格林公式及其在曲线积分求解中的应用

合集下载

格林公式的应用

格林公式的应用

格林公式的应用格林公式是数学中的一个重要定理,它描述了二维平面区域内的曲线积分与对应的面积积分之间的关系。

格林公式的应用非常广泛,涉及到物理、工程、地理等多个领域。

本文将介绍格林公式的基本概念和原理,并探讨其在实际问题中的应用。

格林公式是由德国数学家格林(Green)于1828年提出的,它建立了曲线积分与面积积分之间的联系。

在二维平面上,设D是一个有界闭区域,边界为C,f(x, y)和g(x, y)在D上具有一阶连续偏导数,则有格林公式:∮<sub>C</sub> (f(x, y)dx + g(x, y)dy) = ∬<sub>D</sub> (∂g/∂x - ∂f/∂y) dxdy其中,∮<sub>C</sub>表示沿着曲线C的曲线积分,∬<sub>D</sub>表示在区域D上的面积积分,∂f/∂x和∂g/∂y分别表示f 和g对x和y的偏导数。

格林公式的应用可以帮助我们求解各种与曲线积分和面积积分相关的问题。

下面将通过几个具体的例子来说明格林公式在实际中的应用。

**例1:计算曲线积分**考虑曲线C:x<sup>2</sup> + y<sup>2</sup> = 1,逆时针方向,要计算曲线积分∮<sub>C</sub> (x<sup>2</sup>dx +y<sup>2</sup>dy)。

首先,根据格林公式,我们可以将曲线积分转化为面积积分。

设D 为曲线C所围成的区域,那么根据格林公式,有:∮<sub>C</sub> (x<sup>2</sup>dx + y<sup>2</sup>dy) =∬<sub>D</sub> (∂y<sup>2</sup>/∂x - ∂x<sup>2</sup>/∂y) dxdy 计算偏导数,得到∂y<sup>2</sup>/∂x = 0,∂x<sup>2</sup>/∂y = 0,因此面积积分为0。

高等数学曲面积分与曲线积分之格林公式

高等数学曲面积分与曲线积分之格林公式
高 等 数 学 电 子 案
第三节
一 格林公式
格林公式及其应用
格林公式建立了重积分与曲线积分的联系,我们先从
特殊的区域来看这种联系,然后再推广到一般的情况. 平面单连通区域:如果D内任一闭曲线所围的部分都属于D, 则称D为平面单连通区域,否则称为复连通区域. 通俗的说,平面单连通区域是不含有“洞”的区域.
2
高 等 数 学 电 子 案
dxdy , 其中D是以O(0,0),A(1,1),B(0,1)为顶点 D Y A B 的三角形闭区域.
例3 , P 0, Q xe 解: x y
O
y2
1
x
e
D
y2
dxdy

顺时针
y 2 xdy x 2 ydx
逆时针
y 2 xdy x 2 ydx
Q p ( )dxdy ( x 2 y 2 )dxdy D x D y

2
0
d 2 d
0
a
a 4
2
高 等 数 学 电 子 案
ydx xdy , 例5 计算 C 2 2 x y
证明: (1)先证D是X型又是Y型的情形. 设平面域D:{(x,y)|a≤x≤b,y1(x)≤y≤y2(x)},因
P 连续,故 y
y
y2(x) F A a D y1(x)
E C B b x
高 等 数 学 电 子 案
b y2 ( x ) P b P D y dxdy a dxy1 ( x) y dy a [ P( x, y2 ) P( x, y1 )]dx
其中C是一条不经过原点的分段
高 同理,设D:{(x, y)| c≤y≤d,x1(y)≤x≤x2(y)},可证明 等 数 Q Q( x, y )dy 学 D x dxdy L 电 子 两式同时成立,合并后得到格林公式. 案

第3节 格林公式及其应用

第3节  格林公式及其应用

那末 Pdx Qdy Pdx Qdy
L1
L2
由于 Pdx Qdy Pdx Qdy
L2
L2
即 Pdx Qdy 0 .
L1

L
2
L1 L2 是 G内一条有向闭曲线 .
因此 , G内由曲线积分与路径无关
可推出,在 G 内沿闭曲线的积分为零 .
G
DC
x
于是我们得到与定积分中莱布尼兹公式类似的公式 ,
(x, y) Pdx Qdy U (x, y) ( x0 , y0 )
(x , y) ( x0 , y0 )
U (x, y) U (x0 , y0 )
,
其中 L 为一条无重点 ` 分段光滑
且不经过坐标原点的连续曲线 , L的方向为逆时针方向.
解 令 P y , Q x .当 x2 y2 0 时,有
x2 y2
x2 y2
? ? Q
x
y2 x2 x2 y2 2
, P y
y 2 x2 , Q P . x 2 y 2 2 x y
记 L 所围的区域为 D : (1) 当 (0, 0) D , 由格林公式
y
L D

