圆锥曲线例题5
(完整版)圆锥曲线的综合经典例题(含答案解析)
经典例题精析类型一:求曲线的标准方程1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横坐标为的椭圆标准方程.思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量).解析:方法一:因为有焦点为,所以设椭圆方程为,,由,消去得,所以解得故椭圆标准方程为方法二:设椭圆方程,,,因为弦AB中点,所以,由得,(点差法)所以又故椭圆标准方程为.举一反三:【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直,且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程.【答案】依题意设椭圆标准方程为(),并有,解之得,,∴椭圆标准方程为2.根据下列条件,求双曲线的标准方程.(1)与双曲线有共同的渐近线,且过点;(2)与双曲线有公共焦点,且过点解析:(1)解法一:设双曲线的方程为由题意,得,解得,所以双曲线的方程为解法二:设所求双曲线方程为(),将点代入得,所以双曲线方程为即(2)解法一:设双曲线方程为-=1由题意易求又双曲线过点,∴又∵,∴,故所求双曲线的方程为.解法二:设双曲线方程为,将点代入得,所以双曲线方程为.总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程.(1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及准线)之间的关系,并注意方程思想的应用.(2)若已知双曲线的渐近线方程,可设双曲线方程为().举一反三:【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.(1)一渐近线方程为,且双曲线过点.(2)虚轴长与实轴长的比为,焦距为10.【答案】(1)依题意知双曲线两渐近线的方程是,故设双曲线方程为,∵点在双曲线上,∴,解得,∴所求双曲线方程为.(2)由已知设, ,则()依题意,解得.∴双曲线方程为或.3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点;(2)焦点在直线:上思路点拨:从方程形式看,求抛物线的标准方程仅需确定一次项系数;从实际分析,一般需结合图形确定开口方向和一次项系数两个条件,否则,应展开相应的讨论解析:(1)∵点在第二象限,∴抛物线开口方向上或者向左当抛物线开口方向左时,设所求的抛物线方程为(),∵过点,∴,∴,∴,当抛物线开口方向上时,设所求的抛物线方程为(),∵过点,∴,∴,∴,∴所求的抛物线的方程为或,对应的准线方程分别是,.(2)令得,令得,∴抛物线的焦点为或当焦点为时,,∴,此时抛物线方程;焦点为时,,∴,此时抛物线方程为∴所求的抛物线的方程为或,对应的准线方程分别是,.总结升华:这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.求抛物线的标准方程关键是根据图象确定抛物线开口方向,选择适当的方程形式,准确求出焦参数P.举一反三:【变式1】分别求满足下列条件的抛物线的标准方程.(1)焦点为F(4,0);(2)准线为;(3)焦点到原点的距离为1;(4)过点(1,-2);(5)焦点在直线x-3y+6=0上.【答案】(1)所求抛物线的方程为y2=16x;(2)所求抛物线的标准方程为x2=2y;(3)所求抛物线的方程y2=±4x或x2=±4y;(4)所求抛物线的方程为或;(5)所求抛物线的标准方程为y2=-24x或x2=8y.【变式2】已知抛物线的顶点在原点,焦点在轴负半轴上,过顶点且倾角为的弦长为,求抛物线的方程.【答案】设抛物线方程为(),又弦所在直线方程为由,解得两交点坐标,∴,解得.∴抛物线方程为.类型二:圆锥曲线的焦点三角形4.已知、是椭圆()的两焦点,P是椭圆上一点,且,求的面积.思路点拨:如图求的面积应利用,即.关键是求.由椭圆第一定义有,由余弦定理有,易求之.解析:设,,依题意有(1)2-(2)得,即.∴.举一反三:【变式1】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B.C.D.【答案】依据双曲线的定义有,由得、,又,则,即,所以,故选A.【变式2】已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【答案】:由双曲线的定义有: ,,两式左、右分别相加得(.即∴.故的周长.【变式3】已知椭圆的焦点是,直线是椭圆的一条准线.①求椭圆的方程;②设点P在椭圆上,且,求.【答案】① .②设则,又.【变式4】已知双曲线的方程是.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设和是双曲线的左、右焦点,点在双曲线上,且,求的大小【答案】(1)由得,∴,,.焦点、,离心率,渐近线方程为.(2),∴∴【变式5】中心在原点,焦点在x轴上的一个椭圆与双曲线有共同焦点和,且,又椭圆长半轴与双曲线实半轴之差为4,离心率之比.(1)求椭圆与双曲线的方程;(2)若为这两曲线的一个交点,求的余弦值.【答案】(1)设椭圆方程为(),双曲线方程,则,解得∵,∴, .故所求椭圆方程为,双曲线方程为.(2)由对称性不妨设交点在第一象限.设、.由椭圆、双曲线的定义有:解得由余弦定理有.类型三:离心率5.已知椭圆上的点和左焦点,椭圆的右顶点和上顶点,当,(O为椭圆中心)时,求椭圆的离心率.思路点拨:因为,所以本题应建立、的齐次方程,使问题得以解决.解析:设椭圆方程为(),,,则,即.∵,∴,即,∴.又∵,∴.总结升华:求椭圆的离心率,即求的比值,则可由如下方法求.(1)可直接求出、;(2)在不好直接求出、的情况下,找到一个关于、的齐次等式或、用同一个量表示;(3)若求的取值范围,则想办法找不等关系.举一反三:【变式1】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A.B.C.D.【答案】连接,则是直角三角形,且,令,则,,即,,所以,故选D.【变式2】已知椭圆()与x轴正半轴交于A点,与y轴正半轴交于B点,F点是左焦点,且,求椭圆的离心率.法一:,,∵, ∴,又,,代入上式,得,利用代入,消得,即由,解得,∵,∴.法二:在ΔABF中,∵,,∴,即下略)【变式3】如图,椭圆的中心在原点, 焦点在x轴上, 过其右焦点F作斜率为1的直线, 交椭圆于A、B两点, 若椭圆上存在一点C, 使. 求椭圆的离心率.【答案】设椭圆的方程为(),焦距为,则直线l的方程为:,由,消去得,设点、,则∵+, ∴C点坐标为.∵C点在椭圆上,∴.∴∴又∴∴【变式4】设、为椭圆的两个焦点,点是以为直径的圆与椭圆的交点,若,则椭圆离心率为_____.【答案】如图,点满足,且.在中,有:∵,∴,令此椭圆方程为则由椭圆的定义有,,∴又∵,∴,,∴∴,∴,即.6.已知、为椭圆的两个焦点,为此椭圆上一点,且.求此椭圆离心率的取值范围;解析:如图,令, ,,则在中,由正弦定理,∴,令此椭圆方程为(),则,,∴即(),∴, ∴,∵,且为三角形内角,∴,∴,∴, ∴.即此椭圆离心率的取值范围为.举一反三:【变式1】已知椭圆,F1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围.【答案】△F1PF2中,已知,|F1F2|=2c,|PF1|+|PF2|=2a,由余弦定理:4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos120°①又|PF1|+|PF2|=2a ②联立①②得4c2=4a2-|PF1||PF2|,∴【变式2】椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是()A.B.C.D.【答案】由得,即,解得,故离心率.所以选D.【变式3】椭圆中心在坐标系原点,焦点在x轴上,过椭圆左焦点F的直线交椭圆P、Q两点,且OP⊥OQ,求其离心率e的取值范围.【答案】e∈[,1)【变式4】双曲线(a>1,b>0)的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和s≥c.求双曲线的离心率e的取值范围.【答案】直线的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线的距离.同理得到点(-1,0)到直线的距离.=.由s≥c,得≥c,即5a≥2c2.于是得5≥2e2.即4e4-25e2+25≤0.解不等式,得≤e2≤5.由于e>1,所以e的取值范围是.类型五:轨迹方程7.已知中,,,为动点,若、边上两中线长的和为定值15.求动点的轨迹方程.思路点拨:充分利用定义直接写出方程是求轨迹的直接法之一.应给以重视解法一:设动点,且,则、边上两中点、的坐标分别为,.∵,∴,即.从上式知,动点到两定点,的距离之和为常数30,故动点的轨迹是以,为焦点且,,的椭圆,挖去点.∴动点的轨迹方程是().解法二:设的重心,,动点,且,则.∴点的轨迹是以,为焦点的椭圆(挖去点),且,,.其方程为().又, 代入上式,得()为所求.总结升华:求动点的轨迹,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,建立等式,利用直接法或间接法得到轨迹方程.举一反三:【变式1】求过定点且和圆:相切的动圆圆心的轨迹方程.【答案】设动圆圆心, 动圆半径为,.(1)动圆与圆外切时,,(2)动圆与圆内切时,,由(1)、(2)有.∴动圆圆心M的轨迹是以、为焦点的双曲线,且,,.故动圆圆心的轨迹方程为.【变式3】已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程.【答案】设动圆圆心P(x,y),动圆的半径为R,由两圆外切的条件可得:,.∴.∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,其中c=4,a=2,∴b2=12,故所求轨迹方程为.【变式4】若动圆与圆:相外切,且与直线:相切,求动圆圆心的轨迹方程.法一:设,动圆半径,动圆与直线切于点,点.依题意点在直线的左侧,故∵,∴.化简得, 即为所求.法二:设,作直线:.过作于,交于,依题意有, ∴,由抛物线定义可知,点的轨迹是以为顶点,为焦点,:为准线的抛物线.故为所求.。
