋矩形戴⾯受弯承载⼒计算双筋矩形截⾯受弯承载⼒计算T形截⾯受弯承载⼒计算◆学习要求1.深⼊理解适筋梁的三个受⼒阶段,配筋率对梁正截⾯破坏形态的影响及正截⾯抗弯承载⼒的截⾯应⼒计算图形。
2.熟练掌握单筋矩形、双筋矩形和T形截⾯受弯构件正截⾯设计和复核的握法,包括适⽤条件的验算。
重点难点◆本章的重点:1.适筋梁的受⼒阶段,配筋率对正截⾯破坏形态的影响及正截⾯抗弯承载⼒的截⾯应⼒计算图形。
2.单筋矩形、双筋矩形和T形截⾯受弯构件正截⾯抗弯承载⼒的计算。
本章的难点:重点1也是本章的难点。
⼀、受弯构件的⼀般构造(⼀)受弯构件常见截⾯形式结构中常⽤的梁、板是典型的受弯构件:受弯构件的常见截⾯形式的有矩形、T形、⼯字形、箱形、预制板常见的有空⼼板、槽型板等;为施⼯⽅便和结构整体性,也可采⽤预制和现浇结合,形成叠合梁和叠合板。
(⼆)受弯构件的截⾯尺⼨为统⼀模板尺⼨,⽅便施⼯,宜按下述采⽤:截⾯宽度b=120, 150 , 180、200、220、250、300以上级差为50mm。
截⾯⾼度h=250, 300,…、750、800mm,每次级差为50mm,800mm以上级差为100mm。
板的厚度与使⽤要求有关,板厚以10mm为模数。
但板的厚度不应过⼩。
(三)受弯构件材料选择与⼀般构造1.受弯构件的混凝⼟等级2.受弯构件的混凝⼟保护层厚度纵向受⼒钢筋的外表⾯到截⾯边缘的最⼩垂直距离,称为混凝⼟保护层厚度,⽤c表⽰。
建筑结构 05 第四章 混凝土结构02-打印版
4.2.2 轴压构件承载力
柱的计算长度L0取值:
注:表中H对底层柱为从基础顶面到一层楼盖顶面的高度; 对其余各层柱为上下两层楼盖顶面之间的高度。
5
2013.03
2.计算方法 (1)截面设计 已知:构件截面尺寸b×h,轴向力设计值N,构 件的计算长度L0,材料强度等级fc fy’ 。 求:纵向钢筋截面面积As’ 计算步骤如图4.2.5。
6
2013.03
(2)计算稳定系数 l0/b=5000/300=16.7 =0.869 (3)计算钢筋截面面积As′ =1677mm2 (4)验算配筋率 =1.86% > =0.6%,且<3% ,满足最小配筋率要求,且勿 300 300 4 25 纵筋选用4 如图。 Φ8@300 25(As′=1964mm2),箍筋配置φ8@300,
受压构件复合井字箍筋
筋箍筋。其原因是,内折角处受拉箍筋的合力向外。
柱钢筋图
电渣压力焊
3
2013.03
4.2.2 轴心受压构件承载力计算
配置纵筋和普通箍筋的柱, 称为普通箍筋柱; 配置纵筋和螺旋筋 或焊接环筋的柱, 称为螺旋箍筋柱或间接箍筋柱。
普通箍筋柱中,箍筋是构造钢筋。 螺旋箍筋柱中,箍筋既是构造钢筋 又是受力钢筋。
(2)验算配筋率
(3)确定柱截面承载力
(1)确定稳定系数 l0/b=4500/300=15 =0.911
=0.9×0.911×(11.9×300×300+300×1256) =1187.05×103N=1187.05kN>N=800kN 此柱截面安全。
4.2.2 轴压构件承载力
思 考 题:
5.1在受压构件中配置箍筋的作用是什么?什么情况下需设置复合箍筋? 5.2轴心受压短柱、长柱的破坏特征各是什么?为什么轴心受压长柱的 受压承载力低于短柱?承载力计算时如何考虑纵向弯曲的影响?
建筑力学与结构-4 纵向受力构件
由∑Fy=0: N21-N23sinα-0.5=0
N23=N21-0.5/sinα=3.54(N23为正,表示与图中假设方向一 致)
由∑Fx=0: N23cosα-N24=0
N24=N23cosα=2.5(N24为正,表示与图中假设方向一致, 所以为压力)
由∑Fy=0: N32sinα-N34=0
4.2.1.2 截面形式及尺寸
轴压柱常见截面形式有正方形、矩形、圆形及
多边形。 矩形截面尺寸不宜小于250mm×250mm。为了 避免柱长细比过大,承载力降低过多,常取l0/b≤30, l0/h≤25,b、h分别表示截面的短边和长边,l0表示柱
子的计算长度,它与柱子两端的约束能力大小有关。
4.2.1.3 配筋构造
螺旋箍筋是受力钢筋,这种柱破坏时由于螺旋
箍筋的套箍作用,使得核心混凝土(螺旋筋或焊接 环筋所包围的混凝土)处于三向受压状态,从而间 接提高柱子的承载力。所以螺旋箍筋也称间接钢筋, 螺旋箍筋柱也称间接箍筋柱。螺旋箍筋柱常用的截
面形式为圆形或多边形。
4.2.1 构造要求
4.2.1.1 材料要求
混凝土宜采用C20、C25、C30或更高强度等级。
表4.1 纵向受力构件类型
类别 轴心受力构件(e0=0) 轴心受拉构件 轴心受压构件
简图
变形特
点 举例
只有伸长变形
屋架中受拉杆件、圆形
只有压缩变形
屋架中受压杆等
类别
偏心受力构件(e0≠0)
轴心受拉构件 轴心受压构件
简图 变形特 点 举例 既有伸长变形,又有弯 曲变形 屋架下弦杆(节间有竖 向荷载,主要是钢屋 架)、砌体中的墙梁 既有压缩变形,又有弯曲 变形 框架柱、排架柱、偏心受 压砌体、屋架上弦杆(节 间有竖向荷载)等