L
xdy x2

ydx y2



D
Q x

P y
dxdy

0
D
dxdy

0
.
o
x
(2) 当 (0, 0) D ,取 r 适当小, 作小圆l
l : x2 y 2 r 2 , 记 L l 所围的区域为 D1 .
y

格林(Green)公式曲线积分与路径无关的条

格林(Green)公式曲线积分与路径无关的条
数学与其他学科的交叉应用
格林公式在数学物理方程、电动力学、流体力学等领域有 广泛的应用,是连接数学与物理世界的重要桥梁。
格林公式的历史背景
发展历程
格林公式是微积分学中的重要内 容,它的起源可以追溯到19世纪 上半叶,当时数学家开始研究如 何将线积分转化为面积分的问题。
贡献人物
乔治·格林(George Green)在 1830年代对这一领域做出了重大 贡献,他通过引入所谓的“格林 函数”来研究平面上向量场的性 质。
格林公式在解决曲线积分问题中的优势
简化计算过程
通过格林公式,可以将复杂的曲线积分问题 转化为面积分问题,从而简化计算过程。
提供解决问题的新思路
格林公式为解决曲线积分问题提供了新的思 路和方法,有助于拓展解题思路。
04
曲线积分与路径无关的应用实例
物理学中的磁场问题
磁场线闭合
在磁场中,如果曲线积分的路径无关,那么磁场线必然是闭合的。这意味着磁场没有源点或漏点,即不存在磁单 极。
磁通量不变
在磁场中,如果曲线积分的路径无关,那么通过某一区域的磁通量将保持不变。这意味着磁场不会因为路径的改 变而发生改变。
电学中的电场问题
电势差恒定
在电场中,如果曲线积分的路径无关,那么电势差将保持恒定。这意味着电场不会因为路径的改变而 发生改变。
电场线闭合
在电场中,如果曲线积分的路径无关,那么电场线必然是闭合的。这意味着电场没有源点或漏点,即 不存在电荷聚集点。
通过格林公式,可以判断一个曲线积分是否 与路径无关,为解决相关问题提供依据。
格林公式与曲线积分的关系证明
利用向量场的散度性质
通过向量场的散度性质,可以推导出格林公 式,从而证明其与曲线积分的关系。

格林公式及曲线积分与路径无关的等价条件

格林公式及曲线积分与路径无关的等价条件

例3. 计算
其中L为一无重点且不过原点
的分段光滑正向闭曲线.
解: 令
则当x 2 y 2 0时,
设 L 所围区域为D, 当(0,0) D 时, 由格林公式知
y
L
o
x
2 2 2 在 D 内作圆周 l : x y r , 取逆时 当(0,0) D 时,
针方向, 记 L 和 lˉ 所围的区域为 D1 , 对区域 D1 应用格 林公式 , 得
n
Dk

Q P d xd y x y
o
x

k 1
Dk
P dx Qd y
(Dk 表示 Dk 的正向边界 )
证毕
P dx Qd y
L
Q P d xd y P d x Q d y 格林公式 x y D L
L D
为单连通区域 为复连通区域
{( x, y ) x 2 y 2 1}
区域 D 分类
多连通区域 ( 有“洞”区 域) 单连通区域 ( 无“洞”区
一、 格林公式
定理1. 设区域 D 是由分段光滑正向闭曲线 L 围成, 函数
P( x, y) , Q( x, y) 在 D 上具有连续一阶偏导数, 则有
①、②两式相加得:


Q P D x y d xd y L Pd x Qd y
2) 若D不满足以上条件, 则可通过加辅助线将其分割
为有限个上述形式的区域 , 如图 Q P D x y d xd y
y
D2 D1 Dn
L

k 1 n
推论: 正向闭曲线 L 所围区域 D 的面积 1 A xd y y d x 2 L x a cos , 0 2 所围面积 例如, 椭圆 L : y b sin

格林(Green)公式及其应用-1

格林(Green)公式及其应用-1

偏增量
( x, y ) ( x0 , y0 )
Pdx + Qdy −∫
( x+∆x, y) ( x, y )
Pdx + Qdy
=∫
=∫
( x, y ) ( x0 , y0 )
+∫
−∫
( x, y ) ( x0 , y0 )
Pdx + Qdy
( x+∆x, y)
( x+∆x, y) ( x, y )
Pdx + Qdy =∫
(1) ⇒(2) ⇒(3) ⇒(4) ⇒(1) (1) ⇒(2): ∀A, B ∈ G , ∀L, L′,
y
封闭曲线) 封闭曲线 有 L + ( − L′ ) = C (封闭曲线
A
o

L

B C
G
L′
x


L+( − L′ )
Pdx + Qdy = ∫ Pdx + Qdy = 0
C
即 ∫ L Pdx + Qdy +∫ −L′ Pdx + Qdy = 0
一、格林(Green)公式及其应用 格林( 公式及其应用 4.平面上曲线积分与路径无关的 . 等价条件
4.平面上曲线积分与路径无关的 . 等价条件 y
如果在区域D内 如果在区域 内,
∀L1 , L2 , 有
L 1

⋅B
L2
D
A o

∫L Pdx + Qdy = ∫L Pdx + Qdy
1
x
2
则称曲线积分
y = sin
πx
2
.

