职高数学_立体几何

合集下载

职高数学——立体几何

职高数学——立体几何

平面的基本性质一、高考要求:理解平面的基本性质、二、知识要点:1、平面的表示方法:平面就是无限延展的,就是没有边界的、通常用平行四边形表示平面,平面一般用希腊字母α、β、γ、…来命名,还可以用表示平行四边形的对角顶点的字母来命名、2、平面的基本性质:(1)如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内、这时我们说,直线在平面内或平面经过直线、用符号语言表示为:如果A∈a,B∈a,且A∈α,B∈α,则a⊂α、(2)经过不在同一条直线上的三点,有且只有一个平面、也可简单地说成,不共线的三点确定一个平面、它有三个推论:推论1:经过一条直线与直线外的一点,有且只有一个平面;推论2:经过两条相交直线,有且只有一个平面;推论3:经过两条平行直线,有且只有一个平面、(3)如果两个平面有一个公共点,那么它们就有另外的公共点,并且这些公共点的集合就是经过这个点的一条直线、这时我们称这两个平面相交、用符号语言表示为:如果A∈α,A∈β,则α∩β= ,且A∈ 、3、有关概念:如果空间内的几个点或几条直线都在同一平面内,那么我们就说它们共面;如果构成图形的所有点都在同一平面内,则这类图形叫做平面图形;如果构成图形的点不全在同一平面内,则这类图形叫做立体图形、直线与平面都就是空间的子集,直线又就是平面的子集、三、典型例题:例1:已知E、F、G、H分别就是空间四边形ABCD各边AB、AD、BC、CD上的点,且EF与GH 相交于点P、求证:点B、D、P在同一直线上、证明: ∵E∈AB, F∈AD又AB∩AD=A∴E、F∈平面ABD∴EF⊂平面ABD同理GH⊂平面CBD∵EF与GH相交于点P∴P∈平面ABD,P∈平面CBD, 又平面ABD∩平面ABD=BD∴P∈BD即点B、D、P在同一直线上、例2:如图,已知直线a∥b,直线m与a、b分别交于点A、B,求证:a、b、m三条直线在同一平面内、证明:∵a ∥b ∴a 、b 可以确定一个平面α、∵m ∩α=A,m ∩β=B, ∴A ∈α,B ∈α又A ∈m,B ∈m∴m ⊂α、 ∴a 、b 、m 三条直线在同一平面内、四、归纳小结:1、证明点共线问题常用方法有二:(1)证明这些点都就是某两个平面的公共点;(2)由其中两点确定一条直线再证明其它点在这条直线上、2、共面问题证明常用“纳入平面法”一般分为两点:(1)确定平面;(2)证明其余点、线在确定的平面内,解题中应注意确定平面的条件、五、基础知识训练:(一)选择题:1、下列说法正确的就是( )A 、平面与平面只有一个公共点B 、两两相交的三条直线共面C 、不共面的四点中,任何三点不共线D 、有三个公共点的两平面必重合2、在空间,下列命题中正确的就是( )A 、对边相等的四边形一定就是平面图形B 、四边相等的四边形一定就是平面图形C 、有一组对边平行的四边形一定就是平面图形D 、有一组对角相等的四边形一定就是平面图形3、过空间一点作三条直线,则这三条直线确定的平面个数就是( )A 、1个B 、2个C 、3个D 、1个或3个4、空间四点,其中三点共线就是这四点共面的( )A 、充分条件B 、必要条件C 、充要条件D 、既非充分也非必要条件(二)填空题:5、空间三条直线互相平行,但不共面,它们能确定 个平面,三条直线相交于一点,它们最多可确定 个平面、6、检查一张桌子的四条腿的下端就是否在同一个平面内的方法就是 、(三)解答题:7、已知A 、B 、C 就是平面α外三点,且AB 、BC 、CA 分别与α交于点E 、F 、G,求证:E 、F 、G 三点共线、8、已知1 ∥2 ∥3 ,且m ∩1 =A 1,m ∩2 = A 2,m ∩3 =A 3,求证: 1 、2 、3 、m 四线共面、直线与直线的位置关系一、高考要求:1、掌握两直线的位置关系、掌握空间两条直线的平行关系、平行直线的传递性;2、了解异面直线概念、了解异面直线的夹角、垂直与距离的概念、二、知识要点:1、两条直线的位置关系有三种:(1)平行:没有公共点,在同一平面内;(2)相交:有且仅有一个公共点,在同一平面内;(3)异面:没有公共点,不同在任何一个平面内、2、平行直线的传递性:空间三条直线,如果其中两条直线都平行于第三条直线,那么这两条直线也互相平行、3、异面直线的夹角、垂直与距离的概念:经过空间任意一点,分别作与两条异面直线平行的直线,这两条直线的夹角叫做两条异面直线所成的角、成90º角的两条异面直线叫做相互垂直的异面直线,异面直线a与b垂直,记作a⊥b、与两条异面直线都垂直相交的直线叫做两条异面直线的公垂线,对任意两条异面直线有且只有一条公垂线,两条异面直线的公垂线夹在异面直线间的部分叫做这两条异面直线的公垂线段,公垂线段的长度叫做两条异面直线的距离、三、典型例题:例1:已知空间四边形ABCD,E、F、G、H分别就是AB、BC、CD、DA的中点,求证:EFGH就是平行四边形、思考:如果AC=BD,四边形EFGH的形状就是 ;如果AC⊥BD, 四边形EFGH的形状就是 ;如果AC=BD且AC⊥BD,四边形EFGH的形状就是、例2:如图,长方体ABCD-A1B1C1D1中,已知AA1=1cm,AB=AD=2cm,E就是AA1的中点、(1)求证:AC1、BD1、CA1、DB1共点于O,且互相平分;(2)求证:EO⊥BD1,EO⊥AA1;(3)求异面直线AA1与BD1所成角的余弦值;(4)求异面直线AA1与BD1间的距离、四、归纳小结:1、平行线的传递性就是论证平行问题的主要依据;等角定理表明角在空间平行移动,它的大小不变、2、两条异面直线所成的角θ满足0º<θ≤90º,且常用平移的方法化为相交直线所成的角,在三角形中求解、五、基础知识训练:(一)选择题:1、在立体几何中,以下命题中真命题的个数为( )(1)垂直于同一直线的两直线平行; (2)到定点距离等于定长的点的轨迹就是圆;(3)有三个角就是直角的四边形就是矩形; (4)自一点向一已知直线引垂线有且只有一条、A、0个B、1个C、2个D、3个2、下列命题中,结论正确的个数就是( )(1)如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;(2)如果两条相交直线与另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等;(3)如果一个角的两边与另一个角的两边分别垂直,那么这两个角相等或互补;(4)如果两条直线同平行于第三条直线,那么这两条直线互相平行、A、1个B、2个C、3个D、4个3、下列关于异面直线的叙述错误的个数就是( )(1)不同在任何一个平面内的两条直线就是异面直线;(2)既不平行也不相交的两条直线就是异面直线;(3)连结平面内一点与平面外一点的直线与这个平面内不经过该点的任意直线就是异面直线;(4)分别与两条异面直线同时相交的两条直线一定就是异面直线、A、0个B、1个C、2个D、3个4、下列命题中,结论正确的个数就是( )(1)若a∥b, a∥c,则b∥c; (2)若a⊥b, a⊥c,则b∥c;(3)若a∥b, a⊥c,则b⊥c; (4)若a⊥b, a⊥c,则b⊥c;A、1个B、2个C、3个D、4个5、教室内有一直尺,无论怎样放置,在地面总有这样的直线,它与直尺所在直线( )A、垂直B、平行C、相交D、异面6、设a、b、c为空间三条直线, a∥b, a、c异面,则b与c的位置关系就是( )A、异面B、相交C、不相交D、相交或异面7、设a、b、c为空间三条直线, 且c与a、b异面,若a与c所成的角等于b与c所成的角,则a与b的位置关系就是( )A、平行B、平行或相交C、平行或异面D、平行或相交或异面8、(2002高职-4)已知m,n就是异面直线,直线 平行于直线m,则 与n( )A、不可能就是平行直线B、一定就是异面直线C、不可能就是相交直线D、一定就是相交直线(二)填空题:9、平行于同一直线的两直线的位置关系就是 ;垂直于同一直线的两直线的位置关系就是、10、若a∥b,c⊥a,d⊥b,则c与d的关系为、11、空间两个角α与β,若α与β两边对应平行,当α=50º时,则角β= 、(三)解答题:12、、已知A、B与C、D分别就是异面直线a、b上的两点,求证:AC与BD就是异面直线(要求画出图形,写出已知,求证与证明过程)13、已知正方体ABCD-A1B1C1D1的棱长为1、(1)求直线DA1与AC的夹角;(2)求直线DA1与AC的距离、14、已知空间四边形OABC的边长与对角线长都为1,D、E分别为OA、BC 的中点,连结DE、(1)求证:DE就是异面直线OA与BC的公垂线;(2)求异面直线OA与BC的距离;(3)求点O到平面ABC的距离、直线与平面的位置关系一、高考要求:1.掌握直线与平面的位置关系、2.了解直线与平面平行的判定与性质,理解平行投影概念、掌握空间图形在平面上的表示方法、3.掌握直线与平面垂直的判定与性质、理解正射影与三垂线定理及其逆定理、掌握直线与平面所成的角及点到平面距离的概念、二、知识要点:1.直线与平面的位置关系有以下三种:(1)直线在平面内:有无数个公共点;(2)直线与平面相交:有且只有一个公共点;(3)直线与平面平行:没有公共点、2.直线与平面平行的判定:如果平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行、用符号语言表述为:如果a∥b,b⊂α,a α,那么a∥α、直线与平面平行的性质:如果一条直线平行于一个已知平面,且过这条直线的平面与已知平面相交,那么这条直线就与交线平行、用符号语言表述为:如果a∥α,a⊂β,α∩β=b,那么a∥b、3.当直线或线段不平行于投射线时,平行射影具有下述性质:(1)直线或线段的平行射影仍就是按或线段;(2)平行线的平行射影仍就是平行线;(3)在同一直线或平行直线上,两条线段平行射影的比等于这两条线段的比、4.表示空间图形的平面图形,叫做空间图形的直观图、画直观图通常用斜二测画法、5.直线与平面垂直的判定:如果一条直线垂直于平面内两条相交直线,那么这条直线就垂直于这个平面、用符号语言表述为:如果 ⊥a, ⊥b, a⊂α,b⊂α,a∩b=P,那么 ⊥α、直线与平面垂直的性质:如果两条直线同垂直于一个平面,那么这两条直线互相平行、用符号语言表述为:如果a⊥α, b⊥α,那么a∥b、6.斜线及其在平面内的射影:一条直线与一个平面相交但不与它垂直,这条直线称为平面的斜线,斜线与平面的交点称为斜足、从平面外一点向平面引垂线与斜线,从这点到斜足间的线段长,称为从这点到平面间的斜线的长,斜足与垂足之间的线段称为斜线在平面内的射影、这点到垂足的距离称为这个点到平面的距离、斜线与它在平面内的射影所成的角称为这条斜线与平面所成的角、定理:从平面外一点向平面引垂线与斜线、(1)如果两斜线的射影的长相等,那么两斜线的长相等,射影较长的斜线也较长、(2)如果两斜线长相等,那么射影的长也相等,斜线较长的射影也较长、7.三垂线定理及其逆定理:三垂线定理:平面内的一条直线,如果与一条斜线在这个平面内的射影垂直,那么这条直线也与这条斜线垂直、用符号语言叙述为:如果PO与PA分别就是平面α的垂线与斜线,AO就是斜线PA在平面α上的射影,而直线a⊂α,且a⊥AO,那么a⊥PA、三垂线逆定理:平面内的一条直线,如果与在这个平面的一条斜线垂直,那么这条直线也与这条斜线在平面内的射影垂直、用符号语言叙述为:如果PO与PA分别就是平面α的垂线与斜线,AO就是斜线PA在平面α上的射影,而直线a⊂α,且a⊥PA,那么a⊥AO、三、典型例题:例1:已知PA⊥矩形ABCD所在平面,M、N分别就是AB、PC的中点、(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45º,求证:MN⊥平面PCD、例2: AD、BC分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为30º, AD =8cm,AB⊥BC,DC⊥BC,求线段BC的长、例3:(99高职-22)(本题满分10分)已知平面α,A∈α、B∈α、P α、 ⊂α,在以下三个关系中:AB⊥ ,PA⊥α,PB⊥ ,以其中的两个作为条件,余下的一个作为结论,构造一个真命题(用文字语言表述,不得出现字母及符号,否则不得分),并予以证明、四、归纳小结:1、在直线与平面的位置关系中,注意掌握通过“线线平行”去判定“线面平行”,反过来由“线面平行”去判定“线线平行”;通过“线线垂直”去判定“线面垂直”,反过来由“线面垂直”去判定“线线垂直”、2、平行射影的性质就是假定已知线段或直线不平行于投射线得出的、如果平行于投射线,则线段或直线的像就是一个点、3、由直线与平面垂直的判定定理可推出许多关于“垂直”的重要性质,其中最重要的有两个:一个就是,到两点距离相等的点的轨迹就是连结这两点的线段的垂直平分面;另一个就是,三垂线定理及其逆定理、这个定理就是判定空间线线垂直的一个重要方法,就是计算空间中两条直线的夹角与线段长度等有关问题的重要基础、它的证明的思想方法十分重要、4、在直线与平面所成的角中要重点掌握公式:cosθ=cosθ1cosθ2、在公式的基础上得到了“斜线与它在平面内的射影所成的角就是斜线与这个平面内所有直线所成的角中最小的角”的结论、直线与平面所成的角θ满足0º≤θ≤90º、五、基础知识训练:(一)选择题:1、如图,PO⊥平面ABC,O为垂足,OD⊥AB,则下列关系式不成立的就是( )A 、 AB ⊥PD B 、 AB ⊥PCC 、 OD ⊥PC D 、 AB ⊥PO2、直线 与平面α成3π的角,直线a 在平面α内,且与直线 异面,则 与a 所成角的取值范围就是( )A 、⎪⎭⎫⎢⎣⎡32,0π B 、⎪⎭⎫⎢⎣⎡32,3ππ C 、 ⎪⎭⎫⎢⎣⎡2,3ππ D 、⎥⎦⎤⎢⎣⎡2,3ππ 3、由距离平面α为4cm 的一定点P 向平面α引斜线PA 与平面α成30º的角,则斜足A 在平面α内的轨迹图形就是( )A 、半径为34cm 的圆B 、半径为24cm 的圆C 、半径为334cm 的圆 D 、半径为22cm 的圆 4、设a 、b 就是两条异面直线,在下列命题中正确的就是( )A 、有且仅有一条直线与a 、b 垂直B 、有一个平面与a 、b 都垂直C 、过直线a 有且仅有一个平面与b 平行D 、过空间任一点必可作一条直线与a 、b 都相交5、下列命题中正确的就是( )A 、若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B 、若一条直线垂直于一个平面内的无数条直线,则这条直线必定垂直于这个平面C 、若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D 、若一条直线平行于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面6、两条直线a 、b 与平面α成的角相等,则a 、b 的关系就是( )A 、平行B 、相交C 、异面D 、以上三种情况都有可能7、PA,PB,PC 就是从P 引出的三条射线,每两条的夹角都就是60º,则直线PC 与平面PAB 所成角的余弦值为( )A 、21 B 、36 C 、33 D 、23 8、直线a 就是平面α的斜线,b ⊂α,当a 与b 成60º的角,且b 与a 在α内的射影成45º角时,a 与α所成的角就是( )A 、60ºB 、45ºC 、90ºD 、135º9、矩形ABCD,AB=3,BC=4,PA ⊥ABCD 且PA=1, P 到对角线BD 的距离为( )A 、513B 、517 C 、921 D 、12951 10、在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC,PA=8,则P 到BC 的距离为( )A 、5B 、52C 、53D 、5411、在直角三角形ABC 中, ∠B=90º,∠C=30º,D 就是BC 边的中点,AC=2,DE ⊥平面ABC,且DE=1,则E 到斜边AC 的距离就是( )A 、25B 、27C 、211D 、419 12、已知SO ⊥平面α,垂足O, △ABC ⊂α,点O 就是△ABC 的外心,则( )A 、 SA=SB=SCB 、 SA ⊥SB,且SB ⊥SCC 、∠ASB=∠BSC=∠CSAD 、 SA ⊥BC(二)填空题:13、如图,C 为平面PAB 外一点,∠APB=90º,∠CPA=∠CPB=60º,且PA=PB=PC=1,则C 到平面PAB 的距离为 、14、在空间四边形ABCD 中,如果AB ⊥CD,BC ⊥AD,那么对角线AC 与BD 的位置关系就是 、15、两条直线a 、b 在同一个平面上的射影可能就是 、(三)解答题:16、证明直线与平面平行的判定定理、17、从平面外一点P 向平面引垂线PO 与斜线PA,PB 、(1)如果PA=8cm,PB=5cm,它们在平面内的射影长OA:OB=4:3,求点P 到平面的距离;(2)如果PO=k,PA 、PB 与平面都成30º角,且∠A PB=90º,求AB 的长;(3)如果PO=k,∠OPA=∠OPB=∠A PB=60º,求AB 的长、18、一个正三角形的边长为a,三角形所在平面外有一点P 、(1)P 到三角形三顶点的距离都就是332a,求这点到三角形各顶点连线与三角形所在平面成的角的大小以及这点到三角形所在平面的距离;(2)P 到三角形三条边的距离都就是66a,求这点到三角形各边所作垂线与三角形所在平面成的角的大小以及这点到三角形所在平面的距离、19、已知直角△ABC 在平面α上, D 就是斜边AB 的中点, DE ⊥α,且DE=12cm,AC=8cm,BC=6cm,求EA,EB,EC 的长、20、如图,平面α∩β=CD,EA ⊥α,EB ⊥β,且A ∈α,B ∈β、求证:(1)CD ⊥平面EAB;(2)CD ⊥直线AB 、21、已知PO ⊥平面ABO,PB ⊥AB,又知∠PAB=α,∠PAO=β,∠OAB=γ、求证:cos α=cos βcos γ、22、 已知正方体ABCD-A 1B 1C 1D 1、(1)求直线DA 1与AC 1的夹角;(2)求证:AC 1⊥平面A 1BD 、平面与平面的位置关系一、高考要求:1.掌握平面与平面的位置关系、2.了解平面与平面的判定与性质,理解二面角概念,掌握平面与平面垂直的判定与性质、二、知识要点:1.平面与平面有以下两种位置关系:(1)平行:没有公共点;(2)相交:有一条公共直线、2.平面与平面平行的判定:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面互相平行、用符号语言表述为:如果a∩b≠Φ, a⊂α,b⊂α,且a∥β,b∥β,那么α∥β、平面与平面平行的性质:如果两个平行平面同时与第三个平面相交,则它们的交线平行、用符号语言表述为:如果α∥β,γ∩α=a,γ∩β=b,那么a∥b、3.二面角:由一条直线引两个半平面所组成的图形称为二面角,这条直线称为二面角的棱,构成二面角的两个半平面称为二面角的面、在二面角的棱上任取一点,过这点在二面角的两个半平面内分别作棱的垂线,这两条垂线相交所成的角称为二面角的平面角、二面角的大小可用它的平面角来度量、平面角就是直角的二面角叫做直二面角、4.平面与平面垂直的判定:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直、用符号语言表述为:如果直线AB⊂平面α,AB⊥β,垂足为B,那么α⊥β、平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面、用符号语言表述为:如果α⊥β, α∩β=CD,AB⊂α, AB⊥CD,B为垂足,那么AB⊥β、三、典型例题:例1:试证明:如果两个平面垂直,那么在一个平面内,垂直于它们交线的直线垂直于另一个平面、例2:已知二面角α- -β的平面角就是锐角θ,若点C∈α,C到β的距离为3,C到棱AB的距离为4,试求sin2θ的值、例3:已知平面β⊥平面α,平面γ⊥平面α,且平面β∩平面γ=a,求证:a⊥α、四、归纳小结:1.在平面与平面的位置关系中,注意掌握通过“线面(或线线)平行”去判定“面面平行”,反过来由“面面平行”去判定“线线平行”;通过“线线垂直”去判定“线面垂直”,反过来由“线面垂直”去判定“线线垂直”、2.二面角θ满足0º≤θ≤180º、求二面角的大小分两步:(1)找出二面角的平面角;(2)在三角形中求解平面角、五、基础知识训练:(一)选择题:1.设a、b、c表示直线,α、β、γ表示平面,下面四个命题中,;①若a⊥c, b⊥c,则a∥b ②若α⊥γ,β⊥γ,则α∥β③若a⊥c, b⊥α,则a∥α④若a⊥α, a⊥β,则α∥βA、①与②B、③与④C、②D、④2.如图,木工师傅在检查工件相邻的两个面就是否垂直时,常用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动一下,观察尺边就是否与这个面密合就可以了、这种检查方法的依据就是( )A、平面的基本性质B、三垂线定理C、平面与平面垂直的判定定理D、直线与平面垂直的判定定理3.已知直线 ⊥平面α,直线m⊂平面β,有下面四个命题:①α∥β⇒ ⊥m;② ∥m ⇒α⊥β;③α∥β⇒ ∥m;④ ⊥m⇒α∥β、其中正确的两个命题就是( )A、①与②B、③与④C、②与④D、①与③4.如果直线 ,m与平面α、β、γ满足: =β∩γ, ∥α,m⊂α与m⊥γ,那么必有( )A、α⊥γ且 ⊥mB、α⊥γ且m∥βC、 m∥β且 ⊥mD、α∥β且α⊥γ5.对于平面α、β与直线 、m,则α⊥β的一个充分条件就是( )A、 ⊥m, ∥α,m∥βB、 ⊥m,α∩β= ,m⊂αC、 ∥m, m⊥β, ⊂αD、 ∥m, ⊥α,m⊥β6.若异面直线a、b, a⊂α, b⊂β,则平面α、β的位置关系一定就是( )A、平行B、相交C、平行或相交D、平行或相交或重合7.下列命题中,正确的就是( )(1)平行于同一直线的两平面平行 (2)平行于同一平面的两平面平行(3)垂直于同一直线的两平面平行 (4)垂直于同一平面的两平面平行A、(1)(2)B、(2) (3)C、(3)(4)D、(2)(3)(4)8.过平面外一点P,(1)存在无数个平面与平面α平行 (2)存在无数个平面与平面α垂直(3)存在无数条直线与平面α垂直 (4)只存在一条直线与平面α平行其中正确的有( )A、1个B、2个C、3个D、4个4,PA⊥平面AC,若PA=12,则二面角P-BD-C的大小为( ) 9.设正方形ABCD的边长为6A 、3πB 、4πC 、2πD 、32π (二)填空题:10. 已知二面角就是60º,在它的内部有一点到这个二面角的两个半平面的垂线段长都就是a,则两个垂足间的距离就是 、11. 在二面角的一个面内有一个已知点A,它到棱的距离就是它到另一个面的距离的2倍,则这个二面角的度数就是 、12. 有如下几个命题:①平面α与平面β垂直的充分必要条件就是α内有一条直线与β垂直; ②平面α与平面β平行的一个必要而不充分的条件就是α内有无数条直线与β平行; ③直线a 与平面β平行的一个充分而不必要的条件就是β内有一条直线与直线a 平行、 其中正确命题的序号就是 、13. 设m 、 为直线,α、β为平面,给出下列命题: ① 垂直于α内的两条相交直线,则 ⊥α;②若m ∥α,则m 平行于α内的所有直线;③若 ⊥α,α∥β,则 ⊥β;④若m ⊂α, ⊂β,且 ⊥m,则α⊥β;⑤若m ⊂α, ⊂β,且α∥β,则m ∥ 、其中正确的命题就是(只写序号) 、14. 已知直线 与平面α、β,给出三个论断:① ⊥α,② ∥β,③α⊥β,以其中的二个论断作为条件,余下的一个作为结论,写出您认为正确的一个命题 、15. α、β就是两个不同的平面,m 、n 就是平面α及β之外的两条不同直线,给出四个论断: ①m ⊥n;②α⊥β;③n ⊥β;④m ⊥α,以其中三个论断作为条件,余下一个论断作为结论,写出您认为正确的一个命题: 、16. 设X,Y,Z 就是空间不同的直线或平面,对下面四种情形,使“X ⊥Z 且Y ⊥Z ⇒X ∥Y ”为真命题的就是 、①X,Y,Z 就是直线; ②X,Y 就是直线,Z 就是平面; ③X,Y 就是平面,Z 就是直线; ④X,Y,Z 就是平面、设两个平面α、β相交于m,且直线a ∥α,a ∥β则直线a 与m 的关系就是 、17. 如图,直线AC 、DF 被三个平行平面α、β、γ所截,AC=15cm,DE=5cm,AB:BC=1:3,则AB 的长就是 ,EF 的长就是 、18. 二面角α- -β的度数为θ(0≤θ≤2π),在α面内有△ABC, △ABC 在β内的正射影为△A ´B ´C ´, △ABC 的面积为S,则△A ´B ´C ´的面积S ´= 、(三)解答题:19. 已知一个二面角就是60º,在它的内部一点到这个二面角的两个半平面的距离都就是3,求两个垂足间的距离、20. 已知:在60º二面角的棱上,有两个点A 、B,AC 、BD 分别在这个二面角的两个面内,且垂直于线段AB,且AB=4cm,AC=6cm,BD=8cm,求CD 的长、翻折问题一、高考要求:掌握立体几何中图形翻折问题的解法、二、知识要点:解决翻折问题要求:①根据题意作出折叠前、后的图形; ②分析折叠前、后边、角及其之间的关系哪些发生变化,哪些未发生变化;③寻找解决问题的方法并正确解答问题、三、典型例题:例1:已知△ABC 中,AB=AC=2,且∠A=90º(如图(1)所示),以BC 边上的高AD 为折痕使∠BDC=90º、(如图(2)所示)①求∠BAC;②求点C 到平面ABD 的距离;③求平面ABD 与平面ABC 所成的二面角的正切值、例2:已知等腰梯形ABCD,AB ∥CD,上底=4,下底=6,高=3,沿它的对角线AC 折成60º的二面角,求B 、D 两点之间的距离、四、归纳小结:1、折叠前一般就是平面图形,用平面几何知识解答即可,折叠后就是立体图形,要用立体几何知识解答;2、未发生变化的量可在折叠前的图形中解答,发生变化的量在折叠后的图形中解答、五、基础知识训练:(一)选择题:1. 以等腰直角△ABC 斜边BC 上的高AD 为折痕,折叠时使二面角B-AD-C 为90º,此时∠BAC 为( )A 、30ºB 、45ºC 、60ºD 、90º2. 把边长为a 的正△ABC 沿高AD 折成60º的二面角,则点A 到BC 的距离就是( ) A 、a B 、a 26 C 、a 33 D 、a 415 3. 已知边长为a 的菱形ABCD,∠A=60º,将菱形沿对角线BD 折成120º的二面角,则AC 的长为( )A 、a 22B 、a 23C 、a 23 D 、a 2 (二)填空题:4. E 、F 分别就是正方形ABCD 的边AB 与CD 的中点,EF 交BD 于O,以EF 为棱将正方形折成直二面角,则∠BOD= 、5. 如图,ABCD 就是正方形,E 就是AB 的中点,如将△DAE 与△CBE 分别沿虚线DE 与CE 折起,使AE 与BE重合,记A 与B 重合后的点为P,则面PCD 与面ECD所成的二面角为 度、(三)解答题:6.一个直角三角形的两条直角边各长a与b,沿其斜边上的高h折成直二面角,试求此时a与b两边夹角α的余弦、7.把长宽各为4与3的长方形ABCD沿对角线AC折成直二面角,试求顶点B与D的距离、8.已知等腰梯形ABCD,AB∥CD,上底=4,下底=6,高=3,沿它的对角线AC折成90º的二面角,求B、D两点之间的距离、空间图形性质的应用一、高考要求:掌握空间图形的性质在测量与实际问题中的应用、二、知识要点:1、空间图形的性质在测量中的应用;2、空间图形的性质在实际问题中的应用、三、典型例题:例1:如图,道路 旁有一条河,对岸有一铁塔CD高a米,如果您手中只有测角器与皮尺(刻度米尺),不渡河能否测量出塔顶C与道路的距离、请说出您的测量方法,并求出该距离、例2:斜坡平面α与水平平面β相交于坡脚 ,且成30º的二面角,在平面α内沿一条与 垂直的小路上坡,每前进100米升高多少米?如果沿一条与坡脚 成45º角的小路上坡,仍升高这么高,前进了多少米?四、归纳小结:空间图形的性质在测量与实际问题中的应用,重点在于理解题意,画好能正确表示题意的图形,并运用空间图形的性质解题、五、基础知识训练:(一)填空题:1.正方体的棱长为a,有一小虫,在正方体的表面上从顶点A爬到顶点C´,则小虫爬行的最短距离就是、2.在一长方体形的木块的面A1C1上,有一点P,过点P在平面A1C1内画一条直线与CP垂直、(二)解答题:3.如图,所测物体BB´垂直于水平面α于点B´,底端B´不能到达、在α内取一点A,测得∠BAB´=θ1,引基线AC,使∠B´AC=θ2,在AC上取一点D,使BD⊥AC,又测得AD=a,求物体BB´的高度、。