圆锥曲线_经典例题
(1)中点弦问题:(上题麻烦了。
是圆不用中点法)(2)轨迹以及弦长最大问题。
(3)利用通径最断解题(4)利用第二定义求离心率?我在楼上说的方法不很好,有焦点弦和准线了,当然要想第二定义过P做PD垂直准线于D,那么可得,PF/PD=e,PD/PM=1/2所以PF/e=1/2PM,又PF/PM=sin60/sin45=根3/根2,所以最终可得离心率为根6 ?????????和楼上算的怎么不一样?(5)抛物线的一证明,过抛物线焦点F 的直线交抛物线于A,B 两点,通过点A 和抛物线的顶点的直线与抛物线的准线交于点D,求证:直线DB 平行于抛物线的对称轴.我没搞懂为什么必须用平几?为什么学解析几何,就是想把我们从烦琐的平几中解放出来,前人开创这个来干吗的呀?建系我就不说了,看图加解答。
令22y px=,1122(,),(,)A x y B x y ,:()2p A B y k x =-连立两方程消x 可得212y y p =-,其实这是一个结论又令0(,)2p D y -,则01101122y y y p y p x x =⇒=--,又2112y x p=,则有2021p y y y -==。
完(6)抛物线(7)很好的一题,圆锥曲线都实用这题的问题不在思路上,而是在计算上。
看我的。
这题做了你们可以自己再去做下05江西文21题。
练练。
第一问我不想说了就是重新高考的思路,算出椭圆方程为22340x y +-=(为哈要弄成这样?因为一般式对于一会直线联立不容易出错,我的习惯)开动了。
分析下意思,就是直线CP 与直线CQ 要关于C 点对称才行。
所以这题思路,令出两直线方程,都过C 点,斜率相反数,解出两点坐标,算出斜率为定。
解:若斜率不存在,CP ,CQ 重合,故两直线都有斜率,令:(1)11C P y k x kx k =-+=-+。
:(1)11C Q y k x kx k =--+=-++由222221(13)6(1)3610340y kx k k x k k x k k x y =-+⎧⇒+--+--=⎨+-=⎩,从这里就要解出P x 来。
圆锥曲线经典例题及总结(全面实用,你值得拥有)(K12教育文档)
圆锥曲线经典例题及总结(全面实用,你值得拥有)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(圆锥曲线经典例题及总结(全面实用,你值得拥有)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为圆锥曲线经典例题及总结(全面实用,你值得拥有)(word版可编辑修改)的全部内容。
圆锥曲线 1。
圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a一定要小于|F 1F 2|,定义中的“绝对值"与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A,B ,C 同号,A ≠B)。
(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
圆锥曲线求最值方法总结及典型例题
圆锥曲线最值问题—5大方面最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。
解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。
以下从五个方面予以阐述。
一.求距离的最值例1.设AB 为抛物线y=x 2的一条弦,若AB=4,则AB 的中点M 到直线y+1=0的最短距离为 , 解析:抛物线y=x 2的焦点为F (0 ,41),准线为y=41-,过A 、B 、M 准线y=41-的垂线,垂足分别是A 1、B 1、M 1, 则所求的距离d=MM 1+43=21(AA 1+BB 1) +43=21(AF+BF) +43≥21AB+43=21×4+43=411, 当且仅当弦AB 过焦点F 时,d 取最小值411, 评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得心应手。
二.求角的最值例2.M ,N 分别是椭圆12422=+y x 的左、右焦点,l 是椭圆的一条准线,点P 在l 上,则∠MPN 的最大值是 .解析:不妨设l 为椭圆的右准线,其方程是22=x ,点)0)(,22(00>y y P ,直线PM 和PN 倾斜角分别为βα和.∵)0,2(),0,2(N M -∴,232220tan 00y y k PM =+-==α22220tan 00y y k PN =--==β于是)tan(tan αβ-=∠MPN 2321232tan tan 1tan tan 0000y y y y ⋅+-=+-=αβαβ 33622262262200200=≤+=+=y y y y ∵)2,0[π∈∠MPN ∴6π≤∠MPN 即∠MPN 的最大值为6π. 评注:审题时要注意把握∠MPN 与PM 和PN 的倾斜角之间的内在联系.三、求几何特征量代数和的最值例3.点M 和F 分别是椭圆192522=+y x 上的动点和右焦点,定点B(2,2).⑴求|MF|+|MB|的最小值. ⑵求45|MF|+|MB|的最小值. 解析:易知椭圆右焦点为F(4,0),左焦点F ′(-4,0),离心率e=54,准线方程x=±425. ⑴|MF| + |MB| = 10―|MF ′ | + |MB| =10―(|MF ′|―|MB|)≥10―|F ′B|=10―210.故当M ,B ,F ′三点共线时,|MF|+|MB|取最小值10―210.⑵过动点M 作右准线x=425的垂线,垂足为H , 则54||||==e MH MF ⇒||54|H |MF M =. 于是45|MF|+|MB|=|MH|+|MB|≥|HB|=417. 可见,当且仅当点B 、M 、H 共线时,45|MF|+|MB|取最小值417. 评注:从椭圆的定义出发,将问题转化为平几中的问题,利用三角形三边所满足的基本关系,是解决此类问题的常见思路。
圆锥曲线的基础训练题
圆锥曲线典型例题一.求标准方程1.讨论192522=−+−ky k x 表示何种圆锥曲线,它们有何共同特征.2.求适合条件的椭圆的标准方程:(1)长轴长是短轴长的2倍,且过点()62−,;(2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.3.根据下列条件,求双曲线的标准方程.(1)过点⎟⎠⎞⎜⎝⎛4153,P ,⎟⎠⎞⎜⎝⎛−5316,Q 且焦点在坐标轴上.(2)6=c ,经过点(-5,2),焦点在x 轴上.(3)与双曲线141622=−y x 有相同焦点,且经过点()223,(4)过点)2,3(−P ,离心率25=e .(5)1F 、2F 是双曲线的左、右焦点,P 是双曲线上一点,且°=∠6021PF F ,31221=∆F PF S ,离心率为2.(6)双曲线的渐近线方程为023=±y x ,两条准线间的距离为131316。
4.(1)求与双曲线191622=−y x 共渐近线且过()332−,A 点的双曲线方程及离心率.(2)求以曲线0104222=−−+x y x 和222−=x y 的交点与原点的连线为渐近线,且实轴长为12的双曲线的标准方程.(3)中心在原点,一个焦点为()01,F 的双曲线,其实轴长与虚轴长之比为m ,求双曲线标准方程.二.求离心率说明:求离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.1.一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.2.已知椭圆19822=++y k x 的离心率21=e ,求k 的值.3.已知双曲线的渐近线方程是043=+y x ,043=−y x ,求双曲线的离心率.4.设双曲线12222=−by a x )0(b a <<的半焦距为c ,直线l 过)0,(a 、),0(b 两点,且原点到直线l 的距离为c 43,求双曲线的离心率.三.求值问题1.已知双曲线116922=−y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠.2.已知1F 、2F 是双曲线1422=−y x 的两个焦点,点P 在双曲线上且满足�9021=∠PF F ,求21PF F ∆的面积.3.若椭圆122=+n y m x )0(>>n m 和双曲线122=−ty s x )0,(>t s 有相同的焦点1F 和2F ,而P 是这两条曲线的一个交点,则21PF PF ⋅的值是.4.过抛物线()022>=p px y 的焦点作倾斜角为的直线,设交抛物线于A 、B 两点,求AB 。
