压缩机主要工作原理
三种主要类型压缩机的工作原理
三种主要类型压缩机的工作原理一、活塞式压缩机活塞式压缩机的工作原理活塞式压缩机属於最早的压缩机设计之一,但它仍然是最通用和非常高效的一种压缩机。
活塞式压缩机通过连杆和曲轴使活塞在气缸内向前运动。
如果只用活塞的一侧进行压缩,则称为单动式。
如果活塞的上、下两侧都用,则称为双动式。
活塞式压缩机的用途非常广泛,几乎没有任何限制。
它可以压缩空气,也可以压缩气体,几乎不需要作任何改动。
活塞式压缩机是唯一一种能够将空气和气体压缩至高压,以适合诸如呼吸空气等用途的设计。
活塞式压缩机的配置可包括从适用於低压/小容量用途的单缸配置,到能压缩至非常高压力的多级配置。
在多级压缩机中,空气被分级压缩,逐级增大压力。
压缩能力:康普艾活塞式压缩机系列的功率范围为0.75 kW 至420 kW (1hp 至563hp),所产生的工作压力为 1.5 bar 至414 bar (21 至6004psi)。
其典型用途是:气体压缩(CNG、氮气、惰性气体、填埋气体)高压空气(水中呼吸器钢瓶的呼吸用空气、地震勘察、气动回路等)PET 吹瓶、发动机起动、工业二、旋转螺杆式旋转螺杆式压缩机的工作原理螺杆式压缩机属於容积式压缩机,其活塞采用螺杆的形式;这是现今使用的最主要压缩机类型。
螺杆压缩元件的主要部件是凸形转子和凹形转子,这两个转子相互靠近移动,使它们之间及腔内的体积逐渐减小。
螺杆式的压力比取决於螺杆的长度和外形以及排气口的形状。
螺杆元件没有装备任何阀门,不存在产生不平衡的机械力。
因此可以在高的轴速下工作,而且可以兼顾大流量和小的外部尺寸压缩能力:康普艾旋转螺杆式压缩机系列的功率范围为 4 kW 至250 kW (5 至535 hp),所产生的工作压力为 5 bar 至13 bar (72 至188 psi)。
其典型用途是:食品、饮料、酿造、军事、航天、汽车工业、电子、制造、石化、医疗、医院、制药、仪表空气三、旋转滑片式旋转滑片式压缩机的工作原理滑片式压缩机采用传统的、已经得到验证的技术,以非常低的速度(1450rpm)直接进行驱动,具有无与伦比的的可靠性。
最新压缩机主要工作原理
主要工作原理螺杆压缩机是利用一对相互啮合的阴阳转子来实现空气的持续吸气、压缩、排气等过程,主动转子为5纹螺旋,从动转子为6条齿槽,采用独特齿形,可产生高压缩效率。
1.空气从进气口吸入,充满封闭的齿轮间。
2.转子通过旋转的啮合使封闭的齿形的容积缩小,从而使空气得到压缩。
3.空气从敞开的齿间排出以上过程随着转子不停的旋转啮合,不断产生脉动空气。
压缩空气中的水份来自何处?一般大气中的水份皆呈气态,不易察觉其存在,但若经空气压缩机压缩及管路冷却后,则会凝结成液态水滴。
举例说明:在大气温度30°c,相对湿度75%状况下,一台空气压缩机,吐出量3nm3/min,工作压力为0.7Mpa,运转24小时压缩空气中约含100l的水份。
为何须要干燥的空气?假如没有使用任何可以除去水气的方法,立即可见的影响是造成产品品质不良,设备发生故障,严重影响生产流程,增加生产成本等不良后果,损失甚巨。
什么是露点温度?即是一种检测压缩空气系统干燥度的温度,换句话说,就是空气中水份凝结成水滴的温度。
露点温度愈低,压缩空气中所含的水份就愈少。
冷冻式压缩空气干燥机根据空气冷冻干燥原理,利用制冷设备将压缩空气冷却到一定的露点温度后析出相应所含的水分,并通过分离器进行气液分离,再由自动排水器将水排出,从而使压缩空气获得干燥。
离心压缩机:指气体在压缩机中的运动是沿垂直于压缩机轴的径向进行的。
离心压缩机排气均匀,气流无脉冲,无油,性能曲线平坦,操作范围较宽。