中职数学教学立体几何 ppt课件

中职数学教学立体几何 ppt课件

放到不同 位置的本
桌子
动脑思考 探索新知
两个平面平行的性质: 如果一个平面与两个平行平面相交, 那么它们的交线平行. 如图所示,如果 // ,平面 与 、 都相交,交线分别为m、n,那么
m∥n.
运用知识 强化练习
画出下列各图形: (1)两个水平放置的互相平行的平面. (2)两个竖直放置的互相平行的平面. (3)与两个平行的平面相交的平面.
创设情境 兴趣导入
将铅笔放到与桌面平行的位置,用矩形
硬纸片的面紧贴铅笔,矩形硬纸片的一边
铅笔
紧贴桌面(如图),观察铅笔及硬纸片与桌面
的交线,发现它们是平行的.
创设情境 兴趣导入
直线与平面的三种位置关系
动脑思考 探索新知
直线与平面平行的性质: 如果一条直线与一个平面平行,并且经过这条直线的一个平面 和这个平面相交,那么这条直线与交线平行. 如图所示,设直线 l 为平面 与平面 的交线,直线m在平面 内且m ∥ 则 m ∥ l .
B
A
C
四.平面的性质 性质3:不在同一条直线上的三个点,可以确定一个平面。
“确定一个平面”指 的是“存在着一个平面, 并且只存在着一个平面” .
1.直线与这条直线外的一点可以确定一个平面. 2.两条相交直线可以确定一个平面. 3.两条平行直线可以确定一个平面.
A
(1)
(2)
(3)
例 在长方A体 BCDA1B1C1D1中,画出 A、 由C、D1
创设情境 兴趣导入
将铅笔放在桌面上,此时铅笔与桌面有无数多个公共点; 抬起铅笔的一端,此时铅笔与桌面只有1个公共点;把铅笔放到 文具盒(文具盒在桌面上)上面,铅笔与桌面就没有公共点了.
动脑思考 探索新知

