确定二次函数的表达式PPT课件

合集下载

确定二次函数的表达式课件

确定二次函数的表达式课件

跟踪练习1.已知抛物线的顶点为(1,-3),且与y 轴交于点(0,1),求这个二次函数的解析式
解:因为抛物线的顶点为(1,-3),所以设二此函数的
关系式为y=a(x-1)2-3,又由于抛物线与y轴交于
点(0,1),可以得到
1=a(0-1)2-3
解得
a=4
所以,所求二次函数的关系式是y=4(x-1)2-3.
1.通过知识回顾,交流思考,明确待定系数法求二次 函数解析式的方法和步骤; 2.通过例题的学习和跟踪练习的训练,熟练得根据 条件设顶点式.交点式.一般式(恰当的情势)求二次 函数解析式
3.通过一题多变,一题多解等变式训练,培养发散思 维
4.通过典例学习,跟踪训练,综合运用和拓展提升等 环节,学会用数形结合,方程,转化,优选的数学思想 解决数学问题.
1、用待定系数法确定二次函数的关系式的 基本步骤是什么?




2、如何选择设法?
①已知三点,设y=ax2+bx+c ②已知顶点,设y=a(x-h)2+k
3、求待定系数时需要几个条件? 几个待定系数需要几个点
4、体会用到了什么样的数学思想? ①特殊到一般 ②方程 ③ 数形结合
综合应用
一题多解
例4 已知抛物线的顶点为A(-1,-4),又知它y与x 轴 的两个交点B、C间的距离为4,求其解析式。
一般式: 例3 求经过有三点 A(-2,-3),B(1,0), C(2,5)的二次函数的解析式.
三个点设一般式 代入有先后
y
·5 ·C
·
·
·
·
··
-3 –2
–·1 o

1
·
2
x

确定二次函数的表达式(第1课时)课件

确定二次函数的表达式(第1课时)课件
2.3.1 确定二次函数的
表达式 (第1课时)
学习目标
1.掌握由两点确定二次函数的表达式。
2.掌握用顶点法确定二次函数表达式。
3.掌握用交点法确定二次函数表达式。
复习回顾
二次函数y=a(x-h)2+k的性质
图象特征
二次函数
y=a(x-h)2+k
开口方向
a>0
a<0
向上
向下
对称轴
顶点
直线x=h
(h,k)
1
4
1

4
∴这条抛物线的表达式为:y= (x-4)2-1.
归纳总结
归纳总结
顶点法求二次函数的方法
这种知道抛物线的顶点坐标,求表达式的方法叫做顶点法.
其步骤是:
①设函数表达式是y=a(x-h)2+k;
②先代入顶点坐标,得到关于a的一元一次方程;
③将另一点的坐标代入原方程求出a值;
④a用数值换掉,写出函数表达式.
自主合作,探究新知
解: ∵(-3,0)(-1,0)是抛物线y=ax2+bx+c与x轴的
交点.所以可设这个二次函数的表达式是y=a(x-x1)(x-x2).
(其中x1、x2为交点的横坐标.因此得
y=a(x+3)(x+1).
再把点(0,-3)代入上式得 a(0+3)(0+1)=-3,
解得a=-1,
∴所求的二次函数的表达式是
y=-(x+3)(x+1),即y=-x2-4x-3.
y
2
1
O
-4 -3 -2 -1-1
-2
-3
-4
-5
1 2 x

5.3 用待定系数法确定二次函数表达式 课件

5.3 用待定系数法确定二次函数表达式 课件
求这个二次函数的表达式.
解:由二次函数y=ax²
+bx+c的图像经过点(-3,6)、(-2,-1)和(0,-3),

= (-)² − + ,
൞− = (-)² − + ,
− = ,
= .
解得 ቐ = .
= −.
所求这个二次函数的表达式为y=2x2+3x-3.
抛物线的顶点式
y=a(x+h)2+k(a≠0)
归纳总结
你能总结出用顶点式确定二次函数表达式的一般步骤吗?
步骤:
1.设:
(表达式)
2.代:
(坐标代入)
3.解:
方程(组)
4.还原:
(写表达式)
①设函数表达式为y=a(x+h)2+k(a≠0);
②先代入顶点坐标,得到关于a的一元一次方程;
③将另一点的坐标代入原方程求出a值;
5.如图,平面直角坐标系中,函数图像的表达式应是_______.

y
5
4
3
2
1
O
-4 -3 -2 -13-1
1 2 x
当堂检测
6.已知二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:
x

0
1
2
3
4
5

y

3
0
-1
0
m
8

(1)可求得m的值为_____;
3
y=x2-4x+3
(2)这个二次函数的表达式为______________.
解:把x=2,y=8代入y=ax²,得
8=2²×a
解得a=2.
所求这个二次函数的表达式为y=2x2.