混凝土结构基本原理第4章 练习题参考答案
第四章 练习题参考答案【4-1】 已知某轴心受拉杆的截面尺寸300400b h mm mm ⨯=⨯,配有820φ钢筋,混凝土和钢筋的材料指标为:22.0/t f N mm =,42.110c E =⨯2/N mm ,2270/y f N mm =,522.110/s E N mm =⨯。
试问此构件开裂时和破坏时的轴向拉力分别为多少?【解】 配820φ钢筋,查混凝土结构设计规范(GB50010-2010)附录A ,表 A.0.1得22513s A mm =。
2513 2.09% 3.0%300400s A bh ρ===<⨯,2300400120000A bh mm ==⨯=, 542.110102.110s E c E E α⨯===⨯ (1)由式(4-5),开裂荷载为0(1)(1)tcr c E t t E N E A f A αρεαρ=+=+ 2.0120000(1100.0209)=⨯⨯+⨯290160N = 209.16kN =(2)由式(4-7),构件的抗拉极限承载力为2702513678510678.51tu y s N f A N kN ==⨯==【4-2】已知某钢筋混凝土轴心受拉构件,截面尺寸为200300b h mm mm ⨯=⨯,构件的长度2000l mm =,混凝土抗拉强度22.95/t f N mm =,弹性模量422.5510/c E N mm =⨯,纵向钢筋的截面积2615s A mm =,屈服强度2270/y f N mm =,弹性模量522.110/s E N mm =⨯,求(1)若构件伸长0.2mm ,外荷载是多少?混凝土和钢筋各承担多少外力? (2)若构件伸长0.5mm ,外荷载是多少?混凝土和钢筋各承担多少外力? (3)构件开裂荷载是多少?即将开裂时构件的变形是多少? (4)构件的极限承载力是多少?【解】615 1.025% 3.0%200300s A bh ρ===<⨯,则220030060000A bh mm ==⨯= 542.1108.2352.5510s E c E E α⨯===⨯,4042.95 1.157102.5510t t c f E ε-===⨯⨯ (1)○1由0.2l mm ∆=可知,构件的应变为4400.21.010 1.157102000t l l εε--∆===⨯<=⨯ 构件未开裂,处于弹性工作状态,c s εεε==,构件所受的拉力为44(1) 2.551060000(18.235 1.025%) 1.010t c E N E A αρε-=+=⨯⨯⨯+⨯⨯⨯3165.9110N =⨯165.91kN =○2此时混凝土承担的外力 4432.5510 1.010********.010153.0ts c N E A N kN ε-==⨯⨯⨯⨯=⨯=○3钢筋承担的外力 165.91153.012.91ts t tc N N N kN =-=-=(2)○1由0.5l mm ∆=可知,构件的应变为4400.5 2.510 1.157102000t l l εε--∆===⨯>=⨯,且35270 1.286102.110y y s f E εε-<===⨯⨯ 构件开裂,钢筋未屈服,s εε=,构件所受的拉力为542.110 2.51061532287.532.29t s s N E A N kN ε-==⨯⨯⨯⨯==○2此时,混凝土开裂,在开裂处混凝土应力 0c σ= ○3钢筋的应力 5422.110 2.51052.5/s s E N mm σε-==⨯⨯⨯= (3)○1开裂荷载为0(1)tcr c E t N E A αρε=+442.551060000(18.235 1.025%) 1.15710-=⨯⨯⨯+⨯⨯⨯191.96kN =○2即将开裂时构件的变形 40 1.1571020000.23t l l mm ε-∆=⋅=⨯⨯=(4)构件的极限承载力为270615166050166.05tu y s N f A N kN ==⨯==【4-3】某钢筋混凝土轴心受拉构件的截面尺寸为300300b h mm mm ⨯=⨯,配有822的纵向受力钢筋,已知22.3/t f N mm =,422.410/c E N mm =⨯,2345/y f N mm =,521.9610/s E N mm =⨯。
混凝土结构设计原理思考题答案
混凝土结构设计原理部分思考题答案第一章钢筋混凝土的力学性能思考题1、钢筋冷加工的目的是什么?冷加工的方法有哪几种?各种方法对强度有何影响?答:冷加工的目的是提高钢筋的强度,减少钢筋用量。
冷加工的方法有冷拉、冷拔、冷弯、冷轧等。
这几种方法对钢筋的强度都有一定的提高,2、试述钢筋混凝土结构对钢筋的性能有哪些要求?答:钢筋混凝土结构中钢筋应具备:(1)有适当的强度;(2)与混凝土粘结良好;(3)可焊性好;(4)有足够的塑性。
4、除凝土立方体抗压强度外,为什么还有轴心抗压强度?答:立方体抗压强度采用立方体受压试件,而混凝土构件的实际长度一般远大于截面尺寸,因此采用棱柱体试件的轴心抗压强度能更好地反映实际状态。