职高数学——立体几何

职高数学——立体几何

平面的基本性质一、高考要求:理解平面的基本性质.二、知识要点:1.平面的表示方法:平面是无限延展的,是没有边界的.通常用平行四边形表示平面,平面一般用希腊字母α、β、γ、…来命名,还可以用表示平行四边形的对角顶点的字母来命名.2.平面的基本性质:(1)如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.这时我们说,直线在平面内或平面经过直线.用符号语言表示为:如果A∈a,B∈a,且A∈α,B∈α,则a⊂α.(2)经过不在同一条直线上的三点,有且只有一个平面.也可简单地说成,不共线的三点确定一个平面.它有三个推论:推论1:经过一条直线和直线外的一点,有且只有一个平面;推论2:经过两条相交直线,有且只有一个平面;推论3:经过两条平行直线,有且只有一个平面.(3)如果两个平面有一个公共点,那么它们就有另外的公共点,并且这些公共点的集合是经过这个点的一条直线.这时我们称这两个平面相交. 用符号语言表示为:如果A∈α,A∈β,则α∩β= ,且A∈ .3.有关概念:如果空间内的几个点或几条直线都在同一平面内,那么我们就说它们共面;如果构成图形的所有点都在同一平面内,则这类图形叫做平面图形;如果构成图形的点不全在同一平面内,则这类图形叫做立体图形.直线和平面都是空间的子集,直线又是平面的子集.三、典型例题:例1:已知E、F、G、H分别是空间四边形ABCD各边AB、AD、BC、CD上的点,且EF与GH相交于点P.求证:点B、D、P在同一直线上.证明: ∵E∈AB, F∈AD又AB∩AD=A∴E、F∈平面ABD∴EF⊂平面ABD同理GH⊂平面CBD∵EF与GH相交于点P∴P∈平面ABD,P∈平面CBD, 又平面ABD∩平面ABD=BD∴P∈BD即点B、D、P在同一直线上.例2:如图,已知直线a∥b,直线m与a、b分别交于点A、B,求证:a、b、m三条直线在同一平面内.证明:∵a∥b ∴a、b可以确定一个平面α.∵m∩α=A,m∩β=B, ∴A∈α,B∈α又A∈m,B∈m∴m ⊂α. ∴a 、b 、m 三条直线在同一平面内.四、归纳小结:1.证明点共线问题常用方法有二:(1)证明这些点都是某两个平面的公共点;(2)由其中两点确定一条直线再证明其它点在这条直线上.2.共面问题证明常用“纳入平面法”一般分为两点:(1)确定平面;(2)证明其余点、线在确定的平面内,解题中应注意确定平面的条件.五、基础知识训练:(一)选择题:1.下列说法正确的是( )A.平面和平面只有一个公共点B.两两相交的三条直线共面C.不共面的四点中,任何三点不共线D.有三个公共点的两平面必重合2.在空间,下列命题中正确的是( )A.对边相等的四边形一定是平面图形B.四边相等的四边形一定是平面图形C.有一组对边平行的四边形一定是平面图形D.有一组对角相等的四边形一定是平面图形3.过空间一点作三条直线,则这三条直线确定的平面个数是( )A.1个B.2个C.3个D.1个或3个4.空间四点,其中三点共线是这四点共面的( )A.充分条件B.必要条件C.充要条件D.既非充分也非必要条件(二)填空题:5.空间三条直线互相平行,但不共面,它们能确定 个平面,三条直线相交于一点,它们最多可确定 个平面.6.检查一张桌子的四条腿的下端是否在同一个平面内的方法是 .(三)解答题:7.已知A 、B 、C 是平面α外三点,且AB 、BC 、CA 分别与α交于点E 、F 、G,求证:E 、F 、G 三点共线.8.已知1 ∥2 ∥3 ,且m ∩1 =A 1,m ∩2 = A 2,m ∩3 =A 3,求证: 1 、2 、3 、m 四线共面.直线与直线的位置关系一、高考要求:1.掌握两直线的位置关系.掌握空间两条直线的平行关系、平行直线的传递性;2.了解异面直线概念.了解异面直线的夹角、垂直和距离的概念.二、知识要点:1.两条直线的位置关系有三种:(1)平行:没有公共点,在同一平面内;(2)相交:有且仅有一个公共点,在同一平面内;(3)异面:没有公共点,不同在任何一个平面内.2.平行直线的传递性:空间三条直线,如果其中两条直线都平行于第三条直线,那么这两条直线也互相平行.3.异面直线的夹角、垂直和距离的概念:经过空间任意一点,分别作与两条异面直线平行的直线,这两条直线的夹角叫做两条异面直线所成的角.成90º角的两条异面直线叫做相互垂直的异面直线,异面直线a与b垂直,记作a⊥b.和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线,对任意两条异面直线有且只有一条公垂线,两条异面直线的公垂线夹在异面直线间的部分叫做这两条异面直线的公垂线段,公垂线段的长度叫做两条异面直线的距离.三、典型例题:例1:已知空间四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点,求证:EFGH是平行四边形.思考:如果AC=BD,四边形EFGH的形状是 ;如果AC⊥BD, 四边形EFGH的形状是 ;如果AC=BD且AC⊥BD, 四边形EFGH的形状是 .例2:如图,长方体ABCD-A1B1C1D1中,已知AA1=1cm,AB=AD=2cm,E是AA1的中点.(1)求证:AC1、BD1、CA1、DB1共点于O,且互相平分;(2)求证:EO⊥BD1,EO⊥AA1;(3)求异面直线AA1和BD1所成角的余弦值;(4)求异面直线AA1和BD1间的距离.四、归纳小结:1.平行线的传递性是论证平行问题的主要依据;等角定理表明角在空间平行移动,它的大小不变.2.两条异面直线所成的角θ满足0º<θ≤90º,且常用平移的方法化为相交直线所成的角,在三角形中求解.五、基础知识训练:(一)选择题:1.在立体几何中,以下命题中真命题的个数为( )(1)垂直于同一直线的两直线平行; (2)到定点距离等于定长的点的轨迹是圆;(3)有三个角是直角的四边形是矩形; (4)自一点向一已知直线引垂线有且只有一条.A.0个B.1个C.2个D.3个2.下列命题中,结论正确的个数是( )(1)如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;(2)如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等;(3)如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;(4)如果两条直线同平行于第三条直线,那么这两条直线互相平行.A.1个B.2个C.3个D.4个3.下列关于异面直线的叙述错误的个数是( )(1)不同在任何一个平面内的两条直线是异面直线;(2)既不平行也不相交的两条直线是异面直线;(3)连结平面内一点与平面外一点的直线和这个平面内不经过该点的任意直线是异面直线;(4)分别和两条异面直线同时相交的两条直线一定是异面直线.A.0个B.1个C.2个D.3个4.下列命题中,结论正确的个数是( )(1)若a∥b, a∥c,则b∥c; (2)若a⊥b, a⊥c,则b∥c;(3)若a∥b, a⊥c,则b⊥c; (4)若a⊥b, a⊥c,则b⊥c;A.1个B.2个C.3个D.4个5.教室内有一直尺,无论怎样放置,在地面总有这样的直线,它与直尺所在直线( )A.垂直B.平行C.相交D.异面6.设a、b、c为空间三条直线, a∥b, a、c异面,则b与c的位置关系是( )A.异面B.相交C.不相交D.相交或异面7.设a、b、c为空间三条直线, 且c与a、b异面,若a与c所成的角等于b与c所成的角,则a与b的位置关系是( )A.平行B.平行或相交C.平行或异面D.平行或相交或异面8.(2002高职-4)已知m,n是异面直线,直线 平行于直线m,则 和n( )A.不可能是平行直线B.一定是异面直线C.不可能是相交直线D.一定是相交直线(二)填空题:9.平行于同一直线的两直线的位置关系是 ;垂直于同一直线的两直线的位置关系是 .10.若a∥b,c⊥a,d⊥b,则c与d的关系为 .11.空间两个角α和β,若α和β两边对应平行,当α=50º时,则角β= . (三)解答题:12..已知A、B和C、D分别是异面直线a、b上的两点,求证:AC和BD是异面直线(要求画出图形,写出已知,求证和证明过程)13.已知正方体ABCD-A1B1C1D1的棱长为1.(1)求直线DA1与AC的夹角;(2)求直线DA1与AC的距离.14.已知空间四边形OABC的边长和对角线长都为1,D、E分别为OA、BC的中点,连结DE.(1)求证:DE是异面直线OA和BC的公垂线;(2)求异面直线OA和BC的距离;(3)求点O到平面ABC的距离.直线与平面的位置关系一、高考要求:1.掌握直线与平面的位置关系.2.了解直线与平面平行的判定和性质,理解平行投影概念.掌握空间图形在平面上的表示方法.3.掌握直线与平面垂直的判定和性质.理解正射影和三垂线定理及其逆定理.掌握直线与平面所成的角及点到平面距离的概念.二、知识要点:1.直线与平面的位置关系有以下三种:(1)直线在平面内:有无数个公共点;(2)直线与平面相交:有且只有一个公共点;(3)直线与平面平行:没有公共点.2.直线与平面平行的判定:如果平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行.用符号语言表述为:如果a∥b,b⊂α,a α,那么a∥α.直线与平面平行的性质:如果一条直线平行于一个已知平面,且过这条直线的平面和已知平面相交,那么这条直线就和交线平行.用符号语言表述为:如果a∥α,a⊂β,α∩β=b,那么a∥b.3.当直线或线段不平行于投射线时,平行射影具有下述性质:(1)直线或线段的平行射影仍是按或线段;(2)平行线的平行射影仍是平行线;(3)在同一直线或平行直线上,两条线段平行射影的比等于这两条线段的比.4.表示空间图形的平面图形,叫做空间图形的直观图.画直观图通常用斜二测画法.5.直线与平面垂直的判定:如果一条直线垂直于平面内两条相交直线,那么这条直线就垂直于这个平面.用符号语言表述为:如果 ⊥a, ⊥b, a⊂α,b⊂α,a∩b=P,那么 ⊥α.直线与平面垂直的性质:如果两条直线同垂直于一个平面,那么这两条直线互相平行.用符号语言表述为:如果a⊥α, b⊥α,那么a∥b.6.斜线及其在平面内的射影:一条直线和一个平面相交但不和它垂直,这条直线称为平面的斜线,斜线和平面的交点称为斜足.从平面外一点向平面引垂线和斜线,从这点到斜足间的线段长,称为从这点到平面间的斜线的长,斜足和垂足之间的线段称为斜线在平面内的射影.这点到垂足的距离称为这个点到平面的距离.斜线和它在平面内的射影所成的角称为这条斜线与平面所成的角.定理:从平面外一点向平面引垂线和斜线.(1)如果两斜线的射影的长相等,那么两斜线的长相等,射影较长的斜线也较长.(2)如果两斜线长相等,那么射影的长也相等,斜线较长的射影也较长.7.三垂线定理及其逆定理:三垂线定理:平面内的一条直线,如果和一条斜线在这个平面内的射影垂直,那么这条直线也和这条斜线垂直.用符号语言叙述为:如果PO和PA分别是平面α的垂线和斜线,AO是斜线PA在平面α上的射影,而直线a⊂α,且a⊥AO,那么a⊥PA.三垂线逆定理:平面内的一条直线,如果和在这个平面的一条斜线垂直,那么这条直线也和这条斜线在平面内的射影垂直.用符号语言叙述为:如果PO和PA分别是平面α的垂线和斜线,AO是斜线PA在平面α上的射影,而直线a⊂α,且a⊥PA,那么a⊥AO.三、典型例题:例1:已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45º,求证:MN⊥平面PCD.例2: AD、BC分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为30º, AD =8cm,AB⊥BC,DC⊥BC,求线段BC的长.例3:(99高职-22)(本题满分10分)已知平面α,A∈α、B∈α、P α、 ⊂α,在以下三个关系中:AB⊥ ,PA⊥α,PB⊥ ,以其中的两个作为条件,余下的一个作为结论,构造一个真命题(用文字语言表述,不得出现字母及符号,否则不得分),并予以证明.四、归纳小结:1.在直线与平面的位置关系中,注意掌握通过“线线平行”去判定“线面平行”,反过来由“线面平行”去判定“线线平行”;通过“线线垂直”去判定“线面垂直”,反过来由“线面垂直”去判定“线线垂直”.2.平行射影的性质是假定已知线段或直线不平行于投射线得出的.如果平行于投射线,则线段或直线的像是一个点.3.由直线和平面垂直的判定定理可推出许多关于“垂直”的重要性质,其中最重要的有两个:一个是,到两点距离相等的点的轨迹是连结这两点的线段的垂直平分面;另一个是,三垂线定理及其逆定理.这个定理是判定空间线线垂直的一个重要方法,是计算空间中两条直线的夹角和线段长度等有关问题的重要基础.它的证明的思想方法十分重要.4.在直线和平面所成的角中要重点掌握公式:cos θ=cos θ1cos θ2.在公式的基础上得到了“斜线和它在平面内的射影所成的角是斜线和这个平面内所有直线所成的角中最小的角”的结论.直线与平面所成的角θ满足0º≤θ≤90º.五、基础知识训练:(一)选择题:1.如图,PO ⊥平面ABC,O 为垂足,OD ⊥AB,则下列关系式不成立的是( )A. AB ⊥PDB. AB ⊥PCC. OD ⊥PCD. AB ⊥PO2.直线 与平面α成3π的角,直线a 在平面α内,且与直线 异面,则 与a 所成角的取值范围是( ) A.⎪⎭⎫⎢⎣⎡32,0π B.⎪⎭⎫⎢⎣⎡32,3ππ C. ⎪⎭⎫⎢⎣⎡2,3ππ D.⎥⎦⎤⎢⎣⎡2,3ππ 3.由距离平面α为4cm 的一定点P 向平面α引斜线PA 与平面α成30º的角,则斜足A 在平面α内的轨迹图形是( )A.半径为34cm 的圆B.半径为24cm 的圆C.半径为334cm 的圆 D.半径为22cm 的圆 4.设a 、b 是两条异面直线,在下列命题中正确的是( )A.有且仅有一条直线与a 、b 垂直B.有一个平面与a 、b 都垂直C.过直线a 有且仅有一个平面与b 平行D.过空间任一点必可作一条直线与a 、b 都相交5.下列命题中正确的是( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线必定垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线平行于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面6.两条直线a 、b 与平面α成的角相等,则a 、b 的关系是( )A.平行B.相交C.异面D.以上三种情况都有可能7.PA,PB,PC 是从P 引出的三条射线,每两条的夹角都是60º,则直线PC 与平面PAB 所成角的余弦值为( )A.21 B.36 C.33 D.23 8.直线a 是平面α的斜线,b ⊂α,当a 与b 成60º的角,且b 与a 在α内的射影成45º角时,a 与α所成的角是( )A.60ºB.45ºC.90ºD.135º9.矩形ABCD,AB=3,BC=4,PA ⊥ABCD 且PA=1, P 到对角线BD 的距离为( ) A.513 B.517 C.921 D.12951 10.在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC,PA=8,则P 到BC 的距离为( ) A.5 B.52 C.53 D.5411.在直角三角形ABC 中, ∠B=90º,∠C=30º,D 是BC 边的中点,AC=2,DE ⊥平面ABC,且DE=1,则E 到斜边AC 的距离是( ) A.25 B.27 C.211 D.419 12.已知SO ⊥平面α,垂足O, △ABC ⊂α,点O 是△ABC 的外心,则( )A. SA=SB=SCB. SA ⊥SB,且SB ⊥SCC.∠ASB=∠BSC=∠CSAD. SA ⊥BC(二)填空题:13.如图,C 为平面PAB 外一点,∠APB=90º,∠CPA=∠CPB=60º,且PA=PB=PC=1,则C 到平面PAB 的距离为 .14.在空间四边形ABCD 中,如果AB ⊥CD,BC ⊥AD,那么对角线AC 与BD 的位置关系是 .15.两条直线a 、b 在同一个平面上的射影可能是 .(三)解答题:16.证明直线与平面平行的判定定理.17.从平面外一点P 向平面引垂线PO 和斜线PA,PB.(1)如果PA=8cm,PB=5cm,它们在平面内的射影长OA:OB=4:3,求点P 到平面的距离;(2)如果PO=k,PA 、PB 与平面都成30º角,且∠A PB=90º,求AB 的长;(3)如果PO=k,∠OPA=∠OPB=∠A PB=60º,求AB 的长.18.一个正三角形的边长为a,三角形所在平面外有一点P.(1)P 到三角形三顶点的距离都是332a,求这点到三角形各顶点连线与三角形所在平面成的角的大小以及这点到三角形所在平面的距离;(2)P 到三角形三条边的距离都是66a,求这点到三角形各边所作垂线与三角形所在平面成的角的大小以及这点到三角形所在平面的距离.19.已知直角△ABC 在平面α上, D 是斜边AB 的中点, DE ⊥α,且DE=12cm,AC=8cm,BC=6cm,求EA,EB,EC 的长.20.如图,平面α∩β=CD,EA ⊥α,EB ⊥β,且A ∈α,B ∈β.求证:(1)CD ⊥平面EAB;(2)CD ⊥直线AB.21.已知PO ⊥平面ABO,PB ⊥AB,又知∠PAB=α,∠PAO=β,∠OAB=γ.求证:cos α=cos βcos γ.22. 已知正方体ABCD-A 1B 1C 1D 1.(1)求直线DA 1与AC 1的夹角;(2)求证:AC 1⊥平面A 1BD.平面和平面的位置关系一、高考要求:1.掌握平面和平面的位置关系.2.了解平面与平面的判定与性质,理解二面角概念,掌握平面与平面垂直的判定与性质.二、知识要点:1.平面和平面有以下两种位置关系:(1)平行:没有公共点;(2)相交:有一条公共直线.2.平面与平面平行的判定:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面互相平行.用符号语言表述为:如果a∩b≠Φ, a⊂α,b⊂α,且a∥β,b∥β,那么α∥β.平面与平面平行的性质:如果两个平行平面同时与第三个平面相交,则它们的交线平行.用符号语言表述为:如果α∥β,γ∩α=a,γ∩β=b,那么a∥b.3.二面角:由一条直线引两个半平面所组成的图形称为二面角,这条直线称为二面角的棱,构成二面角的两个半平面称为二面角的面.在二面角的棱上任取一点,过这点在二面角的两个半平面内分别作棱的垂线,这两条垂线相交所成的角称为二面角的平面角.二面角的大小可用它的平面角来度量.平面角是直角的二面角叫做直二面角.4.平面与平面垂直的判定:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.用符号语言表述为:如果直线AB⊂平面α,AB⊥β,垂足为B,那么α⊥β.平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.用符号语言表述为:如果α⊥β, α∩β=CD,AB⊂α, AB⊥CD,B为垂足,那么AB⊥β.三、典型例题:例1:试证明:如果两个平面垂直,那么在一个平面内,垂直于它们交线的直线垂直于另一个平面.例2:已知二面角α- -β的平面角是锐角θ,若点C∈α,C到β的距离为3,C到棱AB的距离为4,试求sin2θ的值.例3:已知平面β⊥平面α,平面γ⊥平面α,且平面β∩平面γ=a,求证:a⊥α.四、归纳小结:1.在平面与平面的位置关系中,注意掌握通过“线面(或线线)平行”去判定“面面平行”,反过来由“面面平行”去判定“线线平行”;通过“线线垂直”去判定“线面垂直”,反过来由“线面垂直”去判定“线线垂直”.2.二面角θ满足0º≤θ≤180º.求二面角的大小分两步:(1)找出二面角的平面角;(2)在三角形中求解平面角.五、基础知识训练:(一)选择题:1.设a、b、c表示直线,α、β、γ表示平面,下面四个命题中,;①若a⊥c, b⊥c,则a∥b ②若α⊥γ,β⊥γ,则α∥β③若a⊥c, b⊥α,则a∥α④若a⊥α, a⊥β,则α∥βA.①和②B.③和④C.②D.④2.如图,木工师傅在检查工件相邻的两个面是否垂直时,常用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动一下,观察尺边是否和这个面密合就可以了.这种检查方法的依据是( )A.平面的基本性质B.三垂线定理C.平面和平面垂直的判定定理D.直线和平面垂直的判定定理3.已知直线 ⊥平面α,直线m⊂平面β,有下面四个命题:①α∥β⇒ ⊥m;② ∥m ⇒α⊥β;③α∥β⇒ ∥m;④ ⊥m⇒α∥β.其中正确的两个命题是( )A.①与②B.③与④C.②与④D.①与③4.如果直线 ,m与平面α、β、γ满足: =β∩γ, ∥α,m⊂α和m⊥γ,那么必有( )A.α⊥γ且 ⊥mB.α⊥γ且m∥βC. m∥β且 ⊥mD.α∥β且α⊥γ5.对于平面α、β和直线 、m,则α⊥β的一个充分条件是( )A. ⊥m, ∥α,m ∥βB. ⊥m,α∩β= ,m ⊂αC. ∥m, m ⊥β, ⊂αD. ∥m, ⊥α,m ⊥β6. 若异面直线a 、b, a ⊂α, b ⊂β,则平面α、β的位置关系一定是( )A.平行B.相交C.平行或相交D.平行或相交或重合7. 下列命题中,正确的是( )(1)平行于同一直线的两平面平行 (2)平行于同一平面的两平面平行(3)垂直于同一直线的两平面平行 (4)垂直于同一平面的两平面平行A.(1)(2)B.(2) (3)C.(3)(4)D.(2)(3)(4)8. 过平面外一点P,(1)存在无数个平面与平面α平行 (2)存在无数个平面与平面α垂直(3)存在无数条直线与平面α垂直 (4)只存在一条直线与平面α平行其中正确的有( )A.1个B.2个C.3个D.4个9. 设正方形ABCD 的边长为64,PA ⊥平面AC,若PA=12,则二面角P-BD-C 的大小为( ) A.3π B.4π C.2π D.32π (二)填空题:10. 已知二面角是60º,在它的内部有一点到这个二面角的两个半平面的垂线段长都是a,则两个垂足间的距离是 .11. 在二面角的一个面内有一个已知点A,它到棱的距离是它到另一个面的距离的2倍,则这个二面角的度数是 .12. 有如下几个命题:①平面α与平面β垂直的充分必要条件是α内有一条直线与β垂直; ②平面α与平面β平行的一个必要而不充分的条件是α内有无数条直线与β平行; ③直线a 与平面β平行的一个充分而不必要的条件是β内有一条直线与直线a 平行. 其中正确命题的序号是 .13. 设m 、 为直线,α、β为平面,给出下列命题: ① 垂直于α内的两条相交直线,则 ⊥α;②若m ∥α,则m 平行于α内的所有直线;③若 ⊥α,α∥β,则 ⊥β;④若m ⊂α, ⊂β,且 ⊥m ,则α⊥β;⑤若m ⊂α, ⊂β,且α∥β,则m ∥ .其中正确的命题是(只写序号) .14. 已知直线 和平面α、β,给出三个论断:① ⊥α,② ∥β,③α⊥β,以其中的二个论断作为条件,余下的一个作为结论,写出你认为正确的一个命题 .15. α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断: ①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α,以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题: .16. 设X,Y,Z 是空间不同的直线或平面,对下面四种情形,使“X ⊥Z 且Y ⊥Z ⇒X ∥Y ”为真命题的是 .①X,Y,Z 是直线; ②X,Y 是直线,Z 是平面; ③X,Y 是平面,Z 是直线; ④X,Y,Z 是平面. 设两个平面α、β相交于m,且直线a ∥α,a ∥β则直线a 与m 的关系是 .17. 如图,直线AC 、DF 被三个平行平面α、β、γ所截,AC=15cm,DE=5cm,AB:BC=1:3,则AB 的长是 ,EF 的长是 .18. 二面角α- -β的度数为θ(0≤θ≤2),在α面内有△ABC, △ABC 在β内的正射影为△A ´B ´C ´, △ABC 的面积为S,则△A ´B ´C ´的面积S ´= .(三)解答题:19. 已知一个二面角是60º,在它的内部一点到这个二面角的两个半平面的距离都是3,求两个垂足间的距离.20. 已知:在60º二面角的棱上,有两个点A 、B ,AC 、BD 分别在这个二面角的两个面内,且垂直于线段AB,且AB=4cm,AC=6cm,BD=8cm,求CD 的长.翻折问题一、高考要求:掌握立体几何中图形翻折问题的解法.二、知识要点:解决翻折问题要求:①根据题意作出折叠前、后的图形; ②分析折叠前、后边、角及其之间的关系哪些发生变化,哪些未发生变化;③寻找解决问题的方法并正确解答问题.三、典型例题:例1:已知△ABC 中,AB=AC=2,且∠A=90º(如图(1)所示),以BC 边上的高AD 为折痕使∠BDC=90º.(如图(2)所示)①求∠BAC;②求点C 到平面ABD 的距离;③求平面ABD 与平面ABC 所成的二面角的正切值.例2:已知等腰梯形ABCD,AB ∥CD,上底=4,下底=6,高=3,沿它的对角线AC 折成60º的二面角,求B 、D 两点之间的距离.四、归纳小结:1.折叠前一般是平面图形,用平面几何知识解答即可,折叠后是立体图形,要用立体几何知识解答;2.未发生变化的量可在折叠前的图形中解答,发生变化的量在折叠后的图形中解答.五、基础知识训练:(一)选择题:1. 以等腰直角△ABC 斜边BC 上的高AD 为折痕,折叠时使二面角B-AD-C 为90º,此时∠BAC 为( )A.30ºB.45ºC.60ºD.90º2. 把边长为a 的正△ABC 沿高AD 折成60º的二面角,则点A 到BC 的距离是( )A.aB.a 26C.a 33D.a 4153. 已知边长为a 的菱形ABCD,∠A=60º,将菱形沿对角线BD 折成120º的二面角,则AC 的长为( ) A.a 22 B.a 23 C.a 23 D.a 2 (二)填空题:4. E 、F 分别是正方形ABCD 的边AB 和CD 的中点,EF 交BD 于O,以EF 为棱将正方形折成直二面角,则∠BOD= .5. 如图,ABCD 是正方形,E 是AB 的中点,如将△DAE 和△CBE 分别沿虚线DE 和CE 折起,使AE 与BE 重合,记A 与B 重合后的点为P,则面PCD 与面ECD 所成的二面角为 度.(三)解答题:6. 一个直角三角形的两条直角边各长a 与b,沿其斜边上的高h 折成直二面角,试求此时a 与b 两边夹角α的余弦.7. 把长宽各为4与3的长方形ABCD 沿对角线AC 折成直二面角,试求顶点B 与D 的距离.8. 已知等腰梯形ABCD,AB ∥CD,上底=4,下底=6,高=3,沿它的对角线AC 折成90º的二面角,求B 、D 两点之间的距离.空间图形性质的应用一、高考要求:掌握空间图形的性质在测量和实际问题中的应用.二、知识要点:1.空间图形的性质在测量中的应用;2.空间图形的性质在实际问题中的应用.三、典型例题:例1:如图,道路 旁有一条河,对岸有一铁塔CD高a米,如果你手中只有测角器和皮尺(刻度米尺),不渡河能否测量出塔顶C与道路的距离.请说出你的测量方法,并求出该距离.例2:斜坡平面α与水平平面β相交于坡脚 ,且成30º的二面角,在平面α内沿一条与 垂直的小路上坡,每前进100米升高多少米?如果沿一条与坡脚 成45º角的小路上坡,仍升高这么高,前进了多少米?四、归纳小结:空间图形的性质在测量和实际问题中的应用,重点在于理解题意,画好能正确表示题意的图形,并运用空间图形的性质解题.五、基础知识训练:(一)填空题:1.正方体的棱长为a,有一小虫,在正方体的表面上从顶点A爬到顶点C´,则小虫爬行的最短距离是 .2.在一长方体形的木块的面A1C1上,有一点P,过点P在平面A1C1内画一条直线和CP垂直.(二)解答题:3.如图,所测物体BB´垂直于水平面α于点B´,底端B´不能到达.在α内取一点A,测得∠BAB´=θ1,引基线AC,使∠B´AC=θ2,在AC上取一点D,使BD⊥AC,又测得AD=a,求物体BB´的高度.4.。