格林公式的应用

格林公式的应用

格林公式的应用
1.什么是格林公式?
格林公式是指由英国数学家格林提出的用来计算某一多项式在
某一点的近似值的公式,它是一个多项式的近似值计算公式。

格林公式是基于抛物线(parabola)近似曲线在一定范围内拟合某多项式,其实际应用中是以三次多项式来近似计算出某多项式在某一点的近
似值。

2.格林公式的应用
(1)求解曲线的稳定点:格林公式可用来计算曲线的稳定点,即一阶导数为0时的值。

(2)优化函数:格林公式可用于优化函数,如果给定函数的一阶和二阶导,可利用格林公式求得函数的极值点。

(3)数值积分:格林公式也用于数值积分,能够准确而快速地求得曲线的积分值。

(4)对称函数:格林公式可用于求解对称函数的极值点,比如圆形的半径等。

(5)曲线拟合:格林公式也可以用于曲线拟合来确定某一多项式在某一点的值,从而降低计算的复杂度。

- 1 -。

格林公式及其在曲线积分求解中的应用

格林公式及其在曲线积分求解中的应用

格林公式及其在曲线积分求解中的应用格林公式及其在曲线积分求解中的应用课程名称数分选讲系院理学院专业信息与计算科学班级 xx级1班学生姓名魏志辉学号 xx101316 指导教师禹海雄设计起止时间:xx年6月11日至 xx年6月15日什么是曲线积分??1、设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L 上有界,在L上任意插入一点列M1,M2,M3…,Mn 把L 分成 n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σ f(x,y)i*ds,记λ=max(ds),若Σf(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ;其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。

2、曲线积分的类别:曲线积分分为:对弧长的曲线积分(第一类曲线积分)对坐标轴的曲线积分(第二类曲线积分)两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。

对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。

但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。

3、两种曲线积分的联系:对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx;或者ds=√[1+(dx/dy)^2]*dy;这样对弧长的曲线积分都可以转换成对坐标轴的曲线积分了。

在数学中,曲线积分或路径积分是积分的一种。

积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。

曲线积分有很多种类,当积分路径为闭合曲线时,称为环路积分或围道积分。

5 格林公式及其应用

5 格林公式及其应用


L
P d x Qd y 0 .
(ii) 对D 中任一按段光滑曲线 L, 曲线积分 与路径无关, 只与 L 的起点及终点有关.

L
P d x Qd y
的全微分,
(iii)
是 D 内是某一函数 即 d u ( x, y ) P d x Q d y
(iv) 在 D 内处处成立
P Q . y x
曲线积分 Pdx Qdy 在 G 内与路径无关相当于沿 G 内任
L
意闭曲线 C 的曲线积分 Pdx Qdy 等于零
L
这是因为 设L1和L2是G内任意两条从 点A到点B的曲线 则L1(L2)是G内一条任 意的闭曲线 而且有
L Pdx Qdy L Pdx Qdy
1 2
设L为D中任一分段光滑闭曲线, 由条件(iv), 在 D 上处处成立
D
P Q y x
利用格林公式 , 得
Q P L P d x Q d y ( x y )d xd y 0
证毕
由上述证明可看到,在定理的条件下,二元函数:
u ( x, y)
P(x, y)dx Q(x, y)dy
y y0 x
u(x, y) P(x, y0)dx Q(x, y)dy
x0 y
u(x, y) Q(x0, y)dy P(x, y)dx
y0 x0
应用定理2应注意的问题 (1)区域G是单连通区域 (2)函数P(x y)及Q(x y)在G内具有一阶连续偏导数 如果这两个条件之一不能满足 那么定理的结论不能保 证成立
AO ,
原式
L AO ( x 3 y) dx ( y x) d y 2 2 ( x 3 y ) d x ( y x) d y OA 4 2 y 4 d xd y x dx L 0 D

格林公式及其应用

格林公式及其应用
-
平面单连通区域的概念:
设D为平面区域,如果D内任一闭曲线所围的部分都
属D则称D为平面单连通区域,否则称为复连通区域 。通
俗的说,平面单连通区域就是不含“洞”(包括点“洞”) 的
区域,复连通区域是含有“洞”(包含“洞”的区域)。
例如,平面上的圆形区域{(x,y) |1< x2 y2 <4 } 或
2 xy Q d (x ,x y )d y 2 xy Q d (x ,x y )dy
(0 ,
解: 由题意知曲线积分与路径无关,因而有 Q (2xy)
x y
-
即 Q 2x. 于是 Q(x,y)x2(y)其中 ( y)
x
为任意可导函数。 如图所示,取点 A (t,0) , B (t,1) , C (1,0) , D (1,t) . 对所给等式
-
定理1:设闭区域D由分段函数光滑的曲线L围成, 函数P(x,y)及Q(x,y)在上具有一阶连续偏导数,则有
DQ xP ydxdyPdxQdy (1)
其中L是D的取正向的边界曲线。 公式(1)叫做格林公式。
注意哦
对于复连通区域D,格林公式(1)右端应包括沿区 域D的全部边界的曲线积分,且边界的方向对区域D来 说都是正向。
(3) 若函数 P (x,y), Q(x,y) 满足定理2条件
(x,y)
u(x,y)
PdxQd满y 足
x y ( , ) 00
-
duPdxQdy
例 4 设函数 Q(x,y) 在xoy面上具有一阶连续偏导数,曲线积分
L2xydQ y(x,y)dy
与路径无关,且对任意实数 t ,恒有
(t,1 )
(1 ,t)
{(x,y)| 0< x2 y2 <2}都是复连通区域。