所以除立方体抗压强度外,还有轴心抗压强度。
5、混凝土的抗拉强度是如何测试的?答:混凝土的抗拉强度一般是通过轴心抗拉试验、劈裂试验和弯折试验来测定的。
由于轴心拉伸试验和弯折试验与实际情况存在较大偏差,目前国内外多采用立方体或圆柱体的劈裂试验来测定。
6、什么叫混凝土徐变?线形徐变和非线形徐变?混凝土的收缩和徐变有什么本质区别?答:混凝土在长期荷载作用下,应力不变,变形也会随时间增长,这种现象称为混凝土的徐变。
当持续应力σC ≤0.5f C 时,徐变大小与持续应力大小呈线性关系,这种徐变称为线性徐变。
当持续应力σC >0.5f C时,徐变与持续应力不再呈线性关系,这种徐变称为非线性徐变。
混凝土的收缩是一种非受力变形,它与徐变的本质区别是收缩时混凝土不受力,而徐变是受力变形。
10、如何避免混凝土构件产生收缩裂缝?答:可以通过限制水灰比和水泥浆用量,加强捣振和养护,配置适量的构造钢筋和设置变形缝等来避免混凝土构件产生收缩裂缝。
对于细长构件和薄壁构件,要尤其注意其收缩。
第二章混凝土结构基本计算原则思考题1.什么是结构可靠性?什么是结构可靠度?答:结构在规定的设计基准使用期内和规定的条件下(正常设计、正常施工、正常使用和维护),完成预定功能的能力,称为结构可靠性。
《钢筋混凝土结构设计原理》复习资料
第一章混凝土结构用材料的性能1、在钢筋混凝土构件中钢筋的作用是替混凝土受拉或协助混凝土受压.2、混凝土的强度指标有混凝土的立方体强度、混凝土轴心抗压强度和混凝土抗拉强度。
3、混凝土的变形可分为两类:受力变形和体积变形。
4、钢筋混凝土结构使用的钢筋,不仅要强度高,而且要具有良好的塑性、可焊性,同时还要求与混凝土有较好的粘结性能。
5、影响钢筋与混凝土之间粘结强度的因素很多,其中主要为混凝土强度、浇筑位置、保护层厚度及钢筋净间距。
6、钢筋和混凝土这两种力学性能不同的材料能够有效地结合在一起共同工作,其主要原因是: 钢筋和混凝土之间具有良好的粘结力、钢筋和混凝土的温度线膨胀系数接近和混凝土对钢筋起保护作用.7、混凝土的变形可分为混凝土的受力变形和混凝土的体积变形 .其中混凝土的徐变属于混凝土的受力变形,混凝土的收缩和膨胀属于混凝土的体积变形。
第二章混凝土结构的设计方法1、结构设计的目的,就是要使所设计的结构,在规定的时间内能够在具有足够可靠性性的前提下,完成全部功能的要求。
2、结构能够满足各项功能要求而良好地工作,称为结构可靠,反之则称为失效,结构工作状态是处于可靠还是失效的标志用极限状态来衡量。
3、国际上一般将结构的极限状态分为三类:承载能力极限状态、正常使用极限状态和“破坏一安全”极限状态。
4、正常使用极限状态的计算,是以弹性理论或塑性理论为基础,主要进行以下三个方面的验算:应力计算、裂缝宽度验算和变形验算.5、公路桥涵设计中所采用的荷载有如下几类:永久荷载、可变荷载和偶然荷载。
6、结构的安全性、适用性和耐久性通称为结构的可靠性.7、作用是指使结构产生内力、变形、应力和应变的所有原因,它分为直接作用和间接作用两种. 直接作用是指施加在结构上的集中力或分布力如汽车、人群、结构自重等,间接作用是指引起结构外加变形和约束变形的原因,如地震、基础不均匀沉降、混凝土收缩、温度变化等。
8、结构上的作用按其随时间的变异性和出现的可能性分为三类:永久作用(恒载)、可变作用和偶然作用.9、我国《公路桥规》根据桥梁在施工和使用过程中面临的不同情况,规定了结构设计的三种状况:持久状况、短暂状况和偶然状况。
第四章 钢筋混凝土受弯构件
•
•
• • • •
方法二 查表法
第一步:求ξ。
ξ=fyAs/(α1fcbh0) 第二步:由附表3-2查得αs。 第三步:求Mu。当ξ≤ξb时,则 Mu=αsα1fcbh02
•
• • •
当ξ>ξb时,说明超筋,此时的正截面受 弯承载力根据公式求得
Mu,max=α1fcbh02ξb(1-0.5ξb) 或 Mu,max=αs,maxα1fcbh02 第四步:验算最小配筋率条件ρ≥ρmin。
受 弯 构 件
截面类型
M
正常使用极限状态
斜截面破坏:主要由剪力引起 变形验算: f max ≤f lim 双筋截面 裂缝宽度验算:wmax ωlim 同时在受拉区配置 V 纵向受力钢筋的截面
设计内容
构造措施
构件各连接部位均应满足
4.1 受弯构件基本构造要求
一、钢筋混凝土板
板厚度h
施工要求
现浇板 hmin≦60mm
屈服→压碎 对应极限弯矩Mu
Ⅰa状态:计算Mcr的依据 应力状态与 Ⅱ阶段:计算裂缝、刚度的依据 Ⅲa状态:计算Mu的依据
计算关系
钢筋混凝土梁受力特点
1、截面应变仍呈直线分布,中和位置随M增大而上升
第Ⅰ阶段:σs 小而慢, Ⅰa有突变 2、钢筋应力
第Ⅱ阶段: σs 增长快, Ⅱa达fy
第Ⅲ阶段: σs=fy,产生流幅至混凝土压碎 第Ⅰ阶段:f 增长慢
x = h0 h0 2M a1 f cb
•
第二步:求纵向钢筋AS。
a1 f c bx , fy
若x ? xb h0 , 则As
