专题3.10 判断点在圆内外向量应用最厉害-玩转压轴题突破140分之高三数学解答题高端精品 Word版 含答案

合集下载

2024年高三培优讲义33---向量中的隐圆问题

2024年高三培优讲义33---向量中的隐圆问题

专题5-4 向量中的隐圆问题目录知识点梳理:构隐圆的几大角度 (1)题型一 定值圆(由模长是定值构造圆) (3)题型二 直径圆(两向量垂直构造圆) (4)题型三 外接圆(定边对定角构造圆) (6)题型四 对角互补构造圆 (6)题型五 向量与阿氏圆 (6)题型六 向量圆(极化圆) (7)题型七 其它隐圆 (7)题型八 设点坐标,构造函数求最值 (8)构隐圆的几大角度角度一、定值圆(由模长是构造圆)记A ,B ,C 为定点,若出现AP λ=,AP AC λ±=,AP AB AC λ−−=,都可以得出隐圆有时也会出现c a b −−=λ这种形式,我们可以设a OA =,b OB =,c OC =,也能转化成上面第三种形式角度二、直径圆圆的直径所对的圆周角为直角,因此当两个向量相互垂直时,可以选择一个共同的起点,则该起点在以两个向量的终点构成的线段为直径的圆上.在向量问题中,向量a ,b 的垂直条件体现为,,90︒=a b 0⊥a b =,0⋅a b =等.角度三、外接圆(定边定角),,a b a b ±<>均为定值时,可以构造圆在三角形中,若遇到一边一对角问题,可以考虑构造此三角形的外接圆,从几何的角度进行解题.同样的道理,在向量问题中,若两个或三个向量可以构造出一个三角形(如a ,b ,a -b ),且给出边一对角的条件,可以考虑构造外接圆模型进行解题. 角度四、四点共圆(对角互补)圆内接四边形的对角互补;反之,若某四边形的对角和为180°,则该四边形的四个顶点共圆.在向量问题中,只需有三个向量,选取1个共同起点,加上3个终点,便可构成一个四边形,若该四边形满足上述条件,可以构造“隐圆”模型进行解题,四点共圆模型可以认为是外接圆模型的延伸. 角度五、比例圆(阿波罗尼斯圆) 在平面上给定两点A ,B ,设点P 满足||||PA PB =λ,则当λ>0且λ≠1时,点P 的轨迹是一个圆,这个圆称之为“阿波罗尼斯圆”.在向量问题中,若|a |=λ|b |(λ>0且λ≠1),即两个向量的模长呈现一定的比例时,可以考虑构造阿波罗尼斯圆进行解题 角度六、向量圆(极化恒等式)若PA PB λ⋅=(λ≠0且λ∈R ),其中点P 为动点,A ,B 为两个定点,则点P 的轨迹为圆. 简证:取AB 中点M ,2222PA PB PM AM PM PM λλλ⋅=⇒−=⇒=+,故PM 为定值以此为突破口,可以将向量的最值与范围问题转化为圆的最值与范围问题进行求解.值得注意的是,在向量问题中PA PB λ⋅=也表示为(c -a )·(c -b )=λ,其中a ,b 为定向量. 角度七、其它隐圆极化恒等式和型:λ=+22PB PA定理:若B A ,为定点,P 满足λ=+22PB PA ,则P 的轨迹是以AB 中点M 为圆心,2212AB −λ为半径的圆。

专题33 判断点在圆内外

专题33 判断点在圆内外

【题型综述】点与圆的位置关系的解题策略一般有以下几种:①利用设而不求思想求出圆心坐标,然后计算圆心到点的距离并和半径比较得解;②向量法,通过判断数量积的正负来确定点和圆的位置关系:如已知AB是圆的直径,G 是平面内一点,则0GA GB ⋅<u u u r u u u r ⇔点G 在圆内;0GA GB ⋅>u u u r u u u r⇔点G 在圆外;0GA GB ⋅=u u u r u u u r⇔点G 在圆上.③方程法,已知圆的方程222)()(:r b y a x M =-+-,点N ),(00y x ,则22020)()(r b y a x <-+-⇔点N 在圆M 内;22020)()(r b y a x =-+-⇔点N 在圆M 上;22020)()(r b y a x >-+-⇔点N 在圆M 外.四点共圆问题的解题策略:①利用四点构成的四边形的对角互补;②利用待定系数法求出过其中三点的圆的方程,然后证明第四点坐标满足圆的方程.【典例指引】类型一 向量法判定点与圆的位置关系例1 【2015高考福建,理18】已知椭圆E :22221(a 0)x y b a b+=>>过点2),且离心率为22.(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线1x my m R =-?,()交椭圆E 于A ,B 两点, 判断点G 9(4-,0)与以线段AB 为直径的圆的位置关系,并说明理由.【解析】解法一:(Ⅰ)由已知得2222,b c a a b c ì=ïïï=íïï=+ïî解得2a b c ì=ïï=íïïî 所以椭圆E 的方程为22142x y +=. (Ⅱ)设点1122(y ),B(,y ),A x x AB 中点为00H(,y )x .由22221(m 2)y 230,142x my my x y ì=-ï+--=íï+=ïî得 所以12122223y +y =,y y =m 2m 2m ++,从而022y m 2=+. 所以222222200000095525GH|()y (my )y (m +1)y +my +44216x =++=++=.22222121212()(y )(m +1)(y )|AB|444x x y y -+--== 22221212012(m +1)[(y )4y ](m +1)(y y )4y y y +-==-, 故222222012222|AB|52553(m +1)25172|GH|my (m +1)y 042162(m 2)m 21616(m 2)m m y +-=++=-+=>+++ 所以|AB||GH|>2,故G 9(4-,0)在以AB 为直径的圆外.所以cos GA,GB 0,GA GB 狁>u u u r u u u r u u u r u u u r 又,不共线,所以AGB Ð为锐角. 故点G 9(4-,0)在以AB 为直径的圆外. 类型二 四点共圆应用问题例2. (2014全国大纲21)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (I )求C 的方程;(II )过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相较于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.类型三 动圆过定点问题例3(2012福建理19)如图,椭圆)0(1:2222>>=+b a by a x E 的左焦点为1F ,右焦点为2F ,离心率21=e 。

专题2.15超越方程反解难,巧妙构造变简单-玩转压轴题,突破140分之高三数学解答题高端精品(原卷版)

专题2.15超越方程反解难,巧妙构造变简单-玩转压轴题,突破140分之高三数学解答题高端精品(原卷版)

专题15 超越方程反解难,巧妙构造变简单【题型综述】导数研究超越方程超越方程是包含超越函数的方程,也就是方程中有无法用自变数的多项式或开方表示的函数,与超越方程相对的是代数方程.超越方程的求解无法利用代数几何来进行.大部分的超越方程求解没有一般的公式,也很难求得解析解.在探求诸如0109623x x x ,22ln 22x x x x 方程的根的问题时,我们利用导数这一工具和数形结合的数学思想就可以很好的解决.此类题的一般解题步骤是:1、构造函数,并求其定义域.2、求导数,得单调区间和极值点.[来源:学*科*网]3、画出函数草图.4、数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况求解.【典例指引】例1.已知函数ln f x ax x x 在2x e 处取得极小值.(1)求实数a 的值;(2)设22l n F x x x x f x ,其导函数为F x ,若F x 的图象交x 轴于两点12,0,,0C x D x 且12x x ,设线段CD 的中点为,0N s ,试问s 是否为0Fx 的根?说明理由.例2.设函数21ln 2fx x ax bx (1)当3,2a b 时,求函数f x 的单调区间;(2)令21(03)2aF xf x ax bx x x ,其图象上任意一点00,P x y 处切线的斜率12k 恒成立,求实数a 的取值范围.(3)当0,1ab 时,方程f x mx 在区间21,e 内有唯一实数解,求实数m 的取值范围.例3.已知函数()(1)讨论的单调性;(2)若关于的不等式的解集中有且只有两个整数,求实数的取值范围.【同步训练】1.已知函数21e 2x f x t x (R t ),且f x 的导数为f x .(Ⅰ)若2F x f xx 是定义域内的增函数,求实数t 的取值范围;(Ⅱ)若方程222f x f x x x 有3个不同的实数根,求实数t 的取值范围.2.已知函数322ln 3f x ax x 的图象的一条切线为x 轴.(1)求实数a 的值;(2)令g x f x f x ,若存在不相等的两个实数12,x x 满足12g x g x ,求证:121x x .3.已知函数ln f x a x x (0a ),2g x x .(1)若f x 的图象在1x 处的切线恰好也是g x 图象的切线.①求实数a 的值;②若方程f xmx 在区间1,e 内有唯一实数解,求实数m 的取值范围.(2)当01a时,求证:对于区间1,2上的任意两个不相等的实数1x ,2x ,都有1212fx f x g x g x成立.[来源:Z,xx,]4.已知函数ln , 2.718f x x x e .(1)设2216g x f x x e x ,①记g x 的导函数为g x ,求g e ;②若方程0g x a 有两个不同实根,求实数a 的取值范围;(2)若在1,e 上存在一点0x 使20011m f x x 成立,求实数m 的取值范围.[来源学科网]5.已知函数233x f x x x e .(1)试确定t 的取值范围,使得函数f x 在2,(2)t t 上为单调函数;(2)若t 为自然数,则当t 取哪些值时,方程0f x z x R 在2,t 上有三个不相等的实数根,并求出相应的实数z 的取值范围.6.已知函数21ln ,f x x ax g x x b x ,且直线12y 是函数f x 的一条切线.(1)求a 的值;(2)对任意的11,x e ,都存在21,4x ,使得12f x g x ,求b 的取值范围;(3)已知方程f x cx 有两个根1212,()x x x x ,若1220g x x c ,求证: 0b .[来源学。

高考数学 玩转压轴题 专题3.13 探究代数表达式函数方程来发力-人教版高三全册数学试题

高考数学 玩转压轴题 专题3.13 探究代数表达式函数方程来发力-人教版高三全册数学试题

专题3.13 探究代数表达式函数方程来发力 【题型综述】 探究代数表达式包括以下若干类型:(1)参数值的探索,根据题中的条件将参数转化为关于直线与圆锥曲线的交点的坐标的方程或函数问题,若利用设而不求思想与韦达定理即可求出参数的值即存在,否则不存在.(2)等式恒成立问题,根据题中条件和有关向量、距离公式、平面几何知识等方法,转化为关于直线与圆锥曲线的交点的坐标的方程或函数问题,若利用设而不求思想与韦达定理即可求出参数的值即存在。