二次函数的图像与性质ppt课件

二次函数的图像与性质ppt课件

函数的凹凸性
当a>0时,函数凹;当a<0时,函数凸。
函数的零点和方程
零点是方程y=0的解,方程求解可以用二次公式。
二次函数的应用
1
抛物线运动
抛物线可以描述物体在空中的轨迹,如
弹性系数
2
抛出物体的运动轨迹。
二次函数可以表示材料的弹性特性,如
描述力和变形的关系。
3
跳水成绩预测
通过二次函数建模,可以预测跳水运动
二次函数的图像与性质 ppt课件
通过本课件,你将深入了解二次函数的定义和表达式,并学习二次函数的图 像特征,如开口方向、对称轴、最值点和零点等。还将探究二次函数的性质, 如增减性、凹凸性、最值和零点方程。从抛物线运动到报价模型,掌握二次 函数的应用。最后,了解二次函数的变形与拓展,包括平移、缩放、翻转和 混合运用。同时,我们将解决常见错误和实际问题应用。
常见错误和解决方法
1 符号错误
检查符号的正确使用,特别是a的正负。
3 图像理解错误
注意开口方向、对称轴和最值点的判断。
2 方程解法错误
仔细检查求解方程是否正确,特别是二次方 程。
4 实际问题应用
将数学模型应用到实际问题时,需考虑问题 的实际情况并合理使用二次函数。
开口方向
当a>0时,抛物线开口向上;当a<0时, 抛物线开口向下。
最值点
最值点是抛物线的最高点(当a>0)或最 低点(当a<0)。最值点的坐标为(-b/2a, f(-b/2a))。
二次函数的性质
函数的增减性
当a>0时,函数单调递增;当a<0时,函数单调 递减。
函数的最值
最值主要由最值点确定,注意开口方向和a的值 来确定最值。

2.3 二次函数表达式的三种形式 课件(共21张PPT)

2.3 二次函数表达式的三种形式 课件(共21张PPT)
3.已知抛物线与x轴有两个交点(或已知抛物线与x
轴(交其点中的x1横, 坐x2标是)抛,物选线交与点x式轴:交y 点 (的x 横x坐1)(标x )x2 )
但不论何种形式,最后都化为一般形x1 式。
2.抛物线y=ax²+bx+c的顶点为(2,4),且过(1,2)点, 求抛物线的解析式.
3.二次函数y=ax²+bx+c的图象过点A(-2,5),且当 x=2时,y=-3,求这个二次函数的解析式,并 判断点B(0,3)是否在这个函数的图象上.
4.抛物线y=ax²+bx+c经过(0,0),(12,0)两点,其 顶点的纵坐标是3,求这个抛物线的解x1 析式.(要 求用多种方法)
• 求二次函数表达式的方法有很多,今 天主要学习用待定系数法来求二次函 数的表达式(解析式)
• 2015已知二次函数的图象与y轴的交点为C, 与x轴正半轴的交点为A.且.tan ACO 1
4
• (1)求二次函数的解析式;
课后练习
1.抛物线y=ax²+bx+c过(-3,0),(1,0)两点,与y 轴的交点为(0,4)过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式
• 3.交点式:y a(x x1)(x x2 ) (a 0)
一般式 y ax2 bx c(a )
例题1 (1) 已知二次函数图象经过点A(-1,0), B(4,5),C(0,-3),求该二次函
数的表达式.
(2) (2015牡丹江)抛物线y=x²+bx+c经过 点A(1,-4),B(3,0).求此抛物线的解析式.
二、顶点式 y a(x h)2 k
例题1 (1)(2013绥化)若二次函数图像的顶点坐 标为(-2,3),且过点(-3,5),求此二次 函数的解析式。