压缩和压缩比1、压缩绝热压缩是一种在压缩过程中气体热量不产生明显传入或传出的压缩过程。
在一个完全隔热的气缸内上述过程可成为现实。
等温压缩是一种在压缩过程中气体保持温度不变的压缩过程。
2、压缩比:(R)压缩比是指压缩机排气和进气的绝对压力之比。
例:在海平面时进气绝对压力为0.1 MPa ,排气压力为绝对压力0. 8MPa。
则压缩比:P2 0.8R=--------- =--------- =8P1 0.1多级压缩的优点:(1)、节省压缩功;(2)、降低排气温度;(3)、提高容积系数;(4)、对活塞压缩机来说,降低气体对活塞的推力。
空调压缩机的工作原理流程
空调压缩机的工作原理流程
空调压缩机的工作原理流程如下:
1. 蒸发器:低压制冷剂进入蒸发器,吸收空气中的热量,使得制冷剂蒸发成气体,从而降低空气温度。
2. 压缩机:蒸发后的制冷剂气体进入压缩机,压缩机通过叶片或活塞的工作,将低压气体压缩成高压气体。
3. 冷凝器:高压制冷剂气体进入冷凝器,与外部空气接触,散热并冷却,使得制冷剂转变成高压液体。
4. 膨胀阀:高压液体通过膨胀阀流入蒸发器,膨胀阀的作用是控制制冷剂的流量和压力,在过程中产生节流效应,使得制冷剂的压力和温度降低。
5. 回到蒸发器:经过膨胀阀后的制冷剂变成低压蒸发剂,重新进入蒸发器,以吸热的方式冷却空气,并形成循环。
总结:空调压缩机的工作原理是通过不断循环制冷剂,将空气中的热量吸收到制冷剂中,然后通过压缩和冷凝的过程,将制冷剂的温度和压力提高,再经过节流阀的调节,使其在蒸发器中放出热量,从而实现室内空气的降温。
工业产品压缩机工作原理
工业产品压缩机工作原理
工业产品压缩机是一种将气体压缩成高压气体的设备。
其工作原理主要分为以下几个步骤:
1. 吸气阶段:压缩机通过一个进气阀门将外部空气吸入机内的气缸中,然后在气缸内形成低压气体,同时提高气体的压力和温度。
2. 压缩阶段:压缩机的气缸内有一个活塞,当气缸内的气体被压缩到一定压力后,活塞开始向上运动,同时将气体继续压缩,使气压进一步增加。
3. 排气阶段:当活塞上升到极限位置时,压缩机的排气阀门被打开,将已经压缩的高压气体排出。
同时,由于活塞的下降,排气阀门关闭,并重新开始吸入新的气体。
4. 冷却阶段:在压缩过程中,气体的温度会上升。
为了防止机器过热,通常会使用冷却装置来降低气体温度。
冷却装置可以是空气冷却器或水冷却器,通过与冷却介质接触,将气体的温度降低到可接受的范围。
通过这些步骤,工业产品压缩机可以将气体压缩成高压气体,以满足不同工业应用中对气体压力和流量的需求。
压缩机工作原理及结构
下面简单介绍几种压缩机的工作原理及结构一、离心压缩机的工作原理及结构汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。
而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。
气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。
如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。
级间的串联通过弯通,回流器来实现。
这就是离心式压缩机的工作原理。
二、螺杆式空压机工作原理及结构可以从以下来阐述,其中包含吸气、封闭及输送、压缩及喷油、排气四个过程。
各个步骤介绍如下:1、吸气过程:螺杆式的进气侧吸气口,必须设计得使压缩室可以充分吸气,而螺杆式空压机并无进气与排气阀组,进气只靠一调节阀的开启、关闭调节,当转子转动时,主副转子的齿沟空间在转至进气端壁开口时,其空间最大,此时转子的齿沟空间与进气口之自由空气相通,因在排气时齿沟之空气被全数排出,排气结束时,齿沟乃处于真空状态,当转到进气口时,外界空气即被吸入,沿轴向流入主副转子的齿沟内。