【典例指引】类型一 参数值的探究例1 【2016年高考某某理数】(本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PT PA PB λ=⋅,并求λ的值.方程②的判别式为2=16(92)m ∆-,由>0∆,解得323222m -<<. 由②得212124412=,33m m x x x x -+-=. 所以221112252(2)(1)3323m m m PA x y x =--++-=--, 同理25223m PB x =--, 所以12522(2)(2)433m m PA PB x x ⋅=---- 21212522(2)(2)()433m m x x x x =---++ 225224412(2)(2)()43333m m m m -=----+2109m =. 故存在常数45λ=,使得2PT PA PB λ=⋅.类型二 恒等式成立探究 例2. 【2015高考某某,理20】如图,椭圆E :2222+1(0)x y a b a b =>>的离心率是22,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行与x 轴时,直线l 被椭圆E 截得的线段长为22.(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PA QBPB =恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.(2)当直线l 与x 轴平行时,设直线l 与椭圆相交于C 、D 两点.如果存在定点Q 满足条件,则||||1||||QC PC QD PD ==,即||||QC QD =.所以Q 点在y 轴上,可设Q 点的坐标为0(0,)y .当直线l 与x 轴垂直时,设直线l 与椭圆相交于M 、N 两点.则2),(0,2)M N ,由||||||||QM PM QN PN =0022|2|21y =++,解得01y =或02y =.所以,若存在不同于点P 的定点Q 满足条件,则Q 点的坐标只可能为(0,2)Q .下面证明:对任意的直线l ,均有||||||||QA PA QB PB =. 当直线l 的斜率不存在时,由上可知,结论成立.当直线l 的斜率存在时,可设直线l 的方程为1y kx =+,A 、B 的坐标分别为1122(,),(,)x y x y .联立221,421x y y kx ⎧+=⎪⎨⎪=+⎩得22(21)420k x kx ++-=. 其判别式22168(21)0k k ∆=++>,类型三 面积最小值存在性例3【2015高考某某,文22】一种画椭圆的工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动,M 处的笔尖画出的椭圆记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与椭圆C 有且只有一个公共点,试探究:OPQ ∆的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.22111222||||||||222121214OPQ P Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ② 将①代入②得,222241281441OPQ k m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--.因2104k ≤<,则20141k <-≤,22214k ≥-,所以第22题图1 B A D O M N 第22题图2x D O M N y228(1)814OPQ S k∆=-+≥-,当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8. 综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,OPQ ∆的面积取得最小值8. 类型四 面积关系探究例4.(2011某某理21)如图7,椭圆22122:1(0)x y C a b a b+=>>的离心率为32,x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长.(Ⅰ)求12,C C 的方程;(Ⅱ)设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与2C 相交于点,A B ,直线,MA MB 分别与1C 相交于点,D E .(ⅰ)求证:MD ME ⊥;(ⅱ)记,MAB MDE ∆∆的面积分别为12,S S .问:是否存在直线l ,使得121732S S =?请说明理由.【扩展】1. F 为椭圆)0(12222>>=+b a by a x 的其中一个焦点,若P 是椭圆上一点,则c a PF c a +≤≤-||. 2. F 为双曲线)0,0(12222>>=-b a by a x 的右焦点,若P 是双曲线右支上一点,则c a PF -≥||,若P 是双曲线左支上一点,则c a PF +≥||,.3. F 为椭圆)0(12222>>=+b a by a x 的左焦点,AB 是过左焦点倾斜角为θ的弦,点A 在x 轴上方,则θcos ||2c a b AF -=,θcos ||2c a b BF +=,θ2222cos 2||c a ab AB -=,θθcos cos ||||c a c a BF AF -+=. 4. F 为抛物线)0(22>=p px y 的焦点,AB 是过左焦点倾斜角为θ的弦,点A 在x 轴上方,则θcos 1||-=p AF ,θcos 1||+=p BF ,θθ22sin 2cos 12||p p AB =-=,θθcos 1cos 1||||-+=BF AF .【同步训练】1.已知A为椭圆=1(a>b>0)上的一个动点,弦AB,AC分别过左右焦点F1,F2,且当线段AF1的中点在y轴上时,cos∠F1AF2=.(1)求该椭圆的离心率;(2)设,试判断λ1+λ2是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.【思路点拨】(1)当线段AF1的中点在y轴上时,AC垂直于x轴,△AF1F2为直角三角形.运用余弦函数的定义可得|AF1|=3|AF2|,易知|AF2|=,再由椭圆的定义,结合离心率公式即可得到所求值;(2)由(1)得椭圆方程为x2+2y2=2b2,焦点坐标为F1(﹣b,0),F2(b,0),(1)当AB,AC的斜率都存在时,设A(x0,y0),B(x1,y1),C(x2,y2),求得直线AC的方程,代入椭圆方程,运用韦达定理,再由向量共线定理,可得λ1+λ2为定值6;若AC⊥x轴,若AB⊥x轴,计算即可得到所求定值.同理λ1=,可得λ1+λ2=6;②若AC⊥x轴,则λ2=1,λ1==5,这时λ1+λ2=6;若AB⊥x轴,则λ1=1,λ2=5,这时也有λ1+λ2=6;综上所述,λ1+λ2是定值6.2.(2017•某某二模)已知F1(﹣c,0)、F2(c、0)分别是椭圆G:+=1(0<b<a<3)的左、右焦点,点P(2,)是椭圆G上一点,且|PF1|﹣|PF2|=a.(1)求椭圆G的方程;(2)设直线l与椭圆G相交于A、B两点,若⊥,其中O为坐标原点,判断O到直线l的距离是否为定值?若是,求出该定值,若不是,请说明理由.【思路点拨】(1)根据椭圆的定义,求得丨PF1丨=a=3|PF2|,根据点到直线的距离公式,即可求得c的值,则求得a的值,b2=a2﹣c2=4,即可求得椭圆方程;(2)当直线l⊥x轴,将直线x=m代入椭圆方程,求得A和B点坐标,由向量数量积的坐标运算,即可求得m的值,求得O到直线l的距离;当直线AB的斜率存在时,设直线方程,代入椭圆方程,由韦达定理及向量数量积的坐标运算,点到直线的距离公式,即可求得O到直线l的距离为定值.②当直线AB的斜率存在时,设直线AB的方程为y=kx+n,则,消去y整理得:(1+2k2)x2+4knx+2n2﹣8=0,x1+x2=﹣,x1x2=,则y1y2=(kx1+n)(kx2+n)=k2x1x2+kn(x1+x2)+n2=,由⊥,∴x1x2+y1y2=0,故+=0,整理得:3n2﹣8k2﹣8=0,即3n2=8k2+8,①则原点O到直线l的距离d=,∴d2=()2==,②将①代入②,则d2==,∴d=,综上可知:点O到直线l的距离为定值.3.在平面直角坐标系xOy中,椭圆的离心率为,直线y=x被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)过原点的直线与椭圆C交于两点(A,B不是椭圆C的顶点),点D在椭圆C上,且AD⊥AB,直线BD 与x轴、y轴分别交于M,N两点.设直线BD,AM斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值.【思路点拨】(1)由椭圆离心率得到a,b的关系,化简椭圆方程,和直线方程联立后求出交点的横坐标,把弦长用交点横坐标表示,则a的值可求,进一步得到b的值,则椭圆方程可求;(2)设出A,D的坐标分别为(x1,y1)(x1y1≠0),(x2,y2),用A的坐标表示B的坐标,把AB和AD的斜率都用A的坐标表示,写出直线AD的方程,和椭圆方程联立后利用根与系数关系得到AD横纵坐标的和,求出AD中点坐标,则BD斜率可求,再写出BD所在直线方程,取y=0得到M点坐标,由两点求斜率得到AM 的斜率,由两直线斜率的关系得到λ的值.4.已知中心在原点O,焦点在x轴上的椭圆,离心率,且椭圆过点.(1)求椭圆的方程;(2)椭圆左,右焦点分别为F1,F2,过F2的直线l与椭圆交于不同的两点A、B,则△F1AB的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.【思路点拨】(1)设椭圆方程,由题意列关于a,b,c的方程组求解a,b,c的值,则椭圆方程可求;(2)设A(x1,y1),B(x2,y2),不妨设y1>0,y2<0,设△F1AB的内切圆的径R,则△F1AB的周长=4a=8,=(|AB|+|F1A|+|F1B|)R=4R,因此最大,R就最大.设直线l的方程为x=my+1,与椭圆方程联立,从而可表示△F1AB的面积,利用换元法,借助于导数,即可求得结论.由题知,直线l的斜率不为零,可设直线l的方程为x=my+1,由,得(3m2+4)y2+6my﹣9=0,.则=,令,则m2=t2﹣1,∴=,令f(t)=3t+,则f′(t)=3﹣,当t≥1时,f′(t)≥0,f(t)在[1,+∞)上单调递增,有f(t)≥f(1)=4,≤3,即当t=1,m=0时,≤3,由=4R,得R max=,这时所求内切圆面积的最大值为.故直线l:x=1,△F1AB内切圆面积的最大值为.5.已知椭圆C:+=1(a>0,b>0)的离心率为,右焦点为F,上顶点为A,且△AOF的面积为(O 为坐标原点).(1)求椭圆C的方程;(2)若点M在以椭圆C的短轴为直径的圆上,且M在第一象限,过M作此圆的切线交椭圆于P,Q两点.试问△PFQ的周长是否为定值?若是,求此定值;若不是,说明理由.【思路点拨】(1)由椭圆的离心率为,右焦点为F,上顶点为A,且△AOF的面积为(O为坐标原点),列出方程组,求出a=,b=1,由此能求出椭圆C的方程.(2)设P(x1,y1),Q(x2,y2),,连结OM,OP,求出|PF|+|PM|=|QF|+|QM|=,从而求出△PFQ的周长为定值2.6.已知椭圆C:+=1(a>b>0)的离心率为,联接椭圆四个顶点的四边形面积为2.(1)求椭圆C的方程;(2)A、B是椭圆的左右顶点,P(x P,y P)是椭圆上任意一点,椭圆在P点处的切线与过A、B且与x轴垂直的直线分别交于C、D两点,直线AD、BC交于Q(x Q,y Q),是否存在实数λ,使x P=λx Q恒成立,并说明理由.【思路点拨】(1)由椭圆C:+=1(a>b>0)的离心率为,联接椭圆四个顶点的四边形面积为2,列出方程组,求出a,b,由此能求出椭圆C的方程.(2)设切线方程为y=kx+m,与椭圆联立消元得(2+3k2)x2+6kmx+3m2﹣6=0,由此利用根的判别式、韦达定理、直线方程,组合已知条件能求出存在λ=1,使x P=λx Q恒成立.7.已知椭圆C:=1,直线l过点M(﹣1,0),与椭圆C交于A,B两点,交y轴于点N.(1)设MN的中点恰在椭圆C上,求直线l的方程;(2)设=λ,=μ,试探究λ+μ是否为定值,若是,求出该定值;若不是,请说明理由.【思路点拨】(1)设点N(0,n),表示出MN中点坐标,代入椭圆方程即可求得n值,从而可得直线方程;(2)直线AB的斜率存在且不为0,设直线方程为x=ty﹣1,A(x1,y1),B(x2,y2),M(﹣1,0),N(0,﹣),联立,消x可得(4+3t2)y2﹣6ty﹣9=0,利用韦达定理,以及向量共线的坐标可得λ=﹣1﹣,同理可得μ=﹣1﹣,然后化简即可.8.已知离心率为的椭圆C:+=1(a>b>0)过点M(2,0),过点Q(1,0)的直线与椭圆C相交于A,B两点,设点P(4,3),记PA,PB的斜率分别为k1,k2(1)求椭圆C的方程;(2)探讨k1+k2是否为定值?如果是,求出该定值,如果不是,求出k1+k2的取值X围.【思路点拨】(1)由题意可知a=2c,a=2,则c=1,b2=a2﹣c2=3,(2)分类讨论,当直线线AB的斜率存在时,代入椭圆方程,由韦达定理及直线斜率公式,即可求得的k1+k2值.(2)当直线AB的斜率不存在时,不妨设A(1,),B(1,﹣),则k1==,k2==,故k1+k2=2,当直线AB的斜率存在时,设其为k,则直线AB:y=k(x﹣1),设A(x1,y1),B(x2,y2).由,消去y,整理得:(4k2+3)x2﹣8k2x+4k2﹣12=0,∴x1+x2=,x1x2=,k1+k2=+=+=,===2,综上可知:k1+k2为定值,定值为2.9.已知椭圆C:+=1(a>b>1)的左焦点F与抛物线y2=﹣4x的焦点重合,直线x﹣y+=0与以原点O为圆心,以椭圆的离心率e为半径的圆相切.(1)求该椭圆C的方程;(2)过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D、E两点,记△GFD的面积为S1,△OED的面积为S2,问:是否存在直线AB,使得S1=S2,若存在,求直线AB的方程,若不存在,说明理由.【思路点拨】(1)通过抛物线方程可知c=1,利用点到直线的距离公式可知e==,结合a、b、c三者之间的关系可求出a=2、b=1,进而可得椭圆C的方程;(2)通过假设存在直线AB使得S1=S2,则可设其方程为:y=k(x+1)(k≠0),并与椭圆C方程联立,结合韦达定理可得G(,),利用DG⊥AB可得D(,0),结合△GFD~△OED可得=,联立S1=S2整理得8k2+9=0,由于此方程无解推出假设不成立.10.在直角坐标系xOy中,椭圆C1:的离心率为,左、右焦点分别是F1,F2,P 为椭圆C1上任意一点,|PF1|2+|PF2|2的最小值为8.(1)求椭圆C1的方程;(2)设椭圆C2:为椭圆C2上一点,过点Q的直线交椭圆C1于A,B两点,且Q为线段AB的中点,过O,Q两点的直线交椭圆C1于E,F两点.(i)求证:直线AB的方程为x0x+2y0y=2;(ii)当Q在椭圆C2上移动时,四边形AEBF的面积是否为定值?若是,求出该定值;不是,请说明理由.【思路点拨】(1)由椭圆的离心率为、右焦点分别是F1,F2,P为椭圆C1上任意一点,|PF1|2+|PF2|2的最小值为8,列出方程,求出a,b,由此能求出椭圆C1的方程为+.(2)(i)由(1)知椭圆C2:=1,Q(x0,y0)为椭圆E上一点,=1,利用点差法求出直线AB的方程为x0x+2y0y=2,由此能求出直线AB的方程.(ii)联立直线EF与椭圆C1的方程,得E(,),F(﹣,﹣),联立直线AB与椭圆C1的方程,得:,利用韦达定理求出|AB|=,点E()、F(﹣)到直线AB的距离为d1,d2,﹣﹣由此能求出当Q在椭圆C2上移动时,四边形AEBF的面积为定值4.(ii)直线EF的方程为y0x﹣x0y=0,联立直线EF与椭圆C1的方程,解得E(,),F(﹣,﹣),联立直线AB与椭圆C1的方程,消去y,得:,x1+x2=2x0,x1x2=2﹣4y02,|AB|=•=•=,设点E()、F(﹣)到直线AB的距离分别为d1,d2,S AEBF=S△ABE+S△ABF=,==,==,∴S AEBF=•==4.故当Q在椭圆C2上移动时,四边形AEBF的面积为定值4.11.已知椭圆C:+=1 (a>b>0)的短轴长为2,过上顶点E和右焦点F的直线与圆M:x2+y2﹣4x﹣2y+4=0相切.(1)求椭圆C的标准方程;(2)若直线l过点(1,0),且与椭圆C交于点A,B,则在x轴上是否存在一点T(t,0)(t≠0),使得不论直线l的斜率如何变化,总有∠OTA=∠OTB (其中O为坐标原点),若存在,求出 t的值;若不存在,请说明理由.【思路点拨】(1)由已知可得:b=1,结合直线与圆M:x2+y2﹣4x﹣2y+4=0相切.进而可得c2=3,a2=4,即得椭圆C的标准方程;(2)在x轴上是否存在一点T(4,0),使得不论直线l的斜率如何变化,总有∠OTA=∠OTB,联立直线与椭圆方程,结合∠OTA=∠OTB 时,直线TA,TB的斜率k1,k2和为0,可证得结论.即,解得:c2=3,则a2=4,故椭圆C的标准方程为:;12.已知A(x1,y1),B(x2,y2)是抛物线C:x2=2py(p>0)上不同两点.(1)设直线l:y=与y轴交于点M,若A,B两点所在的直线方程为y=x﹣1,且直线l:y=恰好平分∠AFB,求抛物线C的标准方程.(2)若直线AB与x轴交于点P,与y轴的正半轴交于点Q,且y1y2=,是否存在直线AB,使得+=?若存在,求出直线AB的方程;若不存在,请说明理由.【思路点拨】(1)设A(x1,y1),B(x2,y2),M(0,),由,消去y整理得x2﹣2px+2p=0,直线y=平分∠AFB,可得k AM+k BM=0,利用韦达定理求得p,即可(2)由题意知,直线AB的斜率存在,且不为零,设直线AB的方程为:y=kx+b (k≠0,b>0),由,得x2﹣2pkx﹣2pb=0,∴,由已知可得b=.直线AB的方程为:y=kx+.作AA′⊥x轴,BB′⊥x轴,垂足为A′,B′,+=+=,得k,。

高考数学压轴难题归纳总结提高培优专题3.10 判断点在圆内外向量应用最厉害()

高考数学压轴难题归纳总结提高培优专题3.10 判断点在圆内外向量应用最厉害()

【题型综述】点与圆的位置关系的解题策略一般有以下几种:①利用设而不求思想求出圆心坐标,然后计算圆心到点的距离并和半径比较得解;②向量法,通过判断数量积的正负来确定点和圆的位置关系:如已知AB 是圆的直径,G 是平面内一点,则0GA GB ⋅<⇔点G 在圆内;0GA GB ⋅>⇔点G 在圆外;0GA GB ⋅=⇔点G 在圆上.③方程法,已知圆的方程222)()(:r b y a x M =-+-,点N ),(00y x ,则22020)()(r b y a x <-+-⇔点N 在圆M 内;22020)()(r b y a x =-+-⇔点N 在圆M 上;22020)()(r b y a x >-+-⇔点N 在圆M 外.四点共圆问题的解题策略:①利用四点构成的四边形的对角互补;②利用待定系数法求出过其中三点的圆的方程,然后证明第四点坐标满足圆的方程.【典例指引】类型一 向量法判定点与圆的位置关系例1 【2015高考福建,理18】已知椭圆E :22221(a 0)x y b a b +=>>过点.(Ⅰ)求椭圆E 的方程; (Ⅱ)设直线1x my m R =-?,()交椭圆E 于A ,B 两点,判断点G 9(4-,0)与以线段AB 为直径的圆的位置关系,并说明理由.【解析】解法一:(Ⅰ)由已知得2222,b caa b c ìïïï=íïï=+ïî解得2a b c ì=ïï=íïï=î 所以椭圆E 的方程为22142x y +=. (Ⅱ)设点1122(y ),B(,y ),A x x AB 中点为00H(,y )x .由22221(m 2)y 230,142x my my x y ì=-ï+--=íï+=ïî得 所以12122223y +y =,y y =m 2m 2m ++,从而022y m 2=+. 所以222222200000095525GH|()y (my )y (m +1)y +my +44216x =++=++=.22222121212()(y )(m +1)(y )|AB|444x x y y -+--== 22221212012(m +1)[(y )4y ](m +1)(y y )4y y y +-==-, 故222222012222|AB|52553(m +1)25172|GH|my (m +1)y 042162(m 2)m 21616(m 2)m m y +-=++=-+=>+++ 所以|AB||GH|>2,故G 9(4-,0)在以AB 为直径的圆外.所以cos GA,GB 0,GA GB 狁>又,不共线,所以AGB Ð为锐角. 故点G 9(4-,0)在以AB 为直径的圆外. 类型二 四点共圆应用问题例2. (2014全国大纲21)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (I )求C 的方程;(II )过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相较于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.类型三 动圆过定点问题例3(2012福建理19)如图,椭圆)0(1:2222>>=+b a by a x E 的左焦点为1F ,右焦点为2F ,离心率21=e 。