北师大版初3数学9年级下册 第2章(二次函数)确定二次函数的表达式 课件(共18张PPT)

北师大版初3数学9年级下册 第2章(二次函数)确定二次函数的表达式  课件(共18张PPT)

新知探究
【跟踪训练】如图,在平面直角坐标系中,抛物线经过A(-1,0), B(3,0),C(0,-1)三点.求该抛物线的解析式.
解析 : 设该抛物线的解析式为y=ax2+bx+c,
y
根据题意,得
a-b+c=0, 9a+3b+c=0, c=-1,
解得
AOB C
x
∴所求抛物线的解析式为
.
课堂小结
二次函数解析式的求法 :
新知探究
点拨: 1.已知顶点和另一点的坐标,可用顶点式求二次函数的表达式. 2.已知二次函数与x轴的两个交点和另一点的坐标,可利用交点 式求二次函数的表达式.
新知探究
知识点三: 由三个点的坐标确定二次函数表达式. 例3:如图,抛物线y=ax2+bx+c与x轴的一交点为A(-6,0),与y轴的 交点为C(0,3),且经过点G(-2,3).求抛物线的表达式.
如何求二次函数的解析式? 已知二次函数图象上三个点的坐标,可用待定系数法求其解析式.
新课导入
知识点一:运用顶点式确定二次函-3),与y轴交点为(0,-5),求抛
物线的解析式.
解:设所求的抛物线的解析式为y=a(x+1)2-3, 由点(0,-5 )在抛物线上,得 a-3=-5, 得a=-2,
(1)已知图象上三点的坐标或给定x与y的三对对应值, 通常选择一般式. (2)已知图象的顶点坐标,对称轴和最值,通常选择顶点式. (3)已知图象与x轴的交点坐标,通常选择交点式. 确定二次函数的解析式时,应该根据条件的特点,恰当地 选用一种函数表达方式.
课堂小结
规律方法 : 1.求二次函数y=ax2+bx+c的解析式,关键是求出待定系数a, b, c的 值,由已知条件(如二次函数图象上三个点的坐标)列出关于a, b, c的方程组,并求出a, b, c的值,就可以写出二次函数的解析式.

二次函数表达式的确定PPT课件(沪科版)

二次函数表达式的确定PPT课件(沪科版)
求这个抛物线的表达式.
解:∵抛物线的对称轴是过(3,0)的直线,
与y轴交于点C(0,4),
∴设该抛物线的解析式为y=a(x-3)2+b.
又∵A、C点的坐标分别为(8,0)、(0,4),
{ ∴
0=a(8-3)2+b, 4=a(0-3)2+b,
解得
课堂小结
1.求二次函数y=ax2 + bx+c的表达式,关键是求出待定系数 a,b,c的值,由已知条件列出关于a,b,c的方程或方程组, 求出a,b,c,就可以写出二次函数的表达式. 2.当给出的坐标或点中有顶点,可设顶点式y = a(x + h)2 + k,将h、k换为顶点坐标,再将另一点的坐标代入即可求出a 的值. 3.当给出与x轴的两个交点,可设交点式y = a(x + )(x + ), 再将另一点的坐标代入即可求出a的值.
例4:已知二次函数与x轴两交点横坐标为1,3,且图象过 (0,-3),求二次函数的表达式.
解: 由抛物线与x轴两交点横坐标为1,3
∴ 设y=a(x-1)(x-3).
∵图象经过(0,-3) ∴ a(0-1)(0-3)=-3, ∴a=-1 ∴ y=-(x-1)(x-3), 即 y=-x2+4x-3.
交点式
3 已知图象的顶点坐标(对称轴和最值)
通常选择顶点式
4 已知图象与x轴的两个交点的横坐标x1、 x2,通常选择交点式
课后作业
见《学练优》本课时练习
所求的二次函数是 y 2x2 3x 5
例2:二次函数的图象过点A(0,5),B(5,0)两点,它的对称 轴为直线x=3,求二次函数的表达式.
解:∵二次函数的对称轴为直线x=3 ∴二次函数表达式为 y=a(x-3)2+k