圆锥曲线的七种常考题型详解【高考必备】
圆锥曲线的七种常考题型详解【高考必备】圆锥曲线的七种常见题型题型一:定义的应用圆锥曲线的定义包括椭圆、双曲线和抛物线。
在定义的应用中,可以寻找符合条件的等量关系,进行等价转换和数形结合。
适用条件需要注意。
例1:动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x-1)+y=4外切,求圆心M的轨迹方程。
例2:方程表示的曲线是什么?题型二:圆锥曲线焦点位置的判断在判断圆锥曲线焦点位置时,需要将方程化成标准方程,然后判断。
对于椭圆,焦点在分母大的坐标轴上;对于双曲线,焦点在系数为正的坐标轴上;对于抛物线,焦点在一次项的坐标轴上,一次项的符号决定开口方向。
例1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是什么?例2:当k为何值时,方程是椭圆或双曲线?题型三:圆锥曲线焦点三角形问题在圆锥曲线中,可以利用定义和正弦、余弦定理求解焦点三角形问题。
PF,PF2=n,m+n,m-n,mn,m+n四者的关系在圆锥曲线中有应用。
例1:椭圆上一点P与两个焦点F1,F2的张角为α,求△F1PF2的面积。
例2:已知双曲线的离心率为2,F1、F2是左右焦点,P 为双曲线上一点,且∠F1PF2=60,求该双曲线的标准方程。
题型四:圆锥曲线中离心率、渐近线的求法在圆锥曲线中,可以利用a、b、c三者的相等或不等关系式,求解离心率和渐近线的值、最值或范围。
在解题时需要注重数形结合思想和不等式解法。
例1:已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是多少?例2:双曲线的两个焦点为F1、F2,渐近线的斜率为±1/2,求双曲线的标准方程。
题型五:圆锥曲线的参数方程在圆锥曲线的参数方程中,需要注意参数的取值范围,可以通过消元或代数运算求解。
例1:求椭圆x^2/4+y^2/9=1的参数方程。
例2:求双曲线x^2/9-y^2/4=1的参数方程。
题型六:圆锥曲线的对称性圆锥曲线具有对称性,可以通过对称性求解问题。
圆锥曲线大题20道(含答案)
1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且 ① 设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得 .1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=由得所以⎪⎩⎪⎨⎧=-=.)1(00a y ea x λλ 因为点M 在椭圆上,所以 ,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1|1|0)(|||21221c eec e a c e d PF =+=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是 即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形.[来源:Z,xx,]3.设R y x ∈,,j i、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a )3( ,)3(-+=++=,且4=+b a.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长.[来源学+科+网][启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由y y x x +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •=0,求直线PQ 的方程;(3)设AP =λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且3,3OF FP t OM OP j ⋅==+ .(I )设443,t OF FP θ<<求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2OP c t c OF 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-,0MA AP ⋅=. (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8. 已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
人教新课标版(A)高二选修1-1 第二章圆锥曲线与方程综合例题
人教新课标版(A )高二选修1-1 第二章 圆锥曲线与方程综合例题例1. 设圆()25y 1x 22=++的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任意一点,AQ 的垂直平分线与直线CQ 交于M ,求M 点的轨迹方程。
分析:由M 在AQ 的中垂线上,知|MA ||MQ |=,于是发现CQ ||MQ ||MC ||MA ||MC |=+=+|=5,又C 、Q 为定点,可知轨迹为椭圆。
解:∵M 是AQ 的中垂线上的点, ∴|MA ||MQ |=,∴5|CQ ||MQ ||MC ||MA ||MC |==+=+。
∴点M 的轨迹是以C (-1,0),A (1,0)为焦点,以5为长轴长的椭圆。
∴5a 2=,2c 2=,25a =,1c =,4211425b 2=-=。
∴M 点的轨迹方程是121y 425x 422=+。
点拨:利用平面几何知识寻求轨迹的几何特征,再根据椭圆的定义求得轨迹方程,几何法、定义法都是求轨迹的重要方法。
例2. 如图,直线1l 和2l 相交于点M ,21l l ⊥,点1l N ∈,以A 、B 为端点的曲线段C 上的任一点到2l 的距离与到点N 的距离相等,若△AMN 为锐角三角形,|AM|=17,|AN|=3,|BN|=6,建立适当的坐标系,求曲线段C 的方程。
分析:根据曲线C 上的任一点到2l 的距离与到点N 的距离相等可知,该曲线段C 是在某条抛物线上的,以1l 为x 轴,MN 的中点O 为原点建立如图所示的坐标系,据题意可知,点N 是该抛物线的焦点,2l 是准线,所以可令抛物线方程为()0p px 2y 2>=。
解:设A (A x ,A y )、B (B x ,B y ),且B A x x <,B A y y 0<<。
∵点M ⎪⎭⎫ ⎝⎛-0,2p ,点N ⎪⎭⎫ ⎝⎛0,2p ,又17|AM |=,3|AN |=。
∴⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛+9y 2p x ,17y 2p x 2A 2A 2A 2A ,得p 4x A =,又A 2A px 2y =,∴8p4p 2y 2A =⋅=, ∴1782p p 42=+⎪⎪⎭⎫ ⎝⎛+, 解得⎩⎨⎧==2x ,2p A ,或⎩⎨⎧==1x 4p A。
圆锥曲线定值例题(含详细答案)
(1 )求椭圆 C的方程; ⃗ ⃗ (2 )若点 P Q是定直线 x =4上的两个动点,且 F ⋅ , P F Q=0 1 2 证明以 P Q为直径的圆过定点,并求定点的坐标.
第3 页(共 3页) Q Q群 5 5 7 6 1 9 2 4 6
欢迎关注微信公众号(Q Q群):兰老师高中数学研究会 5 5 7 6 1 9 2 4 6
第1 0 页(共 1 0页) Q Q群 5 5 7 6 1 9 2 4 6
2
2
欢迎关注微信公众号(Q Q群):兰老师高中数学研究会 5 5 7 6 1 9 2 4 6
第2 页(共 2页) Q Q群 5 5 7 6 1 9 2 4 6
欢迎关注微信公众号(Q Q群):兰老师高中数学研究会 5 5 7 6 1 9 2 4 6
x y ( ) 5 . 已知椭圆 C : 2 + 2 =1 经过点 1 a > b > 0 ,6,且离心率等于 2 a b 2 . 2 (1 )求椭圆 C的方程; ( ) 2 , 0 (2 )过点 P 作直线 P A ,P B交椭圆于 A ,B两点,且满足 P A⊥ P B ,试判断直线 A B是否过定点,若过定点求出点 坐标,若不过定点请说明理由.
(1 )求抛物线 C的标准方程; ( ) ( ) n , 2 n , 2 (2 )已知点 P 为抛物线 C上的点,过 P 作倾斜角互 补的两直线 P S ,P T ,分别交抛物线 C于 S ,T ,求证:直线 S T的斜率为定值,并求出这个定值.