专题6.1 导数中的构造函数-玩转压轴题,突破140分之高三数学选择题填空题高端精品

专题6.1 导数中的构造函数-玩转压轴题,突破140分之高三数学选择题填空题高端精品

【方法综述】函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F nx x f x =;出现()()xf x nf x '-形式,构造函数()()F n f x x x =;出现()()f x nf x '+形式,构造函数()()F nxx e f x =;出现()()f x nf x '-形式,构造函数()()F nxf x x e =. 【解答策略】类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造 常用构造形式有()xf x ,()f x x ;这类形式是对u v ⋅,uv型函数导数计算的推广及应用,我们对u v ⋅,u v 的导函数观察可得知,u v ⋅型导函数中体现的是“+”法,uv型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ⋅型,当导函数形式出现的是“-”法形式时,优先考虑构造uv. 例1.【2019届高三第二次全国大联考】设是定义在上的可导偶函数,若当时,,则函数的零点个数为 A .0 B .1 C .2D .0或2 【指点迷津】设,当时,,可得当时,,故函数在上单调递减,从而求出函数的零点的个数.【举一反三】【新疆乌鲁木齐2019届高三第二次质量检测】的定义域是,其导函数为,若,且(其中是自然对数的底数),则A .B .C .当时,取得极大值D .当时,2.利用()f x 与x e 构造()f x 与x e 构造,一方面是对u v ⋅,uv函数形式的考察,另外一方面是对()x x e e '=的考察.所以对于()()f x f x '±类型,我们可以等同()xf x ,()f x x的类型处理, “+”法优先考虑构造()()F xx f x e =⋅, “-”法优先考虑构造()()F xf x x e=. 例2、【湖南省长郡中学2019届高三下学期第六次月考】已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是( )A .B .C .D .【指点迷津】令,可得,可设,,解得,,利用导数研究其单调性极值与最值并且画出图象即可得出.【举一反三】【安徽省黄山市2019届高三第二次检测】已知函数是定义在上的可导函数,对于任意的实数x ,都有,当时,若,则实数a 的取值范围是( )A .B .C .D .3.利用()f x 与sin x ,cos x 构造sin x ,cos x 因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式.()()F sin x f x x =,()()()F sin cos x f x x f x x ''=+;()()F sin f x x x =,()()()2sin cos F sin f x x f x xx x'-'=; ()()F cos x f x x =,()()()F cos sin x f x x f x x ''=-;()()F cos f x x x =,()()()2cos sin F cos f x x f x xx x'+'=.例3、已知函数()y f x =对于任意,22x ππ⎛⎫∈-⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式不成立的是( ) A .234f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭B .234f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .()024f f π⎛⎫<⎪⎝⎭ D .()023f f π⎛⎫< ⎪⎝⎭【指点迷津】满足“()()cos sin 0f x x f x x '+>”形式,优先构造()()F cos f x x x=,然后利用函数的单调性和数形结合求解即可.注意选项的转化. 类型二 构造具体函数关系式这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题. 1.直接法:直接根据题设条件构造函数 例4、α,,22ππβ⎡⎤∈-⎢⎥⎣⎦,且sin sin 0ααββ->,则下列结论正确的是( ) A .αβ> B .22αβ> C .αβ< D .0αβ+> 【指点迷津】根据题目中不等式的构成,构造函数()sin f x x x =,然后利用函数的单调性和数形结合求解即可.【举一反三】【福建省2019届备考关键问题指导适应性练习(四)】已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是( )A .B .C .D .【指点迷津】根据题目中方程的构成,构造函数,然后利用函数的单调性和数形结合求解即可.2. 参变分离,构造函数例5.【云南省玉溪市第一中学2019届高三下学期第五次调研】 设为函数的导函数,且满足,若恒成立,则实数的取值范围是()A.B.C.D.【指点迷津】根据,变形可得,通过构造函数,进一步确定的最大值,利用导数,结合的单调性,即可求解.【举一反三】【河北省唐山市2019届高三下学期第一次模拟】设函数,有且仅有一个零点,则实数的值为()A.B.C.D.【强化训练】一、选择题1.【山西省2019届高三百日冲刺】已知函数,若对任意的,恒成立,则的取值范围为()A.B.C.D.2.【海南省海口市2019届高三高考调研】已知函数的导函数满足对恒成立,则下列判断一定正确的是()A.B.C.D.3.【辽宁省抚顺市2019届高三一模】若函数有三个零点,则实数的取值范围是() A.B.C.D.4.【辽宁省师范大学附属中学2019届高三上学期期中】已知函数,若是函数的唯一极值点,则实数k的取值范围是()A.B.C.D.5.【2019届山西省太原市第五中学高三4月检测】已知函数,若函数在上无零点,则()A.B.C.D.6.【安徽省毛坦厂中学2019届高三校区4月联考】已知,若关于的不等式恒成立,则实数的取值范围是()A.B.C.D.7.【2019届湘赣十四校高三第二次联考】已知函数为上的偶函数,且当时函数满足,,则的解集是()A.B.C.D.8.【河南省八市重点高中联盟“领军考试”2019届高三第三次测评】若函数在区间上单调递增,则的最小值是()A.-3 B.-4 C.-5 D.9.【宁夏六盘山高级中学2019届高三二模】定义域为的奇函数,当时,恒成立,若,,则()A.B.C.D.10.【四川省教考联盟2019届高三第三次诊断】已知定义在上的函数关于轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数的最大值为()A.B.C.D.11.【2019届高三第二次全国大联考】已知定义在上的可导函数的导函数为,若当时,,则函数的零点个数为A.0 B.1 C.2 D.0或2二、填空题12.【江苏省海安高级中学2019届高三上学期第二次月考】若关于x的不等式对任意的实数及任意的实数恒成立,则实数a的取值范围是______.13.【山东省济南市山东师范大学附属中学2019届高三四模】定义在R上的奇函数的导函数满足,且,若,则不等式的解集为______.14.【广东省佛山市第一中学2019届高三上学期期中】已知定义在R上的奇函数满足f(1)=0,当x >0时,,则不等式的解集是______.15.【重庆市第一中学校2019届高三3月月考】设是定义在上的函数,其导函数为,若,,则不等式(其中为自然对数的底数)的解集为______. 16.【湖南师大附中2019届高三月考(七)】设为整数,若对任意的,不等式恒成立,则的最大值是__________.。

专题3.10 判断点在圆内外,向量应用最厉害(解析版)-高中数学压轴题讲义(解答题)

专题3.10 判断点在圆内外,向量应用最厉害(解析版)-高中数学压轴题讲义(解答题)

【题型综述】点与圆的位置关系的解题策略一般有以下几种:①利用设而不求思想求出圆心坐标,然后计算圆心到点的距离并和半径比较得解;②向量法,通过判断数量积的正负来确定点和圆的位置关系:如已知AB 是圆的直径,G 是平面内一点,则0GA GB ⋅< ⇔点G 在圆内;0GA GB ⋅> ⇔点G 在圆外;0GA GB ⋅= ⇔点G 在圆上.③方程法,已知圆的方程222)()(:r b y a x M =-+-,点N ),(00y x ,则22020)()(r b y a x <-+-⇔点N 在圆M 内;22020)()(r b y a x =-+-⇔点N 在圆M 上;22020)()(r b y a x >-+-⇔点N 在圆M 外.四点共圆问题的解题策略:①利用四点构成的四边形的对角互补;②利用待定系数法求出过其中三点的圆的方程,然后证明第四点坐标满足圆的方程.【典例指引】类型一向量法判定点与圆的位置关系例1【2015高考福建,理18】已知椭圆E :22221(a 0)x y b a b +=>>过点2),且离心率为22.(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线1x my m R =-Î,()交椭圆E 于A ,B 两点,判断点G 9(4-,0)与以线段AB 为直径的圆的位置关系,并说明理由.【解析】解法一:(Ⅰ)由已知得2222,2,b c a a b c ì=ïïï=íïï=+ïî解得2a b c ì=ïï=íïï=î所以椭圆E 的方程为22142x y +=.(Ⅱ)设点1122(y ),B(,y ),A x x AB 中点为00H(,y )x .由22221(m 2)y 230,142x my my x y ì=-ï+--=íï+=ïî得学科&网所以12122223y +y =,y y =m 2m 2m ++,从而022y m 2=+.所以222222200000095525GH|()y (my )y (m +1)y +my +44216x =++=++=.22222121212()(y )(m +1)(y )|AB|444x x y y -+--==22221212012(m +1)[(y )4y ](m +1)(y y )4y y y +-==-,故222222012222|AB|52553(m +1)25172|GH|my (m +1)y 042162(m 2)m 21616(m 2)m m y +-=++=-+=>+++所以|AB||GH|>2,故G 9(4-,0)在以AB为直径的圆外.所以cos GA,GB 0,GA GB 狁> 又,不共线,所以AGB Ð为锐角.故点G 9(4-,0)在以AB 为直径的圆外.学科&网类型二四点共圆应用问题例2.(2014全国大纲21)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =.(I )求C 的方程;(II )过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相较于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.类型三动圆过定点问题例3(2012福建理19)如图,椭圆)0(1:2222>>=+b a b y a x E 的左焦点为1F ,右焦点为2F ,离心率21=e 。

利用圆巧解题

利用圆巧解题

利用圆巧解题作者:俞新龙来源:《广东教育·高中》2020年第05期因為圆在初中平面几何中有较多的涉及,在高中数学中又有圆锥曲线压身,所以圆的身份比较尴尬:想被重视却重视不起来,从而导致一些能用圆巧妙解决的较难问题无法被有效突破. 本文举例说明.一、寻找向量中圆的身影,有效突破最值向量作为高考必考的知识点已经成为高考命题者尝试创新命题的一个重要阵地,近年来在高考和各省市模拟卷中出现了不少有新意的考题,其中有一些考题若能挖掘出题中隐含的“圆”,则问题便能较好的求解.我们知道向量是数形结合体,故一般向量问题都会有两种解决办法:代数法和几何法.下面我们就从这两个方面来进行求解.例1. 已知■,■,■是平面向量,■是单位向量.若非零向量■与■的夹角为■,向量b满足■-4■·■+3=0,则|■-■|的最小值是()A. ■-1B. ■+1C. 2D. 2-■解析:代数法(坐标法):如图1建立平面直角坐标系,设■=■=(1,0),■=■,■=■=(x,y),则可知A在射线y=■x(x>0)上,又根据等式■-4■·■+3=0可得(x-2)2+y2=1,所以知B在以(2,0)为圆心、1为半径的圆上. |■-■|的几何意义是线段AB的距离,即圆(x-2)2+y2=1上任意一点与射线y=■x(x>0)上任意一点的距离,故|■-■|的最小值显然是圆心(2,0)到射线y=■x(x>0)的距离■减去圆半径1,故答案为A.几何法:因为■-4■·■+3=■-4■·■+3■=(■-■)·(■-3■)=0,所以BE⊥BD,如图1所示,则可知B在以ED为直径的圆上,即得B的轨迹为(x-2)2+y2=1,其余做法同代数法,略.评注:代数法中的圆从方程中能够直观得到,但几何法中的圆需要结合直角三角形直角顶点一定在以斜边为直径的圆上这个性质.例2. 已知平面向量■,■,■满足|■|=4,■·(■-■)=■·(■-■)=3,当■与■的夹角最大时,■·■=________.解析:设■=■=(4,0),代数法(坐标法):设■=■=(x,y),则根据■·(■-■)=3得x(4-x)+y(-y)=3,化简得(x-2)2+y2=1,即向量■终点A在(2,0)为圆心、1为半径的圆上,同理■终点B也在(2,0)为圆心、1为半径的圆上,如图2所示OA、OB与圆相切时向量■与■的夹角最大,此时A(■,■),B(■,-■),所以■·■=■-■=■.几何法:由条件等式■·(■-■)=■·(■-■)=3整理得(■-■)2=(■-■)2=1,即知向量■与■是(2,0)为圆心、1为半径的圆上的两个动点,记■=■,■=■,如图2所示OA、OB与圆相切时向量■与■的夹角最大,此时A(■,■),B(■,-■),所以■·■=■-■=■.评注:配方是个难点,从配方式子中看出轨迹是圆是关键点.例3. 已知非零向量■,■,■,满足|■|=2,■·■=■|■|,■=■■·■-2,则对任意实数t,|■-t■|的最小值为___________.解析:设■=■=(2,0),根据条件■·■=■|■|知向量■、■的夹角为30°.代数法(坐标法):设■=■=(x, y),则根据■=■■·■-2得x2+y2=3x-2,化简得(x-■)2+y2=■,如图3所示,点B在直线OD:y=■x上运动,点C在以E(■, 0)为圆心、■为半径的圆上运动,因为| ■-t■ | 的几何意义是圆E上的任意一点到直线OD上的任意一点的距离,故| ■-t■ | 的最小值为圆心E到直线OD的距离减去圆半径■,即■-■=■.几何法:由■=■■·■-2得2■=3■·■-4=3■·■-■,从而得(2■-■)(■-■)=0,如图4所示,■=■,2■=■,则2■-■=■,■-■=■,所以■⊥■,又FC1//AC2,所以FC1⊥AC2,因此,向量■的终点C1在以AF为直径的圆上. 下同,略.评注:本题几何法找向量的终点需要进行平行转化,具有一定的难度.二、寻找阿波罗尼斯圆的身影,有效突破最值若 A(a, 0), B(0, 0),若 | PA |2=k2 | PB |2(k≠1),则(x-a)2+y2= k2(x2+y2),化简得(x+■)2+y2 = (■)2,故P点轨迹是圆心在AB上且半径为|■| 的圆. 这个轨迹最先是由古希腊数学家阿波罗尼斯发现,简称阿氏圆. 阿氏圆能化身各种形态存在于问题中,需要我们去发现其身影.例4. 已知■,■是平面内两个互相垂直的单位向量,若向量■满足| ■-■ |=■,则| ■+■-■ |+2| ■-■ | 的最小值为________.解析:如图5,以■=■,■=■,则|■+■-■ |+2|■-■ |=CD+2CB,设C(x, y),由| ■- ■ |=■得(x-1)2+y2=■,则根据阿波罗尼斯圆知可在AD上找一点E(1, m)使CD=2CE,即■= 2■,化简得x2-2x+y2-■y+■=0,此方程与点C轨迹方程是一样的,则■=0,■=■,解得E(1,■),则| ■+■-■ |+2| ■-■ |=2CE+2CB≥2BE,故| ■+■-■ |+2| ■-■ |≥■.评注:阿波罗尼斯圆的正用不难,难的是逆用甚至变用,一般求两条比例为1:λ(λ≠1)的线段和就可以试着用阿波罗尼斯圆的性质进行求解.例5. 已知A,B是平面上的两个定点,平面上的动点C,D满足■=■=k,若对于任意的k≥3,不等式λ≥■恒成立,求实数λ的最小值.解析:如前所述,阿波罗尼斯圆半径r= |■|=■,即只与两个定点间距离和比值有关. 根据本题条件■=■=k可知,点C、D同在由A、B、k确定的阿波罗尼斯圆上,故CD的最大值就是直径为■,于是■=■,又由于k≥3,所以■=■=■,易知y=■在k≥3上是减函数,故■有最大值■. 根据λ≥■恒成立得λ≥■.评注:巧妙利用阿氏圆半径,将问题化为函数单调性问题确实事半功倍.例6. 已知两个不共线的向量■,■,满足| ■ | =3,| ■+■ | =2|■-■ |,设■,■的夹角为?兹,求cos?兹的最小值.解析:本题用阿波罗尼斯圆来解答的难点在如何根据条件| ■+■ | =2|■-■ | 来构造?记■=■=■,■=■,则■ =■+■,■=■-■,故 | AP | = 2 | CP | ,因此,P在以 | AC | =6、k=2的阿波罗尼斯圆O上. 如图6所示,圆半径r=■=4,因为?兹=∠PBC,所以易知当BP与圆O相切时?兹最大,此时cos?兹取到最小值.根据等量关系可以求出CO=2,所以BO=5,故相切时可求得BP=3,此时cos?兹=■,所以cos?兹的最小值为■.评注:从■+ ■、■- ■不难联想到平行四边形,所以可以先用平行四边形对角线性质解题,即|■+ ■ |2+|■- ■ |2=2(|■|2+| ■ |2)=5|■- ■|2,化简得| ■ |2-10cos?兹| ■ | +9=0,由该方程有解得△=100cos?兹2-36≥0,解得| cos?兹|≥■. 根据|■+ ■|=2|■- ■|可知■,■的夹角?兹为锐角,所以cos?兹≥■.三、利用直径与圆内外點所成角,有效突破范围我们知道,圆上的点与直径两端成直角,圆内的点与直径两端成钝角,圆外的点与直径两端成锐角,在解题时一定要有效用起来,以达到突破问题的效果.例7. 已知圆O:x2+y2=4,A、B为圆上两个动点,满足|AB|=2■,D为线段AB的中点,E(3,m),F(3,m+5). 当A、B在圆上运动时,存在某个位置使∠EDF为钝角,则实数m的取值范围是_________.解析:如图7,因为弦长|AB|=2■,所以根据垂径定理知圆心距|OD|=1,所以点D的轨迹方程为x2+y2=1. 当A、B在圆上运动时,存在某个位置使∠EDF为钝角,等价于当D点在圆上运动时,存在位于以AB为直径的圆内的时候. 记AB中点M(3,m+■),则|DM|<■有解,故|DM|min<■. 而|DM|min=|OM|-1=■-1,解得 -■<m<■.评注:存在某个位置问题转化为距离的大小关系问题,显然将问题的难度大大降低了.责任编辑徐国坚。