格林公式及其应用

格林公式及其应用

格林公式及其应用格林公式是微积分中的一个重要工具,用于计算其中一区域内的面积和体积。

它是由德国数学家格林(Carl Friedrich Gauss)在19世纪初提出的,被广泛应用于物理、工程、经济等领域的计算中。

格林公式的一般形式如下:$$\oint_C (Pdx + Qdy) = \iint_D ( \frac{{\partialQ}}{{\partial x}} - \frac{{\partial P}}{{\partial y}} ) dA $$其中,$C$表示封闭曲线,$D$表示被封闭曲线围成的区域,$P$和$Q$是$D$内的函数,$\frac{{\partial P}}{{\partial y}}$表示$P$对$y$求偏导数,$\frac{{\partial Q}}{{\partial x}}$表示$Q$对$x$求偏导数,$dA$表示面积元素。

格林公式的应用有以下几个方面:1.计算曲线积分:格林公式将曲线积分转化为了面积积分,使得计算曲线积分更加简便。

通过计算封闭曲线上其中一函数和微分形式 $Pdx + Qdy$ 的积分,可以得到围成该区域的面积。

2.计算平面区域的面积:通过格林公式可以计算出封闭曲线围成的平面区域的面积。

将面积元素 $dA$ 替换为 $1$,$Pdx + Qdy$ 替换为$dx$,然后对曲线积分进行计算,即可得到该区域的面积。

3.计算体积:对于封闭曲线$C$,通过格林公式可以计算出围成该曲线的曲面的面积。

再通过计算该曲面旁切平面上函数的面积积分,就可以得到该曲面的体积。

4.计算电场:格林公式在物理学中应用广泛,特别是在电场计算中。

当电场满足一些条件时,可以通过格林公式计算出电场的其中一参数。

例如,在静电学中,可以通过格林公式计算电场的电势差,从而得到电场的分布。

5.计算流体的流量:格林公式在流体力学中也有重要应用。

通过格林公式,可以计算流体从一个闭合曲面流出的流量,从而得到流体的流速和流量。

格林公式及其应用

格林公式及其应用
d d c
x 2 ( y) Cy 1 ( x ) x b
Q( 2 ( y ), y ) d y Q( 1 ( y ), y ) d y c

CBE
Q( x, y )d y
EAC
Q( x, y )d y
即 同理可证

② ①、②两式相加得:
Q P D x y d xd y L Pd x Qd y
例31.8. 计算 I
B(2,0)的路径.
AOB
(12 xy e y )dx (cos y xe y )dy ,
其中AOB为由点A(1,1)沿y x 2到O(0,0),再沿y 0到
解: 添加辅助线: 直线段BC与CA.
y A
O
I sin 1 e 1.
C
B
x
(2) 若D不满足以上条件,则可通过加辅助线将其分割
为有限个上述形式的区域 , 如图 Q P D x y d xd y
y
D2
D1
L
Dn

k 1 n
n
Dk

Q P d xd y x y
o
x

k 1
Dk
P dx Qd y
(Dk 表示 Dk 的正向边界 )
(1)
其中L取正向.
公式(1)称为格林公式.(Green formula)
证明: (1) 若D 既是 X - 型区域 , 又是 Y - 型区域 , 且
1 ( x) y 2 ( x) D: a xb
y
d x 1 ( y) A
E
y 2 ( x)
D
B

格林公式及其在曲线积分求解中的应用.doc

格林公式及其在曲线积分求解中的应用.doc

格林公式及其在曲线积分求解中的应用.南昌工程学院《数分选讲》课程设计题目格林公式及其在曲线积分求解中的应用课程名称数分选讲系院理学院专业信息与计算科学班级XXXX年6月11日至XXXX年6月15日什么是曲线积分??1. 设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界,在L上任意插入一点列M1,M2,M3…,Mn 把L 分成n 个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σ f(x,y)i*ds,记λ=max(ds) ,若Σ f(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ;其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。

2. 曲线积分的类别:曲线积分分为:对弧长的曲线积分(第一类曲线积分)对坐标轴的曲线积分(第二类曲线积分)两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。

对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。

但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。

3. 两种曲线积分的联系:对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx) ]*dx; 或者ds=√[1+(dx/dy) ]*dy;这样对弧长的曲线积分都可以转换成对坐标轴的曲线积分了。