( ) 2 , 0 1 6 . 已知抛物线 C的顶点在坐标原点,焦点在 x 轴上,P 为定 点. (1 )若点 P为抛物线的焦点,求抛物线 C的方程; (2 )若动圆 M 过点 P ,且圆心 M 在抛物线 C上运动,点 A , B是圆 M 与 y 轴的两交点,试判断是否存在一条抛物线 C , B ∣ 为定值.若存在,求这个定值;若不存在,请说 使 ∣A 明理由.
圆锥曲线专题(定点、定值问题)
圆锥曲线专题——定点、定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型【例题】已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。
圆锥曲线之定值定点问题 经典例题+题型归纳+解析
又
y1
−
y2
=
k(x1
+
x2
−
4)
=−
8k 1 + 4k2
,
所以直线
PQ
பைடு நூலகம்的斜率
kPQ
=
y1−y2 x1 − x2
=
1 2
,所以直线
PQ
的斜率为定值
,该值为
21 .
方法二 设直线 PQ 的方程为 y = kx + b,
点
P(x1,y1),Q(x2,y2)
则
y1
=
kx1
+
b,y2
=
kx2
+
b,所以
kPA
二、例题精讲
题型一: 斜率为定值
例1.
已知椭圆
C
: xa22
+
y2 b2
=
1(a
>
b
>
0)
的离心率为
3 2
,且过点
A(2,1).若
P
,Q
是椭圆
C
上的两个动
点,且使 ∠PAQ 的角平分线总垂直于 x 轴,试判断直线 PQ 的斜率是否为定值?若是,求出该值;若
不是,请说明理由.
【解析】方法一 :因为椭圆
由
y = kx +
x2 8
+
y2 2
b =
1
得(1
+
4k2)x2
+
8kbx
+
4b2
−
8
=
0
②则
x1
+
x2
=−
8kb 1 + 4k2
高考数学解答题(新高考)圆锥曲线中的轨迹方程问题 (典型例题+题型归类练)(解析版)
专题01 圆锥曲线中的轨迹方程问题(典型例题+题型归类练)目录类型一:定义法求轨迹方程类型二:直接法类型三:代入法(相关点法)类型四:点差法一、必备秘籍1、曲线方程的定义一般地,如果曲线C 与方程(,)0F x y =之间有以下两个关系: ①曲线C 上的点的坐标都是方程(,)0F x y =的解; ②以方程(,)0F x y =的解为坐标的点都是曲线C 上的点.此时,把方程(,)0F x y =叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线. 2、求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略); (2)设曲线上任意一点的坐标为),(y x ; (3)根据曲线上点所适合的条件写出等式; (4)用坐标表示这个等式,并化简; (5)确定化简后的式子中点的范围.上述五个步骤可简记为:求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围. 3、求轨迹方程的方法: 3.1定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
3.2直接法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(,)x y 表示该等量关系式,即可得到轨迹方程。
3.3代入法(相关点法):如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线y x 、例题5.(2022·湖北武汉·模拟预测)已知P 是平面上的动点,且点P 与(2,0),(2,0)F F -的距离之差的的直线分别与x 轴的正半轴和y 为坐标原点.若2BP PA =,且1OQ AB ⋅=,则点,则0,0a b >>,(,BP x y ∴=,(PA a =-2BP PA =,a ∴又(),AB a b =-=,(,OQ x =-,1OQ AB ⋅=,()332x x ⎛⎫∴-⋅-+ ⎪⎝⎭)2230,0x y y +=>.故答案为:)2302x y +>.例题2.(2022·全国·高二课时练习)已知定点()0,4A ,满足12NR NM =,又12NR NM =,可得例题5.(2022·全国·高二课时练习)已知两个定点AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹【答案】(1)24y x =设(),P x y ,()AP x =+,()1,0OB =,(1PB =-,(AP OB x ⋅=+()221x B y P =-+,因为AP OB PB ⋅=,则)221x x y +=-+,所以222121x x x x ++=-+,即24y x =.例题6.(2022·四川·富顺第二中学校高二阶段练习(文))已知直线线l 垂直于轴,动点在直线l 上,且OP OQ ⊥,记点的轨迹为C ,设点P 的坐标为(),x y ,则(Q x OP OQ ⊥,∴0OP OQ ⋅= 220x y -=,0x =时,P 、O 、Q 三点共线,不符合题意,故曲线C 的方程为(22x y x =≠ 412NR NM =;AP OB PB ⋅=;OP OQ ⊥等,根据这些已知条件直接转化为代数式求解.类型三:代入法(相关点法)21y =上运动时,连接A 与定点故答案为:()()22211x y -+-=,)()0,+∞.()22,x y ,(1221y y k-=)221212y y +=圆a=,24∴动圆圆心6.(2022·和2,动圆【答案】动圆O O=,大圆O的半径为5.过动点P分别作7.(2022·全国·高二课时练习)如图,圆O与圆O内切,且4【答案】圆心为(6,0),半径为3的圆.【详解】如图,以O O所在直线为x轴,以O O的中点为原点,设动点(,)P x y ,(,0)Q t (01)t ≤≤, 高二专题练习)在ABC 中,2BC y x =⨯+足,且33QM QP =. 求动点M 的轨迹Γ的方程;【答案】(1)221x y +=;0,),(,)y M x y ,则Q ,所以0(,0),(,QP x QM x y ==,由33QM QP =得x y ⎧=⎪⎨⎪⎩,即()22313x y +=,故动点的轨迹Γ的方程为x【答案】点M的轨迹方程为:x2+y2=a2(a>0).表示圆心在原点半径为a的圆.M x y,若A、B不与原点重合时,则AOB是直角三角形,且∠O为直角,设线段AB的中点(,)为半径的圆,。
圆锥曲线方程经典例题讲解
经典例题讲解经典例题讲解[例1] 已知α∈[0,π),试讨论当α的值变化时,方程x 2sin α+y 2cos α=1表示曲线的形状. 【解】(1)当α=0时,方程为y 2=1,即y =±=±1,1,表示两条平行于x 轴的直线. (2)当α∈(0,4p )时,cos α>sin α>0,方程可化为a a cos 1sin 122yx +=1,表示焦点在x 轴上的椭圆. (3)当α=4p 时,方程为x 2+y 2=2,表示圆心在原点,半径为42的圆. (4)当α∈(2,4pp )时,sin α>cos α>0,方程x 2sin α+y 2cos α=1表示焦点在y 轴上的椭圆. (5)当α=2p时,方程化为x 2=1,表示两条平行于y 轴的直线. (6)当α∈(2p,π)时,sin α>0,cos α<0,方程x 2sin α+y 2cos α=1表示焦点在x 轴上的双曲线. 【点评】方程x 2sin α+y 2cos α=1表示的曲线的类型由sin α和cos α的值确定,sin α和cos α的值又由α的值确定.α在不同范围内取值时,方程x 2sin α+y 2cos α=1表示的曲线的类型不同.因此解答本例的关键之处在于对α的分类讨论. [例2]已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,一条渐近线方程为y=x ,且过点(4,-10). (1)求双曲线方程;)求双曲线方程;(2)若点M (3,m )在此双曲线上,求1MF ·2MF ;(3)求ΔF 1MF 2的面积. 【解】(1)由题意知,双曲线的方程是标准方程. ∵双曲线的一条渐近线方程为y=x ,∴设双曲线方程为x 2-y 2=λ.把点(4,-10)代入双曲线方程得42-(-10)2=λ,λ=6.∴所求双曲线方程为x 2-y 2=6. (2)由(1)知双曲线方程为x 2-y 2=6,∴双曲线的焦点为F 1(-23,0)、F 2(23,0). ∵M 点在双曲线上,∴32-m 2=6,m 2=3. ∴1MF ·2MF =(-23-3,-m)·-3,-m)·(2(23-3,-m)=(-3)2-(23)2+m 2=-3+3=0. (3)∵1MF ·2MF =0,∴MF 1⊥MF 2.