若x > xb h0 , 属于超筋,截面小重新设计
•
第三步:选筋。除满足计算外,还应满足 构造要求。
(整理)第4章_轴心受力构件的性能_思考题参考答案
第4章 思考题参考答案【4-1】为什么轴心受拉构件开裂后,当裂缝增至一定数量时,不再出现新的裂缝?在裂缝处的混凝土不再承受拉力,所有拉力均由钢筋来承担,钢筋通过粘结力将拉力再传给混凝土。
随着荷载的增加,裂缝不断增加,裂缝处混凝土不断退出工作,钢筋不断通过粘结力将拉力传给相邻的混凝土。
当相邻裂缝之间距离不足以使混凝土开裂的拉力传递给混凝土时,构件中不再出现新裂缝。
【4-2】如何确定受拉构件的开裂荷载和极限荷载?(1) 当0t t εε=时,混凝土开裂,这时构件达到的开裂荷载为:000(1)tcr c t c E t N E A E A εαρε==+(2) 钢筋达到屈服强度时,构件即进入第Ⅲ阶段,荷载基本维持不变,但变形急剧增加,这时构件达到其极限承载力为:tu y s N f A =【4-3】 在轴心受压短柱荷载试验中,随着荷载的增加,钢筋的应力增长速度和混凝土的应力增长速度哪个快?为什么?(1)第Ⅰ阶段,开始加载到钢筋屈服。
钢筋增长速度较快。
此时若忽略混凝土材料应力与应变关系之间的非线性关系,则钢筋与混凝土的应力分别为s E ε和c E ε,由于s c E E >,因此钢筋增长的速度较快,若考虑混凝土非线性的影响,此时混凝土应力与荷载关系呈一条上凸的曲线,则钢筋增长的速度相对混凝土更快。
(2)第Ⅱ阶段,钢筋屈服到混凝土被压碎。
混凝土增长速度较快。
当达到钢筋屈服后,此时钢筋的应力保持不变,增加的荷载全部由混凝土承担,混凝土的应力加速增加,应力与荷载关系由原来的上凸变成上凹。
(图4-9)【4-4】如何确定轴心受压短柱的极限承载力?为什么在轴压构件中不宜采用高强钢筋?(1)当00.002εε==时,混凝土压碎,短柱达到极限承载力cu c y s N f A f A ''=+(2)由于当轴压构件达到极限承载力时00.002sεεε'===,相应的纵筋应力值为:32200100.002400/s s s E N mm σε''=≈⨯⨯=由此可知,当钢筋的强度超过2400/N mm 时,其强度得不到充分发挥,因此不宜采用高强钢筋。
4 钢筋混凝土结构基本构件1
(3)弯起钢筋
在跨中承受正弯矩产生的拉力,在靠近支座的 弯起段则用来承受弯矩和剪力共同产生的主拉应 力,弯起后的水平段可用于承受支座端的负弯矩。
a.弯起钢筋的数量 通过斜截面承载能力计算得到, 一般由受力钢筋弯起而成,如受力钢筋数量不足 可单独设置。 b.弯起钢筋的弯起角度 当梁高小于等于800mm时 采用450,当梁高大于800mm时采用600
图4.2
梁钢筋净距、保护层及有效高度
(2)箍筋 :用以承受梁的剪力,固定纵 向受力钢筋,并和其它钢筋一起形成钢筋骨 架。 a.箍筋的数量 箍筋的数量应通过计算确定。 如计算不需要时,当截面高度大于300mm时 应全梁按构造布置;当截面高度在150~ 300mm时,应在梁的端部1/4跨度内布置箍筋 但如果在梁的中部1/2的范围内有集中荷载的 作用时,应全梁设置;截面高度小于150mm 的梁可不设置箍筋。
环境类别
一类: 室内正常环境、无侵蚀性静水浸没环境
二类a:室内潮湿环境:非严寒和非寒冷地区的露天环境,与 无侵蚀性的水或土壤直接接触的环境,严寒和寒冷地区的冰冻 线以下与无侵蚀性的水或土壤直接接触的环境 二类b:干湿交替的环境,水位频繁变动环境,严寒和寒冷地 区的露天环境,与无侵蚀性的水或土壤直接接触的环境
(5)梁侧构造钢筋 当梁的腹板高度hw≥450mm时,在梁的 两个侧面应沿高度配置纵向构造钢筋, 每侧纵向构造钢筋(不包括上、下部受 力钢筋及架立钢筋)的截面面积不应小 于腹板截面面积的0.1%,且间距不宜 大于200 mm。其作用是承受温度变化、 混凝土收缩在梁侧面引起的拉应力,防 止产生裂缝。梁两侧的纵向构造钢筋用 拉筋联系。拉筋直径与箍筋直径相同, 其间距常为箍筋间距的两倍 。
梁的截面高度一般根据刚度条件 和设计经验确定,工程结构中梁的 截面高度可参照表4-1选用
4钢筋混凝土轴心受力构件
N 0 ( G N gk Q C Nqk ) 1.1 (1.351851.4 0.7 70) 350.2kN
N 35210 2 As 1173 mm fy 300
3
【解】(3)满足构造要求的配筋
As min 0.4% A 0.4% 200 250 200m m2 As min
在截面尺寸、配筋、强度相同的条件下,长 柱的 承载力低于短柱,(采用降低系数来考虑)
三、轴心受压构件的受力分析
1. 短柱
钢筋屈 服
混凝土压碎
h
N
As
N
b
Hale Waihona Puke ANol
混凝土压碎
钢筋凸出
第一阶段:加载至钢筋屈服 第二阶段:钢筋屈服至混凝土压碎
三、轴心受压短柱的受力分析
1. 短柱
平衡方程 变形协调方程
轴心受力构件 (a) 轴心受拉; (b) 轴心受压;
工程实例
压 压 拉 压