职高数学——立体几何97083教学提纲

职高数学——立体几何97083教学提纲

平面的基本性质一、高考要求:理解平面的基本性质.二、知识要点:1.平面的表示方法:平面是无限延展的,是没有边界的.通常用平行四边形表示平面,平面一般用希腊字母α、β、γ、…来命名,还可以用表示平行四边形的对角顶点的字母来命名.2.平面的基本性质:(1)如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.这时我们说,直线在平面内或平面经过直线.用符号语言表示为:如果A∈a,B∈a,且A∈α,B∈α,则a⊂α.(2)经过不在同一条直线上的三点,有且只有一个平面.也可简单地说成,不共线的三点确定一个平面.它有三个推论:推论1:经过一条直线和直线外的一点,有且只有一个平面;推论2:经过两条相交直线,有且只有一个平面;推论3:经过两条平行直线,有且只有一个平面.(3)如果两个平面有一个公共点,那么它们就有另外的公共点,并且这些公共点的集合是经过这个点的一条直线.这时我们称这两个平面相交. 用符号语言表示为:如果A∈α,A∈β,则α∩β=λ,且A∈λ.3.有关概念:如果空间内的几个点或几条直线都在同一平面内,那么我们就说它们共面;如果构成图形的所有点都在同一平面内,则这类图形叫做平面图形;如果构成图形的点不全在同一平面内,则这类图形叫做立体图形.直线和平面都是空间的子集,直线又是平面的子集.三、典型例题:例1:已知E、F、G、H分别是空间四边形ABCD各边AB、AD、BC、CD上的点,且EF与GH相交于点P.求证:点B、D、P在同一直线上.证明: ∵E∈AB, F∈AD又AB∩AD=A∴E、F∈平面ABD∴EF⊂平面ABD同理GH⊂平面CBD∵EF与GH相交于点P∴P∈平面ABD,P∈平面CBD, 又平面ABD∩平面ABD=BD∴P∈BD即点B、D、P在同一直线上.例2:如图,已知直线a∥b,直线m与a、b分别交于点A、B,求证:a、b、m三条直线在同一平面内.证明:∵a∥b ∴a、b可以确定一个平面α.∵m∩α=A,m∩β=B, ∴A∈α,B∈α又A∈m,B∈m∴m ⊂α. ∴a 、b 、m 三条直线在同一平面内.四、归纳小结:1.证明点共线问题常用方法有二:(1)证明这些点都是某两个平面的公共点;(2)由其中两点确定一条直线再证明其它点在这条直线上.2.共面问题证明常用“纳入平面法”一般分为两点:(1)确定平面;(2)证明其余点、线在确定的平面内,解题中应注意确定平面的条件.五、基础知识训练:(一)选择题:1.下列说法正确的是( )A.平面和平面只有一个公共点B.两两相交的三条直线共面C.不共面的四点中,任何三点不共线D.有三个公共点的两平面必重合2.在空间,下列命题中正确的是( )A.对边相等的四边形一定是平面图形B.四边相等的四边形一定是平面图形C.有一组对边平行的四边形一定是平面图形D.有一组对角相等的四边形一定是平面图形3.过空间一点作三条直线,则这三条直线确定的平面个数是( )A.1个B.2个C.3个D.1个或3个4.空间四点,其中三点共线是这四点共面的( )A.充分条件B.必要条件C.充要条件D.既非充分也非必要条件(二)填空题:5.空间三条直线互相平行,但不共面,它们能确定 个平面,三条直线相交于一点,它们最多可确定 个平面.6.检查一张桌子的四条腿的下端是否在同一个平面内的方法是 .(三)解答题:7.已知A 、B 、C 是平面α外三点,且AB 、BC 、CA 分别与α交于点E 、F 、G,求证:E 、F 、G 三点共线.8.已知1λ∥2λ∥3λ,且m ∩1λ=A 1,m ∩2λ= A 2,m ∩3λ=A 3,求证: 1λ、2λ、3λ、m 四线共面.直线与直线的位置关系一、高考要求:1.掌握两直线的位置关系.掌握空间两条直线的平行关系、平行直线的传递性;2.了解异面直线概念.了解异面直线的夹角、垂直和距离的概念.二、知识要点:1.两条直线的位置关系有三种:(1)平行:没有公共点,在同一平面内;(2)相交:有且仅有一个公共点,在同一平面内;(3)异面:没有公共点,不同在任何一个平面内.2.平行直线的传递性:空间三条直线,如果其中两条直线都平行于第三条直线,那么这两条直线也互相平行.3.异面直线的夹角、垂直和距离的概念:经过空间任意一点,分别作与两条异面直线平行的直线,这两条直线的夹角叫做两条异面直线所成的角.成90º角的两条异面直线叫做相互垂直的异面直线,异面直线a与b垂直,记作a⊥b.和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线,对任意两条异面直线有且只有一条公垂线,两条异面直线的公垂线夹在异面直线间的部分叫做这两条异面直线的公垂线段,公垂线段的长度叫做两条异面直线的距离.三、典型例题:例1:已知空间四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点,求证:EFGH是平行四边形.思考:如果AC=BD,四边形EFGH的形状是 ;如果AC⊥BD, 四边形EFGH的形状是 ;如果AC=BD且AC⊥BD, 四边形EFGH的形状是 .例2:如图,长方体ABCD-A1B1C1D1中,已知AA1=1cm,AB=AD=2cm,E是AA1的中点.(1)求证:AC1、BD1、CA1、DB1共点于O,且互相平分;(2)求证:EO⊥BD1,EO⊥AA1;(3)求异面直线AA1和BD1所成角的余弦值;(4)求异面直线AA1和BD1间的距离.四、归纳小结:1.平行线的传递性是论证平行问题的主要依据;等角定理表明角在空间平行移动,它的大小不变.2.两条异面直线所成的角θ满足0º<θ≤90º,且常用平移的方法化为相交直线所成的角,在三角形中求解.五、基础知识训练:(一)选择题:1.在立体几何中,以下命题中真命题的个数为( )(1)垂直于同一直线的两直线平行; (2)到定点距离等于定长的点的轨迹是圆;(3)有三个角是直角的四边形是矩形; (4)自一点向一已知直线引垂线有且只有一条.A.0个B.1个C.2个D.3个2.下列命题中,结论正确的个数是( )(1)如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;(2)如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等;(3)如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;(4)如果两条直线同平行于第三条直线,那么这两条直线互相平行.A.1个B.2个C.3个D.4个3.下列关于异面直线的叙述错误的个数是( )(1)不同在任何一个平面内的两条直线是异面直线;(2)既不平行也不相交的两条直线是异面直线;(3)连结平面内一点与平面外一点的直线和这个平面内不经过该点的任意直线是异面直线;(4)分别和两条异面直线同时相交的两条直线一定是异面直线.A.0个B.1个C.2个D.3个4.下列命题中,结论正确的个数是( )(1)若a∥b, a∥c,则b∥c; (2)若a⊥b, a⊥c,则b∥c;(3)若a∥b, a⊥c,则b⊥c; (4)若a⊥b, a⊥c,则b⊥c;A.1个B.2个C.3个D.4个5.教室内有一直尺,无论怎样放置,在地面总有这样的直线,它与直尺所在直线( )A.垂直B.平行C.相交D.异面6.设a、b、c为空间三条直线, a∥b, a、c异面,则b与c的位置关系是( )A.异面B.相交C.不相交D.相交或异面7.设a、b、c为空间三条直线, 且c与a、b异面,若a与c所成的角等于b与c所成的角,则a与b的位置关系是( )A.平行B.平行或相交C.平行或异面D.平行或相交或异面8.(2002高职-4)已知m,n是异面直线,直线λ平行于直线m,则λ和n( )A.不可能是平行直线B.一定是异面直线C.不可能是相交直线D.一定是相交直线(二)填空题:9.平行于同一直线的两直线的位置关系是 ;垂直于同一直线的两直线的位置关系是 .10.若a∥b,c⊥a,d⊥b,则c与d的关系为 .11.空间两个角α和β,若α和β两边对应平行,当α=50º时,则角β= . (三)解答题:12..已知A、B和C、D分别是异面直线a、b上的两点,求证:AC和BD是异面直线(要求画出图形,写出已知,求证和证明过程)13.已知正方体ABCD-A1B1C1D1的棱长为1.(1)求直线DA1与AC的夹角;(2)求直线DA1与AC的距离.14.已知空间四边形OABC的边长和对角线长都为1,D、E分别为OA、BC的中点,连结DE.(1)求证:DE是异面直线OA和BC的公垂线;(2)求异面直线OA和BC的距离;(3)求点O到平面ABC的距离.直线与平面的位置关系一、高考要求:1.掌握直线与平面的位置关系.2.了解直线与平面平行的判定和性质,理解平行投影概念.掌握空间图形在平面上的表示方法.3.掌握直线与平面垂直的判定和性质.理解正射影和三垂线定理及其逆定理.掌握直线与平面所成的角及点到平面距离的概念.二、知识要点:1.直线与平面的位置关系有以下三种:(1)直线在平面内:有无数个公共点;(2)直线与平面相交:有且只有一个公共点;(3)直线与平面平行:没有公共点.2.直线与平面平行的判定:如果平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行.用符号语言表述为:如果a∥b,b⊂α,a⊄α,那么a∥α.直线与平面平行的性质:如果一条直线平行于一个已知平面,且过这条直线的平面和已知平面相交,那么这条直线就和交线平行.用符号语言表述为:如果a∥α,a⊂β,α∩β=b,那么a∥b.3.当直线或线段不平行于投射线时,平行射影具有下述性质:(1)直线或线段的平行射影仍是按或线段;(2)平行线的平行射影仍是平行线;(3)在同一直线或平行直线上,两条线段平行射影的比等于这两条线段的比.4.表示空间图形的平面图形,叫做空间图形的直观图.画直观图通常用斜二测画法.5.直线与平面垂直的判定:如果一条直线垂直于平面内两条相交直线,那么这条直线就垂直于这个平面.用符号语言表述为:如果λ⊥a,λ⊥b, a⊂α,b⊂α,a∩b=P,那么λ⊥α.直线与平面垂直的性质:如果两条直线同垂直于一个平面,那么这两条直线互相平行.用符号语言表述为:如果a⊥α, b⊥α,那么a∥b.6.斜线及其在平面内的射影:一条直线和一个平面相交但不和它垂直,这条直线称为平面的斜线,斜线和平面的交点称为斜足.从平面外一点向平面引垂线和斜线,从这点到斜足间的线段长,称为从这点到平面间的斜线的长,斜足和垂足之间的线段称为斜线在平面内的射影.这点到垂足的距离称为这个点到平面的距离.斜线和它在平面内的射影所成的角称为这条斜线与平面所成的角.定理:从平面外一点向平面引垂线和斜线.(1)如果两斜线的射影的长相等,那么两斜线的长相等,射影较长的斜线也较长.(2)如果两斜线长相等,那么射影的长也相等,斜线较长的射影也较长.7.三垂线定理及其逆定理:三垂线定理:平面内的一条直线,如果和一条斜线在这个平面内的射影垂直,那么这条直线也和这条斜线垂直.用符号语言叙述为:如果PO和PA分别是平面α的垂线和斜线,AO是斜线PA在平面α上的射影,而直线a⊂α,且a⊥AO,那么a⊥PA.三垂线逆定理:平面内的一条直线,如果和在这个平面的一条斜线垂直,那么这条直线也和这条斜线在平面内的射影垂直.用符号语言叙述为:如果PO和PA分别是平面α的垂线和斜线,AO是斜线PA在平面α上的射影,而直线a⊂α,且a⊥PA,那么a⊥AO.三、典型例题:例1:已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45º,求证:MN⊥平面PCD.例2: AD、BC分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为30º, AD =8cm,AB⊥BC,DC⊥BC,求线段BC的长.例3:(99高职-22)(本题满分10分)已知平面α,A∈α、B∈α、P∉α、λ⊂α,在以下三个关系中:AB⊥λ,PA⊥α,PB⊥λ,以其中的两个作为条件,余下的一个作为结论,构造一个真命题(用文字语言表述,不得出现字母及符号,否则不得分),并予以证明.四、归纳小结:1.在直线与平面的位置关系中,注意掌握通过“线线平行”去判定“线面平行”,反过来由“线面平行”去判定“线线平行”;通过“线线垂直”去判定“线面垂直”,反过来由“线面垂直”去判定“线线垂直”.2.平行射影的性质是假定已知线段或直线不平行于投射线得出的.如果平行于投射线,则线段或直线的像是一个点. 3.由直线和平面垂直的判定定理可推出许多关于“垂直”的重要性质,其中最重要的有两个:一个是,到两点距离相等的点的轨迹是连结这两点的线段的垂直平分面;另一个是,三垂线定理及其逆定理.这个定理是判定空间线线垂直的一个重要方法,是计算空间中两条直线的夹角和线段长度等有关问题的重要基础.它的证明的思想方法十分重要.4.在直线和平面所成的角中要重点掌握公式:cos θ=cos θ1cos θ2.在公式的基础上得到了“斜线和它在平面内的射影所成的角是斜线和这个平面内所有直线所成的角中最小的角”的结论.直线与平面所成的角θ满足0º≤θ≤90º.五、基础知识训练:(一)选择题:1.如图,PO ⊥平面ABC,O 为垂足,OD ⊥AB,则下列关系式不成立的是( )A. AB ⊥PDB. AB ⊥PCC. OD ⊥PCD. AB ⊥PO2.直线λ与平面α成3π的角,直线a 在平面α内,且与直线λ异面,则λ与a 所成角的取值范围是( )A.⎪⎭⎫⎢⎣⎡32,0π B.⎪⎭⎫⎢⎣⎡32,3ππ C. ⎪⎭⎫⎢⎣⎡2,3ππ D.⎥⎦⎤⎢⎣⎡2,3ππ 3.由距离平面α为4cm 的一定点P 向平面α引斜线PA 与平面α成30º的角,则斜足A 在平面α内的轨迹图形是( )A.半径为34cm 的圆B.半径为24cm 的圆C.半径为334cm 的圆 D.半径为22cm 的圆 4.设a 、b 是两条异面直线,在下列命题中正确的是( )A.有且仅有一条直线与a 、b 垂直B.有一个平面与a 、b 都垂直C.过直线a 有且仅有一个平面与b 平行D.过空间任一点必可作一条直线与a 、b 都相交5.下列命题中正确的是( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线必定垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线平行于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面6.两条直线a 、b 与平面α成的角相等,则a 、b 的关系是( )A.平行B.相交C.异面D.以上三种情况都有可能7.PA,PB,PC 是从P 引出的三条射线,每两条的夹角都是60º,则直线PC 与平面PAB 所成角的余弦值为( )A.21B.36C.33D.23 8.直线a 是平面α的斜线,b ⊂α,当a 与b 成60º的角,且b 与a 在α内的射影成45º角时,a 与α所成的角是( )A.60ºB.45ºC.90ºD.135º9.矩形ABCD,AB=3,BC=4,PA ⊥ABCD 且PA=1, P 到对角线BD 的距离为( )A.513B.517C.921 D.12951 10.在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC,PA=8,则P 到BC 的距离为( )A.5B.52C.53D.5411.在直角三角形ABC 中, ∠B=90º,∠C=30º,D 是BC 边的中点,AC=2,DE ⊥平面ABC,且DE=1,则E 到斜边AC 的距离是( )A.25B.27 C.211 D.419 12.已知SO ⊥平面α,垂足O, △ABC ⊂α,点O 是△ABC 的外心,则( )A. SA=SB=SCB. SA ⊥SB,且SB ⊥SCC.∠ASB=∠BSC=∠CSAD. SA ⊥BC(二)填空题:13.如图,C 为平面PAB 外一点,∠APB=90º,∠CPA=∠CPB=60º,且PA=PB=PC=1,则C 到平面PAB 的距离为 .14.在空间四边形ABCD 中,如果AB ⊥CD,BC ⊥AD,那么对角线AC 与BD 的位置关系是 .15.两条直线a 、b 在同一个平面上的射影可能是 .(三)解答题:16.证明直线与平面平行的判定定理.17.从平面外一点P 向平面引垂线PO 和斜线PA,PB.(1)如果PA=8cm,PB=5cm,它们在平面内的射影长OA:OB=4:3,求点P 到平面的距离;(2)如果PO=k,PA 、PB 与平面都成30º角,且∠A PB=90º,求AB 的长;(3)如果PO=k,∠OPA=∠OPB=∠A PB=60º,求AB 的长.18.一个正三角形的边长为a,三角形所在平面外有一点P.(1)P 到三角形三顶点的距离都是332a,求这点到三角形各顶点连线与三角形所在平面成的角的大小以及这点到三角形所在平面的距离;(2)P 到三角形三条边的距离都是66a,求这点到三角形各边所作垂线与三角形所在平面成的角的大小以及这点到三角形所在平面的距离.19.已知直角△ABC 在平面α上, D 是斜边AB 的中点, DE ⊥α,且DE=12cm,AC=8cm,BC=6cm,求EA,EB,EC 的长.20.如图,平面α∩β=CD,EA ⊥α,EB ⊥β,且A ∈α,B ∈β.求证:(1)CD ⊥平面EAB;(2)CD ⊥直线AB.21.已知PO ⊥平面ABO,PB ⊥AB,又知∠PAB=α,∠PAO=β,∠OAB=γ.求证:cos α=cos βcos γ.22. 已知正方体ABCD-A 1B 1C 1D 1.(1)求直线DA 1与AC 1的夹角;(2)求证:AC 1⊥平面A 1BD.平面和平面的位置关系一、高考要求:1.掌握平面和平面的位置关系.2.了解平面与平面的判定与性质,理解二面角概念,掌握平面与平面垂直的判定与性质.二、知识要点:1.平面和平面有以下两种位置关系:(1)平行:没有公共点;(2)相交:有一条公共直线.2.平面与平面平行的判定:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面互相平行.用符号语言表述为:如果a∩b≠Φ, a⊂α,b⊂α,且a∥β,b∥β,那么α∥β.平面与平面平行的性质:如果两个平行平面同时与第三个平面相交,则它们的交线平行.用符号语言表述为:如果α∥β,γ∩α=a,γ∩β=b,那么a∥b.3.二面角:由一条直线引两个半平面所组成的图形称为二面角,这条直线称为二面角的棱,构成二面角的两个半平面称为二面角的面.在二面角的棱上任取一点,过这点在二面角的两个半平面内分别作棱的垂线,这两条垂线相交所成的角称为二面角的平面角.二面角的大小可用它的平面角来度量.平面角是直角的二面角叫做直二面角.4.平面与平面垂直的判定:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.用符号语言表述为:如果直线AB⊂平面α,AB⊥β,垂足为B,那么α⊥β.平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.用符号语言表述为:如果α⊥β, α∩β=CD,AB⊂α, AB⊥CD,B为垂足,那么AB⊥β.三、典型例题:例1:试证明:如果两个平面垂直,那么在一个平面内,垂直于它们交线的直线垂直于另一个平面.例2:已知二面角α-λ-β的平面角是锐角θ,若点C∈α,C到β的距离为3,C到棱AB的距离为4,试求sin2θ的值.例3:已知平面β⊥平面α,平面γ⊥平面α,且平面β∩平面γ=a,求证:a⊥α.四、归纳小结:1.在平面与平面的位置关系中,注意掌握通过“线面(或线线)平行”去判定“面面平行”,反过来由“面面平行”去判定“线线平行”;通过“线线垂直”去判定“线面垂直”,反过来由“线面垂直”去判定“线线垂直”.2.二面角θ满足0º≤θ≤180º.求二面角的大小分两步:(1)找出二面角的平面角;(2)在三角形中求解平面角.五、基础知识训练:(一)选择题:1.设a、b、c表示直线,α、β、γ表示平面,下面四个命题中,;①若a⊥c, b⊥c,则a∥b ②若α⊥γ,β⊥γ,则α∥β③若a⊥c, b⊥α,则a∥α④若a⊥α, a⊥β,则α∥βA.①和②B.③和④C.②D.④2.如图,木工师傅在检查工件相邻的两个面是否垂直时,常用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动一下,观察尺边是否和这个面密合就可以了.这种检查方法的依据是( )A.平面的基本性质B.三垂线定理C.平面和平面垂直的判定定理D.直线和平面垂直的判定定理3.已知直线λ⊥平面α,直线m⊂平面β,有下面四个命题:①α∥β⇒λ⊥m;②λ∥m ⇒α⊥β;③α∥β⇒λ∥m;④λ⊥m⇒α∥β.其中正确的两个命题是( )A.①与②B.③与④C.②与④D.①与③4.如果直线λ,m与平面α、β、γ满足:λ=β∩γ,λ∥α,m⊂α和m⊥γ,那么必有( )A.α⊥γ且λ⊥mB.α⊥γ且m∥βC. m∥β且λ⊥mD.α∥β且α⊥γ5.对于平面α、β和直线λ、m,则α⊥β的一个充分条件是( )A.λ⊥m,λ∥α,m ∥βB.λ⊥m,α∩β=λ,m ⊂αC.λ∥m, m ⊥β,λ⊂αD.λ∥m,λ⊥α,m ⊥β6. 若异面直线a 、b, a ⊂α, b ⊂β,则平面α、β的位置关系一定是( )A.平行B.相交C.平行或相交D.平行或相交或重合7. 下列命题中,正确的是( )(1)平行于同一直线的两平面平行 (2)平行于同一平面的两平面平行(3)垂直于同一直线的两平面平行 (4)垂直于同一平面的两平面平行A.(1)(2)B.(2) (3)C.(3)(4)D.(2)(3)(4)8. 过平面外一点P,(1)存在无数个平面与平面α平行 (2)存在无数个平面与平面α垂直(3)存在无数条直线与平面α垂直 (4)只存在一条直线与平面α平行其中正确的有( )A.1个B.2个C.3个D.4个9. 设正方形ABCD 的边长为64,PA ⊥平面AC,若PA=12,则二面角P-BD-C 的大小为( ) A.3π B.4π C.2π D.32π (二)填空题:10. 已知二面角是60º,在它的内部有一点到这个二面角的两个半平面的垂线段长都是a,则两个垂足间的距离是 .11. 在二面角的一个面内有一个已知点A,它到棱的距离是它到另一个面的距离的2倍,则这个二面角的度数是 .12. 有如下几个命题:①平面α与平面β垂直的充分必要条件是α内有一条直线与β垂直; ②平面α与平面β平行的一个必要而不充分的条件是α内有无数条直线与β平行; ③直线a 与平面β平行的一个充分而不必要的条件是β内有一条直线与直线a 平行. 其中正确命题的序号是 .13. 设m 、λ为直线,α、β为平面,给出下列命题: ①λ垂直于α内的两条相交直线,则λ⊥α;②若m ∥α,则m 平行于α内的所有直线;③若λ⊥α,α∥β,则λ⊥β;④若m ⊂α,λ⊂β,且λ⊥m ,则α⊥β;⑤若m ⊂α,λ⊂β,且α∥β,则m ∥λ.其中正确的命题是(只写序号) .14. 已知直线λ和平面α、β,给出三个论断:①λ⊥α,②λ∥β,③α⊥β,以其中的二个论断作为条件,余下的一个作为结论,写出你认为正确的一个命题 .15. α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断: ①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α,以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题: .16. 设X,Y,Z 是空间不同的直线或平面,对下面四种情形,使“X ⊥Z 且Y ⊥Z ⇒X ∥Y ”为真命题的是 .①X,Y,Z 是直线; ②X,Y 是直线,Z 是平面; ③X,Y 是平面,Z 是直线; ④X,Y,Z 是平面. 设两个平面α、β相交于m,且直线a ∥α,a ∥β则直线a 与m 的关系是 .17. 如图,直线AC 、DF 被三个平行平面α、β、γ所截,AC=15cm,DE=5cm,AB:BC=1:3,则AB 的长是 ,EF 的长是 .18. 二面角α-λ-β的度数为θ(0≤θ≤2π),在α面内有△ABC, △ABC 在β内的正射影为△A ´B ´C ´, △ABC 的面积为S,则△A ´B ´C ´的面积S ´= .(三)解答题:19. 已知一个二面角是60º,在它的内部一点到这个二面角的两个半平面的距离都是3,求两个垂足间的距离.20. 已知:在60º二面角的棱上,有两个点A 、B ,AC 、BD 分别在这个二面角的两个面内,且垂直于线段AB,且AB=4cm,AC=6cm,BD=8cm,求CD 的长.翻折问题 一、高考要求:掌握立体几何中图形翻折问题的解法.二、知识要点:解决翻折问题要求:①根据题意作出折叠前、后的图形; ②分析折叠前、后边、角及其之间的关系哪些发生变化,哪些未发生变化;③寻找解决问题的方法并正确解答问题.三、典型例题:例1:已知△ABC 中,AB=AC=2,且∠A=90º(如图(1)所示),以BC 边上的高AD 为折痕使∠BDC=90º.(如图(2)所示)①求∠BAC;②求点C 到平面ABD 的距离;③求平面ABD 与平面ABC 所成的二面角的正切值.例2:已知等腰梯形ABCD,AB ∥CD,上底=4,下底=6,高=3,沿它的对角线AC 折成60º的二面角,求B 、D 两点之间的距离.四、归纳小结:1.折叠前一般是平面图形,用平面几何知识解答即可,折叠后是立体图形,要用立体几何知识解答;2.未发生变化的量可在折叠前的图形中解答,发生变化的量在折叠后的图形中解答.五、基础知识训练:(一)选择题:1. 以等腰直角△ABC 斜边BC 上的高AD 为折痕,折叠时使二面角B-AD-C 为90º,此时∠BAC 为( )A.30ºB.45ºC.60ºD.90º2. 把边长为a 的正△ABC 沿高AD 折成60º的二面角,则点A 到BC 的距离是( )A.aB.a 26C.a 33D.a 4153. 已知边长为a 的菱形ABCD,∠A=60º,将菱形沿对角线BD 折成120º的二面角,则AC 的长为( )A.a 22B.a 23C.a 23 D.a 2 (二)填空题:4. E 、F 分别是正方形ABCD 的边AB 和CD 的中点,EF 交BD 于O,以EF 为棱将正方形折成直二面角,则∠BOD= .5. 如图,ABCD 是正方形,E 是AB 的中点,如将△DAE 和△CBE 分别沿虚线DE 和CE 折起,使AE 与BE 重合,记A 与B 重合后的点为P,则面PCD 与面ECD 所成的二面角为 度.(三)解答题:6. 一个直角三角形的两条直角边各长a 与b,沿其斜边上的高h 折成直二面角,试求此时a 与b 两边夹角α的余弦.7. 把长宽各为4与3的长方形ABCD 沿对角线AC 折成直二面角,试求顶点B 与D 的距离.8. 已知等腰梯形ABCD,AB ∥CD,上底=4,下底=6,高=3,沿它的对角线AC 折成90º的二面角,求B 、D 两点之间的距离.空间图形性质的应用一、高考要求:掌握空间图形的性质在测量和实际问题中的应用.二、知识要点:1.空间图形的性质在测量中的应用;2.空间图形的性质在实际问题中的应用.三、典型例题:例1:如图,道路λ旁有一条河,对岸有一铁塔CD高a米,如果你手中只有测角器和皮尺(刻度米尺),不渡河能否测量出塔顶C与道路的距离.请说出你的测量方法,并求出该距离.例2:斜坡平面α与水平平面β相交于坡脚λ,且成30º的二面角,在平面α内沿一条与λ垂直的小路上坡,每前进100米升高多少米?如果沿一条与坡脚λ成45º角的小路上坡,仍升高这么高,前进了多少米?四、归纳小结:空间图形的性质在测量和实际问题中的应用,重点在于理解题意,画好能正确表示题意的图形,并运用空间图形的性质解题.五、基础知识训练:(一)填空题:1.正方体的棱长为a,有一小虫,在正方体的表面上从顶点A爬到顶点C´,则小虫爬行的最短距离是 .2.在一长方体形的木块的面A1C1上,有一点P,过点P在平面A1C1内画一条直线和CP垂直.(二)解答题:3.如图,所测物体BB´垂直于水平面α于点B´,底端B´不能到达.在α内取一点A,测得∠BAB´=θ1,引基线AC,使∠B´AC=θ2,在AC上取一点D,使BD⊥AC,又测得AD=a,求物体BB´的高度.。