∴ΔF 1MF 2为直角三角形. ∵|1MF |=22)()332(m -+--=31224+,|2MF |=22)()332(m -+-=31224-∴21MF F S D =21|1MF |·|·||2MF |=2131224+·31224-=6. 【点评】本例(1)的解法中利用了“如果双曲线的渐近线为y=±ab x 时,那么双曲线的方程可设为2222by a x -=λ(λ≠0)”这一结论. [例3] 过抛物线的焦点F 作不垂直于对称轴的直线交抛物线于A 、B 两点,线段AB 的垂直平分线交对称轴于N ,求证:|AB |=2|NF |. 【证明】设抛物线方程为y 2=2px (p >0),A (x 1,y 1),B (x 2,y 2),AB 的中点为的中点为M (x 0,y 0).则y 12=2px 1,y 22=2px 2. 两式相减并整理得2121212y y p x x y y +=--. ∵M 是AB 的中点,的中点,∴00212122y p y p x x y y ==--. ∵MN ⊥AB ,∴k MN =-py 0. ∴直线MN 的方程为y -y 0=-p y 0 (x -x 0), 令y =0得N 点的横坐标x N =x 0+p . ∴22||0p x p x NF N +=-=. 又|AB |=|AF |+|BF |=x 1+x 2+p =2(x 0+2p ). ∴|AB |=2|NF |. 【点评】当A 、B 两点都在曲线上时,求直线AB 的斜率,可把A 、B 两点的坐标代入曲线的方程并把得到的两式相减. [例4] 已知中心在原点,一焦点为F (0,50)的椭圆被直线l :y =3x -2截得的弦的中点的横坐标为21,求椭圆的方程. 【解】∵椭圆的中心在原点,焦点在y 轴上,轴上,∴椭圆的方程为标准方程. ∵c =50,∴a 2=b 2+50. 图8—13 ∴椭圆的方程可写成222250bx b y ++=1. 把直线y =3x -2代入椭圆的方程并整理得代入椭圆的方程并整理得10(b 2+5)x 2-12b 2x -b 4-46b 2=0, ∴x 1+x 2=)5(101222+b b ,∵弦的中点的横坐标为21 ∴)5(101222+b b =1,b 2=25. ∴a 2=75. ∴所求椭圆的方程为257522x y +=1. 【点评】解决直线被圆锥曲线截得的弦的中点问题,经常用到韦达定理. [例5] 如图8—14,直线l 1和l 2相交于点M ,l 1⊥l 2,点N ∈l 1以A 、B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM |=17,|AN |=3,且|BN |=6.建立适当的坐标系,求曲线段C 的方程. 【解法一】以l 1为x 轴,MN 的中点O 为原点建立如图的平面坐标系.由题意可知,曲线段C 所在的抛物线在直角坐标系中的位置是标准的,并且点N 是该抛物线的焦点,l 2是准线所以可令抛物线的方程为y 2=2px (p >0).过点A 作AQ ⊥l 2,AE ⊥l 1,垂足分别为Q 和E ,由于△AMN 是锐角三角形,则点E 必在线段MN 上.所以,|AQ |=|AN |=3,∵|AM |=17, ∴|QM |=22||||22=-AQ AM , |AE |=|QM |=22,|EN |=22||||AE AN -=1. ∴p =|MN |=|ME |+|EN |=|AQ |+|EN |=4. ∴抛物线方程为y 2=8x . 由上述可知|OE |=1,点B 到准线l 2的距离为6,则点B 的横坐标为4,又曲线段在x 轴上方,故曲线段C 的方程为y 2=8x (1≤x ≤4,y >0). 【解法二】以l 1为x 轴,l 2为y 轴建立如图8—15的直角坐标系,其中M 点为原点,这时焦点N 在x 轴上,顶点O ′应是线段MN 的中点.令曲线段C 所在的抛物线方程为:物线方程为:y 2=2p (x -x o ′)(p >0). 设A ),22(121y p p y+, 图8—14 图8—15 (2-)22())211p p y 得(24p p +)=4. =22, =42. 2)(22≤≤42). ①②③。
圆锥曲线轨迹方程经典例题
轨迹方程经典例题一、轨迹为圆的例题:1、必修2课本P 124B 组2:长为2a 的线段的两个端点在 x 轴和y 轴上移动,求线段 AB 的中点M 的轨迹方程:1必修2课本P 124B 组:已知M 与两个定点(0,0),A ( 3,0 )的距离之比为 _ ,求点M 的轨迹方程;(一般地:必修 2课2本P i4启组2:已知点M(x , y )与两个定点 的距离之比为一个常数 m ;讨论点M(x ,y )的轨迹方程(分 m =i .为22,在y 轴上截得线段长为 2・..3。
( 1)求圆心的P 的轨迹方程;(2)若P 点到直线y = x 的距离为—,求圆P 的方程。
2如图所示,已知 R4 , 0)是圆x 2+y 2=36内的一点,A B 是圆上两动点,且满足/ APB 90°,求矩 形APBQ 勺顶点Q 的轨迹方程.解:设AB 的中点为R 坐标为(x ,y ),则在Rt △ ABP 中,|AR =| PR .又因为R 是弦AB 的中点, 依垂径定理:在 Rt △ OAF 中,| AR 2=|AQ 2—| OR 2=36— (x 2+y 2)又| AR =| PR = - (^4)2 y 2 所以有(x — 4)2+y 2=36 — (x 2+y 2),即x 2+y 2 — 4x — 10=0因此点R 在一个圆上,而当 R 在此圆上运动时,Q 点即在所求的轨迹上运 动.设 Qx , y ) , Rx 1,y 1),因为 R 是 PQ 的中点,所以X 1= _ , y 1= ―,代入方程 ^+y 2 — 4x — 10=0,得 2 2(宁)2 •(寸)2 -4 —10=0整理得:x 2+y 2=56,这就是所求的轨迹方程.在平面直角坐标系 xOy 中,点A(0,3),直线丨:y = 2x-4 •设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直 线y = x -1上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MA =2MQ ,求圆心C 的横坐标a 的取值范围.与2进行讨论)戈(2013陕西卷理20)已知动圆过定点 A (4,0),且在y 轴上截得弦 MN 的长为8. (1) 求动圆圆心的轨迹C 的方程;(2) 已知点B (_1,0),设不垂直于x 轴的直线|与轨迹C 交于不同的两点 P,Q ,若x 轴是.PBQ 的角平分线,证明直线l 过定点。
高中数学圆锥曲线问题常用方法经典例题(含问题详解)
专题:解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 标为 。
(word完整版)高中数学圆锥曲线基本知识与典型例题
高中数学圆锥曲线基本知识与典型例题第一部分: 椭圆1. 椭圆的概念在平面内与两定点F1.F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆. 这两个定点叫做椭圆的焦点, 两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a}, |F1F2|=2c, 其中a>0, c>0, 且a, c为常数:(1)若a>c, 则集合P为椭圆;(2)若a=c, 则集合P为线段;(3)若a<c, 则集合P为空集.2. 椭圆的标准方程和几何性质标准方程x2a2+y2b2=1 (a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a 对称性对称轴: 坐标轴对称中心: 原点顶点A1(-a,0), A2(a,0)B1(0, -b), B2(0, b)B1(0,-b),B2(0,b)A1(0, -a), A2(0, a)B1(-b,0), B2(b,0)B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a, b, c的关系c2=a2-b2典型例题例1.F1, F2是定点, 且|F1F2|=6, 动点M 满足|MF1|+|MF2|=6, 则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2.已知 的周长是16, , B .则动点的轨迹方程是.. )(A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(1251622≠=+y y x例3.