拉
多层房屋的内柱
第一节、轴心受拉构件的受力特点
1. 受拉构件的配筋形式
纵筋
h
箍筋
b
纵筋
第一节、轴心受拉构件的受力特点
2. 试 验 研 究
N N
Ncr
箍筋
Ncr
Nc
Nc
第一节、轴心受拉构件的受力特点
2. 试 验 研 究
先选用直径较小的钢筋。
第二节、轴心受拉构件的承载力计算
3. 例 题
【例4.1】某钢筋混凝土屋架下弦,其截面尺寸 为b×h=140mm×140mm,混凝土强度等级为 C30,钢筋为HRB335级,承受轴向拉力设计值 为N=200kN,试求纵向钢筋截面面积As。 【解】由式(4-11)得 As=N/fy=666.67mm2 配置4Φ16(As=806mm2)
纵向受力钢筋
纵向受力钢筋,简称受力钢筋,是指在构件的长边方向,通过力学计算在受力部位设置满足承载力的钢筋,来满足结构强度和刚度的要求。
常见的受弯梁下部或上部就是受力钢筋,柱子中的受压钢筋等就是属于纵向受力钢筋。
一般位于梁上部和下部。
纵向受力钢筋确定原则有三:1) 根据构件在承受荷载作用及地震纵向受力钢筋等其他因素作用下,在结构中长生的效应(强度、刚度、抗裂度)的计算结果;2) 应≥该类构件最小配筋率;3) 满足最小配筋要求来配置的钢筋,譬如《混凝土结构设计规范》(GB 50010-2002)规定:钢筋混凝土梁纵向受力钢筋的直径,当梁高h≥300mm时,不应小于10mm;当梁高h<300mm时,不应小于8mm必须满足。
编辑本段相关规定1. 纵向受力钢筋直径d不宜小于12mm,宜选用直径较粗的钢筋,以减少纵向弯曲,防止纵筋过早压屈,一般在12-32mm范围内选用。
2. 纵向受力钢筋通常采用HRB335、HRB400级或RRB400级钢筋,不宜采用高强度钢筋受压,因为构件在破坏时,钢筋应力最多只能达到400N/m23.钢筋调直可采用机械调直和冷拉调直。
当采用冷拉调直时,必须控制钢筋的伸长率。
对于HPB235级钢筋的冷拉伸长率不宜大于4%;对于HRB335级、HRB400级和RRB400级钢筋的冷拉伸长率不宜大于1%。
4. 全部纵向受压钢筋的配筋率p′不宜超过5%,也不应小于0.6%;当采用HRB400级、RRB400级钢筋时,全部纵向受压钢筋强度的配筋率不应小于0.5%;5. 纵向钢筋应沿截面四周均匀布置,钢筋净距不应小于50mm,其中距亦不应大于300mm;矩形截面钢筋根数不得少于4根,以便与箍筋形成刚性骨架;圆形截面钢筋根数不宜少于8根。
如何理解纵向钢筋1.简支梁、连续梁的下部钢筋一般算作纵向受拉钢筋。
剪力墙、框架柱之中梁的下部主筋是纵向受拉钢筋。
板筋的下部钢筋是纵向受力钢筋。
纵向受力钢筋一般指的是水平受力钢筋。
《水工钢筋混凝土结构》课件——4章 水工钢筋混凝土课件
hw / b 4.0
KV 0.25 fcbh0 (0.25 fcbh0 KV )
4)确定是否进行斜截面受剪承载力计算
若
KV 0.7 ftbh0
说明不需要进行斜截面抗剪计算, 按构造要求配筋即可。
5)腹筋计算 只配箍筋:
KV
Vcs
0.7 ftbh0
1.25 f yv
Asv s
h0
确定Asv / S C ,有若干Asv和 s 的组合,取合适的一组。
4.1无腹筋梁斜截面上的应力状态及破坏形态
§4-2 影响受弯构件斜截面受剪承载力的主要因素
1. 剪跨比
2.4
Vu
ftbh0 2.0
a
1.6
1.2 0.8 0.4
h0
2. 混凝土强度
0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
a
h0
3. 箍筋配筋率及 其强度
4. 纵筋配筋率及其强度
➢弯 筋 计 算 进 行 到 最 后 一
排弯筋进入 Vcs控制区段为 止。
➢箍筋最大间距Smax见 ➢表4-1
4.3受弯构件斜截面受剪承载力计算
第四章 钢筋砼受弯构件斜截面承载力计算
6. 构件截面尺寸或砼强度等级的下限 ❖ 配箍率超过一定值,箍筋屈服前,斜压杆砼已压坏,
取斜压破坏为受剪承载力上限。
l0 h
关系的经验公式: Vc 0.7 ftbh0
4.3受弯构件斜截面受剪承载力计算
第四章 钢筋砼受弯构件斜截面承载力计算
3.2 箍筋的受剪承载力
Asv
nAsv1
配箍率 sv bs
bs
试验寻求 Vu f t bh0
抗剪能力不再增大…
第四章第二节钢筋混凝土受弯构件
(3)解二次联立方程式,求 As (4)验算适用条件:1) b ,若 b ,说明是超筋梁,改用双筋 梁或增大截面尺寸或提高混凝土强度等级重新计算 h (5)以实际采用钢筋面积验算条件(2)即 min ,如不满足,则纵 h0 向受拉钢筋应按 A bh 配置。 s min
前期为直线,后期 为有上升段的直线, 应力峰值不在受拉区 边缘 直线
受压区高度减小, 混凝土 压应力图形为上升段的曲 线, 应力峰值在受压区边缘
凝土压应力图形为较丰满的曲 线,后期为有上升段和下降段 的曲线,应力峰值不在受压区 边缘而在边缘的内侧
受 拉 区
大部分退出工作
绝大部分退出工作