中职数学立体几何 ppt课件

中职数学立体几何 ppt课件
9.1 平面的基本性
▐ 平面的表示方法
平面可以用希腊字母表示,如α、β、γ等。也可以用代表表示平面的平行四边形的四个顶点 或相对的两个顶点字母表示,如平面ABCD,平面AC或平面BD。
9.1 平面的基本性
▐ 例题
表示出长方体ABCD-A1B1C1D1的6个面。
平面AD1 平面AC 平面BC1 平面A1C1 平面DC1 平面AB1
面唯一,“有且只有”强调平面存在并且唯一这两方面,这就表明这个图形是确定的,所 以也可以说成“确定一个”.
9.1 平面的基本性
▐ 平面的基本性质3推论1
(1) 直线与这条直线外的一点有且只有一个平面。直线与点A共属于平面α且平面α 唯一。
(1)
9.1 平面的基本性
▐ 平面的基本性质3推论2
(2)经过两条相交直线,有且只有一个平面。直线a,b共面于平面α,且平面α唯一。
画表示非水平非竖直放置的平面时,只要将 锐角画成不等于45°即可 .
9.1 平面的基本性
▐ 平面的画法
(3)在画图时,如果图形的一部分被另一部分遮住,可以把遮住部分画成虚线,也可以不画.
9.1 平面的基本性
▐ 例题
判断下列说法是否正确? (1) 两个平面比一个平面厚 ; (2) 圆和平面多边形都可以表示平面 ; (3) 用平行四边形表示平面时,平行四边形的四边是这一平面的边界; (4) 任何一个平面图形都是一个平面 ;.
以长方体为例,长方体由六个矩形 ( 包括内部 ) 围成 围成长方体的各个矩形叫做长方体的面 相邻两个面的公共边叫做长方体的棱 棱和棱的公共点叫做长方体的顶点
思考一下: 长方体有几个面?几条棱?几个顶点?Biblioteka 立体几何平面的基本性质
9.1 平面的基本性质

中职数学《立体几何》单元检测试题及参考答案

中职数学《立体几何》单元检测试题及参考答案

中职数学《立体几何》单元检测一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案1、直线L 与平面内的两条直线垂直,那么L 与平面的位置关系是 ( )A 、平行B 、LC 、垂直D 、不确定 2、如果直线ab ,且a平面,则 ( ) A 、b//平面B 、bC 、b平面D 、b//平面或b3、已知,b ,,a b a b a ααα ⊄⊂ 直线和平面,若,那么( ) A 、b B 、 b ⊥平面 C 、b//平面 D 、不确定4、圆柱的轴截面面积为4,则它的侧面积为 ( )A .π34B .π2C .π4D .π85.长方体1111D C B A ABCD -中,直线AC 与平面1111D C B A 的关系( )A.平行B.相交C.垂直D.无法确定6、下列命题正确的是( )A 、空间任意三点确定一个平面;B 、两条垂直直线确定一个平面;C 、一条直线和一点确定一个平面;D 、两条平行线确定一个平面7、在一个二面角的一个面内有一点,它到棱的距离等于它到另一面的距离的233倍,那么这个二面角的度数是 ( )A 、30oB 、45oC 、60oD 、90o8、空间四面体A-BCD, AC=BD,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,则四边形EFGH 是 ( )A 、平行四边形B 、矩形C 、菱形D 、正方形 9、如图,是一个正方体,则B 1AC= ( )A 、30oB 、45oC 、60oD 、75o10、如果平面的一条斜线段长是它在这平面上射影的3倍,那么这条斜线与平面所成角的正切值为( ) A.2 B .2 C .4 D .22第5题 第9题二.填空题11、垂直于同一条直线的两个平面的位置关系是_________12、已知平面//,且、间的距离为1,直线L 与、成60o 的角,则夹在、之间的线段长为 。

13、在正方体1111D C B A ABCD -中,与棱AA’异面的直线共有_____条. 14、夹在两个平行平面间的平行线段________________三.解答题15、(10分)如图所示,长方体1111D C B A ABCD -中,3,2,11===C C BC AB ,求 (1)B A 1与11D C 所成的角的度数;(2)1BC 与平面D D CC 11所成的角的度数。

中职数学基础模块下立体几何测试题 (一)

中职数学基础模块下立体几何测试题 (一)

中职数学基础模块下立体几何测试题 (一)
中职数学基础模块下的立体几何是数学知识中的重要内容之一,本文
将根据中职数学基础模块下的立体几何测试题,从以下几点进行分析。

一、二维与三维
立体几何是几何的一个分支,与平面几何、解析几何等其他几何分支
不同,它关注的是三维模型,如正方体、球体、棱柱等。

而在立体几
何中存在一些与二维几何相似的概念,如点、线、面等,但这些概念
在立体几何中具有更加丰富的内涵,需要结合三维模型进一步理解。

二、空间距离
在立体几何中,我们还需要掌握空间距离的概念。

空间距离表示的是
物体之间的距离,需要在三维模型的基础上进行计算。

例如,在确定
两个顶点之间的距离时,我们需要绘制一条连接这两个顶点的线段并
计算其长度。

三、基本图形
正方体、球体、棱柱等是立体几何中的基本图形,在掌握这些基本图
形的基础上,我们才能进一步理解和掌握其他复杂的立体模型。

例如,当我们要确定一个棱锥的体积时,我们需要先将其分解为一个棱锥和
一个棱柱,再进行计算。

四、综合运用
在立体几何测试题中,我们需要综合应用上述知识点来解决问题。


如,可能会给出一个立方体的体积和表面积,要求我们根据这些数据
计算其边长;或者可能会要求我们计算一个锥体的侧面积和总表面积,需要我们首先将其进行分解。

总之,立体几何作为数学知识中的一部分,其相关概念和计算方法是
非常重要的,而在学习和应用的过程中,需要结合不同的题目进行理
解和练习,不断提高自己的认知水平和实际应用能力。

职高数学第九章立体几何习题和答案解析

职高数学第九章立体几何习题和答案解析

职高数学第九章立体几何习题和答案解析立体几何是数学中的一个重要分支,也是职高数学课程中的一大门类。

在职高数学的第九章中,我们将学习关于立体几何的基本概念、性质以及应用。

为了帮助同学们更好地掌握这一章节的知识,本文将提供一些与立体几何相关的习题,并对每个习题的答案进行详细解析。

1. 问题描述:已知一个正方体的棱长为5cm,求其表面积和体积。

解析:正方体的表面积等于六个面的面积之和,每个面的面积等于边长的平方。

所以正方体的表面积为6 * (5cm)^2 = 150cm^2。

正方体的体积等于边长的立方,所以正方体的体积为(5cm)^3 = 125cm^3。

2. 问题描述:一个圆柱体的底面半径为3cm,高为8cm,求其体积和侧面积。

解析:圆柱体的体积等于底面积乘以高。

底面积等于圆的面积,即π * r^2,其中π取近似值3.14。

所以圆柱体的体积为3.14 * (3cm)^2 *8cm ≈ 226.08cm^3。

圆柱体的侧面积等于底面周长乘以高,底面周长等于圆的周长,即2 * π * r。

所以圆柱体的侧面积为2 * 3.14 * 3cm * 8cm ≈ 150.72cm^2。

3. 问题描述:一个圆锥的底面半径为4cm,高为6cm,求其体积和侧面积。

解析:圆锥的体积等于底面积乘以高再除以3。

底面积等于圆的面积,即π * r^2。

所以圆锥的体积为1/3 * 3.14 * (4cm)^2 * 6cm ≈100.48cm^3。

圆锥的侧面积等于底面周长乘以母线的长度,底面周长等于圆的周长,即2 * π * r,母线的长度可以用勾股定理计算,即√(r^2 + h^2)。

所以圆锥的侧面积为3.14 * 4cm * √((4cm)^2 + (6cm)^2) ≈97.44cm^2。

4. 问题描述:一个球体的半径为5cm,求其体积和表面积。

解析:球体的体积等于4/3乘以π乘以半径的立方,即4/3 * 3.14 * (5cm)^3 ≈ 523.33cm^3。

中职数学立体几何

中职数学立体几何
了有效的工具。
机械设计中的立体几何
零件建模
机械设计师使用立体几何知识构建零件的三维模 型。
运动分析
通过立体几何对机械部件的运动轨迹、速度、加 速度等进行精确分析。
有限元分析
在机械设计中,有限元分析是一种常用的方法, 立体几何是实现这一方法的关键。
计算机图形学中的立体几何
3D建模
在计算机图形学中,3D建模是基础,立体几何提供了构建三维物 体的理论和技术。
在计算机图形学中,图形 变换是实现三维图形渲染 和动画的关键技术之一。
04
立体几何的实际应用
建筑中的立体几何
建筑设计
建筑师利用立体几何知识进行建 筑设计,如空间布局、角度计算、
透视效果等。
结构分析
建筑结构工程师使用立体几何来 分析建筑结构的稳定性、承重能
力等。
施工测量
在建筑施工过程中,需要进行精 确的测量和定位,立体几何提供
特点
立体几何具有抽象性和直观性,它通 过逻辑推理和证明来研究空间图形的 性质,同时借助图形和模型来直观地 理解空间关系。
立体几何的重要性
实际应用
数学学科基础
立体几何在建筑、工程、机械等领域 有着广泛的应用,如建筑设计、施工 图纸绘制、机械零件的制造等。
立体几何是数学学科中的基础课程之 一,对于后续学习其他数学课程,如 解析几何、微积分等具有重要意义。
中职数学立体几何
目录
• 立体几何概述 • 立体几何基础知识 • 立体几何的图形变换 • 立体几何的实际应用 • 立体几何的解题技巧 • 立体几何的练习题与答案
01
立体几何概述
定义与特点
定义
立体几何是研究三维空间中图形和几 何对象的一门学科。它主要探讨空间 中点、线、面、体之间的关系,以及 它们的性质、形状和度量。

中职数学第九章立体几何知识点

中职数学第九章立体几何知识点

中职数学第九章立体几何知识点立体几何一、平面平面是无限延展且没有边界的光滑平坦的几何概念。

其基本性质包括:定理1:如果直线l上的两个点都在平面α内,那么这条直线在这个平面内。

记作:l⊆α。

定理2:如果两个平面有公共点,那么有且仅有一条过该公共点的公共直线。

记作:p∈αβ ⇒ αβ=l,p∈l。

定理3:不在同一条直线上的三点确定一个平面。

结论1:直线与直线外一点可以确定一个平面。

结论2:两条相交线可以确定一个平面。

结论3:两条平行线可以确定一个平面。

二、空间直线空间直线的位置关系包括相交、平行和异面,分类如下:有一个公共点的共面直线,包括相交、平行。

无公共点的共面直线,包括相交和平行。

不共面直线,为异面。

1.异面直线异面直线是指不同在任何一个平面内的两条直线。

判定定理为:一条直线与平面相交,该直线与平面内不过交点的直线是异面直线。

即a∩α=A,b⊆α,A∉b ⇒ a,b是异面直线。

异面直线所成的角为经过空间任意一点分别作与两条异面直线平行的直线,这两条相交直线的夹角,范围为0到π。

2.平行平行公理为:平行于同一条直线的两条直线互相平行。

等角定理为:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

推论为:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等。

三、直线与平面1.直线与平面的位置关系包括相交、平行和在平面内。

记作:a∩α=A,a∥α,a⊆α。

2.直线与平面平行判定定理为:如果平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。

即ab,a∋α,b⊆α ⇒ a∥α。

性质定理为:如果一条直线与一个平面平行,并且经过这条直线的一个平面和这个平面相交,那么这条直线与交线平行。

即a∥α,a⊥β,β⊆α ⇒ a∥β。

3.直线与平面所成的角为斜线l与它在平面α内的射影的夹角,范围为0到π。

4.直线与平面垂直的定义为一条直线如果与一个平面内的所有直线都垂直,那么这条线与这个平面垂直。

立体几何高中数学知识点总结职高

立体几何高中数学知识点总结职高

立体几何高中数学知识点总结职高立体几何是高中数学教育中的重要组成部分,它不仅培养学生的空间想象力和逻辑思维能力,还是进一步学习高等数学和理解现实世界空间关系的基础。

本文将对高中立体几何的主要知识点进行总结,旨在帮助职业高中的学生更好地理解和掌握这一领域的基本概念、公式和解题技巧。

# 基本概念与定义在立体几何中,我们首先需要了解一些基础的概念和定义,这些是后续学习的基础。

点、线、面:点是没有大小、只有位置的几何概念;线是由无数个点组成的一维几何体,分为直线和曲线;面是由线围成的二维几何体。

平面:平面是无限延展且没有厚度的几何体,它是点和线的集合,满足任意两点间直线都在同一平面内的性质。

空间直线:空间直线是不局限于平面内的直线,它可以与平面相交、平行或在平面内。

立体图形:由平面或曲线围成的几何体,如多面体、旋转体等。

# 多面体多面体是由若干个平面围成的立体图形。

在高中数学中,我们主要学习以下几种典型的多面体:棱柱:由两个平行且相等的多边形和若干个平行四边形组成的多面体。

根据底面多边形的边数,棱柱可以分为三棱柱、四棱柱等。

棱锥:由一个多边形底面和若干个三角形侧面组成的多面体。

底面多边形的顶点与侧面三角形的顶点相连接。

棱台:由两个平行的多边形和若干个梯形侧面组成的多面体。

这两个多边形称为棱台的上底和下底。

圆柱:由两个平行的圆面和连接这两个圆面的侧面组成的旋转体。

圆锥:由一个圆面和一个顶点组成的旋转体,顶点与圆面中心垂直。

圆台:由一个圆面和一个平行于该圆面的较小圆面,以及连接这两个圆面的侧面组成的旋转体。

# 体积与表面积对于立体图形,我们通常需要计算其体积和表面积。

体积:表示立体图形所占据空间的大小。

计算公式依赖于具体的几何体类型。

例如,棱柱的体积公式为底面积乘以高,圆锥的体积公式为底面积乘以高的三分之一。

表面积:表示立体图形所有表面的总面积。

同样,计算公式依赖于具体的几何体类型。

例如,棱锥的表面积为所有侧面三角形面积的和加上底面多边形的面积。

中职数学试卷:立体几何

中职数学试卷:立体几何

中职数学试卷:立体几何XXX数学单元试卷(立体几何)时间:120分钟,满分:150分一、选择题(共10题,每题5分,共50分)1、一条直线和直线外两点可确定平面的个数是()A、1.B、2.C、3.D、1或2解析:一条直线和直线外两点可以确定一个平面,但如果这两个点在直线上,则只能确定一个平面,所以答案为D。

2、若直线L⊥平面a,直线m a,则L与m的关系是()。

A、L⊥m。

B、L∥m。

C、L与m异面D、无法确定解析:直线L与平面a垂直,而直线m在平面a内,所以L与m一定是相交的,答案为A。

3、如果空间中两条直线互相垂直,那么它们()A、一定相交B、是异面直线C、是共面直线D、一定不平行解析:两条直线互相垂直,说明它们在同一个平面内,所以它们一定是共面直线,答案为C。

4、棱长都是1的三棱锥的表面积为()A.3B。

23C。

33D.43解析:三棱锥的表面积为底面面积加上三个侧面积之和。

底面是个正三角形,面积为√3/4,每个侧面是个等腰三角形,面积为1/2,所以表面积为3√3/4+3/2=3√3/2,答案为B。

5、两个球的表面积之比为1:4,则它们的体积之比是()。

A、1:64.B、1:16.C、1:8.D、1:32解析:设两个球的半径分别为r和R,则它们的表面积之比为4πR^2:4πr^2=1:4,所以R:r=1:2,体积之比为(4/3)πR^3:(4/3)πr^3=8:1,答案为D。

6、正方体的全面积是18,则正方体的体积是()。

A、9.B、3.C、3√2.D、27解析:正方体的全面积=6a^2,所以a=√3/2,体积为a^3=(√3/2)^3=9√3/4,答案为A。

7、正方体ABCD A1B1C1D1中,上底面对角线A1C1与侧面对角线B1C所成的角为()。

A、30°B、45°C、60°D、90°解析:由勾股定理可知,A1C1=√2AC=√2a,B1C=√2BC=√2a,所以cos∠A1CB1=AC/AB1=1/√3,所以∠A1CB1=30°,答案为A。

职高数学-立体几何练习

职高数学-立体几何练习

《立体几何》(一)选择题:1.下列说法正确的是 ( ) (A )两平面相交只有一个公共点 (B )两两相交的三条直线共面 (C )不共面的四点中,任何三点不共线 (D )有三个公共点的两平面必重合 2.在空间,下列命题中正确的是 ( ) (A )对边相等的四边形一定是平面图形 (B )四边相等的四边形一定是平面图形(C )有一组对边平行的四边形一定是平面图形 (D )有一组对角相等的四边形一定是平面图形3.过空间一点作三条直线,则这三条直线确定的平面个数是 ( ) (A )1个 (B )2个 (C )3个 (D )1个或3个 4.空间不共线的四点,其中三点共线是这四点共面的 ( ) (A )充分条件 (B )必要条件 (C )充要条件(D )既非充分也非必要条件 5.下列说法正确的是 ( ) (A )过三点确定一个平面 (B )过一条直线和一个点确定一个平面 (C )梯形、平行四边形都是平面图形(D )四边形都是平面图形6.下列命题中正确的是 ( ) (A )空间不同的三点确定一个平面(B )空间两两相交的三条直线确定一个平面(C )空间有三个角为直角的四边形一定是平面图形(D )和同一条直线相交的三条平行直线一定在同一平面内7.“直线上有两点在平面内”是“这条直线在这个平面内”的 ( ) (A )充分条件 (B )必要条件 (C )充要条件 (D )既不充分又不必要 8.下列说法正确的是 ( ) (A )四边形的对角线相交(B )空间有任意四个角是直角的四边形一定是平面图形 (C )两两相交的三条直线一定共面(D )在空间的四点,若无三点共线,则这四点一定不共面。

9.不一定能确定一个平面的是 ( ) (A )直线与直线外一点(B )两条相交直线(C )空间三点(D )两条平行直线10.A 、B 、C 表示不同的点,a 、l 表示不同的直线,α、β表示不同的平面,下列推理不正确的是 ( ) ()A ααα⊂⇒∈∈∈∈l B l B A l A ,,,()B βα∈∈A A ,,AB B B =⇒∈∈βαβα ,直线 ()C αα∉⇒∈⊄A l A l ,()D α∈C B A ,,,β∈C B A ,,且C B A ,,不共线α⇒与β重合 (二)填空题:1.空间三条直线互相平行,但不共面,它们能确定 个平面;三条直线相交于一点,它们最多可确定 个平面。

中职数学立体几何解题技巧

中职数学立体几何解题技巧

中职数学立体几何解题技巧
一、掌握基本概念
在学习立体几何之前,首先要掌握基本概念,如点、线、面等。

在立
体几何中,还要了解体、棱、面角、对面直线等概念。

只有明确了这些基
本概念,才能更好地理解立体几何解题。

二、熟悉几何公式
在解立体几何题目时,经常需要用到一些几何公式。

例如,计算体积
时要用到体积公式,计算表面积时要用到表面积公式等。

熟悉这些几何公式,可以帮助我们更快地解题。

三、掌握几何图形的特征
在立体几何解题过程中,经常需要根据给定的条件确定几何图形的特征。

例如,通过给定的棱长和面角,确定一个立方体的体积。

因此,我们
需要学会根据几何图形的特征来解题。

四、灵活运用剖面法
剖面法是解立体几何题目的常用方法之一、通过在立体图形中作一刀,将问题转化为二维几何题目,更容易求解。

在运用剖面法时,需要注意选
择合适的剖面方向和位置。

五、理清关系,建立方程
在解立体几何题目时,需要理清各个要素之间的关系,并建立相应的
方程。

通过建立方程,可以根据已知条件计算未知量,从而解题。

需要注
意的是方程需要符合几何图形的特性和几何公式。

六、善于运用数学工具
解立体几何题目时,可以借助一些数学工具,如计算器、尺子、画图工具等。

这些工具可以帮助我们更精确地计算和绘制图形,在解题过程中起到辅助作用。

七、多做练习题
要提高解立体几何题目的能力,需要进行大量的练习。

通过多做练习题,可以熟悉各类题型的解法,掌握解题技巧,提高解题速度和准确性。

职高立体几何知识点

职高立体几何知识点

职高立体几何知识点9.1 平面的基本性质1.在立体几何中,有三种语言可以用来描述点、直线和平面之间的位置关系:图形语言、文字语言和符号语言。

2.根据位置关系,可以用不同的语言描述点、直线和平面之间的位置关系,例如点A在直线a上、点B在直线a外、直线a在平面α内等等。

3.符号语言可以用符号来表示位置关系,例如XXX表示点A在直线a上,a∥b表示直线a和直线b平行等等。

9.2 空间图形的位置关系1.空间直线的位置关系可以分为相交、平行和异面三种情况。

2.平行线的传递公理指出,平行于同一直线的两条直线相互平行。

3.异面直线是指不在任何一个平面内的两条直线。

可以通过连平面内的一点与平面外一点的直线与这个平面内不过此点的直线来判定异面直线。

4.异面直线所成的角的范围是(0°,90°],可以通过平移法来作异面直线成角的方法。

9.3 直线与平面的位置关系1.直线和平面的位置关系可以分为直线在平面内、相交和平行三种情况。

2.等角定理指出,如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

3.线面平行的定义是指平面外的直线与平面无公共点,可以通过判定定理来判断。

4.线面垂直的定义是指一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面,可以通过判定定理和性质定理来判断。