【课件】2.3.1确定二次函数的表达式上课课件

【课件】2.3.1确定二次函数的表达式上课课件
2
第1课时
已知图象上两点求表达式
解:(1)把 x=0, y=2 及 h=2.6 代入到 y= a(x-6) +h, 1 即 2= a(0-6) + 2.6,∴a=- , 60
2
2
1 ∴y=- (x-6)2+ 2.6. 60 1 (2) 当 h=2.6 时,y=- (x- 6)2+2.6. 60 1 当 x= 9 时,y=- (9-6)2+2.6=2.45> 2.43, 60
h)2 + k ; (2) 小题二次函数的二次项系数为 1 , 可设为 y = x2 + bx +c;(3)小题其实是告诉二次函数 y=ax2+bx+c中的c=5,故 可设表达式为y=ax2+bx+c.
第1课时
已知图象上两点求表达式
解:(1)设所求函数的表达式为 y= a(x-h)2+ k. ∵图象顶点的坐标为( -2,3), ∴y= a(x+2) + 3. 将(- 1,5)代入上式,可得 5=a(-1+2) + 3, ∴a= 2. ∴所求函数的表达式为 y=2(x+2)2+3=2x2+ 8x+11. (2) 设所求函数的表达式为 y=x + bx+c. ∵图象经过(2,-1)与(3,2)两点,代入上式,得
(1) 图象的顶点坐标是(-2,3),且过点(-1,5); (2) 二次项系数为 1 ,且图象经过(2,-1)与(3,2)两点; (3) 图象与 x 轴交点的横坐标为-2 和 4,且经过点(0 ,5).
第1课时
已知图象上两点求表达式
[ 解析 ] (1) 小题条件给出图象的顶点 , 一般设为 y = a(x -
C.b= - 8
D.b= - 8 ,
c= 18
2.若一次函数 y= ax + b 的图象经过第二、三、四象限,

二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高

二次函数说课ppt课件ppt课件ppt课件

二次函数说课ppt课件ppt课件ppt课件

详细描述
二次函数在日常生活中有着广泛的应用,如最优化问题、经济模型、物理学中的抛物线 运动等。通过这些实际应用场景,学生可以更好地理解二次函数的实际意义和重要性。
物理中的二次函数
总结词
运动轨迹、能量变化
VS
详细描述
在物理学中,二次函数经常用于描述物体 的运动轨迹,如抛物线运动。此外,在能 量守恒问题中,二次函数也经常出现,用 于描述能量随时间的变化关系。通过与物 理学的结合,学生可以更深入地理解二次 函数的物理意义。
因式分解法
要点一
总结词
通过因式分解将二次函数转化为两个一次函数的乘积,便 于分析函数的零点、单调性和值域。
要点二
详细描述
因式分解法是将二次函数 $f(x) = ax^2 + bx + c$ 转化为 两个一次函数的乘积,如 $f(x) = (ax + b)(cx + d)$。通 过因式分解,可以方便地找到函数的零点(即 $f(x) = 0$ 的解),分析函数的单调性(根据导数符号判断)和值域 (根据函数图像和定义域判断)。
数学竞赛中的二次函数
总结词
难度高、技巧性强
详细描述
在数学竞赛中,二次函数经常作为压轴题目 出现,难度较高,技巧性强。通过解决这类 问题,学生可以提高自己的数学思维能力和 解决问题的能力,为未来的学习和竞赛打下 坚实的基础。
CHAPTER 04
二次函数的解题策略
配方法
总结词
通过配方将二次函数转化为顶点式,便于分 析函数的开口方向、对称轴和顶点坐标。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个抛物线。当$a > 0$时,抛物线开口向上;当$a < 0$时 ,抛物线开口向下。系数$b$和$c$决定了抛物线的位置和顶点。通过研究二次 函数的图像,我们可以更好地理解其性质和特点。

北师大版九年级数学下册确定二次函数的表达式课件(第1、2课时20张)

北师大版九年级数学下册确定二次函数的表达式课件(第1、2课时20张)
+

顶点式 = ( − ) 能使问题简化。
教学过程




做一做
类型三 已知抛物线与轴交点的坐标,求二次函数的表达式
例3.已知二次函数的图象与 轴交于点M(-2,0)、N(3,
-0),且抛物线经过P(2,4),求这个二次函数的表达式.
解:设函数的表达式为 = ( + )( − )