纵向受拉钢筋应力 在设计计算中的作 用
简支板可取h = (1/25 ~ 1/35)L0
纵向钢筋
梁常用HRB400级、HRB335级钢筋,板常用HPB235级、HRB335 级和HRB400级钢筋;
as 的确定
d as c 2
梁受拉钢筋为一排时 梁受拉钢筋为两排时 平板
as 35mm
as 60mm as 20mm
单筋矩形截面受弯构件正截面受弯承载力计算
一、受弯构件的正截面受力特性
第二节 钢筋混凝土受弯构件
正截面受弯的三种破坏形态
(1)少筋破坏形态( min
h h0
)
构件一裂就坏,无征兆,为“脆性 破坏”。(混凝土的抗压强度未得到发挥)
(2)适筋破坏形态( min h b) 0
受拉钢筋先屈服,受压区混凝土后 压坏,破坏前有明显预兆——裂缝、变 形急剧发展,为“延性破坏”。(钢筋
的抗拉强度和混凝土的抗压强度都得到发挥)
h
(3)超筋破坏形态( b )
钢筋混凝土 第四章轴心受压构件的截面承载力计算
一、轴心受拉构件的受力性能
N N
轴心受拉构件受力特点
由于混凝土抗拉强度很低,轴向拉力还很小时,构件即已 裂通,所有外力全部由钢筋承担。最后,因受拉钢筋屈服而导 致构件破坏。
三个受力阶段:
第Ⅰ阶段为从加载到混凝土受拉开裂前; 第Ⅱ阶段为混凝土开裂后至钢筋即将屈服; 第Ⅲ阶段为受拉钢筋开始屈服到全部受拉钢筋 达到屈服。
◆ 另一方面,考虑到施工布筋不致过多影响混凝土的浇筑质
量,全部纵筋配筋率不宜超过5%。
◆ 全部纵向钢筋的配筋率按ρ =(A's+As)/A计算,一侧受压钢筋
的配筋率按ρ '=A's/A计算,其中A为构件全截面面积。
配筋构造:
◆ 柱中纵向受力钢筋的的直径d不宜小于12mm,且选配钢筋时宜
根数少而粗,但对矩形截面根数不得少于4根,圆形截面根数 不宜少于8根,且应沿周边均匀布置。
第一节
思考题
1.轴心受压普通箍筋短柱与长柱的破坏形态有何不 同? 2.轴心受压长柱的稳定系数ϕ如何确定? 3.轴心受压普通箍筋柱与螺旋箍筋柱的正截面受压 承载力计算有何不同? 作业题: 6.1、6.2
第二节 轴心受拉构件的承载力计算
轴心受拉构件
钢筋混凝土桁架或拱拉杆、受内压力作用的环形 截面管壁及圆形贮液池的筒壁等,通常按轴心受 拉构件计算。 矩形水池的池壁、矩形剖面料仓或煤斗的壁板、 受地震作用的框架边柱,属于偏心受拉构件。 受拉构件除轴向拉力外,还同时受弯矩和剪力作 用。
承载力计算
N ≤ f y As
N为轴向拉力的设计值; fy为钢筋抗拉强度设计值; As为全部受拉钢筋的截面面积, 应满足As≥(0.9ft/fy)A,A为构件截面面积。
小 结
水工钢筋混凝土4~5章习题解答
第四章习题参考答案一、思考题1.钢筋混凝土梁中一般配置几种钢筋?它们各起什么作用?钢筋为什么要有混凝土保护层?梁和板中混凝土保护层厚度如何确定?答:一般配置下部纵向受力钢筋、上部架立(受力)钢筋、箍筋、弯起钢筋及构造钢筋;下部纵向受力钢筋承受正弯矩产生的拉力、上部纵向受力钢筋承受负弯矩产生的拉力、架立钢筋起将各类钢筋绑扎成骨架的作用、箍筋及弯起钢筋承受荷载产生的剪力(箍筋还起将各类钢筋绑扎成骨架的作用)、构造钢筋起抵抗温度和收缩应力的作用;为防止钢筋锈蚀并保证钢筋与混凝土有可靠粘结应力,钢筋必需有混凝土保护层,保护层厚度按构件类型及环境条件选择(查规范)。
2.适筋截面的受力过程可分成几个阶段?各个阶段的主要特点是什么?它们各哪些计算内容的计算依据?答:适筋梁截面的受力过程分为:弹性阶段、带裂缝工作阶段及破坏阶段。
弹性阶段的主要特点是受压区处在弹性阶段,受拉区处在弹性阶段(或弹塑性阶段),钢筋应力很小,其阶段末尾的应力分布图形为构件抗裂的计算依据;带裂缝工作阶段的主要特点是受压区处在弹塑性阶段,压应力分布开始呈曲线形,受拉区混凝土开裂,中和轴线上移,钢筋应力明显增大,其应力分布图形为构件裂缝宽度及变形的计算依据;破坏阶段的主要特点是钢筋应力达到或超过屈服强度,变形显著增大,造成裂缝迅速扩展,同时中和轴线快速上移,受压区明显减小,压应力呈曲线分布,压应变迅速增大至极限压应变,构件破坏;其阶段末尾应力分布图形为构件承载能力的计算依据。
3.受弯构件正截面破坏有哪几种破坏形式?各自的特点是什么?设计中是如何防止这些破坏的发生?答:受弯构件正截面破坏有少筋破坏、适筋破坏及超筋破坏等三种;少筋破坏的特点来防止发是构件一开裂,钢筋即屈服,随即构件破坏;设计中是通过限制构件ρ>ρmin 生此种破坏。
适筋破坏的特点是构件开裂后,钢筋应力有所增大,钢筋应力随荷载加大而逐渐增加,当钢筋应力达到或超过屈服强度,裂缝迅速扩展且中和轴线快速上移,受压区混凝土应变迅速增大,当压应变增大至极限压应变,构件破坏;设计中是通过计算构件受力钢筋面积来防止发生此种破坏。
第四章钢筋混凝土受弯构件的应力、裂缝和变形验算
第四章钢筋混凝⼟受弯构件的应⼒、裂缝和变形验算第四章钢筋混凝⼟受弯构件的应⼒、裂缝和变形验算对钢筋混凝⼟构件,除应进⾏承载能⼒极限状态计算外,还要根据施⼯和使⽤条件进⾏持久状况正常使⽤极限状态和短暂状况的验算。