5.面面平行的定义是指空间两个平面没有公共点,可以通过判定定理来判断。

推论:如果一个平面内的两条相交直线分别与另一个平面的两条线段平行,那么这两个平面是平行的。

判定定理2:如果有两个平面垂直于同一条直线,那么这两个平面互相平行。

面面平行的性质定理:如果两个平面互相平行,那么它们之间的平行线段长度相等。

面面垂直的定义:如果两个平面的二面角的平面角为90°,那么这两个平面是垂直的。

判定定理:如果一个平面与另一个平面的一条垂线相交,那么这两个平面是垂直的。

面面垂直的性质定理:如果两个平面是垂直的,那么它们之间的二面角的平面角为90°。

职高数学_立体几何.doc

职高数学_立体几何.doc

平面的基本性质一、高考要求:理解平面的基本性质.二、知识要点:1.平面的表示方法 : 平面是无限延展的 , 是没有边界的 . 通常用平行四边形表示平面 , 平面一般用希腊字母α、β、γ、来命名, 还可以用表示平行四边形的对角顶点的字母来命名.2. 平面的基本性质:(1) 如果一条直线上的两点在一个平面, 那么这条直线上的所有点都在这个平面. 这时我们说, 直线在平面或平面经过直线. 用符号语言表示为: 如果 A∈ a,B ∈ a, 且 A∈α ,B ∈α , 则 a? α.(2)经过不在同一条直线上的三点 , 有且只有一个平面 . 也可简单地说成 , 不共线的三点确定一个平面 . 它有三个推论 :推论 1: 经过一条直线和直线外的一点, 有且只有一个平面;推论 2: 经过两条相交直线, 有且只有一个平面;推论 3: 经过两条平行直线, 有且只有一个平面.(3)如果两个平面有一个公共点 , 那么它们就有另外的公共点 , 并且这些公共点的集合是经过这个点的一条直线. 这时我们称这两个平面相交.用符号语言表示为: 如果A∈α ,A ∈β , 则α∩β = , 且 A∈.3.有关概念: 如果空间的几个点或几条直线都在同一平面, 那么我们就说它们共面; 如果构成图形的所有点都在同一平面 , 则这类图形叫做平面图形 ; 如果构成图形的点不全在同一平面 ,则这类图形叫做立体图形. 直线和平面都是空间的子集, 直线又是平面的子集.三、典型例题:例 1: 已知 E、 F、 G、 H 分别是空间四边形 ABCD各边 AB、 AD、 BC、CD上的点 , 且 EF 与 GH相交于点 P. 求证 : 点 B、 D、 P 在同一直线上 .证明 :∵ E∈ AB, F∈AD又AB∩ AD=A∴E、 F∈平面 ABD∴E F? 平面 ABD同理 GH? 平面 CBD∵E F 与 GH相交于点 P∴P∈平面 ABD,P∈平面 CBD, 又平面 ABD∩平面 ABD=BD∴P∈ BD即点 B、 D、P 在同一直线上 .例 2: 如图 , 已知直线 a∥ b, 直线 m与 a、b 分别交于点 A、B,求证 :a 、 b、 m三条直线在同一平面 .证明 : ∵ a∥b∴ a、b可以确定一个平面α.∵m∩α =A,m∩β =B,∴ A∈α ,B∈α又A∈ m,B∈ m∴m? α .∴ a、b、m三条直线在同一平面.四、归纳小结:1. 证明点共线问题常用方法有二:(1)证明这些点都是某两个平面的公共点;(2)由其中两点确定一条直线再证明其它点在这条直线上.2.共面问题证明常用“纳入平面法”一般分为两点 :(1) 确定平面 ;(2) 证明其余点、线在确定的平面 , 解题中应注意确定平面的条件 .五、基础知识训练:(一)选择题:1. 下列说确的是( )A. 平面和平面只有一个公共点C. 不共面的四点中, 任何三点不共线B.D.两两相交的三条直线共面有三个公共点的两平面必重合2. 在空间, 下列命题中正确的是( )A. 对边相等的四边形一定是平面图形C. 有一组对边平行的四边形一定是平面图形B.四边相等的四边形一定是平面图形D. 有一组对角相等的四边形一定是平面图形3.过空间一点作三条直线 , 则这三条直线确定的平面个数是 ( )A.1 个B.2个C.3个D.1个或3个4.空间四点 , 其中三点共线是这四点共面的 ( )A. 充分条件B.必要条件C.充要条件D.既非充分也非必要条件(二)填空题:5. 空间三条直线互相平行 , 但不共面 , 它们能确定个平面 , 三条直线相交于一点, 它们最多可确定个平面 .6. 检查一桌子的四条腿的下端是否在同一个平面的方法是.(三)解答题:7.已知 A、 B、C 是平面α外三点 , 且 AB、 BC、 CA分别与α交于点 E、 F、 G,求证 :E 、F、 G三点共线 .8. 已知 1 ∥ 2 ∥ 3 ,且m∩1=A1,m∩ 2 = A2,m∩3 =A3,求证: 1 、2、3、m四线共面.直线与直线的位置关系一、高考要求:1.掌握两直线的位置关系 . 掌握空间两条直线的平行关系、平行直线的传递性;2.了解异面直线概念 . 了解异面直线的夹角、垂直和距离的概念.二、知识要点:1.两条直线的位置关系有三种 :(1) 平行 : 没有公共点 , 在同一平面 ;(2) 相交 : 有且仅有一个公共点 , 在同一平面 ;(3) 异面 : 没有公共点 , 不同在任何一个平面 .2.平行直线的传递性 : 空间三条直线 , 如果其中两条直线都平行于第三条直线 , 那么这两条直线也互相平行 .3.异面直线的夹角、垂直和距离的概念 : 经过空间任意一点 , 分别作与两条异面直线平行的直线, 这两条直线的夹角叫做两条异面直线所成的角. 成 90o 角的两条异面直线叫做相互垂直的异面直线 , 异面直线 a 与 b 垂直 , 记作 a⊥ b. 和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线 , 对任意两条异面直线有且只有一条公垂线,两条异面直线的公垂线夹在异面直线间的部分叫做这两条异面直线的公垂线段, 公垂线段的长度叫做两条异面直线的距离.三、典型例题:例 1: 已知空间四边形 ABCD,E、F、G、H 分别是 AB、BC、CD、DA的中点 , 求证 :EFGH是平行四边形 .思考:如果AC=BD,四边形EFGH的形状是; 如果AC⊥BD, 四边形EFGH的形状是;如果AC=BD且AC⊥BD,四边形EFGH的形状是.例 2: 如图 , 长方体 ABCD-A1B1C1D1中 , 已知 AA1=1cm,AB=AD=2cm,E是 AA1的中点 .(1)求证 :AC1、 BD1、 CA1、DB1共点于 O,且互相平分 ;(2)求证 :EO⊥ BD1,EO⊥ AA1;(3)求异面直线 AA1和 BD1所成角的余弦值 ;(4)求异面直线 AA1和 BD1间的距离 .四、归纳小结:1. 平行线的传递性是论证平行问题的主要依据; 等角定理表明角在空间平行移动, 它的大小不变 .2.两条异面直线所成的角θ满足 0o <θ≤ 90o , 且常用平移的方法化为相交直线所成的角 , 在三角形中求解 .五、基础知识训练:(一)选择题:1.在立体几何中 , 以下命题中真命题的个数为 ( )(1) 垂直于同一直线的两直线平行; (2)到定点距离等于定长的点的轨迹是圆;(3)有三个角是直角的四边形是矩形 ; (4) 自一点向一已知直线引垂线有且只有一条.A.0 个B.1个C.2个D.3个2.下列命题中 , 结论正确的个数是 ( )(1)如果一个角的两边与另一个角的两边分别平行, 那么这两个角相等 ;(2)如果两条相交直线和另两条相交直线分别平行, 那么这两组直线所成的锐角或直角相等;(3)如果一个角的两边和另一个角的两边分别垂直, 那么这两个角相等或互补 ;(4)如果两条直线同平行于第三条直线, 那么这两条直线互相平行 .A.1 个B.2 个C.3 个D.4 个3. 下列关于异面直线的叙述错误的个数是( )(1) 不同在任何一个平面的两条直线是异面直线;(2) 既不平行也不相交的两条直线是异面直线;(3) 连结平面一点与平面外一点的直线和这个平面不经过该点的任意直线是异面直线;(4) 分别和两条异面直线同时相交的两条直线一定是异面直线.A.0 个B.1 个C.2 个D.3 个4.下列命题中 , 结论正确的个数是 ( )(1) 若 a∥ b, a ∥ c, 则 b∥ c; (2) 若 a⊥ b, a ⊥ c, 则 b∥c;(3) 若 a∥ b, a ⊥ c, 则 b⊥ c; (4) 若 a⊥ b, a ⊥ c, 则 b⊥c;A.1 个B.2 个C.3 个D.4 个5.教室有一直尺 , 无论怎样放置 , 在地面总有这样的直线 , 它与直尺所在直线 ( )A. 垂直B. 平行C. 相交D. 异面6. 设 a、 b、 c 为空间三条直线, a ∥ b, a 、 c 异面 , 则 b 与 c 的位置关系是 ( )A. 异面B. 相交C. 不相交D. 相交或异面7.设 a、 b、 c 为空间三条直线 , 且 c 与 a、 b 异面 , 若 a 与 c 所成的角等于 b 与 c 所成的角 , 则 a 与 b 的位置关系是( )A. 平行B.8.(2002高职-4)已知A. 不可能是平行直线平行或相交 C.m,n 是异面直线 , 直线B.一定是异面直线平行或异面 D.平行或相交或异面平行于直线m,则和n()C.不可能是相交直线D.一定是相交直线(二)填空题:9. 平行于同一直线的两直线的位置关系是;垂直于同一直线的两直线的位置关系是.10. 若 a∥ b,c ⊥ a,d ⊥ b, 则 c 与 d 的关系为.11. 空间两个角α和β, 若α和β两边对应平行, 当α=50o时 , 则角β = .(三)解答题:12.. 已知A、B 和C、D 分别是异面直线a、 b 上的两点, 求证:AC 和BD是异面直线( 要求画出图形 , 写出已知, 求证和证明过程)13.已知正方体 ABCD-A1B1C1D1的棱长为 1.(1) 求直线 DA1与 AC的夹角 ;(2) 求直线 DA1与 AC的距离 .14.已知空间四边形 OABC的边长和对角线长都为 1,D、 E 分别为 OA、 BC的中点 , 连结 DE.(1) 求证 :DE 是异面直线 OA和 BC的公垂线 ;(2) 求异面直线 OA和 BC的距离 ;(3) 求点 O到平面 ABC的距离 .直线与平面的位置关系一、高考要求:1. 掌握直线与平面的位置关系.2.了解直线与平面平行的判定和性质, 理解平行投影概念 . 掌握空间图形在平面上的表示方法.3. 掌握直线与平面垂直的判定和性质. 理解正射影和三垂线定理及其逆定理. 掌握直线与平面所成的角及点到平面距离的概念.二、知识要点:1.直线与平面的位置关系有以下三种:(1) 直线在平面 : 有无数个公共点 ;(2) 直线与平面相交 : 有且只有一个公共点;(3) 直线与平面平行: 没有公共点.2.直线与平面平行的判定: 如果平面外一条直线与平面一条直线平行, 那么这条直线与这个平面平行.用符号语言表述为: 如果a∥ b,b ? α ,a α, 那么a∥α .直线与平面平行的性质: 如果一条直线平行于一个已知平面, 且过这条直线的平面和已知平面相交 , 那么这条直线就和交线平行.用符号语言表述为: 如果 a∥α ,a ? β , α∩β =b, 那么 a∥ b.3.当直线或线段不平行于投射线时, 平行射影具有下述性质 :(1)直线或线段的平行射影仍是按或线段;(2)平行线的平行射影仍是平行线 ;(3) 在同一直线或平行直线上, 两条线段平行射影的比等于这两条线段的比.4.表示空间图形的平面图形 , 叫做空间图形的直观图 . 画直观图通常用斜二测画法 .5.直线与平面垂直的判定 : 如果一条直线垂直于平面两条相交直线, 那么这条直线就垂直于这个平面 .用符号语言表述为: 如果⊥a,⊥ b, a ?α ,b ?α ,a∩b=P,那么⊥α .直线与平面垂直的性质: 如果两条直线同垂直于一个平面, 那么这两条直线互相平行 .用符号语言表述为: 如果 a⊥α , b ⊥α , 那么 a∥ b.6.斜线及其在平面的射影: 一条直线和一个平面相交但不和它垂直, 这条直线称为平面的斜线,斜线和平面的交点称为斜足 . 从平面外一点向平面引垂线和斜线 , 从这点到斜足间的线段长 , 称为从这点到平面间的斜线的长, 斜足和垂足之间的线段称为斜线在平面的射影.这点到垂足的距离称为这个点到平面的距离. 斜线和它在平面的射影所成的角称为这条斜线与平面所成的角.定理 : 从平面外一点向平面引垂线和斜线.(1) 如果两斜线的射影的长相等, 那么两斜线的长相等, 射影较长的斜线也较长.(2) 如果两斜线长相等 , 那么射影的长也相等 , 斜线较长的射影也较长 .7.三垂线定理及其逆定理 :三垂线定理 : 平面的一条直线, 如果和一条斜线在这个平面的射影垂直这条斜线垂直.用符号语言叙述为: 如果 PO和 PA分别是平面α的垂线和斜线上的射影 , 而直线 a? α , 且 a⊥AO,那么 a⊥ PA.三垂线逆定理: 平面的一条直线, 如果和在这个平面的一条斜线垂直条斜线在平面的射影垂直.用符号语言叙述为: 如果 PO和 PA分别是平面α的垂线和斜线上的射影 , 而直线 a? α , 且 a⊥PA, 那么 a⊥ AO., 那么这条直线也和,AO 是斜线 PA在平面α, 那么这条直线也和这,AO 是斜线 PA在平面α三、典型例题:例 1: 已知 PA⊥矩形 ABCD所在平面 ,M、 N分别是 AB、 PC的中点 .(1)求证 :MN∥平面 PAD;(2)求证 :MN⊥ CD;(3)若∠ PDA=45o , 求证 :MN⊥平面 PCD.例 2: AD 、 BC分别为两条异面直线上的两条线段=8cm,AB⊥ BC,DC⊥ BC,求线段 BC的长 ., 已知这两条异面直线所成的角为30o , AD例 3:(99高职-22)(本题满分10 分 ) 已知平面α ,A ∈α、 B∈α、 Pα、? 关系中 :AB ⊥,PA ⊥α ,PB ⊥, 以其中的两个作为条件, 余下的一个作为结论命题 ( 用文字语言表述, 不得出现字母及符号, 否则不得分 ), 并予以证明 . α , 在以下三个, 构造一个真四、归纳小结:1.在直线与平面的位置关系中 , 注意掌握通过“线线平行” 去判定“线面平行” ,反过来由“线面平行”去判定“线线平行” ; 通过“线线垂直”去判定“线面垂直” ,反过来由“线面垂直”去判定“线线垂直” .2. 平行射影的性质是假定已知线段或直线不平行于投射线得出的. 如果平行于投射线, 则线段或直线的像是一个点.3. 由直线和平面垂直的判定定理可推出许多关于“垂直”的重要性质, 其中最重要的有两个 : 一个是 , 到两点距离相等的点的轨迹是连结这两点的线段的垂直平分面;另一个是 ,三垂线定理及其逆定理 . 这个定理是判定空间线线垂直的一个重要方法, 是计算空间中两条直线的夹角和线段长度等有关问题的重要基础. 它的证明的思想方法十分重要 .4. 在直线和平面所成的角中要重点掌握公式:cos θ =cosθ1cos θ2. 在公式的基础上得到了“斜线和它在平面的射影所成的角是斜线和这个平面所有直线所成的角中最小的角”的结论. 直线与平面所成的角θ满足0o ≤θ≤ 90o .五、基础知识训练:(一)选择题:1. 如图 ,PO⊥平面 ABC,O为垂足 ,OD⊥ AB,则下列关系式不成立的是 ( )A. AB ⊥PDB. AB ⊥ PCC. OD⊥ PCD. AB ⊥ PO2. 直线与平面α成的角 , 直线 a 在平面α , 且与直线异面,则与 a 所成角的取值围是3( )2B. , 2, D. ,A. 0, C.3 33 3 3 2 23.由距离平面α为 4cm 的一定点 P 向平面α引斜线 PA与平面α成 30o 的角 , 则斜足 A 在平面α的轨迹图形是 ( )A. 半径为 4 3 cm的圆B. 半径为 4 2 c m的圆C. 半径为 4 3cm的圆 D. 半径为 2 2 cm 的圆34.设 a、 b 是两条异面直线 , 在下列命题中正确的是 ( )A. 有且仅有一条直线与a、 b 垂直B.有一个平面与a、 b 都垂直C. 过直线 a 有且仅有一个平面与 b 平行D.过空间任一点必可作一条直线与a、 b 都相交5.下列命题中正确的是 ( )A. 若一条直线垂直于一个平面的两条直线, 则这条直线垂直于这个平面B.若一条直线垂直于一个平面的无数条直线, 则这条直线必定垂直于这个平面C.若一条直线平行于一个平面 , 则垂直于这个平面的直线必定垂直于这条直线D.若一条直线平行于一个平面 , 则垂直于这条直线的另一条直线必垂直于这个平面6. 两条直线a、 b 与平面α成的角相等,则a、 b 的关系是 ( )A. 平行B.相交C.异面D.以上三种情况都有可能7.PA,PB,PC 是从 P 引出的三条射线, 每两条的夹角都是60o , 则直线 PC与平面 PAB所成角的余弦值为 ( )A.1B.6C.3D.3 233 28. 直线 a 是平面α的斜线 ,b ? α, 当 a 与 b 成 60o 的角 , 且 b 与 a 在α的射影成 45o 角时 ,a 与α所成的角是 ( )A.60 oB.45o C.90o D.135 o 9. 矩形 ABCD,AB=3,BC=4,PA ⊥ABCD 且 PA=1, P 到对角线 BD 的距离为 ( )A.13B.17 C.1 9 D.1 129 552510. 在△ ABC 中 ,AB=AC=5,BC=6,PA ⊥平面 ABC,PA=8,则 P 到 BC 的距离为 ( ) A. 5 B. 2 5C.3 5D.4 511. 在直角三角形 ABC 中 ,∠B=90o , ∠ C=30o ,D 是 BC 边的中点 ,AC=2,DE ⊥平面 ABC,且 DE=1,则 E 到斜边 AC 的距离是 ( )5 B.7 C.11 D.19A.224212. 已知 SO ⊥平面α , 垂足 O, △ ABC? α , 点 O 是△ ABC 的外心 , 则 ( )A. SA=SB=SCB. SA⊥ SB, 且 SB ⊥ SCC. ∠ ASB=∠ BSC=∠ CSAD. SA⊥ BC(二)填空题:13. 如图 ,C 为平面 PAB 外一点 , ∠ APB=90o , ∠ CPA=∠CPB=60o , 且 PA=PB=PC=1,则 C 到平面 PAB 的距离为 .14. 在空间四边形ABCD 中 , 如果 AB ⊥ CD,BC ⊥ AD, 那么对角线 AC 与 BD 的位置关系是.15. 两条直线 a 、 b 在同一个平面上的射影可能是 .(三)解答题:16. 证明直线与平面平行的判定定理 .17. 从平面外一点 P 向平面引垂线 PO 和斜线 PA,PB.(1) 如果 PA=8cm,PB=5cm,它们在平面的射影长OA:OB=4: 3 , 求点 P 到平面的距离 ;(2) 如果 PO=k,PA 、 PB 与平面都成 30o 角 , 且∠ A PB=90o , 求 AB 的长 ;(3) 如果 PO=k,∠ OPA=∠ OPB=∠ A PB=60o , 求 AB 的长 .18. 一个正三角形的边长为 a, 三角形所在平面外有一点 P.(1)P到三角形三顶点的距离都是2 3a,求这点到三角形各顶点连线与三角形所在平面3成的角的大小以及这点到三角形所在平面的距离;(2)P到三角形三条边的距离都是6a,求这点到三角形各边所作垂线与三角形所在平面6成的角的大小以及这点到三角形所在平面的距离.19. 已知直角△ ABC在平面α上 , D是斜边AB的中点, DE⊥α,且DE=12cm,AC=8cm,BC=6cm, 求 EA,EB,EC 的长 .20.如图 , 平面α∩β =CD,EA⊥α ,EB ⊥β , 且 A∈α ,B ∈β .求证 :(1)CD ⊥平面 EAB;(2)CD⊥直线 AB.21. 已知 PO⊥平面 ABO,PB⊥ AB,又知∠ PAB=α , ∠ PAO=β , ∠ OAB=γ .求证 :cos α=cos β cosγ .22.已知正方体 ABCD-A1B1C1D1.(1) 求直线 DA1与 AC1的夹角 ;(2) 求证 :AC1⊥平面 A1BD.平面和平面的位置关系一、高考要求:1. 掌握平面和平面的位置关系.2.了解平面与平面的判定与性质 , 理解二面角概念 , 掌握平面与平面垂直的判定与性质.二、知识要点:1.平面和平面有以下两种位置关系:(1) 平行 : 没有公共点 ;(2) 相交 : 有一条公共直线 .2. 平面与平面平行的判定: 如果一个平面的两条相交直线都平行于另一个平面, 那么这两个平面互相平行 .用符号语言表述为: 如果 a∩ b≠Φ , a ? α,b ? α , 且 a∥β ,b ∥β , 那么α∥β .平面与平面平行的性质: 如果两个平行平面同时与第三个平面相交, 则它们的交线平行 .用符号语言表述为: 如果α∥β , γ∩α =a, γ∩β =b, 那么 a∥ b.3. 二面角 : 由一条直线引两个半平面所组成的图形称为二面角, 这条直线称为二面角的棱 , 构成二面角的两个半平面称为二面角的面. 在二面角的棱上任取一点, 过这点在二面角的两个半平面分别作棱的垂线, 这两条垂线相交所成的角称为二面角的平面角. 二面角的大小可用它的平面角来度量. 平面角是直角的二面角叫做直二面角.4. 平面与平面垂直的判定: 如果一个平面经过另一个平面的一条垂线, 那么这两个平面互相垂直 .用符号语言表述为: 如果直线 AB? 平面α ,AB⊥β , 垂足为 B, 那么α⊥β .平面与平面垂直的性质: 如果两个平面互相垂直 , 那么在一个平面垂直于它们交线的直线垂直于另一个平面 .用符号语言表述为: 如果α⊥β , α∩β =CD,AB? α , AB⊥ CD,B为垂足 , 那么 AB⊥β .三、典型例题:例 1: 试证明 : 如果两个平面垂直 , 那么在一个平面 , 垂直于它们交线的直线垂直于另一个平面.例 2: 已知二面角α - - β的平面角是锐角θ离为 4, 试求 sin2 θ的值 . , 若点C∈α ,C 到β的距离为3,C 到棱AB 的距例 3: 已知平面β⊥平面α, 平面γ⊥平面α, 且平面β∩平面γ=a, 求证 :a ⊥α .四、归纳小结:1.在平面与平面的位置关系中 , 注意掌握通过“线面 ( 或线线 ) 平行”去判定“面面平行”,反过来由“面面平行”去判定“线线平行”; 通过“线线垂直”去判定“线面垂直” ,反过来由“线面垂直”去判定“线线垂直”.2. 二面角θ满足0o ≤θ≤ 180o . 求二面角的大小分两步:(1)找出二面角的平面角;(2)在三角形中求解平面角.五、基础知识训练:(一)选择题:1.设 a、 b、 c 表示直线 , α、β、γ表示平面 , 下面四个命题中 ,;①若a⊥ c, b ⊥ c, 则 a∥ b ②若α⊥γ, β⊥γ, 则α∥β③若a⊥ c, b ⊥α , 则a∥α④若a⊥α , a ⊥β , 则α∥βA. ①和②B. ③和④C. ②D. ④2.如图 , 木工师傅在检查工件相邻的两个面是否垂直时, 常用曲尺的一边紧靠在工件的一个面上 , 另一边在工件的另一个面上转动一下, 观察尺边是否和这个面密合就可以了. 这种检查方法的依据是( )A. 平面的基本性质B. 三垂线定理C. 平面和平面垂直的判定定理D. 直线和平面垂直的判定定理3.已知直线⊥平面α , 直线 m? 平面β,有下面四个命题 :①α∥β? ⊥ m;②∥ m ? α⊥β; ③α∥β? ∥ m;④⊥ m? α∥β. 其中正确的两个命题是( )A. ①与②4. 如果直线A. α⊥γ且B.③与④C.,m 与平面α、β、γ满足: =β∩γ⊥m B.α⊥γ且m∥β C. m②与④ D., ∥α ,m? α和∥β且⊥ m①与③m⊥γ , 那么必有 (D.α∥β且α⊥γ)5. 对于平面α、β和直线、 m,则α⊥β的一个充分条件是( )A. ⊥m, ∥α ,m∥βB. ⊥ m,α∩β=,m? αC. ∥ m, m⊥β , ? αD. ∥ m, ⊥α ,m⊥β6. 若异面直线 A. 平行a、 b, a ?B.α , b ?相交β , 则平面α、β的位置关系一定是( )C.平行或相交D.平行或相交或重合7.下列命题中 , 正确的是 ( )(1)平行于同一直线的两平面平行(2)平行于同一平面的两平面平行(3)垂直于同一直线的两平面平行(4)垂直于同一平面的两平面平行A.(1)(2)B.(2) (3)C.(3)(4)D.(2)(3)(4)8.过平面外一点 P,(1) 存在无数个平面与平面α平行(2)存在无数个平面与平面α垂直(3) 存在无数条直线与平面α垂直(4)只存在一条直线与平面α平行其中正确的有 ( )A.1 个B.2 个C.3 个D.4 个9. 设正方形 ABCD的边长为4 6 ,PA ⊥平面 AC,若 PA=12,则二面角 P-BD-C 的大小为 ( )A. B. C. D. 24 2 33(二)填空题:10. 已知二面角是 60o , 在它的部有一点到这个二面角的两个半平面的垂线段长都是a, 则两个垂足间的距离是.11. 在二面角的一个面有一个已知点A, 它到棱的距离是它到另一个面的距离的 2 倍, 则这个二面角的度数是.12. 有如下几个命题 : ①平面α与平面β垂直的充分必要条件是α有一条直线与β垂直;②平面α与平面β平行的一个必要而不充分的条件是α有无数条直线与β平行;③直线 a 与平面β平行的一个充分而不必要的条件是β有一条直线与直线 a 平行 .其中正确命题的序号是.13.设 m、为直线 , α、β为平面 , 给出下列命题 : ①垂直于α的两条相交直线 , 则⊥α ;②若 m∥α , 则 m平行于α的所有直线; ③若⊥α ,α∥β,则⊥β ;④若m?α ,? β ,且⊥ m,则α⊥β ; ⑤若m? α , ? β,且α∥β,则m∥. 其中正确的命题是( 只写序号).14.已知直线和平面α、β , 给出三个论断 : ① ⊥α , ② ∥β , ③α⊥β , 以其中的二个论断作为条件 , 余下的一个作为结论, 写出你认为正确的一个命题.15. α、β是两个不同的平面 ,m、n 是平面α及β之外的两条不同直线 , 给出四个论断 : ① m ⊥n;②α⊥β;③ n⊥β;④m⊥α , 以其中三个论断作为条件 , 余下一个论断作为结论 , 写出你认为正确的一个命题:.16.设 X,Y,Z 是空间不同的直线或平面 , 对下面四种情形 , 使“ X⊥ Z 且 Y⊥Z? X∥ Y”为真命题的是.① X,Y,Z 是直线 ; ② X,Y 是直线 ,Z 是平面 ; ③X,Y 是平面 ,Z 是直线 ; ④X,Y,Z 是平面 .设两个平面α、β相交于m,且直线 a∥α ,a ∥β则直线 a 与 m的关系是.17. 如图 , 直线 AC、 DF 被三个平行平面α、β、γ所截,AC=15cm,DE=5cm,AB:BC=1:3, 则 AB的长是,EF 的长是.18. 二面角α - - β的度数为θ (0 ≤θ≤), 在α面有△ ABC, △ ABC 在β的正射影为△A′2B′C′, △ABC的面积为 S, 则△ A′ B′C′的面积 S′ =.(三)解答题:19. 已知一个二面角是60o , 在它的部一点到这个二面角的两个半平面的距离都是3,求两个垂足间的距离 .20. 已知 : 在 60o 二面角的棱上 , 有两个点A、B,AC、BD分别在这个二面角的两个面, 且垂直于线段 AB,且 AB=4cm,AC=6cm,BD=8cm,求 CD的长 .翻折问题一、高考要求:掌握立体几何中图形翻折问题的解法.二、知识要点:解决翻折问题要求: ①根据题意作出折叠前、后的图形;②分析折叠前、后边、角及其之间的关系哪些发生变化, 哪些未发生变化; ③寻找解决问题的方法并正确解答问题. 三、典型例题:例 1: 已知△ ABC中 ,AB=AC=2,且∠ A=90o ( 如图 (1) 所示 ), 以 BC边上的高 AD为折痕使∠ BDC=90o .( 如图 (2) 所示 )①求∠ BAC;②求点 C 到平面 ABD的距离 ;③求平面ABD与平面 ABC所成的二面角的正切值.例 2: 已知等腰梯形ABCD,AB∥ CD,上底 =4, 下底 =6, 高 =3, 沿它的对角线求 B、 D 两点之间的距离. AC折成60o 的二面角,四、归纳小结:1.折叠前一般是平面图形 , 用平面几何知识解答即可 , 折叠后是立体图形 , 要用立体几何知识解答 ;2. 未发生变化的量可在折叠前的图形中解答, 发生变化的量在折叠后的图形中解答.五、基础知识训练:(一)选择题:1. 以等腰直角△A BC斜边 BC 上的高 AD 为折痕 , 折叠时使二面角B-AD-C 为 90o , 此时∠ BAC 为( )A.30 oB.45oC.60oD.90o2.把边长为 a 的正△ ABC沿高 AD折成 60o 的二面角 , 则点 A 到 BC的距离是 ( )A. aB. 6a C.3D.15 2a a3 43. 已知边长为 a 的菱形 ABCD,∠ A=60o , 将菱形沿对角线 BD 折成 120o 的二面角 , 则 AC 的长为( )A. 2aB.3 a C.3 a D.2a222(二)填空题:4. E 、F 分别是正方形 ABCD 的边 AB 和 CD 的中点 ,EF 交 BD 于 O,以 EF 为棱将正方形折成直二 面角 , 则∠ BOD=.5. 如图 ,ABCD 是正方形 ,E 是 AB 的中点 , 如将△ DAE 和△ CBE 分别沿虚线 DE 和 CE 折起 , 使 AE 与 BE 重合 , 记 A 与 B 重合后的点为 P, 则面 PCD 与面 ECD 所成的二面角为(三)解答题:6. 一个直角三角形的两条直角边各长a 与 b, 沿其斜边上的高 h 折成直二面角b 两边夹角α的余弦 .度 ., 试求此时 a 与7. 把长宽各为 4 与 3 的长方形 ABCD 沿对角线 AC 折成直二面角 , 试求顶点 B 与 D 的距离 .8. 已知等腰梯形 ABCD,AB ∥ CD,上底 =4, 下底 =6, 高 =3, 沿它的对角线 AC 折成 90o 的二面角 ,求 B 、 D 两点之间的距离 .空间图形性质的应用一、高考要求:掌握空间图形的性质在测量和实际问题中的应用.二、知识要点:1.空间图形的性质在测量中的应用;2. 空间图形的性质在实际问题中的应用.三、典型例题:例 1: 如图 , 道路旁有一条河米尺 ), 不渡河能否测量出塔顶, 对岸有一铁塔C与道路的距离CD高 a 米 , 如果你手中只有测角器和皮尺 . 请说出你的测量方法 , 并求出该距离.( 刻度例 2: 斜坡平面α与水平平面β相交于坡脚, 且成 30o 的小路上坡 , 每前进 100 米升高多少米?如果沿一条与坡脚么高 , 前进了多少米? 的二面角 , 在平面α沿一条与垂直成 45o 角的小路上坡, 仍升高这四、归纳小结:空间图形的性质在测量和实际问题中的应用, 重点在于理解题意, 画好能正确表示题意的图形 , 并运用空间图形的性质解题.五、基础知识训练:(一)填空题:1. 正方体的棱长为a, 有一小虫 , 在正方体的表面上从顶点A爬到顶点 C′ , 则小虫爬行的最短距离是.2.在一长方体形的木块的面 A1C1上, 有一点 P, 过点 P 在平面 A1C1画一条直线和 CP垂直 .(二)解答题:3.如图 , 所测物体 BB′垂直于水平面α于点 B′ , 底端 B′不能到达 . 在α取一点 A, 测得∠ BAB′ =θ1, 引基线 AC,使∠ B′AC=θ2, 在 AC上取一点 D, 使 BD⊥ AC,又测得 AD=a,求物体 BB′的高度 .。