螺杆式空压机维修提醒当空气充满整个齿沟时,转子之进气侧端面转离了机壳之进气口,在齿沟间的空气即被封闭。
2、封闭及输送过程:主副两转子在吸气结束时,其主副转子齿峰会与机壳闭封,此时空气在齿沟内闭封不再外流,即[封闭过程]。
两转子继续转动,其齿峰与齿沟在吸气端吻合,吻合面逐渐向排气端移动。
螺杆式空压机维修过程三。
3、压缩及喷油过程:在输送过程中,啮合面逐渐向排气端移动,亦即啮合面与排气口间的齿沟间渐渐减小,齿沟内之气体逐渐被压缩,压力提高,此即[压缩过程]。
而压缩同时润滑油亦因压力差的作用而喷入压缩室内与室气混合。
4、排气过程:当螺杆空压机维修中转子的啮合端面转到与机壳排气相通时,(此时压缩气体之压力最高)被压缩之气体开始排出,直至齿峰与齿沟的啮合面移至排气端面,此时两转子啮合面与机壳排气口这齿沟空间为零,即完成(排气过程),在此同时转子啮合面与机壳进气口之间的齿沟长度又达到最长,其吸气过程又在进行。
压缩机培训演示文稿(工作原理及结构)1
工程
业主员工培训
沈阳远大压缩机股份有限公司
1.压缩机的工作原理
1.1压缩机工作原理内容: 压缩机工作时,电动机带动压缩机的曲轴旋转,通过连杆 与十字头的传动(曲柄连杆机构),使活塞做往复运动,由 气缸内壁、气缸盖和活塞顶面所构成的工作容积则会发生 周期性变化。当活塞从气缸盖处开始运动时,气缸内的工 作容积逐渐增大,这时,气体即沿着进气管,推开吸气阀 而进入气缸,直到工作容积变到最大时为止,吸气阀关闭; 往复式压缩机的活塞反向运动时,气缸内工作容积缩小, 气体压力升高,当气缸内压力达到并略高于排气压力时, 排气阀打开,气体排出气缸,直到活塞运动到极限位置为 止,排气阀关闭。当往复式压缩机的活塞再次反向运动时, 上述过程重复出现。总之,往复式压缩机的曲轴旋转一周, 活塞往复一次,气缸内相继实现进气、压缩、排气的过程, 即完成一个工作循环,以上就为往复式压缩机机的工作原 理。
2.4 充氮及漏气回收流程
工艺过程主要是现场氮气源通过减压阀将氮气压力将到0.15MPa,然 后充入填料中,用氮封的方式保证填料的密封;填料还设有漏气回收 口,将填料泄露出的氮气及微量工艺气体收集到集液罐中,再由集液 罐的放空口接至火炬。
2.5 气量调节流程
气量调节主要是由气缸部分的卸荷器完成,由仪表风及电磁阀控制, 当仪表风接通时,卸荷器会作用在气阀上,使气阀处于卸荷状态,由 此实现0-%50-%100的气量调节。
刮油环组
刮油器部件
刮油环
3.7 活塞部分
活塞与气缸内壁及气缸盖构成容积可变的工作腔,并由曲轴通过连杆 带动,在气缸内做往复运动,实现气缸内气体的压缩。 活塞部件由活塞体、活塞杆、活塞螺母、活塞环及支承环组成。活塞 力的传递由活塞杆凸肩及螺母承担,对于铝制活塞体,考虑到铝的强 度较低,需在活塞杆凸肩与活塞体间及螺母与活塞体间加承压块以增 大承压面积(或加大螺母及凸肩外圆) ; 活塞杆与活塞连接时依靠圆柱面与活塞的配合定中心,依靠凸缘和螺 母的夹持紧固。由于工作时活塞受交变作用力,以及温度变化时活塞 杆与被夹持部分膨胀可能不一致,因此螺母易于松动,故需采取防松 措施,大、中型压缩机采用电加热方式紧固(将活塞杆端部加热后, 按设计要求将螺母旋转一定角度,待冷却后产生预紧力即达到防松目 的);
空调压缩机的工作原理
空调压缩机的工作原理空调压缩机是空调系统中的核心组件,其工作原理对于制冷和制热效果具有重要影响。
本文将详细介绍空调压缩机的工作原理,并探讨其在空调系统中的作用。