第⼀节抗裂计算桥梁构件按短暂状况设计时,应计算其在制作、运输及安装等施⼯阶段,由⾃重和施⼯荷载等引起的应⼒,并不应超过规范规定的限值。
施⼯荷载除有特别规定外均采⽤标准值,当进⾏构件运输和安装计算时,构件⾃重应乘以动⼒系数,当有组合时不考虑荷载组合系数。
在钢筋混凝⼟受弯构件抗裂验算和变形验算中,将⽤到“换算截⾯”的概念,因此,本章先引⼊换算截⾯的概念,然后依次介绍各项验算⽅法。
4.1.1 换算截⾯依据材料⼒学理论,对钢筋混凝⼟受弯构件带裂缝⼯作阶段的截⾯应⼒计算作如下假定:1、服从平截⾯假定由钢筋混凝⼟受弯构件的试验可知,从宏观尺度看平截⾯假定基本成⽴。
据此有同⼀⽔平纤维处钢筋与混凝⼟的纵向应变相等,即:s c εε= (4.1-1)2、钢筋和混凝⼟为线弹性材料钢筋混凝⼟受弯构件在正常施⼯或使⽤阶段,钢筋远未屈服,可视为线弹性材料;混凝⼟虽为弹塑性体,但在压应⼒⽔平不⾼的条件下,其应⼒与应变近似服从虎克定律。
故有c c c E εσ=,s s s E εσ= (4.1-2)3、忽略受拉区混凝⼟的拉应⼒钢筋混凝⼟构件在受弯开裂后,其受拉区混凝⼟的作⽤在计算上可近似忽略。
将式(4.1-1)代⼊式(4.1-2)可得:c s c c c E E εεσ==''因为 s ss E σε=所以 s ES c s sc E E σασσ1'== (4.1-3)其中:ES α-钢筋与混凝⼟弹性模量之⽐,即c s ES E E =α。
为便于利⽤匀质梁的计算公式,通常将钢筋截⾯⾯积s A 换算成等效的混凝⼟截⾯⾯积sc A ,依据⼒的等效代换原则:1、⼒的⼤⼩不变:换算截⾯⾯积sc A 承受拉⼒与原钢筋承受的拉⼒相等。
钢筋混凝土构件的受力原理
钢筋混凝土构件的受力原理一、引言钢筋混凝土是一种常用的建筑材料,广泛应用于各类建筑结构中。
钢筋混凝土构件是由钢筋和混凝土组成的复合材料,它的受力原理是由混凝土和钢筋分别承担相应的作用力,共同承受荷载。
二、混凝土的受力原理混凝土是由水泥、砂、石头和水按一定比例混合而成的,它的主要组成部分是水泥石。
混凝土的受力原理可以分为两个方面:压力和拉力。
1.压力混凝土的主要承受压力作用,是通过破坏弹性模量的变化来实现的。
在受到压力时,混凝土内的石子和砂石之间的间隙会逐渐缩小,水泥石体会受到强烈的挤压力,从而发生变形。
当混凝土受到较大的压力时,水泥石体和骨料之间的内部结构就会发生破坏,此时混凝土会出现裂缝,承载能力也会逐渐减小。
2.拉力混凝土的主要承受拉力作用,是通过钢筋来实现的。
在混凝土内加入钢筋后,混凝土的拉强度得到了大幅提升。
当混凝土受到拉力时,钢筋会发挥作用,承担混凝土拉力的一部分,从而保证整个构件的稳定性。
三、钢筋的受力原理钢筋是一种常用的建筑材料,它的主要组成是铁和碳。
钢筋的受力原理可以分为两个方面:拉力和压力。
1.拉力当钢筋受到拉力时,它会发生变形,从而增大受力面积,保证整个构件的稳定性。
此时,钢筋内部的分子结构会发生变化,从而使得钢筋的抗拉强度得到了提升。
由于钢筋的抗拉强度比混凝土的拉强度高,所以在混凝土构件中加入钢筋可以有效提升整个构件的承载能力。
2.压力当钢筋受到压力时,它会发生塑性变形,从而使得钢筋的截面积减小,承受的压力逐渐减小。
在混凝土构件中,钢筋主要承受拉力,所以钢筋的抗压强度并不是很重要。
四、钢筋混凝土构件的受力原理钢筋混凝土构件的受力原理是由混凝土和钢筋分别承担相应的作用力,共同承受荷载。
在钢筋混凝土构件中,混凝土主要承受压力作用,而钢筋主要承受拉力作用。
1.混凝土的受力原理混凝土在承受压力作用时,会发生变形和裂缝,从而逐渐失去承载能力。
为了保证混凝土构件的承载能力,需要在混凝土内加入钢筋,使得整个构件的抗拉强度得到提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
匀性等原因,往往存在一定的初 始偏心距。
◆但有些构件,如以恒载为主的等 跨多层房屋的内柱、桁架中的受 压腹杆等,主要承受轴向压力,
可近似按轴心受压构件计算。
普通钢箍柱
螺旋钢箍柱
一、普通箍筋柱
按照长细比 L0/b的大小,轴心受压柱可分为短柱和 长柱两类。对方形和矩形柱,当 L0/b ≤ 8 时属于短柱,否 则为长柱。其中L0为柱的计算长度,b为矩形截面的短边尺 寸。
第四章 钢筋混凝土轴向受力构件
本章主要内容
1、受压构件的一般构造要求; 2、轴心受压构件正截面承载力计算; 3、偏心受压构件正、斜截面承载力计算; 4、受拉构件正、斜截面承载力计算。
受压构件
主要以承受轴向压力为主,通常还有弯矩 和剪力作用。
(a)轴心受压
(b)单向偏心受压 (c) 双向偏心受压
受压构件(柱)往往在结构中具有重要作用,一旦产生破 坏,往往导致整个结构的损坏,甚至倒塌。
(2)布置方式
轴心受压柱的纵向受力钢筋应沿截面四周均匀对称布置; 偏心受压柱的纵向受力钢筋放置在弯矩作用方向的两对
边; 圆柱中纵向受力钢筋宜沿周边均匀布置。
(3)构造要求
纵向受力钢筋直径d不宜小于12mm,通常采用 12~