职教高考立体几何知识点

职教高考立体几何知识点

职教高考立体几何知识点职业教育高考中的立体几何知识点是数理化科目中的重要内容之一,对于考生来说,了解和掌握这些知识点不仅有助于应对高考中的相关题目,还能够对将来的职业发展起到积极的推动作用。

本文将从几何体、多面体、体积和表面积等方面介绍职教高考中的立体几何知识点。

1. 几何体几何体是立体几何研究的基本对象,包括球体、圆柱体、锥体、棱柱体等。

对于每种几何体,我们需要了解它们的特点、性质和相关公式。

例如,球体的体积公式为V = (4/3)πr³,其中r为球体的半径;圆柱体的体积公式为V = πr²h,其中r为底面半径,h为高。

掌握了这些公式,考生就能够迅速计算出几何体的体积。

2. 多面体多面体是由多个平面的边界所围成的几何体,如四面体、六面体、八面体等。

对于每种多面体,我们需要了解它们的面数、顶点数、棱数以及其他相关性质。

例如,四面体具有四个面、四个顶点和六条棱,六面体具有六个面、八个顶点和十二条棱。

同时,我们还需要掌握多面体的表面积和体积的计算方法,如四面体的体积公式为V = (1/3)Ah,其中A为底面积,h为高。

3. 体积和表面积体积和表面积是立体几何中两个重要的概念,对于许多应用题和实际问题,我们需要计算出几何体的体积和表面积。

除了之前提到的几何体和多面体的计算公式,我们还需要了解一些常见图形的计算方法,如长方体、正方体和圆柱体等。

长方体的体积公式为V = lwh,其中l为长度,w为宽度,h为高度;正方体的表面积公式为S = 6a²,其中a为边长。

通过掌握这些公式,考生就能够快速计算出几何体的体积和表面积。

4. 空间几何与几何应用在职业教育中,几何知识不仅仅停留在理论层面,还有很多实际应用。

例如,在建筑和设计行业中,需要根据房间的尺寸和形状计算出体积和表面积,以确定材料的用量。

在制造工业中,需要根据产品的几何形状计算出体积和表面积,以确定制造工艺和成本。

因此,职业教育高考中的立体几何知识点不仅仅是为了应对考试,更是为了将来职业发展的需要。

河北高职单招数学立体几何知识点归纳

河北高职单招数学立体几何知识点归纳

河北高职单招数学立体几何知识点归纳
以下是河北高职单招数学立体几何知识点归纳:
1. 空间几何体的结构特征:掌握常见空间几何体的结构特征,包括棱柱、棱锥、棱台、圆柱、圆锥、圆台、球等。