一、压缩机的基本原理空调压缩机的基本原理是通过改变蒸发压力和温度,将低温低压的制冷剂转化为高温高压的制冷剂。
压缩机通过机械作用将制冷剂压缩,使其温度和压力上升,并将其送入冷凝器。
二、压缩机的工作循环空调压缩机一般采用恩德尔循环工作原理,包括蒸发器、压缩机、冷凝器和节流装置四个主要部件。
具体工作循环如下:1. 蒸发器:制冷剂从蒸发器中吸热,蒸发成气态,吸收室内热量,使室内温度下降。
2. 压缩机:在压缩机中,制冷剂被压缩,同时温度和压力上升,转变为高温高压气体。
3. 冷凝器:高温高压气体进入冷凝器,在冷凝器中散热,温度下降,转变为高压液体。
4. 节流装置:高压液体通过节流装置进入蒸发器,再次蒸发成低温低压气体。
通过以上工作循环,空调压缩机能够实现从低温低压到高温高压的制冷剂转换,从而实现对空调系统的制冷或制热效果。
三、压缩机的种类及特点根据工作原理和压缩介质的不同,空调压缩机主要可分为往复式压缩机、螺杆式压缩机和离心式压缩机等。
1. 往复式压缩机:采用往复运动的活塞将制冷剂压缩。
具有结构简单、可靠性高的优点,适用于小型空调系统。
2. 螺杆式压缩机:采用螺杆叶片的旋转运动将制冷剂压缩。
具有体积小、噪音低的优点,适用于中小型空调系统。
3. 离心式压缩机:采用离心运动的压缩器将制冷剂压缩。
具有高效、节能的特点,适用于大型空调系统。
四、压缩机在空调系统中的作用压缩机是空调系统中最重要的组件之一,其作用如下:1. 压缩制冷剂:将制冷剂压缩成高温高压状态,使其能够转移热量。
2. 提供制冷量:通过将制冷剂压缩成高压液体,为空调系统提供足够的制冷量。
3. 调节制冷效果:通过控制压缩机的运行状态,可以调节制冷系统的制冷效果。
4. 保证系统正常运行:压缩机的正常工作对于空调系统的稳定性和可靠性至关重要,它需要保证压缩机的运行平稳、工作效率高。
压缩机的结构和工作原理
压缩机的结构和工作原理压缩机是一种能够将气体压缩成高压气体的设备,它在各个领域中都有广泛的应用,如制冷、空调、工业生产等。
压缩机的结构和工作原理是实现这一功能的关键。
一、压缩机的结构压缩机通常由以下几个主要部分组成:压缩机壳体、曲轴、连杆、活塞、气缸、吸气阀和排气阀等。
1. 压缩机壳体:压缩机壳体是压缩机的外壳,用于固定和保护内部组件。
它通常由铸铁或钢制成,具有足够的强度和刚性。
2. 曲轴:曲轴是压缩机的核心部件之一,它通过连杆与活塞相连,将活塞的往复运动转化为旋转运动。
曲轴通常由合金钢制成,具有较高的强度和耐磨性。
3. 连杆和活塞:连杆将曲轴与活塞连接在一起,使得曲轴的旋转运动能够驱动活塞的往复运动。
活塞在气缸内作往复运动,从而实现气体的压缩。
4. 气缸:气缸是容纳活塞的空间,通常由铸铁或合金铝制成。
气缸内的气体通过活塞的往复运动被压缩。
5. 吸气阀和排气阀:吸气阀和排气阀分别位于气缸的进气口和出气口处。
吸气阀在活塞向后运动时打开,允许气体进入气缸;排气阀在活塞向前运动时打开,将压缩后的气体排出。
二、压缩机的工作原理压缩机的工作原理基于热力学原理,通过改变气体的体积来实现气体的压缩。
1. 吸气过程:当活塞向后运动时,吸气阀打开,气缸内的气体被自然吸入气缸。
同时,气体的体积随着活塞的向后运动而增大,气体压力降低。
2. 压缩过程:当活塞向前运动时,吸气阀关闭,排气阀打开,气缸内的气体被压缩。
随着活塞的向前运动,气体的体积减小,气体压力增加。
3. 排气过程:当活塞再次向后运动时,排气阀关闭,气缸内的压缩气体无法返回吸气管道。
此时,气体被排出气缸,同时压缩机的压缩比达到最大。
通过不断重复上述吸气、压缩和排气过程,压缩机能够将气体压缩成高压气体,为后续的工艺或设备提供所需的压缩空气或气体。