高考数学 向量在立体几何中的应用(四) 专题

高考数学  向量在立体几何中的应用(四)  专题

高考数学 向量在立体几何中的应用(四) 专题1. 连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于27、43,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为5 ④MN 的最小值为l ,其中真命题的个数为A .1个B .2个C .3个D .4个 答案 C2.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) A.22 B.23 C.4 D.25 答案 C3.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于答案 16.4.如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=o AP BP AB ==,PC AC ⊥.(Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小;(Ⅲ)求点C到平面APB 的距离.解法一:(Ⅰ)取AB 中点D ,连结PD CD ,.AP BP =Q ,PD AB ∴⊥.AC BC =Q ,CD AB ∴⊥.PD CD D =Q I ,AB ∴⊥平面PCD .PC ⊂Q 平面PCD ,PC AB ∴⊥.(Ⅱ)AC BC =Q ,AP BP =,APC BPC ∴△≌△.又PC AC ⊥, PC BC ∴⊥. 又90ACB ∠=o,即AC BC ⊥,且AC PC C =I ,BC ∴⊥平面PAC .取AP 中点E .连结BE CE ,.AB BP =Q ,BE AP ∴⊥.EC Q 是BE 在平面PAC 内的射影,CE AP ∴⊥. BEC ∴∠是二面角B AP C --的平面角.在BCE △中,90BCE ∠=o,2BC =,362BE AB ==,6sin 3BC BEC BE ∴∠==.∴二面角B AP C --的大小为6arcsin3. (Ⅲ)由(Ⅰ)知AB ⊥平面PCD ,∴平面APB ⊥平面PCD .过C 作CH PD ⊥,垂足为H . Q 平面APB I 平面PCD PD =,CH ∴⊥平面APB .CH ∴的长即为点C 到平面APB 的距离. 由(Ⅰ)知PC AB ⊥,又PC AC ⊥,且AB AC A =I ,PC ∴⊥平面ABC .CD ⊂Q 平面ABC ,PC CD ∴⊥.在Rt PCD △中,122CD AB ==,362PD PB ==, A C BE P A CBDPH ACBP z x y HEACBDPD 1C 1B 1A 1EDCB A222PC PD CD ∴=-=.332=⨯=PD CD PC CH . ∴点C 到平面APB 的距离为233.解法二:(Ⅰ)AC BC =Q ,AP BP =,APC BPC ∴△≌△.又PC AC ⊥,PC BC ∴⊥.AC BC C =Q I ,PC ∴⊥平面ABC .AB ⊂Q 平面ABC ,PC AB ∴⊥.(Ⅱ)如图,以C 为原点建立空间直角坐标系C xyz -.则(000)(020)(200)C A B ,,,,,,,,. 设(00)P t ,,.22PB AB ==Q ,2t ∴=,(002)P ,,.取AP 中点E ,连结BE CE ,.AC PC =Q ,AB BP =,CE AP ∴⊥,BE AP ⊥.BEC ∴∠是二面角B AP C --的平面角.(011)E Q ,,,(011)EC =--u u u r ,,,(211)EB =--u u u r,,, 33622cos =⨯=•=∠EBEC EB EC BEC .∴二面角B AP C --的大小为3arccos 3.(Ⅲ)AC BC PC ==Q ,C ∴在平面APB 内的射影为正APB △的中心H ,且CH 的长为点C 到平面APB 的距离.如(Ⅱ)建立空间直角坐标系C xyz -.2BH HE =u u u r u u u r Q ,∴点H 的坐标为222333⎛⎫⎪⎝⎭,,.233CH ∴=u u u r .∴点C 到平面APB 的距离为233. 5.如图,已知1111ABCD A B C D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==. 23BG =,点(1)求证:1E B F D ,,,四点共面;(4分);(2)若点G 在BC 上,M 在1BB 上,GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ;(4分);(3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.证明:(1)建立如图所示的坐标系,则(301)BE =u u u r ,,,(032)BF =u u u r,,,1(333)BD =u u u u r,,,所以1BD BE BF =+u u u u r u u u r u u u r ,故1BD u u u u r ,BE u u u r ,BF u u u r共面.又它们有公共点B ,所以1E B F D ,,,四点共面.(2)如图,设(00)M z ,,,则203GM z ⎛⎫=- ⎪⎝⎭u u u u r ,,,而(032)BF =u u u r ,,,由题设得23203GM BF z =-+=u u u u r u u u r g g g , 得1z =.因为(001)M ,,,(301)E ,,,有(300)ME =u u u r ,,,又1(003)BB =u u u r ,,,(030)BC =u u u r ,,,所以10ME BB =u u u r u u u rg ,0ME BC =u u u r u u u rg ,从而1ME BB ⊥,ME BC ⊥.故ME ⊥平面11BCC B . (3)设向量(3)BP x y =u u u r ,,⊥截面1EBFD ,于是BP BE u u u r u u u r ⊥,BP BF u u u r u u u r⊥. 而(301)BE =u u u r ,,,(032)BF =u u u r ,,,得330BP BE x =+=u u u r u u u r g ,360BP BF y =+=u u u r u u u rg ,解得1x =-,2y =-,所以(123)BP =--u u u r ,,.又(300)BA =u u u r ,,⊥平面11BCC B ,所以BP u u u r 和BA u u u r 的夹角等于θ或πθ-(θ为锐角).于是1cos 14BP BA BP BAθ==u u u r u u u r g u u u r u u u r g . 故tan 13θ=.。