在数学中,曲线积分或路径积分是积分的一种。

积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。

曲线积分有很多种类,当积分路径为闭合曲线时,称为环路积分或围道积分。

在曲线积分中,被积的函数可以是标量函数或向量函数。

03第三节格林公式及其应用

03第三节格林公式及其应用

03第三节格林公式及其应用格林公式是微积分中的一项重要定理,它在多元函数的积分计算以及微分方程的解法中都有广泛的应用。

本文将详细介绍格林公式的概念、表达式以及在实际问题中的应用。

格林公式是由英国数学家格林(George Green)于1828年首次提出的,它是高斯定理在平面上的推广形式。

格林公式用于计算一个平面区域内的一些向量场的闭合曲线积分与该场在该区域内的散度的面积积分之间的关系。

根据格林公式,对于一个平面区域D内的向量场F(x, y) =(P(x, y), Q(x, y)),其中P和Q是函数x和y的偏导数连续的函数,闭合曲线C是D的边界,那么有以下的等式成立:∮C(Pdx + Qdy) = ∬D((∂Q/∂x −∂P/∂y)dA)其中,∮表示沿C的积分,∬表示对D的积分,(Pdx + Qdy)表示场F的微分形式,dA表示平面上的面积元。

格林公式可以看作是微积分中的一个重要结论,在实际应用中有着广泛的应用。

以下将介绍两个格林公式的重要应用。

第一个应用是计算平面区域上面积的问题。

根据格林公式,如果一个平面区域D的边界C是一个简单闭合曲线,那么可以通过计算场F = (0, x)(其中x为函数)沿着C的曲线积分来求解该平面区域的面积。

这是因为根据格林公式,等式可以化简为∮C Qdy = ∬D (∂Q/∂x)dA。

由于场F的向量值为(0, x),所以Q = x,那么上述等式可以进一步化简为∮C xdy = ∬D (∂Q/∂x)dA。

由于场F的x分量为0,所以x的偏导数等于0,那么上述等式可以进一步化简为∮Cxdy = 0。

由于dy在曲线C上的积分等于0,所以有∮Cxdy = ∫Cxdy = ∫(xdy + 0dx) = ∫xdy,即通过计算∫xdy可以得到平面区域D的面积。

第二个应用是计算其中一区域内的散度。

根据格林公式,可以通过计算场F = (P, Q)的闭合曲线积分∮C(Pdx + Qdy)来求解场F在区域D内的散度。

格林(Green)公式及其应用

格林(Green)公式及其应用
格林(green)公式及其应用
• 格林公式简介 • 格林公式的基本性质 • 格林公式的应用 • 格林公式的扩展 • 格林公式的实际例子 • 总结与展望
01
格林公式简介
格林公式的定义
格林公式是一个数学定理,用于描述二维平面上的向量场和路径之间的关系。它 指出,在一个封闭的区域内,沿任意路径的积分等于该区域内散度的体积分。
在实变函数中的应用
证明定理
格林公式在证明实变函数中的一些定 理中发挥了重要作用,如黎曼定理和 克雷洛夫定理等。
求解积分方程
利用格林公式,可以将积分方程转化 为边界积分方程,从而简化求解过程。
04
格林公式的扩展
高维格林公式
总结词
高维格林公式是格林公式在高维空间中 的推广,它描述了高维空间中向量场和 标量场之间的关系。
THANKS
感谢观看
格林公式的变种
总结词
格林公式的变种是原始格林公式的不同形式 或应用,它们在特定情况下可能更加方便或 有效。
详细描述
随着数学和物理学的发展,人们发现了许多 格林公式的变种。这些变种可能在某些特定 情况下更加适用,例如在处理非线性问题或 复杂边界条件时。了解这些变种有助于我们
更好地理解和应用格林公式。
03
格林公式在数学分析中占有重要的地位,是微积分学中的基本定理之一。它为 解决许多复杂的积分问题提供了一种有效的方法,使得许多难以计算的问题变 得简单明了。
对未来研究的展望
随着数学和其他学科的发展,格 林公式在各个领域的应用越来越 广泛。未来,我们可以进一步探 索格林公式的各种应用,如数值 计算、物理模拟、图像处理等。
解决偏微分方程的实例
总结词
格林公式还可以用于解决偏微分方程的问题,通过将 偏微分方程转化为等价的积分方程,可以简化求解过 程。

第四章 曲线积分与曲面积分 第三节 格林公式及其应用

第四章 曲线积分与曲面积分 第三节   格林公式及其应用

y x
y
Q ( x , y ) dy
0

( x2 , y2 )
y
y
0
Q ( x 0 , y ) dy
x
P ( x , y ) dx
0
此时有
Pdx
( x 1 , y1 )
Qdy u ( x 2 , y 2 ) u ( x 1 , y 1 )
- 19 -
第三节
格林公式及其应用
1 x
(e e
1
) sin 1
2m 3
- 10 -
第三节
格林公式及其应用
例5 计算曲线积分 其中 L 为由点
第 十 章
L ( 2 xye
x
2
) dx ( e
2
x
2
mx ) dy
B ( 1 ,1 ).
B
O ( 0 , 0 ) 沿曲线 y
2x x
y
到点
L
D
解 L 不是一条封闭曲线,
D D
单连通区域
复连通区域
区域D的正向边界: 内边界顺时针。外边界逆时针
-2-
第三节
格林公式及其应用
定理1. 设区域 D 是由分段光滑正向曲线 L 围成, 函数
在 D 上具有连续一阶偏导数, 则有
第 十 章 曲 线 积 分 与 曲 面 积 分
Q P x y d xd y D
4 3 2 2 4
2
Qx
曲 线因此积分与路径无关。 积 4 3 2 2 4 分 ( 5 x 4 xy ) dx ( 6 x y 5 y ) dy L 与 曲 4 3 2 2 4 面 ( 5 x 4 xy ) dx ( 6 x y 5 y ) dy AO 积 分 4 3 2 2 4 ( 5 x 4 xy ) dx ( 6 x y 5 y ) dy