三、压缩机的分类根据不同的压缩介质和工作方式,压缩机可以分为往复式压缩机、螺杆式压缩机和离心式压缩机等几种类型。
1. 往复式压缩机:往复式压缩机是最常见的一种压缩机类型,它利用活塞的往复运动实现气体的压缩。
空调压缩机工作原理
空调压缩机工作原理空调压缩机是空调系统中的核心部件,它负责压缩和循环制冷剂,从而实现空调系统的制冷或者制热功能。
下面将详细介绍空调压缩机的工作原理。
1. 压缩机的基本原理空调压缩机采用机械压缩的方式将低温低压制冷剂气体压缩成高温高压气体,通过压缩使得气体份子间的距离变小,份子运动速度增加,从而提高气体的温度和压力。
2. 压缩机的工作循环空调压缩机的工作循环通常分为四个过程:吸气、压缩、冷凝和膨胀。
(1) 吸气过程:压缩机的活塞向下运动,气缸内的压力降低,制冷剂从蒸发器中吸入,同时制冷剂的温度和压力也下降。
(2) 压缩过程:压缩机的活塞向上运动,气缸内的压力增加,制冷剂被压缩成高温高压气体,温度和压力随之升高。
(3) 冷凝过程:高温高压气体通过冷凝器,与外界空气或者冷却介质进行热交换,制冷剂的温度降低,从而变成高温高压液体。
(4) 膨胀过程:高温高压液体通过膨胀阀(节流装置)进入蒸发器,压力骤降,制冷剂变成低温低压气体,吸收蒸发器中的热量,完成制冷循环。
3. 压缩机的工作方式空调压缩机通常采用往复式压缩机或者旋转式压缩机。
(1) 往复式压缩机:往复式压缩机通过活塞的上下运动来实现气体的压缩。
它具有结构简单、创造成本低、使用寿命长等优点,广泛应用于家用空调和商用空调中。
(2) 旋转式压缩机:旋转式压缩机通过转子的旋转来实现气体的压缩。
它具有体积小、振动小、噪音低等优点,适合于车载空调和小型商用空调。
4. 压缩机的工作效率压缩机的工作效率通常用制冷剂的制冷量与所消耗的电功率之比来表示,即能效比(COP)。
COP越高,表示压缩机的工作效率越高,制冷效果越好。
提高压缩机的工作效率可以从以下几个方面考虑:(1) 采用高效率的压缩机:选择具有高效率的压缩机,可以提高整个空调系统的能效。
(2) 优化系统设计:合理配置空调系统的其他组件,如冷凝器、蒸发器、膨胀阀等,确保系统的匹配性和协同工作效果。
(3) 提高制冷剂的性能:选择制冷剂的性能更好的替代品,如环保制冷剂,可以提高压缩机的工作效率。
空调压缩机工作原理
空调压缩机工作原理空调压缩机是空调系统中的核心组件之一,它起着将低温低压制冷剂压缩成高温高压气体的作用。
通过压缩机的工作,制冷剂能够进行循环流动,从而实现空调系统的制冷或者制热功能。
一、压缩机的基本原理空调压缩机采用机械压缩的方式将制冷剂进行压缩。
当制冷剂进入压缩机时,它处于低温低压状态。
压缩机的主要工作是通过提高制冷剂的压力,使其温度升高。
压缩机内部通过不断收缩和膨胀的运动,将制冷剂压缩成高压气体。
二、压缩机的工作循环空调压缩机的工作循环主要包括吸气、压缩、冷凝和膨胀四个阶段。
1. 吸气阶段:在吸气阶段,制冷剂以低温低压气体的形式进入压缩机。
此时,压缩机的活塞向下运动,扩大了活塞腔容积,使制冷剂通过吸气阀进入活塞腔。
2. 压缩阶段:在压缩阶段,压缩机的活塞向上运动,缩小了活塞腔容积,使制冷剂被压缩成高温高压气体。
压缩机内部的压缩腔体积减小,从而使制冷剂的压力增加。
3. 冷凝阶段:在冷凝阶段,高温高压气体进入冷凝器。
冷凝器通过外界的冷却介质(通常是空气或者水)将高温高压气体冷却成高压液体。
在冷凝过程中,制冷剂释放出热量,使得制冷剂的温度降低。
4. 膨胀阶段:在膨胀阶段,高压液体通过膨胀阀进入蒸发器。
在蒸发器中,高压液体迅速蒸发为低温低压气体。
在蒸发过程中,制冷剂从蒸发器中吸收热量,使得制冷剂的温度进一步降低。