高一数学下第5章《向量的应用》解析及答案

高一数学下第5章《向量的应用》解析及答案

高一数学下第5章《向量的应用》解析及答案巩固基础一、自主梳理理解向量的几何、代数、三角及物理方面的应用,能将当前的问题转化为可用向量解决的问题,培养学生的创新精神和应用能力.二、点击双基1.(理)(2005全国高考卷Ⅲ,理)已知双曲线x 2-22y =1的焦点F 1、F 2,点M 在双曲线上且1MF ·2MF =0,则点M 到x 轴的距离为( )A.34B.35C.332 D.3解析:如图,不妨设M 在右支上,则MF 1⊥MF 2.设|MF 1|=r 1,|MF 2|=r 2,由定义r 1-r 2=2a=2. ① Rt △MF 1F 2中,r 12+r 22=(2c)2=12. ② ①式平方代入②后得r 1r 2=4,∴S △MF1F2=21r 1r 2=2=21|F 1F 2|·h=21×23h.∴h=332.答案:C(文)若O 是△ABC 内一点,++=0,则O 是△ABC 的( ) A.内心 B.外心 C.垂心 D.重心解析:以、为邻边作平行四边形OBDC,则=+. 又OA +OB +OC =0, ∴+=-. ∴-=.∴O 为AD 的中点,且A 、O 、D 共线.又E 为OD 的中点,∴O 是中线AE 的三等分点,且OA=32AE.∴O 是△ABC 的重心. 答案:D2.(2006山东潍坊检测)已知点A(3,1)、B(0,0)、C(3,0),设∠BAC 的平分线AE 与BC 相交于E,若=λ,则λ等于 …( )A.-23B.23C.-3D.-31解析:由=λ,得λ=BE BE =-1-=-1-21=-23.故选择A.答案:A3.(2006湖北八校联考)(理)已知向量a=(2cosα,2cosβ),b=(3cosβ,3sinβ),若a 与b 的夹角为60°,则直线xcosα-ysinα+21=0与圆(x-cosβ)2+(y+sinβ)2=21的位置关系是( )A.相交B.相交且过圆心C.相切D.相离解析:由题意得32)sin sin cos (cos 6⨯+βαβα=21,∴cosαcosβ+sinαsinβ=21.圆心为(cosβ,-sinβ). 设圆心到直线的距离为d,则d=1|21sin sin cos cos |++βαβα=1>22,∴直线和圆相离.故选D. 答案:D(文)已知直线x+y=a 与圆x 2+y 2=4交于A 、B 两点,且|+|=|-|,其中O 为原点,则实数a 的值为( ) A.2 B.-2 C.2或-2 D.6或-6解析:由|OA +OB |=|OA -OB |,得OA ·OB =0,∴OA ⊥OB. 联立方程组⎩⎨⎧=+=+,4,22y x a y x 整理得2x 2-2ax+(a 2-4)=0, 设A(x 1,y 1)、B(x 2,y 2),∴x 1+x 2=a,x 1·x 2=242-a .∴y 1·y 2=(a-x 1)·(a-x 2)=a 2-a(x 1+x 2)+x 1x 2=21a 2-2.∵OA ⊥OB,∴x 1x 2+y 1y 2=0.∴242-a +22a -2=0.∴a 2=4.∴a=±2.又∵Δ=(-2a)2-8(a 2-4)>0,∴a 2<8.∴a ∈(-22,22),而±2∈(-22,22).故选C. 答案:C4.在四边形ABCD 中,·=0,=,则四边形ABCD 是______________________.解析:由·=0知⊥.由=知BC AD.∴四边形ABCD 是矩形. 答案:矩形5.若a=(1,-1),b=(-1,3),c=(3,5),使c=xa+yb 成立的实数x 、y 取值是_____________.解析:依题意(3,5)=x(1,-1)+y(-1,3),⎩⎨⎧=+-=-,53,3y x y x 解得⎩⎨⎧==.4,7y x答案:7、4训练思维【例1】 已知O(0,0)、A(1,2)、B(4,5)及=+t ,求: (1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不埽 胨得骼碛? 解:(1)OP =+t =(1+3t,2+3t).若P 在x 轴上,则2+3t=0,∴t=-32; 若P 在y 轴上,只需1+3t=0,∴t=-31;若P 在第二象限,则⎩⎨⎧>+<+.032,031t t ∴-32<t<-31.(2)∵=(1,2),=(3-3t,3-3t).若OABP 为平行四边形,则=.⎩⎨⎧=-=-233,133t t 无解,∴四边形OABP 不能成为平行四边形.链接·聚焦本题第(2)问还可以利用共线的充要条件: ∵=+t AB ,∴-=t AB . ∴=t AB .∴A 、B 、P 共线. ∴四边形OABP 不能成为平行四边形.【例2】 已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用v=f(u)表示. (1)证明对于任意向量a 、b 及常数m 、n,恒有f(ma+nb)=mf(a)+nf(b)成立; (2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标; (3)求使f(c)=(p 、q)(p 、q 为常数)的向量c 的坐标. 解:(1)设a=(a 1,a 2),b=(b 1,b 2),则ma+nb=(ma 1+nb 1,ma 2+nb 2). ∴f(ma+nb)=(ma 2+nb 2,2ma 2+2nb 2-ma 1-nb 1),mf(a)+nf(b)=m(a 2,2a 2-a 1)+n(b 2,2b 2-b 1)=(ma 2+nb 2,2ma 2+2nb 2-ma 1-nb 1). ∴f(ma+nb)=mf(a)+nf(b)成立. (2)f(a)=(1,2×1-1)=(1,1), f(b)=(0,2×0-1)=(0,-1).(3)设c=(x,y),则f(c)=(y,2y-x)=(p,q).∴y=p,2y-x=q. ∴x=2p-q ,即向量c=(2p-q,p).讲评:要利用题设条件,必须将向量用坐标表示,通过坐标进行计算,从而解决问题,这也是向量运算中比较常用的方法.【例3】 已知m 、n 、p 、q ∈R,求证:mp+nq≤22n m +·22q p +.剖析:本题若采用平方法,则需对mp+nq 的符号进行讨论,然后再平方,若能把握其结构特点,联想到平面向量的数量积性质,则问题容易解决. 证明:设a=(m,n),b=(p,q), 度 ∵|a·b|≤|a||b|,∴|mp+nq|≤22n m +·22q p +.∴mp+nq ≤22n m +·22q p +.状元训练复习篇1.(2004辽宁高考)已知点A(-2,0)、B(3,0),动点P(x,y)满足·=x 2,则点P 的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线解析:PA =(-2-x,-y),PB =(3-x,-y),PA ·PB =(-2-x)(3-x)+(-y)2=x 2,整理得y 2=x+6.∴P 点的轨迹为抛物线. 答案:D2.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为( )A.0.5 hB.1 hC.1.5 hD.2 h 解析:台风中心移动t h,城市B 处在危险区,则(20t)2+402-2×20t×40×cos45°≤900.∴2-21≤t≤2+21.∴B 城市处在危险区的时间为1 h.答案:B3.已知向量集合M={a|a=(1,2)+λ(3,4),λ∈R},N={a|a=(-2,-2)+λ(4,5),λ∈R},则M∩N 等于( ) A.{(1,1)} B.{(1,1),(-2,-2)} C.{(-2,-2)} D.∅解析:⎩⎨⎧+-=++-=+21215242,4231λλλλ∴⎩⎨⎧=-=0,121λλ(注意λ不一定相等).∴M∩N={(-2,2)}. 答案:C4.在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的高为_______________________. 解析:如图,AD=DC=20. ∴BD=ADtan60°=203. ∴塔高为20(1+3) m.答案:20(1+3) m5.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_____方向行驶.解析:如右图,为使小船所走路程最短,v 水+v 船应与岸垂直.又v 水==1,v 船==2,∠ADC=90°,∴∠CAD=45°. 答案:与水速成135°角的6.平面内有向量=(1,7),OB =(5,1),OP =(2,1),点X 为直线OP 上的一个动点. (1)当·取最小值时,求的坐标;(2)当点X 满足(1)的条件和结论时,求cos ∠AXB 的值. 解:(1)设OX =(x,y),∵点X 在直线OP 上, ∴向量与共线.又OP =(2,1),∵x·1-y·2=0,即x=2y,∴OX =(2y,y). 又=-=(1,7)-(2y,y), ∴=(1-2y,7-y).同理,XB =OB -OX =(5-2y,1-y).于是,·=(1-2y)(5-2y)+(7-y)(1-y)=4y 2-12y+5+y 2-8y+7=5y 2-20y+12 =5(y-2)2-8.由二次函数的知识,可知当y=2时,·=5(y-2)2-8有最小值-8,此时=(4,2). (2)当=(4,2),即y=2时,有=(-3,5),=(1,-1),||=34,||=2,·=(-3)×1+5×(-1)=-8,∴cos ∠AXB=||||XB XA =2348∙-=-17174.讲评:向量的坐标表示与运算可以大大简化数量积的运算,由于有关长度、角度和垂直问题可以利用向量的数量积来解决,因此,我们可以利用向量的直角坐标去研究有关长度、角度和垂直问题.7.已知向量a=(cos 23x,sin 23x),b=(cos 2x ,-sin 2x ),且x ∈[0,2π].求:(1)a·b 及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值是-23,求λ的值.解:(1)a·b=cos 23x·cos 2x -sin 23x·sin 2x =cos2x,|a+b|=22)2sin 23(sin )2cos 23(cos xx x x -++ =x 2cos 22+=2x 2cos .∵x ∈[0,2π],∴cosx>0.∴|a+b|=2cosx.(2)f(x)=cos2x-4λcosx,即f(x)=2(cosx-λ)2-1-2λ2.∵x ∈[0,2π],∴0≤cosx≤1.①当λ<0时,当且仅当cosx=0时,f(x)取得最小值-1,这与已知矛盾.②当0≤λ≤1时,当且仅当cosx=λ时,f(x)取得最小值-1-2λ2,由已知得-1-2λ2=-23,解得λ=21.③当λ>1时,当且仅当cosx=1时,f(x)取得最小值1-4λ.由已知得1-4λ=-23,解得λ=85.这与λ>1相矛盾.综上所述,λ=21为所求.加强篇8.(2006北京海淀模拟)设a =(1+cosα,sinα),b=(1-cosβ,sinβ),c=(1,0),其中α∈(0,π),β∈(π,2π),a 与c 的夹角为θ1,b 与c 的夹角为θ2,且θ1-θ2=6π,求sin 4βα-的值. 解:a=(2cos 22α,2sin 2αcos 2α) =2cos 2α(cos 2α,sin 2α),b=(2sin 22β,2sin 2βcos 2β)=2sin 2β(sin 2β,cos 2β), ∵α∈(0,π),β∈(π,2π),∴2α∈(0,2π),2β∈(2π,π). 故|a|=2cos 2α,|b|=2sin 2β,cos θ1=||||c a c a ∙=2cos22cos 22αα=cos 2α, cos θ2=||||c b c b ∙=2sin22sin 22ββ=sin 2β=cos(2β-2π).∴θ1=2α. ∵0<2β-2π<2π,∴θ2=2β-2π.又θ1-θ2=6π,∴2α-2β+2π=6π.故2βα-=-3π,∴sin 4βα-=sin(-6π)=-21.讲评:本题考查向量的坐标表示及其运算,向量数量积的夹角公式的运用,注意角度范围的变化应用,结合三角函数的关系进行求值.9.(全新创编题)如图所示,点F(a,0)(a>0),点P 在y 轴上运动,M 在x 轴上,N 为动点,且PM ·PF =0,PN +PM =0.(1)求点N 的轨迹C 的方程;(2)过点F(a,0)的直线l(不与x 轴垂直)与曲线C 交于A 、B 两点,设点K(-a,0),与的夹角为θ,求证:0<θ<2π.解:(1)设N(x,y)、M(x 0,0)、P(0,y 0),则PM =(x 0,-y 0),PF =(a,-y 0),PN =(x,y-y 0).由·=0,得ax 0+y 02=0. ① 由+=0,得(x+x 0,y-2y 0)=0,即⎩⎨⎧=-=+.02,000y y x x 所以⎪⎩⎪⎨⎧=-=.2,00yy x x代入①,得y 2=4ax 即为所求.(2)设l 的方程为y=k(x-a),由⎩⎨⎧-==),(,42a x k y ax y 消去x,得y 2-k a 4y-4a 2=0.设A(x 1,y 1)、B(x 2,y 2),则y 1y 2=-4a 2,KA =(x 1+a,y 1),KB =(x 2+a,y 2),·=(x 1+a)(x 2+a)+y 1y 2=x 1x 2+a(x 1+x 2)+a 2+y 1y 2=22221)4(a y y +a·(a y 421+a y 422)+a 2-4a 2=41(y 12+y 22)-2a 2>41(2|y 1y 2|)-2a 2=21×4a 2-2a 2=0,所以cos θ=>0.所以0<θ<2π.讲评:向量及其运算是新课程的新增内容,由于向量融数、形于一体,具有代数形式和几何形式的双重身份,使它成为中学数学知识的一个交汇点,成为联系多项内容的媒介.本题是将向量与解析几何、方程、不等式以及三角函数等知识有机结合,体现了《考试大纲》要求的“在知识网络交汇点处命题”的精神,我们预测今年的向量高考题的难度可能上升到压轴题水平.一、教学思路向量兼具代数的抽象与严谨和几何的直观,向量本身是一个数形结合的产物,因此在向量的复习中要注意数与形的结合、代数与几何的结合、形象思维与逻辑思维的结合.应用向量可以解决平面几何中的一些问题,在物理和工程技术中应用也很广泛,教学要结合实例,引导学生把向量的相关知识和实际问题相结合,渗透向量解决问题的高效性.二、注意问题与向量相关的综合应用问题类型较多,往往都和几何图形或某种类型曲线相关联,这就要求在转化成向量方法或抽象为确定的数学模型时,一定要注意和题意等价,善于综合全局,把握转化合理性. 三、参考资料【例1】 已知a=(31x 2,x),b=(x,x-3),x ∈[-4,4].(1)求f(x)=a·b 的表达式;(2)求f(x)的最小值,并求此时a 与b 的夹角.解:(1)f(x)=a·b=31x 2·x+x·(x-3)=31x 3+x 2-3x,x ∈[-4,4].(2)f ′(x)=x 2+2x-3=(x+3)(x-1). 列表:故当x=1时,f(x)有最小值为-35. 此时a=(31,1),b=(1,-2).设θ为a 与b 的夹角,则cosθ=||||b a b a ∙=-22. 又由θ∈[0,π],得θ=43π.【例2】 如图所示,对于同一高度(足够高)的两个定滑轮,用一条(足够长)绳子跨过它们,并在两端分别挂有4 kg 和2 kg 的物体,另在两个滑轮中间的一段绳子悬挂另一物体,为使系统保持平衡状态,此物体的质量应是多少?(忽略滑轮半径、绳子的重量)剖析:先进行受力分析,列出平衡方程,然后用数学方法求解.解:设所求物体质量为m kg 时,系统保持平衡,再设F 1与竖直方向的夹角为θ1,F 2与竖直方向的夹角为θ2,则有⎩⎨⎧=+=)2(.c o s 2c o s 4)1(,s i n 2s i n42121mg g g g g θθθθ(其中g 为重力加速度) 由①式和②式消去θ2,得 m 2-8mcosθ1+12=0,即m=4cosθ1±23cos 412-θ.③ ∵cosθ2>0,由②式知,③式中m=4cosθ1-23cos 412-θ不合题意,舍去. 又∵4cos 2θ1-3≥0,解得23≤cosθ1≤1.经检验,当cosθ1=23时,cosθ2=0,不合题意,舍去.∴23<m <6.综上,所求物体的质量在23kg 到6 kg 之间变动时,系统可保持平衡.讲评:(1)m 的范围是通过函数y=4x+2342-x 的单调性求得的.(2)实际问题的处理要注意变量的实际意义,本题容易忽略cosθ2>0的实际限制.优化测控一、选择题(本大题共12小题,每小题5分,共60分)1.(2006江苏南京期末)已知向量a=(1,0),b=(1,1),c=(-1,0),若c=λa+μb(λ,μ∈R),则λ,μ的值分别为( ) A.1,0 B.1,1 C.0,1 D.-1,0解析:∵c=λa+μb=λ(1,0)+μ(1,1)=(λ+μ,μ),而c=(-1,0),∴⎩⎨⎧=-=+.0,1μμλ ∴⎩⎨⎧=-=.0,1μλ故选择D.答案:D2.有三个命题:①向量AB 与是共线向量,则A 、B 、C 、D 必在同一直线上;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③四边形ABCD 是平行四边形的充要条件是=.其中正确的是( ) A.② B.③ C.①③ D.②③ 解析:①与CD 共线,AB 与CD 也可以平行.②中a 与b 也可能有0. 答案:B3.(2006四川成都检测)设向量a=(cos25°,sin25°),b=(sin20°,cos20°),若t 是实数,且u=a+t b,则|u|的最小值为( )A.2B.1C.22D.21解析:|a|=|b|=1,a·b=sin20°cos25°+cos20°sin25°=sin45°=22, ∴|u|2=|a+t b|2=a 2+2t a·b+t 2b 2=t 2+2t+1=(t+22)2+21≥21.∴|u|≥22.选C.答案:C4.已知|a|=4,|b|=8,且a 与2b-a 互相垂直,则向量a 与b 的夹角是( )A.arccos 41B.π-arccos 41C.3πD.6π解析:由a ⊥(2b-a),得a·(2b-a)=0. ∴2|a||b|cosθ-|a|2=0.∴cosθ=41,θ=arccos 41.答案:A5.(2006北京西城模拟)向量OA =(1,21),OB =(0,1),若动点P(x,y)满足条件⎪⎩⎪⎨⎧<∙<<∙<,10,10则P(x,y)的变动范围(不含边界的阴影部分)是( )解析:OA =(1,21),OB =(0,1).设P(x,y),则OP =(x,y),∵⎪⎩⎪⎨⎧<∙<<∙<,10,10即⎪⎩⎪⎨⎧<<<+<.10,120y y x经分析,选A. 答案:A6.已知向量=(1,1),=(1,a),其中a 为实数,O 为原点,当这两向量的夹角在(0,12π)变动时,a 的取值范围是( )A.(0,1)B.(33,3)C.(33,1)∪(1,3) D.(1,3)解析:只需保证直线AO 和OB 的夹角为此范围就行,显然k OA =1,k OB =a.应用夹角公式tanθ=|a a +-11|<1313+-,可得选项C.答案:C7.已知向量m 与向量n 互相垂直且|m|=|n|,若m=(2,1),则n 等于( ) A.(1,-2) B.(-2,1) C.(-2,1)或(2,-1) D.(1,-2)或(-1,2)解析:设n=(x,y),由题意设⎪⎩⎪⎨⎧=+=+.5,0222y x y x 解得⎩⎨⎧-==2,1y x 或⎩⎨⎧=-=.2,1y x∴n=(1,-2)或(-1,2). 答案:D8.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A 、C),则AP 等于( )A.λ(+),λ∈(0,1)B.λ(+),λ∈(0,22) C.λ(-),λ∈(0,1) D.λ(-),λ∈(0,22)解析:由平行四边形法则及共线的充要条件容易得到选项A. 答案:A9.(2006西安五校联考)已知向量a=(3,4),b=(2,-1),如果向量a+λb 与向量-b 互相垂直,则实数λ的值为( )A.223B.233C.2D.-52解析:a+λb=(3,4)+λ(2,-1)=(3+2λ,4-λ),-b=(-2,1),若(a+λb)⊥(-b),则-2(3+2λ)+4-λ=0.∴λ=-52.故选D.答案:D10.若a 与b 的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a 的模是( )A.2B.4C.6D.12解析:由题意知a 2-a·b-6b 2=-7a,把|b|=4,cos60°=21代入得|a|2-2|a|-24=0.∴|a|=6或|a|=-4(舍).答案:C11.命题p:△ABC 及点G 满足++=0;命题q :G 是△ABC 的重心,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件解析:若G 是△ABC 的重心,由课本例题可知,++=0成立.若++=0,则+=-,可证CG 必经过AB 的中点.答案:C12.在平面直角坐标系中,O 为原点,OA =a,OB =b ,对任意一点M ,它关于A 的对称点为S ,S 关于点B 的对称点为N ,则用a 、b 表示为( )A.2(b-a)B.21(a-b)C.a+bD.21(a+b) 解析:MN =MS +SN =2AS +2SB =2OB -2OA (四边形OASB 是平行四边形).答案:A二、填空题(本大题共4小题,每小题4分,共16分) 13.OA =3e 1,OB =3e 2,且AP =21,则OP =__________________________. 解析:=3e 2-3e 1,=31=e 2-e 1,=+=2e 1+e 2.答案:2e 1+e 214.(2006北京海淀模拟)若向量a=(3,2),b=(0,-1),则向量2a-b 的坐标是_______________;a·b=_______________________. 解析:a=(3,2),b=(0,-1),∴2a-b=(6,4)-(0,-1)=(6,5),a·b=3×0+2×(-1)=-2.答案:(6,5) -215.若对n 个向量a 1,a 2,…,a n 存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1a 1+k 2a 2+…+k n a n =0成立,则称向量a 1,a 2,…,a n 为“线性相关”.依此规定,能说明a 1=(1,0),a 2=(1,-1),a 3=(2,2)“线性相关”的实数k 1、k 2、k 3依次可以取_____________________________(写出一组数值即可,不必考虑所有情况).解析:设k 1a 1+k 2a 2+k 3a 3=0,即k 1(1,0)+k 2(1,-1)+k 3(2,2)=(0,0).∴⎩⎨⎧=+-=++.02,0232321k k k k k ∴k 1=-4k 3,k 2=2k 3.取k 3=1得一组k 1、k 2、k 3依次为-4、2、1.答案:-4、2、116.(2006江苏南京期末)若|a|=1,|b|=2,c=a-b,且c ⊥a,则向量a 与b 的夹角为__________.解析:∵c=a-b 且c ⊥a,∴c·a=0,即(a-b)·a=0,a 2=a·b=1,cos 〈a,b 〉=||||b a b a ∙=21.∴〈a,b 〉=3π. 答案:3π三、解答题(本大题共6小题,共74分)17.(本小题满分12分)已知向量a=(3,-4),求:(1)与a 平行的单位向量b ;(2)与a 垂直的单位向量c ;(3)将a 绕原点逆时针方向旋转45°得到的向量e 的坐标.解:(1)设b=λa,则|b|=1,b=(53,-54)或b=(-53,54).(2)由a ⊥c ,a=(3,-4),可设c=λ(4,3),求得c=(54,53)或c=(-54,-53).(3)设e=(x,y),则x 2+y 2=25.又a·e=3x-4y=|a|·|e|cos45°,即3x-4y=2252,由上面关系求得e=(227,-22)或e=(-22,-227).而向量e 由a 绕原点逆时针方向旋转45°得到,故e=(227,-22).18.(本小题满分12分)已知a 、b 、c 分别是△ABC 三个内角A 、B 、C 的对边,(1)若△ABC 面积为23,c=2,A=60°,求a 、b 的值;(2)若acosA=bcosB ,试判断△ABC 的形状,证明你的结论.解:(1)由已知得23=21bcsinA=bsin60°,∴b=1.由余弦定理a 2=b 2+c 2-2bccosA=3,∴a=3.(2)由正弦定理得2RsinA=a,2RsinB=b,∴2RsinAcosA=2RsinBcosB,即sin2A=sin2B.由已知A 、B 为三角形内角,∴A+B=90°或A=B.故△ABC 为直角三角形或等腰三角形.19.(本小题满分12分)向量a=(1,cos2θ),b=(2,1),c=(4sinθ,1),d=(21sinθ,1),其中θ∈(0,4π).(1)求a·b-c·d 的取值范围;(2)若函数f(x)=|x-1|,判断f(a·b)与f(c·d)的大小,并说明理由.解:(1)a·b=2+cos2θ,c·d=2sin 2θ+1=2-cos2θ,∵a·b-c·d=2cos2θ,∴0<θ<4π.∴0<2θ<2π.∴0<cos2θ<1.∴0<2cos2θ<2.∴a·b-c·d 的取值范围是(0,2).(2)f(a·b)=|2+cos2θ-1|=|1+cos2θ|=2cos 2θ,f(a·b)=|2-cos2θ-1|=|1-cos2θ|=2sin 2θ,于是有f(a·b)-f(c·d)=2(cos 2θ-sin 2θ)=2cos2θ.∵0<θ<4π,∴0<2θ<2π.∴2cos2θ>0.∴f(a·b)>f(c·d).20.(本小题满分12分)△ABC 的三个内角A 、B 、C 满足下列条件:(1)A<B<C;(2)A 、B 、C 成等差数列;(3)tanA·tanC=2+3.(1)求A 、B 、C 的大小;(2)若AB 上的高为43,求a 、b 、c 的大小.解:(1)由题意知B=60°,A+C=120°,tan(A+C)=aC A CA tan tan 1tan tan -+=-tanB=-3,∴tanA+tanC=3+3.故⎩⎨⎧+==32tan ,1tan C A或⎩⎨⎧=+=1tan ,32tan C A (舍).故A=45°,B=60°,C=75°.(2)过C 作CD ⊥AB 于D ,则CD=43.在Rt △ACD 和Rt △ABC 中,由正弦定理得a=B CD sin =8,b=A CDsin =46,c=AD+DB=43+4.21.(本小题满分12分)已知a=(cosθ,sinθ),b=(cosβ,sinβ),a 与b 之间有关系式|ka+b|=3|a-kb|(k>0).(1)用k 表示a·b;(2)求a·b 的最小值,并求此时a 与b 夹角的大小.解:(1)将|ka+b|=3|a-kb|两边平方得a·b=k b k a k 8)13()3(2222-+-=k k 412+.(2)∵(k-1)2≥0,又k>0,∴k k 412+≥k k 42=21,即a·b≥21,cosα=21.又0°≤α≤180°,故a 与b 的夹角为60°.22.(本小题满分14分)已知平面向量a=(3,-1),b=(21,23),(1)证明a ⊥b ;(2)若存在不同时为零的实数k 和t ,使x=a+(t 2-3)b,y=-ka+tb,且x ⊥y ,试求函数关系式k=f(t);(3)据(2)的结论,确定函数k=f(t)的单调区间.(1)证明:a·b=(3,-1)·(21,23)=23-23=0,∴a ⊥b.(2)解:∵x ⊥y,∴x·y=0且a·b=0,a 2=4,b 2=1.整理得-4k+t(t 2-3)=0. ∴k=41t(t 2-3).(3)解:记f(t)=41(t 3-3t),∴f′(t)=43t 2-43.令f′(t)>0,得t<-1或t>1.因此,当t ∈(-∞,-1)时,f(t)是增函数; 当t ∈(1,+∞)时,f(t)也是增函数.再令f′(t)<0得-1<t<1,故t ∈(-1,1)时,f(t)是减函数.。