11-3格林公式及应用

11-3格林公式及应用
1 2 3
L Pdx Qdy .
故(1)式成立.
Q P ( x y )dxdy L Pdx Qdy (1) D 证明 (3) 若区域为多连通区域如图
其边界曲线L 由二条闭曲线L1,L2 所构成. L2 D 作线段 AB,CE 将积分区域分成 D1, 2 . D 2 B L1 设其边界分别 l1,l2 . D1 A Q P 则 ( )dxdy x y D Q P Q P ( )dxdy ( )dxdy x y x y D1 D2
1
L1
D
L2
2
y 证明 (1) ô ø ò D Ä ±ç L è ¼ Ð Ú È Ç Ó µ ß ¼ Ó Æ Ó ×±á Ä ±ß Ä º á º à º ¼ á ® ø ê Ö µ Ö Ï µ ¼ µ ² ¶ ¼ Á µ £ D:a x b, 1 ( x ) y 2 ( x ) . A b 2 ( x ) P P dy 则 dxdy dx a 1 ( x ) y y D
二、格林公式
定理 设平面闭区域 D由分段光滑曲线 L所围成, 函数 P ( x , y ) 及 Q( x , y ) 在 D 上具有一阶连续偏导数 , Q P )dxdy Pdx Qdy (1) 则有 ( L x y D 其中 L是 D 的边界取正向,公式(1) 称为格林公式. 边界曲线L 的正向: 当观察者沿区域D的边界L行走时, 单 连 通 区 域 L 所围区域D总在他的左侧. 多 L 连 D 通 L 区 域
L2 D3 D2
3
D
D1
L1
L
Q P Q P Q P ( )dxdy ( )dxdy ( )dxdy x y x y x y D D D

曲线积分与格林公式

曲线积分与格林公式

曲线积分与格林公式曲线积分作为微积分的重要概念之一,与格林公式有着密不可分的联系。

本文将围绕这两个主题展开讨论,并探究它们的数学原理与应用。

一、曲线积分曲线积分是一种沿曲线的函数积分,用于计算沿曲线的向量场对质点的“功”,也可以理解为曲线路径上的线元沿法向的积分。

在二维空间中,曲线积分可以表示为如下形式:∮C Pdx + Qdy其中,C代表曲线,P和Q分别为与曲线C上一点(x, y)相关的两个函数。

Pdx和Qdy分别表示在x和y方向上的微小位移沿着曲线C。

曲线积分的计算可以通过参数化的方式进行,具体步骤如下:1. 将曲线C参数化表示为r(t)=(x(t), y(t)),其中t为参数。

2. 计算函数P和Q在参数化曲线上的值,即P(x(t), y(t))和Q(x(t), y(t))。

3. 求出关于参数t的微分项dx和dy,即x'(t)和y'(t)dt。

4. 将上述结果代入曲线积分的表达式中,即∫[a,b] [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)]dt。

二、格林公式格林公式是曲线积分与曲面积分之间的重要关系,可以用来将曲线积分转化为曲面积分,或者反过来。

在二维平面上,格林公式可以表示为如下形式:∮C Pdx + Qdy = ∬D (Qx - Py)dA其中,C为曲线,P和Q为与曲线C相接触的两个函数,D为由曲线C所围成的区域。

此公式表明,通过计算曲线C上的积分,可以得到曲面D上的积分。

格林公式的逆运算也成立,即通过计算曲面D上的积分可以得到曲线C上的积分。

这一公式为研究曲线与曲面之间的关系提供了重要的数学工具。

三、应用与实例曲线积分与格林公式在实际问题的求解中有着广泛的应用。

以下是一些常见的应用场景:1. 流量计算:曲线积分可以用于计算液体或气体流体通过曲线边界所传递的流量量。

通过使用格林公式,可以将曲线积分转化为曲面积分,从而更方便地计算流量。

微积分中的曲线积分与格林公式

微积分中的曲线积分与格林公式

微积分是数学的一个分支,其中有一个重要概念就是曲线积分。

曲线积分是对曲线上的函数进行积分的过程,它在实际应用中具有广泛的意义和重要性。

而格林公式则是曲线积分的一个基本定理,它连接了曲线积分和面积积分之间的关系。

首先,我们来了解一下曲线积分的概念。

在平面坐标系中,考虑一条光滑曲线C,我们要对C上的一个函数f(x, y)进行积分。

曲线积分分为两种类型:第一类曲线积分和第二类曲线积分。

第一类曲线积分是对函数在曲线上的取值进行积分,记作∮Cf(x, y)ds。

第二类曲线积分则是将函数与曲线的切向量进行内积后再进行积分,记作∮Cf(x, y)·dr。

曲线积分的计算方法与路径有关,也与函数在路径上的取值有关。

接下来,我们介绍一下格林公式。

格林公式是曲线积分的一个基本定理,它说明了曲线积分与面积积分之间的关系。

设有一个光滑闭合曲线C,这个曲线将一个有限的区域D围起来。

设有两个偏导数连续的函数P(x, y)和Q(x, y),则有∮C[P(x, y)dx + Q(x, y)dy] = ∬D(Qx - Py)dA其中,Qx和Py分别表示P和Q对x和y的偏导数,dA表示微小面积元。