若F(c, 0)是椭圆 的右焦点, F 与椭圆上点的距离的最大值为M, 最小值为m, 则椭圆上与F 点的距离等于 的点的坐标是.. )(A)(c, ) (C)(0, ±b) (D)不存在例4.设F1(-c ,0)、F2(c ,0)是椭圆 + =1(a>b>0)的两个焦点,P 是以F1F2为直径的圆与椭圆的一个交点,若∠PF1F2=5∠PF2F1,则椭圆的离心率为..)例5 P 点在椭圆 上, F1.F2是两个焦点, 若 , 则P 点的坐标是 .例6.写出满足下列条件的椭圆的标准方程:(1)长轴与短轴的和为18, 焦距为6; . (2)焦点坐标为 , ,并且经过点(2, 1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的31; ____. (4)离心率为 , 经过点(2, 0); .例7 是椭圆 的左、右焦点, 点 在椭圆上运动, 则 的最大值是 .第二部分: 双曲线1. 双曲线的概念平面内动点P 与两个定点F1.F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a (2a<2c), 则点P 的轨迹叫双曲线. 这两个定点叫双曲线的焦点, 两焦点间的距离叫焦距.集合P ={M|||MF1|-|MF2||=2a}, |F1F2|=2c, 其中a 、c 为常数且a>0, c>0: (1)当a<c 时, P 点的轨迹是双曲线; (2)当a =c 时, P 点的轨迹是两条射线; (3)当a>c 时, P 点不存在.2. 双曲线的标准方程和几何性质 标准方程- =1 (a>0, b>0)- =1(a>0, b>0)图形性 质范围x ≥a 或x ≤-a, y ∈Rx ∈R, y ≤-a 或y ≥a对称性对称轴: 坐标轴 对称中心: 原点顶点A1(-a,0), A2(a,0)A1(0, -a), A2(0, a)渐近线y =±b axy =±a bx离心率e = , e ∈(1, +∞), 其中c =实虚轴线段A1A2叫做双曲线的实轴, 它的长|A1A2|=2a ;线段B1B2叫做双曲线的虚轴, 它的长|B1B2|=2b ;a 叫做双曲线的半实轴长, b 叫做双曲线的半虚轴长a 、b 、c 的关系c2=a2+b2 (c>a>0, c>b>0)典型例题例8.命题甲: 动点P 到两定点A.B 的距离之差的绝对值等于2a(a>0);命题乙: 点P 的轨迹是双曲线。
高考圆锥曲线 经典例题
圆锥曲线题型1.圆锥曲线的弦长求法例1 过抛物线241x y -=的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,旦|AB|=8,求倾斜角α.例题2,(07湖北理科)在平面直角坐标系xOy 中,过定点C (0,p )作直线与抛物线x 2=2py (p>0)相交于A 、B 两点。
(Ⅰ)若点N 是点C 关于坐标原点O 的对称点,求△ANB 面积的最小值;(Ⅱ)是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由。
(此题不要求在答题卡上画图)2.直线与曲线的位置关系例题1、已知直线:1l y kx =+与椭圆22:14x y C m+=始终有交点,求m 的取值范围例4 已知曲线()12:221=-+a y x C 及1:22+=x y C 有公共点,求实数a 的取值范围.1、过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有( )条。
A .4B .3C .2D .1一、过一定点P 和抛物线只有一个公共点的直线的条数情况:(1)若定点P 在抛物线外,则过点P 和抛物线只有一个公共点的直线有3条:两条切线,一条和对称轴平行或重合的直线;(2)若定点P 在抛物线上,则过点P 和抛物线只有一个公共点的直线有2条:一条切线,一条和对称轴平行或重合的直线;(3)若定点P 在抛物线内,则过点P 和抛物线只有一个公共点的直线有1条:和抛物线的对称轴平行或重合的直线和抛物线只有一个交点。
二、过定点P 和双曲线只有一个公共点的直线的条数情况:(1)若定点P 在双曲线内,则过点P 和双曲线只有一个公共点的直线有2条:和双曲线的渐近线平行的直线和双曲线只有一个公共点;(2)若定点P 在双曲线上,则过点P 和双曲线只有一个公共点的直线有3条:一条切线,2条和渐近线平行的直线;(3)若定点P 在双曲线外且不在渐近线上,则过点P 和双曲线只有一个公共点的直线有4条:2条切线和2条和渐近线平行的直线;(4)若定点P 在双曲线外且在一条渐近线上,而不在另一条渐近线上,则过点P 和双曲线只有一个公共点的直线有2条:一条切线,一条和另一条渐近线平行的直线;(5)若定点P 在两条渐近线的交点上,即对称中心,过点P 和双曲线只有一个公共点的直线不存在。
齐次化解决圆锥曲线例题
齐次化解决圆锥曲线例题在高中数学中,圆锥曲线是一种非常重要的概念,它由平面和一个固定点和一条固定直线构成。
这个点被称为焦点,这条直线被准确地称作直线。
焦点和直线创建了圆锥曲线的特殊形状。
在因特网上搜索“圆锥曲线”的做法可能会让你觉得困惑,因为这个主题是较难的。
但如果您掌握了齐次化的技巧,那么解决圆锥曲线的例题将变得容易许多。
齐次化是将点(x,y)转换为三元组(x,y,1)的技术,三元组表示为点的齐次坐标,然后定义了某些运算符来处理齐次坐标,例如圆锥曲线的旋转和平移等运算。
齐次化的原理是齐次坐标可交换,也就是说,对于坐标为(x,y,z)的点和标量k,它乘以k或者将z值除以k得到的点表示的坐标相同,这个性质非常重要,因为它告诉我们如何在坐标系中移动点,无需考虑它们的实际值。
利用齐次化技术,可以用简单又精准的方式来解决圆锥曲线的问题,下面我们以一个例题为例来说明:例题:$ x^2-y^2+4x-6y+1=0 $(1)将方程齐次化;(2)给出圆锥曲线的中心的坐标和这个圆锥曲线的类型;(3)求出这个圆锥曲线的焦点和直线。
解答:(1)首先将方程移项,得到 $x^2+4x-y^2-6y=-1 .$然后将方程齐次化,变成 $(x^2+4x) - (y^2+6y) -1=0$.再次移组,得出 $(x+2)^2 - (y+3)^2 = 12$.(2)比较它与标准形式$(x-h)^2/(a^2) - (y-k)^2/(b^2) = 1$,可以得出其存在水平方向的真正轴,所以中心的横坐标为 $-2$ ,纵坐标为 $-3$ . 这个圆锥曲线的类型是双曲线,因为 $(x+2)^2 \gt\ (y+3)^2$.(3)现在求出圆锥曲线的焦点和直线. 双曲线将真正轴分为两部分,焦点在两个分支之间。
由于这个曲线的椭圆程度,我们需要使用双曲线的标准方程 $c^2 = a^2 + b^2$ 先找到 c ,并使用公式 $ |c/e| $找出焦距 f 或 e 之一.为了简化方程,将其重写以 $x^2/(a^2) -y^2/(b^2) = c^2$ 为形式:$(x+2)^2/6 - (y+3)^2/12 = 1 .$所以 a2 = 6, b2 = 12 。
圆锥曲线归纳10种解题法试卷
高中数学圆锥曲线解答题解法题型一:弦的垂直平分线问题 题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题 题型四:共线向量问题 题型五:面积问题题型六:弦或弦长为定值、最值问题 问题七:直线问题 问题八:轨迹问题 问题九:对称问题 问题十、存在性问题:(存在点,存在直线y=kx+m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
例题2、已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于题型二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b +=>>且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题例题4、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A 是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。
(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线x =PQ 的斜率。