三、压缩机的类型根据压缩机的工作原理和结构特点,常见的空调压缩机可以分为往复式压缩机和旋转式压缩机两大类。
1. 往复式压缩机:往复式压缩机是一种通过活塞上下运动来实现压缩的压缩机。
它具有结构简单、创造成本低、适合范围广的特点。
往复式压缩机的工作原理类似于汽车发动机,通过活塞在气缸中的上下运动来实现吸气和压缩。
2. 旋转式压缩机:旋转式压缩机是一种通过转子旋转来实现压缩的压缩机。
它具有结构紧凑、振动小、运行平稳的特点。
旋转式压缩机的工作原理是利用两个或者多个旋转的转子之间的间隙来压缩制冷剂。
四、压缩机的性能参数空调压缩机的性能参数对于空调系统的运行效果和能耗有着重要影响。
压缩机基本工作原理
压缩机基本工作原理简介一、工作原理离心式压缩机通过叶轮旋转,使气体受离心力的作用而产生压力,与此同时气体获得速度,而气体流过叶轮、扩压器等扩张通道时,速度又逐渐减慢而造成气体压力的再提高。
二、主要零部件的作用和结构特点1、机壳机壳的作用是象一个容器一样,把被压缩的气体围拢起来,形成有进气、有出气的通道。
同时机壳还起到支撑轴承、支撑隔板、密封的作用,确保转子在固定位置运转,确保气体逐级压缩,确保气体得到很好的密封。
目前;机壳都采用容器钢、低碳钢锻件或板材焊接而成,机械加工工序较长,一些关键工序必须用数控机床方能保证。
机壳有一道关键的检验,那就是水压试验,按API617的要求,试验压力是工作压力的1.5倍,保压30分钟,对于有毒有害、易燃易爆及贵重的气体,在水压试验后还要做气密性试验,确保气体无泄漏。
2、隔板隔板的作用是把压缩机每一级隔开,将各级叶轮分割成连续性流道,隔板相邻的面构成无叶扩压器通道,来自叶轮的气体通过扩压器把一部分动能转换为压力能,隔板的内侧是回流室。
气体通过回流室返回到下一级叶轮的入口。
回流室内侧有一组导流叶片,可使气体均匀地进到下一级叶轮入口。
隔板从中分面水平分开为上下半。
隔板和机壳靠止口配合,各级隔板靠止口依次嵌入机壳中,上隔板用沉头螺钉固定在上机壳上,但不固死,使之能饶中心线稍有摆动,而下隔板自由装在下机壳上,考虑到热膨胀的关系,隔板水平中分面比机壳水平中分面稍低一点。
出口隔板与机壳或与相邻的隔板靠止口定位,而且用轴向螺钉把它们固仅。
这种结构可避免由于热膨胀而使隔板向下移动。
但有的隔板与机壳只靠两个止口定位,没有轴向螺钉。
MCL型压缩机隔板一般由灰铸铁或球墨铸铁铸成。
近几年为了提高产品质量,保证交货期,目前准备逐步改为碳钢铣制或焊接结构以适应市场的需要。
3、密封MCL型压缩机级间密封采用迷宫式密封,而轴端密封根据需要选用不同形式的密封:迷宫密封、浮环密封、抽气密封、充气密封、干气密封等。
压缩机分类及其工作原理
压缩机分类及其工作原理压缩机是一种能够将气体或蒸气压缩为高压状态的设备,广泛应用于工业、商业和家庭领域。
根据不同的工作原理和应用场景,压缩机可以分为多种类型。
1. 压缩机的分类根据压缩介质的不同,压缩机可以分为气体压缩机和蒸气压缩机两大类。
1.1 气体压缩机气体压缩机主要用于压缩气体,将气体压缩为高压气体以供使用。
常见的气体压缩机有活塞式压缩机、螺杆式压缩机和滑动式压缩机。
- 活塞式压缩机:活塞式压缩机通过活塞在气缸中的往复运动来实现气体的压缩。
当活塞向下运动时,气缸内的气体被压缩;当活塞向上运动时,气体被排出。
这种压缩机结构简单、体积小,适用于小型设备和家用冰箱等。
- 螺杆式压缩机:螺杆式压缩机通过两个旋转的螺杆来实现气体的压缩。
螺杆之间的压缩腔体逐渐变小,气体在腔体中被压缩并排出。
螺杆式压缩机具有体积小、噪音低等优点,广泛应用于工业领域。