利用格林公式,我们可以将曲线积分转化为面积积分的形式进行计算,这样更加方便和简化。

同时,格林公式还可以推广到更高维的情况下,用于计算空间中曲面积分和体积积分。

最后,我们来看一个实际应用中的例子。

假设有一个平面曲线C,它是一个三角形的边界,我们要计算曲线积分∮C(x^2 + y^2)ds。

首先,我们可以找到这个三角形的顶点,并确定它的边界方程。

然后,利用格林公式,将曲线积分转化为面积积分。

计算面积积分后,我们就可以得到曲线积分的结果。

总之,微积分中的曲线积分与格林公式是一个重要的内容。

曲线积分是对曲线上函数的取值进行积分的过程,而格林公式则把曲线积分与面积积分建立起了联系。

通过格林公式,我们可以将曲线积分转化为面积积分进行计算,这样更加方便和简化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌工程学院《数分选讲》课程设计题目格林公式及其在曲线积分求解中的应用课程名称数分选讲系院理学院专业信息与计算科学班级2012级1班学生姓名魏志辉学号2012101316指导教师禹海雄设计起止时间:2015年6月11日至2015年6月15日什么是曲线积分??1.设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界,在L上任意插入一点列M1,M2,M3…,Mn 把L 分成n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σf(x,y)i*ds,记λ=max(ds) ,若Σf(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ;其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。

2.曲线积分的类别:曲线积分分为:对弧长的曲线积分(第一类曲线积分)对坐标轴的曲线积分(第二类曲线积分)两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。

对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。

但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。

3.两种曲线积分的联系:对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx;或者ds=√[1+(dx/dy)^2]*dy;这样对弧长的曲线积分都可以转换成对坐标轴的曲线积分了。