答一答
1.二次函数的达式有几种情势?
一般式: = + + (a≠0)
顶点式: = ( − ) + (a≠0)
交点式: = ( − )( − )(a≠0)
2.已知函数 = − − ,函数的开口方向 向上 ,
对称轴是直线 =1 ,顶点坐标是 (1,-7)
除了以上四种类型外,还有一些特殊方法。
对二次函数 = + + .
抛物线与轴交点(0,c).
当 = , = 时,抛物线顶点在原点,以轴为对称轴.
当 = 时,抛物线顶点(0,c),以轴为对称轴.
当 = 时,抛物线必过原点.
当 − = 时,抛物线顶点在轴上.
= −
所以,所求二次函数表达式为 = −
教学过程




记一记
方法总结:所求二次函数表达式有两个
待定系数时,需要两个独立条件或两个
点的坐标。
教学过程




做一做
类型二
已知抛物线顶点的坐标,求二次函数的表达式
例2.已知二次函数的图象以M(-2,3)为顶点,且经过点
N(-1,-3),求这个二次函数的表达式.

北师大版九年级数学下册《二次函数——确定二次函数的表达式》教学PPT课件(4篇)

北师大版九年级数学下册《二次函数——确定二次函数的表达式》教学PPT课件(4篇)
y=ax2+bx+c,把(-3,0),(-1,0),
1.设:
(表达式)
(0,-3)代入y=ax2+bx+c得
2.代:
a=-1,
9a

3b+c=0,
(坐标代入)
a-b+c=0, 解得 b=-4,
3.解:
c=-3,
c=-3.
方程(组)
4.还原:
∴所求的二次函数的表达式是
(写表达式)
y=-x2-4x-3.
第二章 二次函数
3 确定二次函数的表达式
CONTENTS


1
学习目标
2
新课导入
3
新课讲解
4
课堂小结
5
当堂小练
6
拓展与延伸
学习目标
1.用一般式(三点式)确定二次函数表达式
2.用顶点式确定二次函数表达式
3.用交点式确定二次函数表达式(重点、难点)
新课导入
1. 一次函数的表达式是什么?如何求出它的表达式?
2
(2)△ABC的面积是6.
O
B
A
C
x
随堂即练
6.已知一条抛物线经过E(0,10),F(2,2),G
(4,2),H(3,1)四点,选择其中两点用待定系
a b c 6

9a 3b c 0
c 3

解这个方程组,得a= 0.5,b= – 2.5,c=3
∴所求得的函数解析式为y=0.5x²– 2.5x+3
当堂小练
已知:二次函数的图像的对称轴为直线x= –3,并且函数有最
大值为5,图像经过点(–1,–3),求这个函数的解析式。

二次函数的图像和性质PPT课件

二次函数的图像和性质PPT课件
顶点形式
二次函数的顶点形式是f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。
二次函数图像的性质
对称轴
二次函数的对称轴是x = -最大值。
开口方向
二次函数开口向上当且仅当a > 0,开口向下当且仅当a < 0。
二次函数的变换
导数
二次函数的导数是一条直线,表示了函数的变化率。
凹性质
二次函数的凹性质取决于a的值,a > 0时函数向上凹,a < 0时函数向下凹。
凸性质
二次函数的凸性质取决于a的值,a > 0时函数向上凸,a < 0时函数向下凸。
二次函数的非负和非正性质
1 非负性质
2 非正性质
当a > 0时,二次函数的图像位于x轴以上。
建筑
物理
二次函数的图像和性质可应用 于建筑设计,优化结构和形状。
P物理实验中,二次函数可以 用于描述运动曲线和力学模型。
总结和展望
通过本课程,我们深入了解了二次函数的图像和性质,掌握了解析和图像求 解的方法,并应用于实际领域。希望你喜欢这次学习!继续思考和探索,创 造性地应用二次函数。
1
平移
平移变换可通过改变顶点来实现,横向平移表示为f(x ± h),纵向平移表示为f(x) ± k。
2
缩放
缩放变换可通过改变a的值来实现,a > 1时函数变窄,0 < a < 1时函数变宽。
3
反转
反转变换可通过改变a的符号来实现,a > 0时函数朝上,a < 0时函数朝下。
二次函数的导数和凹凸性质
二次函数的图像和性质
欢迎来到二次函数的图像和性质课程!通过本课程,您将学习二次函数的定 义和表达形式,并探索其图像的性质和变换。让我们开始吧!