32mm。一般宜采用根数较少,直径较粗的钢筋,以保证骨 架的刚度。
方形和矩形截面柱中纵向受力钢筋不少于4根,圆柱中 不宜少于8根且不应少于6根。
箍筋直径不应小于d/4(d为纵向钢筋的最大直径),且 不应小于6mm。 箍筋间距不应大于400mm及构件截面的短边尺寸,且不 应大于15d(d为纵向受力钢筋的最小直径)。
在纵筋搭接长度范围内,箍筋的直径不宜小于搭接钢筋直 径的0.25倍。箍筋间距,当搭接钢筋为受拉时,不应大于5d (为受力钢筋中最小直径),且不应大于100mm;
钢筋混凝土受力构件的分类
§4—1 受压构件的一般构造要求
一、截面形式及尺寸要求
1、截面形状
正方形、矩形、圆形、环形。
2、截面尺寸
截面尺寸一般应符合 l0 /≤h25及 ≤l0 3/ b0(其中 为柱l0 的计算长
度,h和b分别为截面的高度 和宽度)。
对于方形和矩形截面,其尺寸不宜小于250×250mm。 为了便于模板尺寸模数化,柱截面边长在800mm以下者, 宜取50mm的倍数;在800mm以上者,取为100mm的倍 数。
二、材料强度
1、混凝土
宜采用较高强度等级的混凝土,一般采用C20~C40及以上 等级的混凝土。
2、钢筋
纵向钢筋:不宜选用高强度钢筋,一般采用HRB400和 HRB335。
箍筋:一般采用HPB235和HRB335级钢筋。
三、配筋构造
1、纵向受力钢筋
(1)设置纵向受力钢筋的目的
协助混凝土承受压力; 承受可能的弯矩,以及混凝土收缩和温度变形引起的拉应 力; 防止构件突然的脆性破坏。
合箍筋的直径、间距与前述箍筋相同。
偏心受压柱 轴心受压柱
对于截面形状复杂的构件,不可采用具有内折角的箍筋 (图4.1.3)。原因是:内折角处受拉箍筋的合力向外。
柱钢筋图
电渣压力焊
箍筋加密
钢筋的机械连接
§4-2 轴心受压构件
轴心受压构件
◆在实际结构中,理想的轴心受压 构件几乎是不存在的。
1、轴心受压短柱的破坏特征
c
当轴向力较小时,构件的压缩变 形主要为弹性变形,轴向力在截面 内产生的压应力由混凝土合钢筋共 同承担。
弹塑性阶 段
随着荷载的增大,构件变形迅速增大,此时混凝土塑性变 形增加,弹性模量降低,应力增加缓慢,而钢筋应力的增加 则越来越快。在临近破坏时,柱子表面出现纵向裂缝,混凝 土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外 凸出,混凝土被压碎崩裂而破坏。
稳定系数可按下式计算:
1
1 0.002(l0 b 8)2
式中 —— 柱的计算长度;
b —— 矩形截面的短边尺寸,圆形截面可取 b
3d 2
构件的计算长度L0与构件两端支承情况有关,对于一般 的多层房屋的框架柱,梁柱为刚接的框架各层柱段。现浇楼 盖:底层柱L0 =1.0H ;其余各层柱段L0 =1.25H。装配式楼 盖:底层柱L0 =1.25H;其余各层柱段L0 =1.5H。
纵向受力钢筋的净距不 应小于50mm,偏心受压柱 中垂直于弯矩作用平面的侧 面上的纵向受力钢筋及轴心 受压柱中各边的纵向受力钢 筋的中距不宜大于300mm (右图)。对水平浇筑的预 制柱,其纵向钢筋的最小净 距距可按梁的有关规定采用。
受压构件纵向钢筋的最 小配筋率应符合规定。全部 纵向钢筋的配筋率不宜超过 5%。受压钢筋的配筋率一 般不超过3%,通常在0.5 %~2%之间。
当搭接钢筋为受压时,不应大于10d,且不应大于 200mm;
当搭接受压钢筋直径大于25mm时,应在搭接接头两个端 面外100mm范围内各设置2根箍筋。
当柱截面短边尺寸大于400mm且各边纵向受力钢筋多于3 根时,或当柱截面短边尺寸不大于400mm但各边纵向钢筋
多于4根时,应设置复合箍筋,以防止中间钢筋被压屈。复
当短柱破坏时,混凝土达到极限压应 变0.002,相应的纵向钢筋应力为 400N/mm2。因此,当纵筋为高强度钢 筋时,构件破坏时纵筋可能达不到屈服 强度。显然,在受压构件内配置高强度 的钢筋不能充分发挥其作用,这是不经 济的。
2、轴心受压长柱的破坏特征
初始偏心距导致附加弯矩,附加弯矩
产生的水平挠度又加大了初始偏心距;较大 的初始偏心距将导致承截能力的降低。 破坏时首先在凹边出现纵向裂缝,接着混
凝土被压碎,纵向钢筋被压弯向外凸出,侧 向挠度急速发展,最终柱子失去平衡并将
凸边混凝土拉裂而破坏。
长细比较大时,可能发生“失稳破坏”。
在同等条件下,即截面柱承载力。
在确定轴心受压构件承截力计算公式时,规范采用构件的 稳定系数φ来表示长柱承截力降低的程度。长细比L0/b越大, φ 值越小,当L0/b≤8时, φ=1。
(4)配筋方式
对称配筋、非对称配筋 对称配筋:在柱的弯矩作用方向的两对边对称布置相同的
纵向受力钢筋。
非对称配筋:在柱的弯矩作用方向的两对边布置不同的纵
向受力钢筋。
2、箍筋
(1)设置箍筋的目的
保证纵向钢筋的位置正确; 防止纵向钢筋向外压屈; 对核心部分混凝土起约束作用,从而提高柱的承载能力。
(2)构造要求 受压构件中的周边箍筋应做成封闭式。