- 滑动式压缩机:滑动式压缩机利用滑动活塞和滑动阀来实现气体的压缩。
这种压缩机结构复杂,但工作稳定,适用于需要高压气体的场合,如空调和冷冻设备。
1.2 蒸气压缩机蒸气压缩机主要用于压缩蒸气,在蒸汽动力系统中发挥重要作用。
常见的蒸气压缩机有容积式压缩机和动力式压缩机。
- 容积式压缩机:容积式压缩机通过容积的变化来实现蒸汽的压缩。
常见的容积式压缩机有活塞式压缩机和涡旋式压缩机。
活塞式压缩机的工作原理与气体压缩机类似,而涡旋式压缩机则利用旋转的螺杆将蒸汽压缩。
- 动力式压缩机:动力式压缩机通过外部动力源(如蒸汽涡轮机)提供动力,将蒸汽压缩为高压蒸汽。
这种压缩机具有高效率、大容量的特点,广泛应用于电力、化工等领域。
2. 压缩机的工作原理不同类型的压缩机具有不同的工作原理,但基本原理都是利用活塞、螺杆或容积的改变来实现气体或蒸汽的压缩。
以活塞式压缩机为例,其工作原理如下:1) 进气阶段:当活塞向下运动时,气缸内的排气阀关闭,进气阀打开,气体通过进气阀进入气缸。
2) 压缩阶段:当活塞向上运动时,进气阀关闭,排气阀打开,气体被压缩在气缸中。
冰箱压缩机的工作原理
冰箱压缩机的工作原理
冰箱压缩机的工作原理如下:
1. 蒸发器:在冰箱内部,液态制冷剂通过管道流入蒸发器。
当冰箱门打开时,室温空气进入蒸发器,使得制冷剂蒸发为气态。
这个蒸发过程吸收了蒸发器周围的热量,使得蒸发器内部温度降低。
2. 压缩机:气态制冷剂从蒸发器流入压缩机。
压缩机中有一台电动机,它驱动一个活塞或螺杆来压缩制冷剂气体。
当气体被压缩时,其压力和温度都会升高。
3. 冷凝器:压缩机将高压高温的气体制冷剂送入冷凝器。
在冷凝器中,制冷剂释放热量,从而使得气体冷却并转变为液态。
冷凝器通过散热片或冷却风扇将热量散发到周围环境。
4. 膨胀阀:冷凝器输出的液态制冷剂通过膨胀阀流入蒸发器。
膨胀阀起到限制流量的作用,使液态制冷剂进入蒸发器后压力降低。
这导致制冷剂蒸发,从而吸收蒸发器内部的热量,冷却冰箱内部空气。
整个过程中,冰箱压缩机不断地循环将热量从冰箱内部转移到外部环境,从而保持冰箱内部温度低于室温,实现制冷效果。
空调压缩机工作原理
空调压缩机工作原理空调压缩机是空调系统中的核心组件,其工作原理是通过压缩和循环制冷剂来实现空气冷却和调节温度的功能。
下面将详细介绍空调压缩机的工作原理。
1. 压缩机的基本原理空调压缩机采用机械压缩的方式将低温低压制冷剂气体压缩成高温高压气体,使其温度升高。
压缩机主要由压缩机壳体、压缩机电机、压缩机排气阀和吸气阀等部分组成。
2. 压缩机的工作循环空调压缩机的工作循环通常分为四个步骤:吸气、压缩、冷凝和膨胀。
2.1 吸气当压缩机启动时,气体从外部环境中吸入,进入压缩机的气缸内。
在这一步骤中,制冷剂处于低温低压状态。
2.2 压缩在压缩过程中,压缩机的活塞运动将制冷剂气体压缩成高温高压气体。
这是通过压缩机内部的活塞和曲轴运动实现的。
在这一步骤中,制冷剂的温度和压力都会升高。
2.3 冷凝压缩后的高温高压气体进入冷凝器,通过与外部空气的热交换,使得制冷剂的温度降低。
在这一步骤中,制冷剂的温度和压力会逐渐下降。
2.4 膨胀冷凝后的制冷剂进入膨胀阀,通过膨胀阀的调节,使制冷剂的压力迅速下降,从而使其温度进一步降低。
在这一步骤中,制冷剂的温度和压力都会急剧下降。
3. 压缩机的工作状态根据压缩机的工作方式,可以将其分为两种类型:容积式压缩机和离心式压缩机。
3.1 容积式压缩机容积式压缩机是通过改变气缸内腔的容积来实现压缩的。
它分为往复式和回转式两种。
往复式压缩机通过活塞的上下运动改变气缸内腔的容积,实现气体的压缩。
回转式压缩机则通过旋转的运动改变气缸内腔的容积。