《二次函数》ppt课件

《二次函数》ppt课件

判别式意义
当 $Delta > 0$ 时,方程有两个不相等 的实根,抛物线与 $x$ 轴有两个交点。
02
二次函数与一元二次方程 关系
一元二次方程求解方法
01
02
03
公式法
对于一般形式的一元二次 方程,可以使用求根公式 进行求解。
配方法
通过配方将一元二次方程 转化为完全平方形式,从 而求解。
因式分解法
首先,通过配方将二次函数转 化为顶点式f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。然后, 根据二次函数的性质,对称轴 为x = h,顶点坐标为(h, k)。最 后,代入具体的a、b、c值求解。
已知二次函数f(x) = x^2 - 2x, 求在区间[-1, 3]上的最值。
首先,将二次函数配方为f(x) = (x - 1)^2 - 1,确定对称轴为x = 1。然后,根据二次函数的单 调性,在区间[-1, 1]上单调递减, 在[1, 3]上单调递增。因此,在x = 1处取得最小值f(1) = -1,在 x = 3处取得最大值f(3) = 3。
04
根的判别式Δ=b²-4ac可 以用于判断二次函数与x 轴交点的个数。
当Δ>0时,二次函数与x 轴有两个不同的交点。
当Δ=0时,二次函数与x 轴有一个重根,即一个 交点。
当Δ<0时,二次函数与x 轴无交点。
03
二次函数图像变换与性质 分析
平移变换对图像影响
平移方向
二次函数图像在平面直角坐标系中可 沿x轴或y轴方向进行平移。
04
二次函数在实际问题中应 用举例
利润最大化问题建模与求解
1 2 3
问题描述
某公司生产一种产品,其成本和销售价格与产量 之间存在一定的关系。公司希望通过调整产量来 实现利润最大化。

3-5确定二次函数的表达式第一课时课件2022-2023学年鲁教版(五四制)九年级数学上册

3-5确定二次函数的表达式第一课时课件2022-2023学年鲁教版(五四制)九年级数学上册

学习目标三:正确理解题干对对称轴的不同表述
变式: 已知一个二次函数的图象的对称轴为x=-2,与y轴交点的纵
坐标为2,且经过点( -3,- 1),求这个函数的解析式.
再变: 已知一个二次函数,当x≤ -2时,y随x的增大而减小,当x≥
-2时,y随x的增大而增大,与y轴交点的纵坐标为2,且经过 点( -3,- 1),求这个函数的解析式.
用待定系数法求函数表达式的一般步骤:
1 、设出适合的函数表达式; 2 、把已知条件代入函数表达式中,得到关于待定 系数的方程或方程组; 3、 解方程(组)求出待定系数的值; 4、 写出一般表达式。
当堂达标
导学案
奇迹是会发生的,但你得为之拼命地努力. ——佚名
解:以线段AB的中垂线为y轴,以过点o且与y轴垂直 的直线为x轴,建立直角坐标系
设它的函数表达式为: y=ax²(a≠0)
AB 6CB AB 3, OC 0.9 2
B(3,0.9)代入y ax2中,0.9 a 32 a 0.1因此这段抛物线对应的二次 函数表示式为y 0.1x2 (3 x 3)
三变: 已知一个二次函数,当x= -2时,y有最小值 ,与y轴交点的
纵坐标为2,且经过点( -3,- 1),求这个函数的解析式.
根据学习目标,谈谈你的掌握了什么?
学习目标一:如何去设二次函数的表达式 学习目标二: 如何去确定二次函数的表达式 学习目标三:正确理解题干对对称轴的不同表述 学习目标四:知道待定系数法求函数表达式的一般步骤
图 (a≠0) 已知二次函数y=ax2+c(a≠0)的图象经过点(2,9) 和(0,-3),求这个二次函数的表达式. 3.y=a(x-h)2(a≠0)
已知抛物线y=a(x-h)2(a≠0)顶点为(1,0),且又过 点(2, 3).求抛物线的解析式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