内蒙古乌兰察布市2024高三冲刺(高考数学)部编版能力评测(拓展卷)完整试卷

内蒙古乌兰察布市2024高三冲刺(高考数学)部编版能力评测(拓展卷)完整试卷

内蒙古乌兰察布市2024高三冲刺(高考数学)部编版能力评测(拓展卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题某校组织知识竞赛,已知甲同学答对第一题的概率为,从第二题开始,甲同学回答第题时答错的概率为,,当时,恒成立,则的最大值为()A.B.C.D.第(2)题已知,则()A.或B.或C.或D.或第(3)题如图,在直三棱柱中,棱长均为.,,分别为,,的中点,则直线与平面所成角的正弦值是()A.B.C.D.第(4)题我们学过度量角有角度制与弧度制,最近,有学者提出用“面度制”度量角,因为在半径不同的同心圆中,同样的圆心角所对扇形的面积与半径平方之比是常数,从而称这个常数为该角的面度数,这种度量角的制度,叫做面度制.在面度制下,若角的面度数为,则角的正弦值是()A.B.C.D.第(5)题已知点是圆上的一个动点,点是直线上除原点外的任意一点,则向量在向量上的投影的最大值是()A.B.C.D.第(6)题如图1,水平放置的正方体容器中注入了一定量的水,现将该正方体容器的一个顶点固定在地面上,使得DA,DB,DC三条棱与地面所成角均相等,此时水平面为HJK,如图2所示.若在图2中,则在图1中()A.B.C.D.第(7)题已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x−y的最大值为A.−1B.3C.7D.8第(8)题若复数满足为虚数单位,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题给出下列说法,错误的有()A.若函数在定义域上为奇函数,则B.已知的值域为,则的取值范围是C.已知函数的定义域为,则函数的定义域为D.已知函数,则函数的值域为第(2)题双曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线.平分该点与两焦点连线的夹角.已知分别为双曲线的左,右焦点,过右支上一点作直线交轴于点,交轴于点.则()A.的渐近线方程为B.点的坐标为C.过点作,垂足为,则D.四边形面积的最小值为4第(3)题已知双曲线的左、右焦点分别为、,过点的直线与双曲线的左、右两支分别交于、两点,下列命题正确的有()A.当点为线段的中点时,直线的斜率为B.若,则C.D.若直线的斜率为,且,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若函数,在上恰有两个最大值点和四个零点,则实数ω的取值范围是______________.第(2)题已知长方体中,,点是线段上靠近点的三等分点,记直线的夹角为,直线的夹角为,直线的夹角为,则之间的大小关系为________.(横线上按照从小到大的顺序进行书写)第(3)题已知向量,,,若,则___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题设为正整数,区间(其中,)同时满足下列两个条件:①对任意,存在使得;②对任意,存在,使得(其中).(Ⅰ)判断能否等于或;(结论不需要证明).(Ⅱ)求的最小值;(Ⅲ)研究是否存在最大值,若存在,求出的最大值;若不存在,说明理由.第(2)题医院为筛查某种疾病,需要血检,现有份血液样本,有以下两种检验方式:方式一:逐份检验,需要检验次;方式二:混合检验,把每个人的血样分成两份,取个人的血样各一份混在一起进行检验,如果结果是阴性,那么对这个人只作一次检验就够了;如果结果是阳性,那么再对这个人的另一份血样逐份检验,此时这份血液的检验次数总共为次.(1)假设有6份血液样本,其中只有2份样本为阳性,若采用逐份检验的方式,求恰好经过3次检验就能把阳性样本全部检验出来的概率;(2)假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是相互独立的,且每份样本是阳性结果的概率为.现取其中(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.①运用概率统计的知识,若,试求关于的函数关系式;②若,且采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求的最大值.参考数据:,,.第(3)题某企业为了扩大产能规模并提高生产效率,对生产设备进行升级换代,为了对比生产设备升级后的效果,采集了生产设备升级前后各20次连续正常运行的时间(单位:天),得到以下数据:升级前:21,32,25,24,33,19,28,26,39,36,22,18,28,26,31,17,24,21,22,26;升级后:33,28,40,23,27,38,41,35,44,39,33,25,40,35,41,27,38,33,46,34.(1)完成下面列联表;生产设备连续正常运行超过30天生产设备连续正常运行不超过30天合计生产设备升级前生产设备升级后合计(2)是否有的把握说明生产设备升级与设备连续正常运行的时间有关?参考公式:,其中.参考数据:0.100.050.0100.0052.7063.8416.6357.879第(4)题向“新”而行,向“新”而进,新质生产力能够更好地推动高质量发展.以人工智能的应用为例,人工智能中的文生视频模型Sora (以下简称Sora ),能够根据用户的文本提示创建最长60秒的逼真视频.为调查Sora 的应用是否会对视频从业人员的数量产生影响,某学校研究小组随机抽取了120名视频从业人员进行调查,结果如下表所示.Sora 的应用情况视频从业人员合计减少未减少应用7075没有应用15合计100120(1)根据所给数据完成上表,依据小概率值的独立性检验,能否认为Sora 的应用与视频从业人员的减少有关?(2)某公司视频部现有员工100人,公司拟开展Sora 培训,分三轮进行,每位员工第一轮至第三轮培训达到“优秀”的概率分别为,每轮相互独立,有二轮及以上获得“优秀”的员工才能应用Sora .(ⅰ)求员工经过培训能应用Sora 的概率.(ⅱ)已知开展Sora 培训前,员工每人每年平均为公司创造利润6万元;开展Sora 培训后,能应用Sora 的员工每人每年平均为公司创造利润10万元;Sora 培训平均每人每年成本为1万元.根据公司发展需要,计划先将视频部的部分员工随机调至其他部门,然后开展Sora 培训,现要求培训后视频部的年利润不低于员工调整前的年利润,则视频部最多可以调多少人到其他部门?附:,其中.0.0100.0050.0016.6357.87910.828第(5)题已知椭圆的左、右焦点分别为,,点是椭圆上一点,是和的等差中项.(Ⅰ)求椭圆的标准方程;(Ⅱ)若为椭圆的右顶点,直线与轴交于点,过点的另一直线与椭圆交于、两点,且,求直线的方程.。

湖北省孝感市2024年数学(高考)统编版质量检测(押题卷)模拟试卷

湖北省孝感市2024年数学(高考)统编版质量检测(押题卷)模拟试卷

湖北省孝感市2024年数学(高考)统编版质量检测(押题卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题已知为虚数单位,若,则()A.B.2C.D.第(2)题甲、乙、丙、丁、戊5名青年志愿者被分配到3个不同的岗位参加志愿者工作,每个岗位至少分配一人,其中甲与丙不在同一岗位,丁与戊在同一岗位,则不同的分配方案有()A.18种B.21种C.24种D.30种第(3)题已知集合,则()A.B.C.D.第(4)题若复数满足(为虚数单位),则在复平面内的共轭复数所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(5)题已知点是圆上的一个动点,点是直线上除原点外的任意一点,则向量在向量上的投影的最大值是()A.B.C.D.第(6)题已知数列为等比数列,,则()A.B.C.2D.第(7)题已知抛物线的焦点为F,其准线与x轴交于点为C上一点,,则()A.B.C.D.第(8)题已知3名男同学、2名女同学和1名老师站成一排,女同学不相邻,老师不站两端,则不同的排法共有()A.336 种B.284种C.264 种D.186种二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题在正四棱台中,则下列说法正确的是()A.若正四棱台内部存在一个与棱台各面均相切的球,则该棱台的侧棱长为B.若正四棱台的各顶点均在一个半径为的球面上,则该棱台的体积为C.若侧棱长为为棱的中点,为线段上的动点(不含端点),则不可能成立D.若侧棱长为为棱的中点,过直线且与直线平行的平面将棱台分割成体积不等的两部分,则其中较小部分的体积为4第(2)题已知三棱锥是边长为2的正三角形,分别是的中点,在平面内的投影为点在平面内的投影为点.()A.两两垂直B.在平面的投影为的中点C.三点共线D.形如三棱锥的容器能被整体装入一个直径为2.5的球第(3)题在平面直角坐标系中,角的顶点与原点重合,始边与x轴的非负半轴重合,终边过点,函数,则( )A .的图象关于直线对称B.的图象关于点对称C.在内恰有一个极大值点D.在内单调递减三、填空(本题包含3个小题,每小题5分,共15分。