2. 空间几何体的三视图:掌握空间几何体的主视图、左视图和俯视图,能够根据三视图判断几何体的形状。

3. 空间几何体的表面积和体积:掌握常见空间几何体的表面积和体积的计算公式,包括长方体、正方体、圆柱、圆锥、圆台、球的表面积和体积。

4. 空间几何体中的线面关系:掌握空间几何体中的线面平行、线面垂直、面面垂直、二面角等关系,能够根据给定的条件判断线面关系。

5. 空间几何体的直观图:掌握空间几何体的直观图的绘制方法,能够根据给定的条件绘制几何体的直观图。

6. 空间向量的基本概念:了解空间向量的线性运算,掌握向量的模长、向量间的夹角等基本概念。

7. 向量的数量积和向量积:掌握向量的数量积和向量积的计算公式,能够根据给定的条件进行计算。

8. 向量的混合积:了解向量的混合积的概念,掌握混合积的计算公式。

9. 空间几何体的位置关系:掌握空间几何体的位置关系,包括平行、相交、垂直等关系,能够根据给定的条件判断位置关系。

10. 空间几何体的度量关系:掌握空间几何体的度量关系,包括距离、角度等,能够根据给定的条件计算度量值。

以上是河北高职单招数学立体几何知识点归纳,希望能够帮助到您。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面的基本性质一、高考要求:理解平面的基本性质.二、知识要点:1.平面的表示方法:平面是无限延展的,是没有边界的.通常用平行四边形表示平面,平面一般用希腊字母α、β、γ、…来命名,还可以用表示平行四边形的对角顶点的字母来命名.2.平面的基本性质:(1)如果一条直线上的两点在一个平面,那么这条直线上的所有点都在这个平面.这时我们说,直线在平面或平面经过直线.用符号语言表示为:如果A∈a,B∈a,且A∈α,B∈α,则a⊂α.(2)经过不在同一条直线上的三点,有且只有一个平面.也可简单地说成,不共线的三点确定一个平面.它有三个推论:推论1:经过一条直线和直线外的一点,有且只有一个平面;推论2:经过两条相交直线,有且只有一个平面;推论3:经过两条平行直线,有且只有一个平面.(3)如果两个平面有一个公共点,那么它们就有另外的公共点,并且这些公共点的集合是经过这个点的一条直线.这时我们称这两个平面相交. 用符号语言表示为:如果A∈α,A∈β,则α∩β=λ,且A∈λ.3.有关概念:如果空间的几个点或几条直线都在同一平面,那么我们就说它们共面;如果构成图形的所有点都在同一平面,则这类图形叫做平面图形;如果构成图形的点不全在同一平面,则这类图形叫做立体图形.直线和平面都是空间的子集,直线又是平面的子集.三、典型例题:例1:已知E、F、G、H分别是空间四边形ABCD各边AB、AD、BC、CD上的点,且EF与GH相交于点P.求证:点B、D、P在同一直线上.证明: ∵E∈AB, F∈AD又AB∩AD=A∴E、F∈平面ABD∴EF⊂平面ABD同理GH⊂平面CBD∵EF与GH相交于点P∴P∈平面ABD,P∈平面CBD, 又平面ABD∩平面ABD=BD∴P∈BD即点B、D、P在同一直线上.例2:如图,已知直线a∥b,直线m与a、b分别交于点A、B,求证:a、b、m三条直线在同一平面.证明:∵a∥b ∴a、b可以确定一个平面α.∵m∩α=A,m∩β=B, ∴A∈α,B∈α又A∈m,B∈m∴m ⊂α. ∴a 、b 、m 三条直线在同一平面.四、归纳小结:1.证明点共线问题常用方法有二:(1)证明这些点都是某两个平面的公共点;(2)由其中两点确定一条直线再证明其它点在这条直线上.2.共面问题证明常用“纳入平面法”一般分为两点:(1)确定平面;(2)证明其余点、线在确定的平面,解题中应注意确定平面的条件.五、基础知识训练:(一)选择题:1.下列说确的是( )A.平面和平面只有一个公共点B.两两相交的三条直线共面C.不共面的四点中,任何三点不共线D.有三个公共点的两平面必重合2.在空间,下列命题中正确的是( )A.对边相等的四边形一定是平面图形B.四边相等的四边形一定是平面图形C.有一组对边平行的四边形一定是平面图形D.有一组对角相等的四边形一定是平面图形3.过空间一点作三条直线,则这三条直线确定的平面个数是( )A.1个B.2个C.3个D.1个或3个4.空间四点,其中三点共线是这四点共面的( )A.充分条件B.必要条件C.充要条件D.既非充分也非必要条件(二)填空题:5.空间三条直线互相平行,但不共面,它们能确定 个平面,三条直线相交于一点,它们最多可确定 个平面.6.检查一桌子的四条腿的下端是否在同一个平面的方法是 .(三)解答题:7.已知A 、B 、C 是平面α外三点,且AB 、BC 、CA 分别与α交于点E 、F 、G,求证:E 、F 、G 三点共线.8.已知1λ∥2λ∥3λ,且m ∩1λ=A 1,m ∩2λ= A 2,m ∩3λ=A 3,求证: 1λ、2λ、3λ、m 四线共面.直线与直线的位置关系一、高考要求:1.掌握两直线的位置关系.掌握空间两条直线的平行关系、平行直线的传递性;2.了解异面直线概念.了解异面直线的夹角、垂直和距离的概念.二、知识要点:1.两条直线的位置关系有三种:(1)平行:没有公共点,在同一平面;(2)相交:有且仅有一个公共点,在同一平面;(3)异面:没有公共点,不同在任何一个平面.2.平行直线的传递性:空间三条直线,如果其中两条直线都平行于第三条直线,那么这两条直线也互相平行.3.异面直线的夹角、垂直和距离的概念:经过空间任意一点,分别作与两条异面直线平行的直线,这两条直线的夹角叫做两条异面直线所成的角.成90º角的两条异面直线叫做相互垂直的异面直线,异面直线a与b垂直,记作a⊥b.和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线,对任意两条异面直线有且只有一条公垂线,两条异面直线的公垂线夹在异面直线间的部分叫做这两条异面直线的公垂线段,公垂线段的长度叫做两条异面直线的距离.三、典型例题:例1:已知空间四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点,求证:EFGH是平行四边形.思考:如果AC=BD,四边形EFGH的形状是 ;如果AC⊥BD, 四边形EFGH的形状是 ;如果AC=BD且AC⊥BD, 四边形EFGH的形状是 .例2:如图,长方体ABCD-A1B1C1D1中,已知AA1=1cm,AB=AD=2cm,E是AA1的中点.(1)求证:AC1、BD1、CA1、DB1共点于O,且互相平分;(2)求证:EO⊥BD1,EO⊥AA1;(3)求异面直线AA1和BD1所成角的余弦值;(4)求异面直线AA1和BD1间的距离.四、归纳小结:1.平行线的传递性是论证平行问题的主要依据;等角定理表明角在空间平行移动,它的大小不变.2.两条异面直线所成的角θ满足0º<θ≤90º,且常用平移的方法化为相交直线所成的角,在三角形中求解.五、基础知识训练:(一)选择题:1.在立体几何中,以下命题中真命题的个数为( )(1)垂直于同一直线的两直线平行; (2)到定点距离等于定长的点的轨迹是圆;(3)有三个角是直角的四边形是矩形; (4)自一点向一已知直线引垂线有且只有一条.A.0个B.1个C.2个D.3个2.下列命题中,结论正确的个数是( )(1)如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;(2)如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等;(3)如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;(4)如果两条直线同平行于第三条直线,那么这两条直线互相平行.A.1个B.2个C.3个D.4个3.下列关于异面直线的叙述错误的个数是( )(1)不同在任何一个平面的两条直线是异面直线;(2)既不平行也不相交的两条直线是异面直线;(3)连结平面一点与平面外一点的直线和这个平面不经过该点的任意直线是异面直线;(4)分别和两条异面直线同时相交的两条直线一定是异面直线.A.0个B.1个C.2个D.3个4.下列命题中,结论正确的个数是( )(1)若a∥b, a∥c,则b∥c; (2)若a⊥b, a⊥c,则b∥c;(3)若a∥b, a⊥c,则b⊥c; (4)若a⊥b, a⊥c,则b⊥c;A.1个B.2个C.3个D.4个5.教室有一直尺,无论怎样放置,在地面总有这样的直线,它与直尺所在直线( )A.垂直B.平行C.相交D.异面6.设a、b、c为空间三条直线, a∥b, a、c异面,则b与c的位置关系是( )A.异面B.相交C.不相交D.相交或异面7.设a、b、c为空间三条直线, 且c与a、b异面,若a与c所成的角等于b与c所成的角,则a与b的位置关系是( )A.平行B.平行或相交C.平行或异面D.平行或相交或异面8.(2002高职-4)已知m,n是异面直线,直线λ平行于直线m,则λ和n( )A.不可能是平行直线B.一定是异面直线C.不可能是相交直线D.一定是相交直线(二)填空题:9.平行于同一直线的两直线的位置关系是 ;垂直于同一直线的两直线的位置关系是 .10.若a∥b,c⊥a,d⊥b,则c与d的关系为 .11.空间两个角α和β,若α和β两边对应平行,当α=50º时,则角β= . (三)解答题:12..已知A、B和C、D分别是异面直线a、b上的两点,求证:AC和BD是异面直线(要求画出图形,写出已知,求证和证明过程)13.已知正方体ABCD-A1B1C1D1的棱长为1.(1)求直线DA1与AC的夹角;(2)求直线DA1与AC的距离.14.已知空间四边形OABC的边长和对角线长都为1,D、E分别为OA、BC的中点,连结DE.(1)求证:DE是异面直线OA和BC的公垂线;(2)求异面直线OA和BC的距离;(3)求点O到平面ABC的距离.直线与平面的位置关系一、高考要求:1.掌握直线与平面的位置关系.2.了解直线与平面平行的判定和性质,理解平行投影概念.掌握空间图形在平面上的表示方法.3.掌握直线与平面垂直的判定和性质.理解正射影和三垂线定理及其逆定理.掌握直线与平面所成的角及点到平面距离的概念.二、知识要点:1.直线与平面的位置关系有以下三种:(1)直线在平面:有无数个公共点;(2)直线与平面相交:有且只有一个公共点;(3)直线与平面平行:没有公共点.2.直线与平面平行的判定:如果平面外一条直线与平面一条直线平行,那么这条直线与这个平面平行.用符号语言表述为:如果a∥b,b⊂α,a⊄α,那么a∥α.直线与平面平行的性质:如果一条直线平行于一个已知平面,且过这条直线的平面和已知平面相交,那么这条直线就和交线平行.用符号语言表述为:如果a∥α,a⊂β,α∩β=b,那么a∥b.3.当直线或线段不平行于投射线时,平行射影具有下述性质:(1)直线或线段的平行射影仍是按或线段;(2)平行线的平行射影仍是平行线;(3)在同一直线或平行直线上,两条线段平行射影的比等于这两条线段的比.4.表示空间图形的平面图形,叫做空间图形的直观图.画直观图通常用斜二测画法.5.直线与平面垂直的判定:如果一条直线垂直于平面两条相交直线,那么这条直线就垂直于这个平面.用符号语言表述为:如果λ⊥a,λ⊥b, a⊂α,b⊂α,a∩b=P,那么λ⊥α.直线与平面垂直的性质:如果两条直线同垂直于一个平面,那么这两条直线互相平行.用符号语言表述为:如果a⊥α, b⊥α,那么a∥b.6.斜线及其在平面的射影:一条直线和一个平面相交但不和它垂直,这条直线称为平面的斜线,斜线和平面的交点称为斜足.从平面外一点向平面引垂线和斜线,从这点到斜足间的线段长,称为从这点到平面间的斜线的长,斜足和垂足之间的线段称为斜线在平面的射影.这点到垂足的距离称为这个点到平面的距离.斜线和它在平面的射影所成的角称为这条斜线与平面所成的角.定理:从平面外一点向平面引垂线和斜线.(1)如果两斜线的射影的长相等,那么两斜线的长相等,射影较长的斜线也较长.(2)如果两斜线长相等,那么射影的长也相等,斜线较长的射影也较长.7.三垂线定理及其逆定理:三垂线定理:平面的一条直线,如果和一条斜线在这个平面的射影垂直,那么这条直线也和这条斜线垂直.用符号语言叙述为:如果PO和PA分别是平面α的垂线和斜线,AO是斜线PA在平面α上的射影,而直线a⊂α,且a⊥AO,那么a⊥PA.三垂线逆定理:平面的一条直线,如果和在这个平面的一条斜线垂直,那么这条直线也和这条斜线在平面的射影垂直.用符号语言叙述为:如果PO和PA分别是平面α的垂线和斜线,AO是斜线PA在平面α上的射影,而直线a⊂α,且a⊥PA,那么a⊥AO.三、典型例题:例1:已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45º,求证:MN⊥平面PCD.例2: AD、BC分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为30º, AD =8cm,AB⊥BC,DC⊥BC,求线段BC的长.例3:(99高职-22)(本题满分10分)已知平面α,A∈α、B∈α、P∉α、λ⊂α,在以下三个关系中:AB⊥λ,PA⊥α,PB⊥λ,以其中的两个作为条件,余下的一个作为结论,构造一个真命题(用文字语言表述,不得出现字母及符号,否则不得分),并予以证明.四、归纳小结:1.在直线与平面的位置关系中,注意掌握通过“线线平行”去判定“线面平行”,反过来由“线面平行”去判定“线线平行”;通过“线线垂直”去判定“线面垂直”,反过来由“线面垂直”去判定“线线垂直”.2.平行射影的性质是假定已知线段或直线不平行于投射线得出的.如果平行于投射线,则线段或直线的像是一个点.3.由直线和平面垂直的判定定理可推出许多关于“垂直”的重要性质,其中最重要的有两个:一个是,到两点距离相等的点的轨迹是连结这两点的线段的垂直平分面;另一个是,三垂线定理及其逆定理.这个定理是判定空间线线垂直的一个重要方法,是计算空间中两条直线的夹角和线段长度等有关问题的重要基础.它的证明的思想方法十分重要.4.在直线和平面所成的角中要重点掌握公式:cos θ=cos θ1cos θ2.在公式的基础上得到了“斜线和它在平面的射影所成的角是斜线和这个平面所有直线所成的角中最小的角”的结论.直线与平面所成的角θ满足0º≤θ≤90º.五、基础知识训练:(一)选择题:1.如图,PO ⊥平面ABC,O 为垂足,OD ⊥AB,则下列关系式不成立的是( )A. AB ⊥PDB. AB ⊥PCC. OD ⊥PCD. AB ⊥PO2.直线λ与平面α成3π的角,直线a 在平面α,且与直线λ异面,则λ与a 所成角的取值围是( ) A.⎪⎭⎫⎢⎣⎡32,0π B.⎪⎭⎫⎢⎣⎡32,3ππ C. ⎪⎭⎫⎢⎣⎡2,3ππ D.⎥⎦⎤⎢⎣⎡2,3ππ 3.由距离平面α为4cm 的一定点P 向平面α引斜线PA 与平面α成30º的角,则斜足A 在平面α的轨迹图形是( )A.半径为34cm 的圆B.半径为24cm 的圆C.半径为334cm 的圆 D.半径为22cm 的圆 4.设a 、b 是两条异面直线,在下列命题中正确的是( )A.有且仅有一条直线与a 、b 垂直B.有一个平面与a 、b 都垂直C.过直线a 有且仅有一个平面与b 平行D.过空间任一点必可作一条直线与a 、b 都相交5.下列命题中正确的是( )A.若一条直线垂直于一个平面的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面的无数条直线,则这条直线必定垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线平行于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面6.两条直线a 、b 与平面α成的角相等,则a 、b 的关系是( )A.平行B.相交C.异面D.以上三种情况都有可能7.PA,PB,PC 是从P 引出的三条射线,每两条的夹角都是60º,则直线PC 与平面PAB 所成角的余弦值为( ) A.21 B.36 C.33 D.238.直线a 是平面α的斜线,b ⊂α,当a 与b 成60º的角,且b 与a 在α的射影成45º角时,a 与α所成的角是( )A.60ºB.45ºC.90ºD.135º9.矩形ABCD,AB=3,BC=4,PA ⊥ABCD 且PA=1, P 到对角线BD 的距离为( ) A.513 B.517 C.921 D.12951 10.在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC,PA=8,则P 到BC 的距离为( ) A.5 B.52 C.53 D.5411.在直角三角形ABC 中, ∠B=90º,∠C=30º,D 是BC 边的中点,AC=2,DE ⊥平面ABC,且DE=1,则E 到斜边AC 的距离是( ) A.25 B.27 C.211 D.419 12.已知SO ⊥平面α,垂足O, △ABC ⊂α,点O 是△ABC 的外心,则( )A. SA=SB=SCB. SA ⊥SB,且SB ⊥SCC.∠ASB=∠BSC=∠CSAD. SA ⊥BC(二)填空题:13.如图,C 为平面PAB 外一点,∠APB=90º,∠CPA=∠CPB=60º,且PA=PB=PC=1,则C 到平面PAB 的距离为 .14.在空间四边形ABCD 中,如果AB ⊥CD,BC ⊥AD,那么对角线AC 与BD 的位置关系是 .15.两条直线a 、b 在同一个平面上的射影可能是 .(三)解答题:16.证明直线与平面平行的判定定理.17.从平面外一点P 向平面引垂线PO 和斜线PA,PB.(1)如果PA=8cm,PB=5cm,它们在平面的射影长OA:OB=4:3,求点P 到平面的距离;(2)如果PO=k,PA 、PB 与平面都成30º角,且∠A PB=90º,求AB 的长;(3)如果PO=k,∠OPA=∠OPB=∠A PB=60º,求AB 的长.18.一个正三角形的边长为a,三角形所在平面外有一点P.(1)P 到三角形三顶点的距离都是332a,求这点到三角形各顶点连线与三角形所在平面成的角的大小以及这点到三角形所在平面的距离;(2)P 到三角形三条边的距离都是66a,求这点到三角形各边所作垂线与三角形所在平面成的角的大小以及这点到三角形所在平面的距离.19.已知直角△ABC 在平面α上, D 是斜边AB 的中点, DE ⊥α,且DE=12cm,AC=8cm,BC=6cm,求EA,EB,EC 的长.20.如图,平面α∩β=CD,EA ⊥α,EB ⊥β,且A ∈α,B ∈β.求证:(1)CD ⊥平面EAB;(2)CD ⊥直线AB.21.已知PO ⊥平面ABO,PB ⊥AB,又知∠PAB=α,∠PAO=β,∠OAB=γ.求证:cos α=cos βcos γ.22. 已知正方体ABCD-A 1B 1C 1D 1.(1)求直线DA 1与AC 1的夹角;(2)求证:AC 1⊥平面A 1BD.平面和平面的位置关系一、高考要求:1.掌握平面和平面的位置关系.2.了解平面与平面的判定与性质,理解二面角概念,掌握平面与平面垂直的判定与性质.二、知识要点:1.平面和平面有以下两种位置关系:(1)平行:没有公共点;(2)相交:有一条公共直线.2.平面与平面平行的判定:如果一个平面的两条相交直线都平行于另一个平面,那么这两个平面互相平行.用符号语言表述为:如果a∩b≠Φ, a⊂α,b⊂α,且a∥β,b∥β,那么α∥β.平面与平面平行的性质:如果两个平行平面同时与第三个平面相交,则它们的交线平行.用符号语言表述为:如果α∥β,γ∩α=a,γ∩β=b,那么a∥b.3.二面角:由一条直线引两个半平面所组成的图形称为二面角,这条直线称为二面角的棱,构成二面角的两个半平面称为二面角的面.在二面角的棱上任取一点,过这点在二面角的两个半平面分别作棱的垂线,这两条垂线相交所成的角称为二面角的平面角.二面角的大小可用它的平面角来度量.平面角是直角的二面角叫做直二面角.4.平面与平面垂直的判定:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.用符号语言表述为:如果直线AB⊂平面α,AB⊥β,垂足为B,那么α⊥β.平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面垂直于它们交线的直线垂直于另一个平面.用符号语言表述为:如果α⊥β, α∩β=CD,AB⊂α, AB⊥CD,B为垂足,那么AB⊥β.三、典型例题:例1:试证明:如果两个平面垂直,那么在一个平面,垂直于它们交线的直线垂直于另一个平面.例2:已知二面角α- -β的平面角是锐角θ,若点C∈α,C到β的距离为3,C到棱AB的距离为4,试求sin2θ的值.例3:已知平面β⊥平面α,平面γ⊥平面α,且平面β∩平面γ=a,求证:a⊥α.四、归纳小结:1.在平面与平面的位置关系中,注意掌握通过“线面(或线线)平行”去判定“面面平行”,反过来由“面面平行”去判定“线线平行”;通过“线线垂直”去判定“线面垂直”,反过来由“线面垂直”去判定“线线垂直”.2.二面角θ满足0º≤θ≤180º.求二面角的大小分两步:(1)找出二面角的平面角;(2)在三角形中求解平面角.五、基础知识训练:(一)选择题:1.设a、b、c表示直线,α、β、γ表示平面,下面四个命题中,;①若a⊥c, b⊥c,则a∥b ②若α⊥γ,β⊥γ,则α∥β③若a⊥c, b⊥α,则a∥α④若a⊥α, a⊥β,则α∥βA.①和②B.③和④C.②D.④2.如图,木工师傅在检查工件相邻的两个面是否垂直时,常用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动一下,观察尺边是否和这个面密合就可以了.这种检查方法的依据是( )A.平面的基本性质B.三垂线定理C.平面和平面垂直的判定定理D.直线和平面垂直的判定定理3.已知直线λ⊥平面α,直线m⊂平面β,有下面四个命题:①α∥β⇒λ⊥m;②λ∥m ⇒α⊥β;③α∥β⇒λ∥m;④λ⊥m⇒α∥β.其中正确的两个命题是( )A.①与②B.③与④C.②与④D.①与③4.如果直线λ,m与平面α、β、γ满足:λ=β∩γ,λ∥α,m⊂α和m⊥γ,那么必有( )A.α⊥γ且λ⊥mB.α⊥γ且m∥βC. m∥β且λ⊥mD.α∥β且α⊥γ5.对于平面α、β和直线λ、m,则α⊥β的一个充分条件是( )A.λ⊥m,λ∥α,m∥βB.λ⊥m,α∩β=λ,m⊂αC.λ∥m, m⊥β,λ⊂αD.λ∥m,λ⊥α,m⊥β6.若异面直线a、b, a⊂α, b⊂β,则平面α、β的位置关系一定是( )A.平行B.相交C.平行或相交D.平行或相交或重合7.下列命题中,正确的是( )(1)平行于同一直线的两平面平行 (2)平行于同一平面的两平面平行(3)垂直于同一直线的两平面平行 (4)垂直于同一平面的两平面平行A.(1)(2)B.(2) (3)C.(3)(4)D.(2)(3)(4)8.过平面外一点P,(1)存在无数个平面与平面α平行 (2)存在无数个平面与平面α垂直(3)存在无数条直线与平面α垂直 (4)只存在一条直线与平面α平行其中正确的有( )A.1个B.2个C.3个D.4个9. 设正方形ABCD 的边长为64,PA ⊥平面AC,若PA=12,则二面角P-BD-C 的大小为( ) A.3π B.4π C.2π D.32π (二)填空题:10. 已知二面角是60º,在它的部有一点到这个二面角的两个半平面的垂线段长都是a,则两个垂足间的距离是 .11. 在二面角的一个面有一个已知点A,它到棱的距离是它到另一个面的距离的2倍,则这个二面角的度数是 .12. 有如下几个命题:①平面α与平面β垂直的充分必要条件是α有一条直线与β垂直; ②平面α与平面β平行的一个必要而不充分的条件是α有无数条直线与β平行;③直线a 与平面β平行的一个充分而不必要的条件是β有一条直线与直线a 平行. 其中正确命题的序号是 .13. 设m 、λ为直线,α、β为平面,给出下列命题: ①λ垂直于α的两条相交直线,则λ⊥α;②若m ∥α,则m 平行于α的所有直线;③若λ⊥α,α∥β,则λ⊥β;④若m ⊂α,λ⊂β,且λ⊥m ,则α⊥β;⑤若m ⊂α,λ⊂β,且α∥β,则m ∥λ.其中正确的命题是(只写序号) .14. 已知直线λ和平面α、β,给出三个论断:①λ⊥α,②λ∥β,③α⊥β,以其中的二个论断作为条件,余下的一个作为结论,写出你认为正确的一个命题 .15. α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断: ①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α,以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题: .16. 设X,Y,Z 是空间不同的直线或平面,对下面四种情形,使“X ⊥Z 且Y ⊥Z ⇒X ∥Y ”为真命题的是 .①X,Y,Z 是直线; ②X,Y 是直线,Z 是平面; ③X,Y 是平面,Z 是直线; ④X,Y,Z 是平面. 设两个平面α、β相交于m,且直线a ∥α,a ∥β则直线a 与m 的关系是 .17. 如图,直线AC 、DF 被三个平行平面α、β、γ所截,AC=15cm,DE=5cm,AB:BC=1:3,则AB 的长是 ,EF 的长是 .18. 二面角α-λ-β的度数为θ(0≤θ≤2π),在α面有△ABC, △ABC 在β的正射影为△A ´B ´C ´, △ABC 的面积为S,则△A ´B ´C ´的面积S ´= .(三)解答题:19. 已知一个二面角是60º,在它的部一点到这个二面角的两个半平面的距离都是3,求两个垂足间的距离.20. 已知:在60º二面角的棱上,有两个点A 、B ,AC 、BD 分别在这个二面角的两个面,且垂直于线段AB,且AB=4cm,AC=6cm,BD=8cm,求CD的长.翻折问题一、高考要求:掌握立体几何中图形翻折问题的解法.二、知识要点:解决翻折问题要求:①根据题意作出折叠前、后的图形; ②分析折叠前、后边、角及其之间的关系哪些发生变化,哪些未发生变化;③寻找解决问题的方法并正确解答问题.三、典型例题:例1:已知△ABC 中,AB=AC=2,且∠A=90º(如图(1)所示),以BC 边上的高AD 为折痕使∠BDC=90º.(如图(2)所示)①求∠BAC;②求点C 到平面ABD 的距离;③求平面ABD 与平面ABC 所成的二面角的正切值.例2:已知等腰梯形ABCD,AB ∥CD,上底=4,下底=6,高=3,沿它的对角线AC 折成60º的二面角,求B 、D 两点之间的距离.四、归纳小结:1.折叠前一般是平面图形,用平面几何知识解答即可,折叠后是立体图形,要用立体几何知识解答;2.未发生变化的量可在折叠前的图形中解答,发生变化的量在折叠后的图形中解答.五、基础知识训练:(一)选择题:1. 以等腰直角△ABC 斜边BC 上的高AD 为折痕,折叠时使二面角B-AD-C 为90º,此时∠BAC 为( )A.30ºB.45ºC.60ºD.90º2. 把边长为a 的正△ABC 沿高AD 折成60º的二面角,则点A 到BC 的距离是( )A.aB.a 26C.a 33D.a 4153. 已知边长为a 的菱形ABCD,∠A=60º,将菱形沿对角线BD 折成120º的二面角,则AC 的长为( ) A.a 22 B.a 23 C.a 23 D.a 2 (二)填空题:4. E 、F 分别是正方形ABCD 的边AB 和CD 的中点,EF 交BD 于O,以EF 为棱将正方形折成直二面角,则∠BOD= .5. 如图,ABCD 是正方形,E 是AB 的中点,如将△DAE 和△CBE 分别沿虚线DE 和CE 折起,使AE 与BE 重合,记A 与B 重合后的点为P,则面PCD 与面ECD 所成的二面角为 度.(三)解答题:6. 一个直角三角形的两条直角边各长a 与b,沿其斜边上的高h 折成直二面角,试求此时a 与b 两边夹角α的余弦.7. 把长宽各为4与3的长方形ABCD 沿对角线AC 折成直二面角,试求顶点B 与D 的距离.8. 已知等腰梯形ABCD,AB ∥CD,上底=4,下底=6,高=3,沿它的对角线AC 折成90º的二面角,求B 、D 两点之间的距离.空间图形性质的应用一、高考要求:掌握空间图形的性质在测量和实际问题中的应用.二、知识要点:1.空间图形的性质在测量中的应用;2.空间图形的性质在实际问题中的应用.三、典型例题:例1:如图,道路λ旁有一条河,对岸有一铁塔CD高a米,如果你手中只有测角器和皮尺(刻度米尺),不渡河能否测量出塔顶C与道路的距离.请说出你的测量方法,并求出该距离.例2:斜坡平面α与水平平面β相交于坡脚λ,且成30º的二面角,在平面α沿一条与λ垂直的小路上坡,每前进100米升高多少米?如果沿一条与坡脚λ成45º角的小路上坡,仍升高这么高,前进了多少米?四、归纳小结:空间图形的性质在测量和实际问题中的应用,重点在于理解题意,画好能正确表示题意的图形,并运用空间图形的性质解题.五、基础知识训练:(一)填空题:1.正方体的棱长为a,有一小虫,在正方体的表面上从顶点A爬到顶点C´,则小虫爬行的最短距离是 .2.在一长方体形的木块的面A1C1上,有一点P,过点P在平面A1C1画一条直线和CP垂直. (二)解答题:3.如图,所测物体BB´垂直于水平面α于点B´,底端B´不能到达.在α取一点A,测得∠BAB ´=θ1,引基线AC,使∠B´AC=θ2,在AC上取一点D,使BD⊥AC,又测得AD=a,求物体BB´的高度.。

相关文档
最新文档