题型四:共线向量问题1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E. I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足λ=,求λ的取值范围.2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率为5(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.类型1——求待定字母的值例1设双曲线C :)0(1222>=-a y ax 与直线L :x+y=1相交于两个不同的点A 、B ,直线L 与y 轴交于点P ,且5,12PA PB =求a 的值类型2——求动点的轨迹例2如图2 ,动直线1+=kx y 与y 轴交于点A ,与抛物32-=x y 交于不同的两点B 和C, 且满足BP=λPC , AB=λAC ,其中.R ∈λ。
圆锥曲线典型例题
圆锥曲线典型例题例1:已知一条直线l 和它上方的一个点F ,点F 到l 的距离是2,一条曲线也在l 的上方,它上面的每一点到F 的距离减去到l 的距离的差都是2,建立适当的坐标系,求这条曲线的方程.解:取直线l 为x 轴,过点F 且垂直于直线l 的直线为y 轴,建立坐标系xOy, 设点M(x,y)是曲线上任意一点,MB ⊥x 轴,垂足是B ,因为曲线在x 轴的上方,所以y >0, 所以曲线的方程是例2:已知线段AB 的端点B 的坐标是(4,3),端点A在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程。
解:设点M 的坐标是(x,y ),点A 的坐标是),(00y x 。
由于点B 的坐标是(4,3),且点M 是线段AB 的中点,所以,23,2400+=+=y y x x于是有.32,4200-=-=y y x x因为点A 在圆上,所以点A 的坐标满足方程4)1(22=++y x 即4)1(2020=++y x 1)23(234)32()142(2222=-+-=-++-∴y x y x )整理得(2MA MB ∴-=2y =218y x ∴=21(0)8y x x =≠所以,点M 的轨迹是以)23,23(为圆心,半径长是1的圆。
例3:在△ABC 中,BC =24,AC 、AB 的两条中线之和为39,求△ABC 的重心轨迹方程.解:以BC 所在直线为x 轴,BC 的中垂线为y 轴建立如图所示的平面直角坐标系,M 为重心,则|MB |+|MC |=32×39=26. 根据椭圆定义可知,点M 的轨迹是以B 、C 为焦点的椭圆,故所求椭圆方程为12516922=+y x (y ≠0)例4:已知F 1为椭圆的左焦点,A ,B 分别为椭圆的右顶点与上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,求椭圆的离心率解:设椭圆方程为12222=+by a x (a >b >0),22b a c -=, F 1(-c ,0),则点),(2a b c P -,由PO ∥AB 得k AB =k OP 即ac b a b 2-=-,∴b=c ,故22=e 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何例题例1、求与直线3x+4y+12=0平行,且与坐标轴构成的三角形面积是24的直线l 的方程。
分析:满足两个条件才能确定一条直线。
一般地,求直线方程有两个解法, 即用其中一个条件列出含待定系数的方程,再用另一个条件求出此参数。
解法一:先用“平行”这个条件设出l 的方程为3x+4y+m=0① 再用“面积”条件去求m ,∵直线l 交x 轴于)0,3(m A -,交y 轴于)4,0(m B -由244321=-⋅-⋅m m ,得24±=m ,代入①得所求直线的方程为:02443=±+y x 解法二:先用面积这个条件列出l 的方程,设l 在x 轴上截距离a ,在y 轴上截距b ,则有2421=ab ,因为l 的倾角为钝角,所以a 、b 同号,|ab|=ab , l 的截距式为148=+ay a x ,即48x+a 2y-48a=0②又该直线与3x+4y+2=0平行,∴24843482a a -≠=,∴8±=a 代入②得所求直线l 的方程为02443=±+y x 说明:与直线Ax+By+C=0平行的直线可写成Ax+By+C 1=0的形式; 与Ax+By+C=0垂直的直线的方程可表示为Bx-Ay+C 2=0的形式。
例2、若直线mx+y+2=0与线段AB 有交点,其中A(-2, 3),B(3,2), 求实数m 的取值范围。
解:直线mx+y+2=0过一定点C(0, -2),直线mx+y+2=0实际上表示的是过定点(0, -2)的直线系, 因为直线与线段AB 有交点,则直线只能落在∠ABC 的内部, 设BC 、CA 这两条直线的斜率分别为k 1、k 2,则由斜率的定义可知,直线mx+y+2=0的斜率k 应满足k ≥k 1或k ≤k 2, ∵A(-2, 3) B(3, 2) ∴25 3421-==k k∴-m ≥34或-m ≤25- 即m ≤34-或m ≥25说明:此例是典型的运用数形结合的思想来解题的问题, 这里要清楚直线mx+y+2=0的斜率-m 应为倾角的正切,而当倾角在(0°,90°)或(90°,180°)内,角的正切函数都是单调递增的, 因此当直线在∠ACB 内部变化时,k 应大于或等于k BC ,或者k 小于或等于k AC , 当A 、B 两点的坐标变化时,也要能求出m 的范围。
oxyABC(0,-2)例5、已知点T 是半圆O 的直径AB 上一点,AB=2、OT=t (0<t<1),以AB 为直腰作直角梯形B B A A '',使A A '垂直且等于AT ,使B B '垂直且等于BT , B A ''交半圆于P 、Q 两点,建立如图所示的直角坐标系.(1)写出直线B A ''的方程; (2)计算出点P 、Q 的坐标;(3)证明:由点P 发出的光线,经AB 反射后,反射光线通过点Q.解: (1 ) 显然()t A -1,1', (),,‘t B +-11 于是 直线B A ''的方程为1+-=tx y ;(2)由方程组⎩⎨⎧+-==+,1,122tx y y x 解出 ),(10P 、),(2221112t t t t Q +-+; (3)tt k PT1001-=--=, t t t t tt t t t k QT1111201122222=--=-+-+-=)(. 由直线PT 的斜率和直线QT 的斜率互为相反数知,由点P 发出的光线经点T 反射,反射光线通过点Q.说明:需要注意的是, Q 点的坐标本质上是三角中的万能公式, 有趣吗?例7、 已知⊙M :x Q y x 是,1)2(22=-+轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,(1)如果324||=AB ,求直线MQ 的方程; (2)求动弦AB 的中点P 的轨迹方程. 解:(1)由324||=AB ,可得,31)322(1)2||(||||2222=-=-=AB MA MP 由射影定理,得 ,3|||,|||||2=⋅=MQ MQ MP MB 得 在Rt △MOQ 中,523||||||2222=-=-=MO MQ OQ , 故55-==a a或,所以直线AB 方程是;0525205252=+-=-+y x y x 或(2)连接MB ,MQ ,设),0,(),,(a Q y x P 由点M ,P ,Q 在一直线上,得(*),22xy a -=-由射影定理得|,|||||2MQ MP MB ⋅= 即(**),14)2(222=+⋅-+a y x 把(*)及(**)消去a , 并注意到2<y ,可得).2(161)47(22≠=-+y y x 说明:适时应用平面几何知识,这是快速解答本题的要害所在。
例18、(2002年天津高考题)已知两点M (-1,0),N (1,0)且点P 使NP NM PN PM MN MP ⋅⋅⋅,,成公差小于零的等差数列,(Ⅰ)点P 的轨迹是什么曲线?(Ⅱ)若点P 坐标为),(00y x ,θ为PN PM 与的夹角,求tan θ。
解:(Ⅰ)记P (x,y ),由M (-1,0)N (1,0)得),1(y x MP PM ---=-= ),1(y x NP PN ---=-= )0,2(=-=NM MN 所以 )1(2x MN MP +=⋅122-+=⋅y x PN PM )1(2x NP NM -=⋅于是, NP NM PN PM MN MP ⋅⋅⋅,,是公差小于零的等差数列等价于⎪⎩⎪⎨⎧<+---++=-+0)1(2)1(2)]1(2)1(2[21122x x x x y x 即 ⎩⎨⎧>=+0322x y x 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆。
(Ⅱ)点P 的坐标为),(00y x 。
212020=-+=⋅y x PN PM 。