高考数学压轴专题专题备战高考《平面向量》难题汇编含答案解析

高考数学压轴专题专题备战高考《平面向量》难题汇编含答案解析

【最新】数学复习题《平面向量》专题解析一、选择题1.已知向量(1,2)a =v ,(3,4)b =-v ,则a v 在b v方向上的投影为AB.2C .1 D【答案】C 【解析】 【分析】根据a v在b v方向上的投影定义求解. 【详解】a v 在b v 方向上的投影为(1,2)(3,4)381(3,4)5a b b⋅⋅--+===-rr r , 选C. 【点睛】本题考查a v在b v方向上的投影定义,考查基本求解能力.2.已知点M 在以1(,2)C a a -为圆心,以1为半径的圆上,距离为,P Q 在圆222:8120C x y y +-+=上,则MP MQ ⋅u u u r u u u u r的最小值为( )A.18-B.19-C.18+D.19+【答案】B 【解析】 【分析】设PQ 中点D ,得到,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,求得23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,再利用圆与圆的位置关系,即可求解故()223MP MQ ⋅≥-u u u r u u u u r,得到答案.【详解】依题意,设PQ 中点D ,则,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,所以23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,221C D ==Q ,D ∴在以1为半径,以2C 为圆心的圆上,21C C ==≥Q ,1221min min MD C C C D MC ∴=--故()22319MP MQ ⋅≥-=-u u u r u u u u r【点睛】本题主要考查了圆的方程,圆与圆的位置关系的应用,以及平面向量的数量积的应用,着重考查了推理论证能力以及数形结合思想,转化与化归思想.3.如图,在ABC V 中,AD AB ⊥,3BC BD =u u u v u u u v ,1AD =u u u v ,则AC AD ⋅=u u u v u u u v( )A .3B 3C 3D 3【答案】D 【解析】∵3AC AB BC AB =+=u u u v u u u v u u u v u u u v u u v,∴(3)3AC AD AB AD AB AD BD AD ⋅=+⋅=⋅⋅u u u v u u u v u u u v u u v u u u v u u u v u u u v u u u v ,又∵AB AD ⊥,∴0AB AD ⋅=uuu r,∴33cos 3cos 33AC AD AD AD ADB BD ADB AD u u u v u u u v u u u v u u u v u u v u u u v u u u v u u u v⋅=⋅=⋅∠=⋅∠==, 故选D .4.已知单位向量a r ,b r 的夹角为3π,(),c a b R μλμ+=λ+∈r u u r u u r ,若2λμ+=,那么c r 的最小值为( ) A 2 B 6C 10D 3【答案】D 【解析】 【分析】利用向量的数量积的运算公式,求得12a b ⋅=r r ,再利用模的公式和题设条件,化简得到24c λμ=-u r ,最后结合基本不等式,求得1λμ≤,即可求解.【详解】由题意,向量,a b r r 为单位向量,且夹角为3π,所以11cos 11322a b a b π⋅=⋅=⨯⨯=r r r r ,又由(),c a b μλμ=λ+∈R r u u r u u r,所以()22222222()4c a b a b λμλμλμλμλμλμλμλμ=+=++⋅=++=+-=-u r r r r r ,因为,R λμ+∈时,所以222()122λμλμ+⎛⎫≤== ⎪⎝⎭,当且仅当λμ=时取等号,所以23c ≥u r ,即c ≥u r故选:D . 【点睛】本题主要考查了平面向量的数量积的运算,以及向量的模的计算,其中解答中熟记向量的数量积和模的计算公式,以及合理应用基本不等式求解是解答的关键,着重考查了推理与运算能力.5.在ABC V 中,4AC AD =u u u r u u u r,P 为BD 上一点,若14AP AB AC λ=+u u u r u u u r u u u r ,则实数λ的值( )A .34B .320C .316D .38【答案】C 【解析】 【分析】根据题意,可得出144λ=+u u u r u u u r u u u rAP AB AD ,由于B ,P ,D 三点共线,根据向量共线定理,即可求出λ. 【详解】解:由题知:4AC AD =u u u r u u u r ,14AP AB AC λ=+u u ur u u u r u u u r ,所以144λ=+u u u r u u u r u u u r AP AB AD ,由于B ,P ,D 三点共线,所以1414λ+=,∴316λ=. 故选:C.【点睛】本题考查平面向量的共线定理以及平面向量基本定理的应用.6.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ). A .33,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .2323,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .233⎛⎫+∞ ⎪ ⎪⎝⎭D .3,3⎛⎫+∞ ⎪ ⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r ,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=, 解得23t <或23t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.7.已知正ABC ∆的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC ⋅u u u r u u u r的值为( ) A .83- B .1- C .1 D .3【答案】B【解析】 【分析】由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】由已知可得:EB=EC=7 , 又23tan BED 3BD ED ∠===所以221tan 1cos 1tan 7BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EB EC BEC ⎛⎫⋅=∠=⨯⨯-=- ⎪⎝⎭u u u r u u u r u u u r u u u r ‖故选B . 【点睛】本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题.8.如图,已知1OA OB ==u u u v u u u v ,2OC =u u u v ,4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB u u u v u u u v u u u v =+,则mn等于( )A .57B .75C .37D .73【答案】A 【解析】 【分析】依题意建立直角坐标系,根据已知角,可得点B 、C 的坐标,利用向量相等建立关于m 、n 的方程,求解即可. 【详解】以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立直角坐标系如图所示:因为1OA OB ==u u u r u u u r ,且4tan 3AOB ∠=-,∴34cos sin 55AOB AOB ∠=-∠=,,∴A (1,0),B (3455-,),又令θAOC ∠=,则θ=AOB BOC ∠-∠,∴413tan θ413--=-=7,又如图点C 在∠AOB 内,∴cos θ2,sin θ72,又2OC u u u v =C (1755,), ∵OC mOA nOB =+u u u r u u u r u u u r ,(m ,n ∈R ),∴(1755,)=(m,0)+(3455n n -,)=(m 35n -,45n ) 即15= m 35n -,7455n =,解得n=74,m=54,∴57m n =, 故选A . 【点睛】本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.9.已知平面直角坐标系xOy 中有一凸四边形ABCD ,且AB 不平行于,CD AD 不平行于BC .设AD 中点(,),E a b BC 中点(,)F b a -,且222a b +=,求||||AB DC +u u u r u u u r的取值范围( )A .(4,)+∞B .[4,)+∞C .(0,4)D .(2,4)【答案】A 【解析】 【分析】根据AD 中点(,),E a b BC 中点(,)F b a -,通过向量运算得到2EF AB DC =+u u u r u u u r u u u r,从而有2AB DC EF +=u u u r u u u r u u u r ,用两点间距离公式得到EF u u u r,再根据AB 不平行于CD ,由||||AB D AB DC C ++>u u u r u u r u u u u u r求解.【详解】因为,EF ED DC CF EF EA AB BF =++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,所以2EF AB DC =+u u u r u u u r u u u r ,又因为2EF ===u u u r ,所以24AB DC EF +==u u u r u u ,因为AB 不平行于CD ,所以||||AB D AB DC C ++>u u u r u u u r u u u r u u u r ,所以||||4AB DC +>u u u r u u u r.故选:A 【点睛】本题主要考查平面向量在平面几何中的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.10.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线;∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.11.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且.2BP PA =,则CP CB ⋅=u u u v u u u v( ) A .13B .12C .23D .1【答案】C 【解析】 【分析】利用向量的加减法及数乘运算用,CA CB u u u r u u u r表示CP u u u v,再利用数量积的定义得解. 【详解】依据已知作出图形如下:()11213333CP CA AP CA AB CA CB CA CA CB =+=+=+-=+u u u v u u v u u u v u u v u u u v u u v u u u v u u v u u v u u u v.所以221213333CP CB CA CB CB CA CB CB ⎛⎫+=+ ⎪⎝⎭⋅=⋅⋅u u u v u u u v u u v u u u v u u u v u u v u u u v u u u v221211cos 13333π=⨯⨯⨯+⨯= 故选C 【点睛】 本题主要考查了向量的加减法及数乘运算,还考查了数量积的定义,考查转化能力,属于中档题.12.已知向量(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,则当,1[]2t ∈-时,a tb-r r 的最大值为( )A BC .2D 【答案】D 【解析】 【分析】根据(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,得到1a =r ,1b =r ,0a b ⋅=r r ,再利用a tb -==r r 求解.【详解】因为(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,a b ⊥r r,所以1a =r ,1b =r ,0a b ⋅=r r,所以a tb -==r r当[]2,1t ∈-时,maxa tb-=r r故选:D 【点睛】本题考查向量的模以及数量积的运算,还考查运算求解能力,属于中档题.13.已知向量m →,n →的夹角为60︒,且1m →=,m n →→-=n →=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】设||n x →=,利用数量积的运算法则、性质计算即可. 【详解】 设||n x →=,因为1m →=,向量m →,n →的夹角为60︒, 所以2213m n x x →→-=-+=, 即220x x --=,解得2x =,或1x =-(舍去),所以2n →=. 故选:B 【点睛】本题主要考查了向量的模的性质,向量数量积的运算,属于中档题.14.设()1,a m =r ,()2,2b =r,若()2a mb b +⊥r r r ,则实数m 的值为( )A .12B .2C .13-D .-3【答案】C 【解析】 【分析】计算()222,4a mb m m +=+r r,根据向量垂直公式计算得到答案.【详解】()222,4a mb m m +=+r r,∵()2a mb b +⊥r r r ,∴()20a mb b +⋅=r r r ,即()22280m m ⋅++=,解得13m =-.故选:C .【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.15.已知ABC V 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=u u u r u u u r( )A .1B .2-C .12D .12-【答案】C 【解析】 【分析】以,BA BC u u u r u u u r为基底,将,AD BE u u u r u u u r 用基底表示,根据向量数量积的运算律,即可求解.【详解】222,,33BD DC BD BC AD BD BA BC BA ===-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r,11,22AE EC BE BC BA =∴=+u u u r u u u r u u u r , 211()()322AD BE BC BA BC BA ⋅=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r 22111362BC BC BA BA =-⋅-u u u r u u u r u u u r u u u r 111123622=-⨯⨯⨯=. 故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.16.已知A ,B 是圆224+=O: x y 上的两个动点,||2AB =u u u r ,1233OC OA OB =+u u u r u u u r u u u r ,若M 是线段AB 的中点,则OC OM ⋅u u u r u u u u r 的值为( ). AB.C .2 D .3 【答案】D【解析】【分析】 判断出OAB ∆是等边三角形,以,OA OB u u u r u u u r 为基底表示出OM u u u u r ,由此求得OC OM ⋅u u u r u u u u r 的值.【详解】 圆O 圆心为()0,0,半径为2,而||2AB =u u u r ,所以OAB ∆是等边三角形.由于M 是线段AB 的中点,所以1122OM OA OB =+u u u u r u u u r u u u r .所以OC OM ⋅u u u r u u u u r 12331122OA O O O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭u u uu u u r u u u r r u u u r 22111623OA OA OB OB =+⋅⋅+u u u r u u u r u u u r u u u r 21422cos603323=+⨯⨯⨯+=o . 故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.17.已知向量(sin ,cos )a αα=r ,(1,2)b =r ,则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α= C .若()f a b α=⋅r r 取得最大值,则1tan 2α= D .||a b -r r 51 【答案】B【解析】【分析】A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()f α的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性.【详解】A 选项,若//a b r r,则2sin cos αα=,即1tan 2α=,A 正确. B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确. C 选项,si (n )52cos in()f a b ααααϕ+==⋅=+r r ,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确.D 选项,由向量减法、模的几何意义可知||a b -r r1,此时5a =-rr ,,a b r r 反向.故选项D 正确.故选:B【点睛】 本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.18.已知向量(),1a x =-r ,(b =r ,若a b ⊥r r ,则a =r ( ) ABC .2D .4 【答案】C【解析】 由a b r r ⊥,(),1a x =-r ,(b r =,可得:x 0x ,==,即)1a =-r 所以2a ==r 故选C19.已知单位向量,a b rr 满足3a b +=r r ,则a r 与b r 的夹角为 A .6π B .4π C .3π D .2π 【答案】C【解析】由3a b +=r r 22236913a b a a b b +=+⋅+=r r r r r r , 又因为单位向量,a b r r ,所以1632a b a b ⋅=⇒⋅=r r r r , 所以向量,a b r r 的夹角为1cos ,2a b a b a b ⋅〈〉==⋅r r r r r r ,且,[0,]a b π〈〉∈r r ,所以,3a b π〈〉∈r r ,故选C. 20.在OAB ∆中,已知OB =u u u v 1AB u u u v =,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v 的最小值为( )ABCD 【答案】A【解析】【分析】 根据2OB =u u u r ,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r .再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】 在OAB ∆中,已知2OB =u u u r ,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OB AOB OAB=∠∠u u u r u u u r 代入2sin 2OAB =∠,解得sin 1OAB ∠= 即2OAB π∠=所以OAB ∆为等腰直角三角形 以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22⎝⎭所以22OA =⎝⎭u u u r ,)2,0OB =u u u r 因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r 则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫ ⎪ ⎪⎝⎭= 则2222222OP λμλ⎛⎫=++⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r 2222λλμμ=++因为23λμ+=,则32μλ=-代入上式可得==所以当95λ=时, min 5OP ==u u u r 故选:A【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.。

专题一 墙角模型(解析版)-2022年高考数学之解密几何体的外接球与内切球十大模型命题点对点突破

专题一 墙角模型(解析版)-2022年高考数学之解密几何体的外接球与内切球十大模型命题点对点突破

专题一 墙角模型如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.空间几何体的外接球与内切球十大模型1.墙角模型;2.对棱相等模型;3.汉堡模型;4.垂面模型;5.切瓜模型;6.斗笠模型;7.鳄鱼模型;8.已知球心或球半径模型;9.最值模型;10.内切球模型.【方法总结】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例题选讲】[例] (1)已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为( )A .12πB .7πC .9πD .8π答案 A 解析 由AC ⊥平面BCD ,BC ⊥CD 知三棱锥A -BCD 可构造以AC ,BC ,CD 为三条棱的长方体,设球O 的半径为R ,则有(2R )2=AC 2+BC 2+CD 2=3+4+5=12,所以S 球=4πR 2=12π,故选A .(2)若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ). A .3 B .6 C .36 D .9ABC D A 1B 1C 1D 1类型ⅠA BC DA 1B 1C 1D 1类型ⅡABC D A 1B 1C 1D 1类型ⅢABC D A 1B 1C 1D 1例外型答案 A 解析 616164)2(2=++=R ,3=R ,故选A .(3)已知S ,A ,B ,C ,是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC =2,则球O 的表面积等于( ).A .4πB .3πC .2πD .π 答案 解析 由已知,222211(2)2R =++=, 244S R π∴==球π.(4)在正三棱锥S -ABC 中,M ,N 分别是棱SC ,BC 的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S -ABC 外接球的表面积是________.答案 π36 解析 MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,222(2)(23)(23)R ∴=+2(23)+36=,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(5)(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ).A .68πB .64πC .62πD .6π答案 D 解析 解法一:, PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC , 2APB PA PB PC ∴∠=90︒,∴===,P ABC∴-为正方体的一部分,2222R =++,6=,即364466,π62338R V R ππ=∴==⨯=,故选D .解法二:设2PA PB PC x ===,, E F 分别为, PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC△为边长为2的等边三角形,3CF ∴=,又90CEF ∠=︒,213, 2CE x AE PA x ∴-==,AEC △中,ABCSMN ACP EF(解法一)ABCP E F 312xD(解法二)由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D ∴为AC 的中点,cos E ∠12AD AC PA x ==,2243142x x x x +-+∴=,2212212 22x x x ∴+=∴==,,,2PA PB PC ∴===,又2AB BC AC ===,, , PA PB PC ∴两两垂直,22226R ∴=++=,62R ∴=,34433V R ππ∴==⨯668=6π=,故选D . (6)已知二面角α-l -β的大小为π3,点P ∈α,点P 在β 内的正投影为点A ,过点A 作AB ⊥l ,垂足为点B ,点C ∈l ,BC =22,P A =23,点D ∈β,且四边形ABCD 满足∠BCD +∠DAB =π.若四面体P ACD 的四个顶点都在同一球面上,则该球的体积为________.答案 86π 解析 ∵∠BCD +∠DAB =π,∴A ,B ,C ,D 四点共圆,直径为AC ,∵P A ⊥平面β,AB ⊥l ,∴易得PB ⊥l ,即∠PBA 为二面角α-l -β的平面角,即∠PBA =π3,∵P A =23,∴BA =2,∵BC=22,∴AC =23.设球的半径为R ,则23-R 2-()32=R 2-()32,∴R =6,V =4π3(6)3=86π.【对点训练】1.点A ,B ,C ,D 均在同一球面上,且AB ,AC ,AD 两两垂直,且AB =1,AC =2,AD =3,则该球的 表面积为( )A .7πB .14πC .72πD .714π31.答案 B 解析 三棱锥A -BCD 的三条侧棱两两互相垂直,所以把它补为长方体,而长方体的体对角线长为其外接球的直径.所以长方体的体对角线长是12+22+32=14,它的外接球半径是142,外接球的表面积是4π×⎝⎛⎭⎫1422=14π.2.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱 锥B -ACD 的外接球的表面积为( )A .5πB .203π C .10π D .34π2.答案 D 解析 依题意,在三棱锥B -ACD 中,AD ,BD ,CD 两两垂直,且AD =4,BD =CD =3,因此可将三棱锥B ­ACD 补形成一个长方体,该长方体的长、宽、高分别为3,3,4,且其外接球的直径2R =32+32+42=34,故三棱锥B -ACD 的外接球的表面积为4πR 2=34π3.已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________. 3.答案6π 解析 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径.∴CD =(2)2+(2)2+(2)2=2R ,因此R =62,故球O 的体积V =4πR 33=6π.4.已知四面体P -ABC 四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,AB =PB =2,则球O 的表面积为________.4.答案 9π 解析 由PB ⊥平面ABC ,AB ⊥AC ,可得图中四个直角三角形,且PC 为△PBC ,△P AC的公共斜边,故球心O 为PC 的中点,由AC =1,AB =PB =2,PC =3,∴球O 的半径为32,其表面积为9π.5.三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A ⊥PB ,三棱锥P -ABC 的外接球的体 积为( )A .272πB .2732π C .273π D .27π5.答案 B 解析 因为三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,所以△P AB ≌△PBC≌△P AC .因为P A ⊥PB ,所以P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=2732π,故选B .6.在空间直角坐标系Oxyz 中,四面体ABCD 各顶点的坐标分别为A (2,2,1),B (2,2,-1),C (0,2,1),D (0,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .43πD .6π6.答案 B 解析 在空间直角坐标系内画出A ,B ,C ,D 四个点,可得BA ⊥AC ,DC ⊥平面ABC ,因此可以把四面体ABCD 补成一个棱为2的正方体,其外接球的半径R =22+22+222= 3.所以外接球的表面积为4πR 2=12π,故选B.7.在平行四边形ABCD 中,∠ABD =90°,且AB =1,BD =2,若将其沿BD 折起使平面ABD ⊥平面BCD ,则三棱锥A -BDC 的外接球的表面积为( D )A .2πB .8πC .16πD .4π 7.答案 D 解析 画出对应的平面图形和立体图形,如图所示.AAB BC CD DO在立体图形中,设AC 的中点为O ,连接OB ,OD ,因为平面ABD ⊥平面BCD ,CD ⊥BD ,所以CD ⊥平面ABD ,又AB ⊥BD ,所以AB ⊥平面BCD ,所以△CDA 与△CBA 都是以AC 为斜边的直角三角形,所以OA =OC =OB =OD ,所以点O 为三棱锥A -BDC 的外接球的球心.于是,外接球的半径r =12AC=12CD 2+DA 2=1212+(3)2=1.故外接球的表面积S =4πr 2=4π.故选D .8.在正三棱锥S -ABC 中,点M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的外接球的表面积为( )A .6πB .12πC .32πD .36π8.答案 B 解析 因为三棱锥S -ABC 为正三棱锥,所以SB ⊥AC ,又AM ⊥SB ,AC ∩AM =A ,AC ,AM⊂平面SAC ,所以SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC ,同理SA ⊥SC ,即SA ,SB ,SC 三线两两垂直,且AB =22,所以SA =SB =SC =2,所以(2R )2=3×22=12,所以球的表面积S =4πR 2=12π,故选B.9.在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体A -BCD 为鳖臑,AB ⊥平面BCD ,且AB =BC =36CD ,若此四面体的体积为833,则其外接球的表面积为________. 9.答案 56π 解析 四面体A -BCD 为鳖臑,则由题意可知△BCD 中只能∠BCD 为直角,则四面体A -BCD 的体积为13×12×CD ·36CD ·36CD =833,解得CD =43.易知外接球的球心为AD 的中点,易求得AD =214,所以球的半径为14,所以球的表面积为56π.10.在长方体ABCD-A1B1C1D1中,底面ABCD是边长为32的正方形,AA1=3,E是线段A1B1上一点,若二面角A-BD-E的正切值为3,则三棱锥A-A1D1E外接球的表面积为________.10.答案35π解析过点E作EF∥AA1交AB于F,过F作FG⊥BD于G,连接EG,则∠EGF为二面角A-BD-E的平面角,∵tan∠EGF=3,∴EFFG=3,∵EF=AA1=3,∴FG=1,则BF=2=B1E,∴A1E=22,则三棱锥A-A1D1E外接球的直径为8+9+18=35,因此三棱锥A-A1D1E外接球的表面积S=35π.。