议一议 10
悟出经验
驶向胜利 的彼岸
根据以上三种表示方式,回答下列问题: 1.自变量x的取值范围是什么? ∵x表示任意一个数,∴自变量x的取值范围是:全体实数.
2.图象的对称轴和顶点坐标分别是什么? 由表达式的顶点式和图象,可知图象的对
yx2 2x
称轴是:直线x=1,顶点坐标是:(1,-1).
3.如何描述y随x的变化而变化的情况?
做一做 6
梅花香自苦寒来
驶向胜利 的彼岸
• 两个数相差2,设其中较大的一个数为x,那么
它们的积y是如何随x的变化而变化的? ?
• 用你能分别用函数表达式,表格和图象表示这
种变化吗?
做一做 7
解析法—用表达式表示函数
驶向胜利 的彼岸
两个数相差2,设其中较大的一个数为x,那么它们 的积y是如何随x的变化而变化的?
0 0
1 -1
2 0
3 3
4 8
… ……
用列表法表示函数的优点,缺点分别是什么?
做一做 9
图象法—用图象表示函数
驶向胜利 的彼岸
两个数相差2,设其中较大的一个数为x,那么它们的积y
是如何随x的变化而变化的?
yx2 2x
用图象表示:
用图象法表示函数的优点,缺点分别是什么? 比较三种表示方式,你能得出什么结论?与同伴交流.
小结 拓展 回味无穷
函数的表示方式
解析法—用表达式表示函数 , 列表法—用表格表示函数, 图象法—用图象表示函数. 二次函数的三种表示方式的特点, 它们之间的联系.
驶向胜利 的彼岸
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
做一做 1
函数的表示方式
驶向胜利 的彼岸
已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2.
x
y
y随x的而变化的规律是什么?你能分别用函数表达式, 表格和图象表示出来吗?
勇敢表现奖属于自信的人!
做一做 2
解析法—用表达式表示函数
驶向胜利 的彼岸
已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2.
用函数表达式表示:
y xx 2 , 即 y x2 2 x .或 yx121.
用解析法表示函数的优点,缺点分别是什么?
做一做 8
列表法—用表格表示函数
驶向胜利 的彼岸
两个数相差2,设其中较大的一个数为x,那么它们 的积y是如何随x的变化而变化的? ?
用表格表示:
x yx121.
… ……
-2 8
-1 3
由表格和图象可知,y随x的变化而变化的情况是:当x<1 时,y随x的增大而减小;当x>1时,y随x的增大而增大.
4.你是分别通过哪种表示方式回答一面三个问题的?
议一议 11
知识在于积累
驶向胜利 的彼岸
• 二次函数的三种表示方式各有什么特点?
它们之间有什么联系?与同伴进行交流.
表示 表达式 表格
优点
汇报人:XXX 汇报日期:2 计算.
能直接得到某些具体的对应值
缺点 需要通过计算,才能得到所需结 果.
不能反映函数整体的变化情况
图象
直观表示了变量间变化过程和 变化趋势.
函数值只能是近似值..
表达式是基础,是重点,表格是画图象的关键,图象是在表达式和表 关系 格的基础上对函数的总体概括和形象化的表达.
x
y
用函数表达式表示:
y x 1 0 x , 即 y x 2 1 0 x 0 x 1 0 .
用解析法表示函数的优点,缺点分别是什么?
做一做 3
列表法—用表格表示函数
驶向胜利 的彼岸
已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2.
x
y
用表格表示:
x
123456789
10-x 9 8 7 6 5 4 3 2 1
y
9 16 21 24 25 24 21 16 9
用列表法表示函数的优点,缺点分别是什么?
做一做 4
图象法—用图象表示函数
驶向胜利 的彼岸
已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2.
x
y
用图象表示:
用图象法表示函数的优点,缺点分别是什么? 比较三种表示方式,你能得出什么结论?与同伴交流.
议一议 5
悟 出真谛
驶向胜利 的彼岸
• 在上述问题中,自变量x的取值范围是什么?
因为x表示周长为20cm矩形的边长,所以自 变量x的取值范围是:0<x<10.
x
y
• 当x取何值时,长方形的面积最大?它的
最大面积是多少?你是怎么得到的?请你 描述一下y随x的变化而变化的情况.
当x=5cm时,长方形的面积最大,它的最大面积=25cm2. 由表达式的顶点式,表格中结果,图象的最高点都可得到. y随x的变化而变化的情况是:当0<x<5时,y随x的增大而增 大;当5<x<10时,y随x的增大而减小.
相关文档
最新文档