在数学中,曲线积分或路径积分是积分的一种。

积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。

曲线积分有很多种类,当积分路径为闭合曲线时,称为环路积分或围道积分。

在曲线积分中,被积的函数可以是标量函数或向量函数。

积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和。

带有权重是曲线积分与一般区间上的积分的主要不同点。

物理学中的许多简单的公式(比如说)在推广之后都是以曲线积分的形式出现()。

曲线积分在物理学中是很重要的工具,例如计算电场或重力场中的做功,或量子力学中计算粒子出4.格林公式【定理】设闭区域由分段光滑的曲线围成,函数及在上具有一阶连续偏导数,则有(1) ∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy其中是的取正向的边界曲线.公式(1)叫做格林(green)公式.【证明】先证假定区域的形状如下(用平行于轴的直线穿过区域,与区域边界曲线的交点至多两点)易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域给予证明即可.另一方面,据对坐标的曲线积分性质与计算法有因此再假定穿过区域内部且平行于轴的直线与的的边界曲线的交点至多是两点,用类似的方法可证综合有当区域的边界曲线与穿过内部且平行于坐标轴( 轴或轴)的任何直线的交点至多是两点时,我们有5., 若曲线积分在开区域内与路径无关,那它仅与曲线的起点与终点的坐标有关.假设曲线的起点为,终点为,可用记号或来表示,而不需要明确地写出积分路径.显然,这一积分形式与定积分非常相似, 事实上,我们有下列重要定理【定理一】设是一个单连通的开区域,函数,在内具有一阶连续偏导数,且【证明】依条件知,对内任意一条以点为起点,点为终点的曲线,曲线积分与路径无关,仅与的起点和终点的坐标有关,亦即, 确为点的单值函数.下面证明由于可以认为是从点沿内任何路径到点的曲线积分,取如下路径,有类似地可证明因此【定理二】设是单连通的开区域,,在上具有一阶连续偏导数,则在内为某一函数全微分的充要条件是在内恒成立.【证明】显然,充分性就是定理一下面证明必要性若存在使得,则由于,在内连续, 则二阶混合偏导数适合等式从而【定理三】设是一个单连通的开区域, 函数,在内具有一阶连续偏导数, 若存在二元函数使得则其中,是内的任意两点.【证明】由定理1知,函数适合于是或因此(是某一常数)即而这是因为由点沿任意内的路径回到点构成一条封闭曲线,故因此□【确定的全微分函数的方法】因为,而右端的曲线积分与路径无关,为了计算简便,可取平行于坐标轴的直线段所连成的折线作为积分路径(当然折线应完全属于单连通区域).-------------------------------------------------------【证明】先证假定区域的形状如下(用平行于轴的直线穿过区域,与区域边界曲线的交点至多两点)易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域给予证明即可.另一方面,据对坐标的曲线积分性质与计算法有因此再假定穿过区域内部且平行于轴的直线与的的边界曲线的交点至多是两点,用类似的方法可证综合有当区域的边界曲线与穿过内部且平行于坐标轴( 轴或轴)的任何直线的交点至多是两点时,我们有,同时成立.将两式合并之后即得格林公式注:若区域不满足以上条件,即穿过区域内部且平行于坐标轴的直线与边界曲线的交点超过两点时,可在区域内引进一条或几条辅助曲线把它分划成几个部分区域,使得每个部分区域适合上述条件,仍可证明格林公式成立.6. 牛顿—莱布尼兹公式⎰-=baaFbFdxxF)()()('表示:)('xF在区间[]b a,上的定积分可以通过它的原函数)(x F 在这个区间端点的值来表达.而格林公式表示:在平面区域D 上的二重积分可以通过沿闭区域D 的边界曲线L 的曲线积分来表达.这样,牛顿——莱布尼兹公式成为格林公式的特殊情形.平面单连通域的概念.设D 为平面区域,如果D 内任一闭曲线所围的部分都属于D ,则称D 为平面单连通区域,否则称为复连通区域.例如:平面上的圆形区域(){}1|,22<+y xy x ,上半平面(){}0|,>y y x 都是单连通区域,圆环形区域(){}(){}10|,,41|,2222<+<<+<y x y x y x y x 都是复连通区域. 对平面区域D 的边界曲线L ,规定L 的正向如下:当观察者沿L 的方向行走时,D 总在他的左边.例如D 是边界曲线L及l 所围成的复连通域(图8),作为D 的正向边界,L 的正向是逆时针方向,而l 的正向是顺时针方向.定理1 设闭区域D 由分段光滑的曲线L 围成,函数),(y x P 及),(y x Q 在D 上具有一阶连续偏导数,则有⎰⎰⎰+=∂∂-∂∂L D Qdy Pdx dxdy y P x Q )(, (1)其中L 是D 的取正向的边界曲线.公式(1)叫做格林公式.证 先假设区域D 既是X 型又是Y 型的情形,即穿过区域D 且平行坐标轴的直线与D 的边界曲线L 的交点恰好为两点(图9)设(){}b x a x y x y x D ≤≤≤≤=),()(|,21ϕϕ,因为y P∂∂连续,所以{}⎰⎰⎰⎰⎰-=⎭⎬⎫⎩⎨⎧∂∂=∂∂b a b a x x Ddx x x P x x P dx dy y y x P dxdy y P ))(,())(,(),(12)()(21ϕϕϕϕ.另一方面,对坐标的曲线积分{}⎰⎰⎰⎰⎰⎰-=+=+=L L L b a a b ba dx x x P x x P dx x x P dx x x P Pdx Pdx Pdx 12))(,())(,())(,())(,(2121ϕϕϕϕ.因此得 ⎰⎰⎰=∂∂-L D Pdx dxdy y P . (2)类似地,设(){}d y c y x y y x D ≤≤≤≤=),()(|,21ϕϕ,则可证⎰⎰⎰=∂∂L D Qdy dxdy x Q . (3)由于D 既是X 型又是Y 型的区域,(2)(3)同时成立,二式合并即得公式(1)区域D 既是X 型又是Y 型这样的要求是相当严格的,但是对于一般情形,即区域D 不满足这个条件时,我们可在D内引进辅助线把D 分成有限个部分闭区域,使得每个部分闭区域都满足这个条件,如图10,应用公式(1)于每个部分区域,即可得证.因此,一般地对于由分段光滑曲线围成的闭区域公式(1)都成立.证毕.注 (1) 格林公式中左端二重积分的被积函数是y P x Q ∂∂-∂∂,而且在D 内偏导连续.这是初学者容易记错或者忽略的地方.右端曲线积分中曲线L 对区域D 来说都是正向,这也是需要注意的.(2) 对于复连通区域D ,格林公式右端应包括沿区域D 的全部边界的曲线积分.例如对图8的复连通域1D (阴影部分)格林公式应为⎰⎰⎰⎰+++++=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂L l D Qdy Pdx Qdy Pdx dxdy y P x Q 1.其中+L 、+l 是D 的取正向的闭曲线.(3) 格林公式揭示出二重积分与平面曲线积分之间的联系,同时也给出了通过二重积分计算曲线积分的一个重要公式.许多情况,曲线积分化为二重积分计算往往是方便的.当然有些二重积分也可以化为曲线积分来计算,但是在化为曲线积分时,被积表达式并不是唯一的.例如,⎰⎰D xdxdy 化为曲线积分时,即可以是dyxL⎰221,也可以是()dxxy⎰-或者是xydxdyxL-⎰22121,等等.格林公式的一个简单应用,在公式(1)中取yP-=,xQ=,即得⎰⎰⎰-=LD ydxxdydxdy2,上式左端为闭区域D的面积A的两倍,因此区域D的面积A可以用下面的曲线积分计算。

相关文档
最新文档