【提分必做】高中数学 考点47 点与圆的位置关系庖丁解题 新人教A版必修2

【提分必做】高中数学 考点47 点与圆的位置关系庖丁解题 新人教A版必修2

考点47 点与圆的位置关系点与圆的位置关系点与圆有三种位置关系,即点在圆外、点在圆上、点在圆内,判断点与圆的位置关系有两种方法:(1)几何法:将所给的点M 与圆心C 的距离跟半径r 比较:若|CM |=r ,则点M 在圆上;若|CM | >r ,则点M 在圆外;若|CM |<r ,则点M 在圆内.(2)代数法:可利用圆C 的标准方程(x -a )2+(y -b )2=r 2来确定:点M (m ,n )在圆C 上⇔(m -a )2+(n -b )2=r 2;点M (m ,n )在圆C 外⇔(m -a )2+(n -b )2>r 2;点M (m ,n )在圆C 内⇔(m -a )2+(n -b )2<r 2. 【例】已知点(2,0)和(x –2)2+(y +1)2=3,则点与圆的位置关系是____.【答案】点在圆的内部【规律方法】判断点与圆的位置关系的常用方法有两种:一种是利用圆心与已知点的距离d 与r 的大小关系.当d >r 时,点在圆外,当d =r 时,点在圆上,当d <r 时,点在圆内;另一种就是将已知点(x 0,y 0)代入圆的方程,利用其结果与r 2的大小关系来判断.当(x 0– a )2+(y 0–b )2 >r 2时,点在圆外,当(x 0–a )2 +(y 0–b )2=r 2时,点在圆上,当(x 0–a )2 +(y 0–b )2<r 2时,点在圆内. 1.点P (m ,5)与圆x 2+y 2 =24的位置关系是( )A .在圆外B .在圆内C .在圆上D .不确定【答案】A【解析】m 2+52=25+m 2≥25>24.2.若点(1,1)在圆(x -a )2+(y +a )2=4上,则a 的值是( )A .-1B .1C .±1D .0【答案】C【解析】由题意得(1-a )2+(1+a )2=4,解得a =±1.3.若点(4a -1,3a +2)不在圆(x +1)2+(y -2)2=25的外部,则a 的取值范围是( )A .-55<a <55 B .-1<a <1 C .-55≤a ≤55 D .-1≤a ≤1 【答案】D【解析】由已知,得(4a )2+(3a )2≤25.∴a 2≤1,∴|a |≤1,即-1≤a ≤1.4.已知圆C :(x –a )2+(y –b )2=r 2(r >0)过原点,则a ,b ,r 应满足的条件是_________.【答案】a 2+b 2=r 2【解析】过原点,∴a 2+b 2=r 2 5.已知点A (l ,2)不在圆C :(x –a )2+(y +a )2=2a 2的内部,则实数a 的取值范围_________.【答案】()5002⎡⎫-+∞⎪⎢⎣⎭U ,,.【易错易混】当圆的标准方程的右端含有字母时,不能忽略隐含条件.6.已知两点P (–5,6)和Q (5,–4),求以P ,Q 为直径端点的圆的标准方程,并判断点A (2,2),B(1,8),C (6,5)是在圆上,在圆内,还是在圆外.【解析】由已知条件及圆的性质可知,圆心M 在直径PQ 的中点处,∴圆心M 的坐标为(0,1), 半径r =1||2PQ =12∴圆的标准方程为x 2+(y –1)2=50. ||AM r Q ,∴点A 在圆内.||,BM r Q ∴点B 在圆上.||,CM r Q ∴点C 在圆外.∴圆的标准方程为x 2+(y –1)2=50.点A 在圆内,点B 在圆内,点C 在圆外. 【解题反思】(1)求圆的方程,只需确定圆心和半径就可以写出其标准方程.(2)判定点与圆的位置关系,即判定该点与圆心的距离和圆的半径的大小关系.1.已知圆的方程是(x –2)2+(y –3)2=4,则点P (3,2) ( )A .是圆心B .在圆上C .在圆内D .在圆外 【答案】C【解析】Q 圆心为(2,3),∴点P 到圆心的距离为d 2r =, ∴点P 在圆内.2.若点(1,0)在圆(x -a )2+(y +a )2=5上,则圆的圆心 .【答案】(2,–2)或(–1,1)【解析】由题意得(1-a )2+a 2=5,解得a =2或a =–1.圆心为(2,–2)或(–1,1)3.平面直角坐标系中有A(0,1),B(2,1),C(3,4),D(-1,a )四点,若这四点共圆,则a = .【答案】a =2或a =4.4.已知两点P (–5,6)和Q (5,–4),求以P ,Q 为直径端点的圆的标准方程,并判断点A (2,2),B (1,8),C (6,5)是在圆上,在圆内,还是在圆外.石磨鲁班是中国古代一位优秀的创造发明家.他生活在春秋末期,叫公输般,因为他是鲁国人,所以又叫鲁班.据说他发明了木工用的锯子、刨子、曲尺等.他还用他的智慧,解决了人们生活中的不少问题.在鲁班生活的时代,人们要吃米粉、麦粉,都是把米麦放在石臼里,用粗石棍来捣.用这种方法很费力,捣出来的粉有粗有细,而且一次捣得很少.鲁班想找一种用力少收效大的方法.就用两块有一定厚度的扁圆柱形的石头制成磨扇.下扇中间装有一个短的立轴,用铁制成,上扇中间有一个相应的空套,两扇相合以后,下扇固定,上扇可以绕轴转动.两扇相对的一面,留有一个空膛,叫磨膛,膛的外周制成一起一伏的磨齿.上扇有磨眼,磨面的时候,谷物通过磨眼流入磨膛,均匀地分布在四周,被磨成粉末,从夹缝中流到磨盘上,过罗筛去麸皮等就得到面粉.许多农村现在还在用石磨磨面.。

高三数学死角知识点

高三数学死角知识点

高三数学死角知识点高三学生在备战数学考试时,经常会遇到一些难以理解和掌握的知识点,这些知识点被称为“死角”知识点。

它们可能是因为难度较高、理解障碍或者容易混淆而被认为是学生备考中的难点。

本文将介绍高三数学中的一些常见“死角”知识点,帮助学生更好地应对考试。

1. 三角函数的乘积公式三角函数的乘积公式是高中数学中的重要内容,但是在高三阶段,许多学生对它存在一定的困惑。

特别是涉及到三角函数的乘积和它们的和差角时更加困难。

学生可以通过练习和实践不断加深对该公式的理解与应用,同时需要掌握一些常用的简化技巧,如使用和差化积的方法等。

2. 数列的极限数列的极限在高三数学中是一个重要的概念,但是对很多学生来说,它是一个较难理解的知识点。

在学习过程中,学生需要掌握数列的收敛性、极限存在性以及计算极限的方法。

通过多做一些典型例题和归纳总结,可以逐渐熟悉并掌握数列的极限相关知识。

3. 函数的导数与极值在高三数学中,函数的导数和极值是一个重要的考点,也是学生容易疏忽和混淆的地方。

学生需要熟练掌握利用导数求函数的极值,包括求导、导数为零、二阶导数判别等方法,并能够在应用题中正确地运用这些方法。

4. 圆锥曲线的方程圆锥曲线方程的推导和应用是高三数学中的难点,也是容易出现死角知识点的地方。

学生需要在学习过程中仔细理解圆锥曲线的定义和性质,熟练掌握椭圆、双曲线、抛物线的标准方程的推导和变换,同时要注意不同类型方程之间的区别与联系。

5. 空间几何中的向量在高三数学中,空间几何中的向量是一个较难掌握的知识点,也经常成为学生备考的痛点之一。

学生需要深入了解向量的基本概念,包括向量的表示、向量的加减、数量积与向量积等。

此外,掌握好向量垂直、共线、平行等重要性质,以及解向量相关几何问题的方法也是非常关键的。

总结:以上所列的五个知识点都是高三数学中的“死角”知识点,是容易让学生困惑和误解的地方。

学生们在备考过程中应该重视这些知识点,通过充分理解概念和原理,并进行大量的练习和归纳总结,有效地掌握这些“死角”知识点。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【题型综述】
点与圆的位置关系的解题策略一般有以下几种:①利用设而不求思想求出圆心坐标,然后计算圆心到点的距离并和半径比较得解;②向量法,通过判断数量积的正负来确定点和圆的位置关系:如已知AB
是圆的直径,G 是平面内一点,则0GA GB ⋅< ⇔点G 在圆内;0GA GB ⋅> ⇔点G 在圆外;
0GA GB ⋅= ⇔点G 在圆上.③方程法,已知圆的方程222)()(:r b y a x M =-+-,点N ),(00y x ,则22020)()(r b y a x <-+-⇔点N 在圆M 内;22020)()(r b y a x =-+-⇔点N 在圆M 上;22020)()(r b y a x >-+-⇔点N 在圆M 外.
四点共圆问题的解题策略:①利用四点构成的四边形的对角互补;②利用待定系数法求出过其中三点的圆的方程,然后证明第四点坐标满足圆的方程. 【典例指引】 类型一 向量法判定点与圆的位置关系
例1 【2015高考福建,理18】已知椭圆E :22221(a 0)x y b a b +=>>过点. (Ⅰ)求椭圆E 的方程;
(Ⅱ)设直线1x my m R =-?,()交椭圆E 于A ,B 两点,
判断点G 9
(4
-,0)与以线段AB 为直径的圆的位置关系,并说明理由.
【解析】解法一:(Ⅰ)由已知得
2222,b c a a b c ìïïï=íïï=+ïî
解得2a b c ì=ïï=íïï=î 所以椭圆E 的方程为22
142
x y +=. (Ⅱ)设点1122(y ),B(,y ),A x x AB 中点为00H(,y )x . 由22221(m 2)y 230,142
x my my x y ì=-ï+--=íï+=ïî得 所以12122223y +y =
,y y =m 2m 2m ++,从而022y m 2
=+. 所以222222200000095525GH|()y (my )y (m +1)y +my +44216x =++=++=. 2222
2121212()(y )(m +1)(y )|AB|444
x x y y -+--== 22221212012(m +1)[(y )4y ](m +1)(y y )4
y y y +-==-, 故22222
2012222|AB|52553(m +1)25172|GH|my (m +1)y 042162(m 2)m 21616(m 2)m m y +-=++=-+=>+++ 所以|AB||GH|>2,故G 9(4
-,0)在以AB 为直径的圆外.
所以cos GA,GB 0,GA GB 狁> 又,不共线,所以AGB Ð为锐角.
故点G 9(4-,0)在以AB 为直径的圆外. 类型二 四点共圆应用问题
例2. (2014全国大纲21)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4
QF PQ =
. (I )求C 的方程;
(II )过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相较于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.
类型三 动圆过定点问题
例3(2012福建理19)如图,椭圆)0(1:2222>>=+b a b y a x E 的左焦点为1F ,右焦点为2F ,离心率2
1=e 。

过1F 的直线交椭圆于B A ,两点,且2ABF ∆的周长为8。

(Ⅰ)求椭圆E 的方程。

(Ⅱ)设动直线m kx y l +=:与椭圆E 有且只有一个公共点P ,且与直线4=x 相交于点Q 。

试探究: 在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;
若不存在,说明理由。

相关文档
最新文档