222220000000(1)(1)(42)(42)24PM PN x y x y x x x =++⋅-+=+⋅-=- 21cos .4PM PN PM PN x θ⋅==⋅- 所以 因为 0〈30≤x , 所以 ,30,1cos 21πθθ<≤≤<,411cos 1sin 202x --=-=θθ.341411cos sin tan 02022y x x x =-=---==θθθ说明:在引入向量的坐标表示后,可以使向量运算代数化,这样就可以将“形”和“数”紧密地结合在一起。
向量的夹角问题融入解析几何问题中,也就显得十分自然。
求解这类问题的关键是:先把向量用坐标表示,再用解析几何知识结合向量的夹角公式使问题获解;也可以把两向量夹角问题转化为两直线所成角的问题,用数形结合方法使问题获解。
xoyCT M BA2、已知△ABC 的顶点A(3, -1),AB 边上的中线所在直线的方程为6x+10y-59=0,∠B 的平分线所在直线的方程为:x-4y+10=0,求边BC 所在直线的方程。
解:设B(a, b),B 在直线BT 上,∴a-4b+10=0①又AB 中点⎪⎭⎫ ⎝⎛-+21,23b a M 在直线CM 上,∴点M 的坐标满足方程6x+10y-59=0 ∴0592110236=--⋅++⋅b a ② 解①、②组成的方程组可得a=10,b=5∴B(10, 5),又由角平分线的定义可知, 直线BC 到BT 的角等于直线BT 到直线BA 的角, 又76=AB k 41=BT k ∴BT BA BT BA BC BT BC BT k k kk k k k k ⋅+-=+-11 ∴92-=BC k ,∴BC 所在直线的方程为)10(925--=-x y 即2x+9y-65=03、求直线l 2:7x-y+4=0到l 1:x+y-2=0的角平分线的方程。
解法一:设l 2到l 1角平分线l 的斜率为k ,∵k 1=-1,k 2=7 ∴kk kk ---=+-11717,解之得k=-3或31=k ,由图形可知k<0,∴k=-3,又由{47022=+-=-+y x y x 解得l 1与l 2的交点⎪⎭⎫ ⎝⎛-49,41Q , 由点斜式得⎪⎭⎫ ⎝⎛+-=-41349x y 即6x+2y-3=0解法二:设l 2到l 1的角为θ,则3412121=+-=k k k k tg θ,所以角θ为锐角,而221θαα==, 由二倍角公式可知3421222==-θθθtg tg tg ∴22-=θtg 或212=θtg 2θ 为锐角, ∴kk tg 717212+-==θ,∴k=-3等同解法一。
解法三:设l :(x+y-2)+λ(7x-y+4)=0 即(1+7λ)x+(1-λ)y+(4λ-2)=0① ∴171-+=λλk ,由解法一知1713-+=-=λλk ,∴51=λ,代入①化简即得:6x+2y-3=0解法四:用点到直线的距离公式,设l 上任一点P(x, y), 则P 到l 1与l 2的距离相等。
∴50|47|2|2|+-=-+y x y x 整理得:6x+2y-3=0与x-3y+7=0,又l 是l 2到l 1的角的平分线,k<0,∴x-3y+7=0不合题意所以所求直线l 的方程为6x+2y-3=0.oxy21Q126、已知△ABC 三边所在直线方程AB :x-6=0,BC :x-2y-8=0,CA :x+2y=0, 求此三角形外接圆的方程。
解:解方程组可得A(6, -3)、B(6, -1)、C(4, 2)设方程x 2+y 2+Dx+Ey+F=0,则:⎪⎩⎪⎨⎧=++++=+-+-+=+-+-+0242406)1(6036)3(6222222F E D F E D F E D解之得:D=221-,E=4,F=30所以所求的△ABC 的外接圆方程为:030422122=++-+y x y x14.(江苏省南京市2008届高三第一次调研测试)已知:以点C (t , 2t )(t ∈R , t ≠ 0)为圆心的圆与x 轴交于点O , A ,与y 轴交于点O , B , 其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y = –2x +4与圆C 交于点M , N ,若OM = ON ,求圆C 的方程.解 (1)O C 过原点圆 ,2224t t OC +=∴. 设圆C 的方程是 22224)2()(tt t y t x +=-+-令0=x ,得ty y 4,021==;令0=y ,得t x x 2,021==4|2||4|2121=⨯⨯=⨯=∴∆t tOB OA S OAB ,即:OAB ∆的面积为定值.(2),,CN CM ON OM == OC ∴垂直平分线段MN . 21,2=∴-=oc MN k k ,∴直线OC 的方程是x y 21=. t t 212=∴,解得:22-==t t 或 当2=t 时,圆心C 的坐标为)1,2(,5=OC , 此时C 到直线42+-=x y 的距离559<=d ,圆C 与直线42+-=x y 相交于两点.当2-=t 时,圆心C 的坐标为)1,2(--,5=OC ,此时C 到直线42+-=x y 的距离559>=d圆C 与直线42+-=x y 不相交, 2-=∴t 不符合题意舍去.∴圆C 的方程为5)1()2(22=-+-y x .16. (江苏省泰兴市2007—2008学年第一学期高三调研)已知过点A (0,1),且方向向量为22(1,):(2)(3)1a k l C x y =-+-=的直线与, 相交于M 、N 两点.(1)求实数k 的取值范围;(2)求证:AM AN ⋅=定值;(3)若O 为坐标原点,且12,OM ON k ⋅=求的值.解 (1)(1,),l a k =直线过点(0,1)且方向向量1l y k x ∴=+直线的方程为 由22311,1k k -+<+得474733k -+<<. ()22C A T T A T 设焦点的的一条切线为,为切点,则=72c o s 07.A M A N A M A N A T A M A N ∴⋅=︒==∴⋅ 为定值 1122(3)(,),(,)M x y N x y 设1y k x x =+22将代入方程(-2)+(y-3)=1得k x k x 22(1+)-4(1+)+7=0212227,11k x x x x k k ∴=++124(1+)+=2121212122(1)()18121k k OM ON x x y y k x x k x x k ∴⋅=+=++++=+=+ 4(1+)24,11k k k k ∴==+4(1+)解得1,0,1k k =∆>∴=又当时.17.(2007北京四中模拟一)在△ABC 中,A 点的坐标为(3,0),BC 边长为2,且BC 在y 轴上的区间[-3,3]上滑动. (1)求△ABC 外心的轨迹方程;(2)设直线l ∶y =3x +b 与(1)的轨迹交于E ,F 两点,原点到直线l 的距离为d ,求dEF || 的最大值.并求出此时b 的值.解 (1)设B 点的坐标为(0,0y ),则C 点坐标为(0,0y +2)(-3≤0y ≤1), 则BC 边的垂直平分线为y =0y +1 ①)23(3200-=+x y y y ② 由①②消去0y ,得862-=x y .∵130≤≤-y ,∴2120≤+=≤-y y . 故所求的△ABC 外心的轨迹方程为:)22(862≤≤--=y x y . (2)将b x y +=3代入862-=x y 得08)1(6922=++-+b x b x . 由862-=x y 及22≤≤-y ,得234≤≤x . 所以方程①在区间34[,2]有两个实根.设8)1(69)(22++-+=b x b x x f ,则方程③在34[,2]上有两个不等实根的充要条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-+=≥++-+=>+--=∆⋅⋅⋅⋅⋅⋅.,,,292)1(634082)1(629)2(0834)1(6)34(9)34(0)8(94)]1(6[222222b b b f b b f b b 得34-≤≤-b ∵7232984)]1(32[||2221--=+--=-⋅b b b x x ∴721032||1||212--=-+=⋅b x x k EF 又原点到直线l 的距离为10||b d =, ∴71)711(73202732072320||222++-=--=--=b b b b b dEF ∵34-≤≤-b ,∴41131-≤≤-b .∴当411-=b ,即4-=b 时,35||m ax =d EF .例:已知圆O:x2+y2=4和点M(1,a),(Ⅰ)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程;(Ⅱ)若a=,过点M的圆的两条弦AC,BD互相垂直,求AC+BD的最大值.平几渗透,数形结合解析几何首先是几何问题。