3.2 离心式压缩机离心式压缩机是通过离心力将气体压缩的。
它通过高速旋转的离心轮将气体推向离心轮外围,从而实现气体的压缩。
4. 压缩机的能效空调压缩机的能效通常用COP(Coefficient of Performance,性能系数)来衡量。
COP是指制冷量与所消耗的电能之比。
COP越高,表示压缩机的能效越高。
5. 压缩机的维护和保养为了保证空调系统的正常运行和延长压缩机的寿命,需要进行定期的维护和保养。
空调压缩机制冷的工作原理
空调压缩机制冷的工作原理空调压缩机的制冷工作原理是通过压缩、冷凝、膨胀和蒸发四个过程来实现的。
下面将详细介绍每个过程的工作原理。
1. 压缩过程:空调压缩机的主要作用是将低温低压的制冷剂气体吸入,然后通过压缩提高其温度和压力。
当制冷剂进入压缩机后,经过旋转的活塞或叶片的作用下,制冷剂气体被压缩成高温高压气体。
2. 冷凝过程:高温高压的制冷剂气体进入冷凝器,冷凝器通常是由多根细长的金属管组成的,外部通风或水流可以帮助散热。
当制冷剂经过冷凝器时,由于外部环境的冷却作用,制冷剂气体的温度下降,从而使其变成高压液体。
3. 膨胀过程:高压液体制冷剂通过膨胀阀进入蒸发器,膨胀阀的作用是降低制冷剂的压力。
当高压液体制冷剂通过膨胀阀流入蒸发器时,其压力迅速下降,从而引起制冷剂的汽化。
在蒸发器内部,制冷剂吸收外界热量,使得蒸发器内部温度降低。
4. 蒸发过程:在蒸发器内部,制冷剂从液体状态转变为气体状态,吸收周围的热量。
这个过程使得蒸发器内部的温度降低,从而实现空气的制冷效果。
制冷剂气体随后被再次吸入压缩机,循环过程再次开始。
通过以上四个过程的循环,空调压缩机能够持续地将热量从室内转移到室外,从而实现空调的制冷效果。
需要注意的是,空调压缩机的工作原理是基于热力学原理和制冷循环原理的,需要通过电力来驱动压缩机的运转。
此外,压缩机的设计和制造也需要考虑到能效、噪音和可靠性等方面的要求。
不同类型的空调压缩机可能会有一些细微的差异,但整体的工作原理基本相同。
总结起来,空调压缩机的制冷工作原理是通过压缩、冷凝、膨胀和蒸发四个过程来实现的。
这个循环过程能够将热量从室内转移到室外,从而实现空调的制冷效果。
压缩机的设计和制造需要考虑到能效、噪音和可靠性等方面的要求。
各种压缩机工作原理及优缺点分析
各种压缩机工作原理及优缺点分析压缩机是一种将气体压缩使其体积减小,从而提高气体压力的设备。
压缩机广泛应用于工业生产和日常生活中。
下面将分析几种常见的压缩机的工作原理及其优缺点。
1.螺杆压缩机:螺杆压缩机通过两个相互啮合的螺杆来实现气体的压缩。
气体通过螺杆进入螺杆的排气腔,当螺杆旋转时,气体被压缩并排出螺杆。
优点:-高效率:螺杆压缩机可以提供高达98%的机械效率,因此能够更有效地压缩气体。
-低噪音:由于螺杆压缩机的结构紧凑,运行时几乎没有振动和噪音。
-适用性广泛:螺杆压缩机适用于压力大于0.5MPa的中小型空气压缩机,并且适用于多种气体。
缺点:-初始投资高:螺杆压缩机的制造成本较高,因此初始投资相对较高。
-维护复杂:螺杆压缩机的维护较为复杂,需要定期检查和维护。
2.往复式压缩机:往复式压缩机通过往复运动的活塞来压缩气体。
气体通过吸气阀进入气缸,当活塞向上运动时,气缸中的气体被压缩并通过放气阀排出。
优点:-高压缩比:往复式压缩机可以提供较高的压缩比,适用于需要高压力的应用。
-安装灵活:往复式压缩机可以在垂直或水平方向安装,适用于各种场合。
缺点:-振动和噪音大:由于往复运动的活塞,往复式压缩机在运行时会产生较大的振动和噪音。
-能效较低:往复式压缩机的机械效率较低,能效相对较低。
3.离心式压缩机:离心式压缩机通过高速旋转的离心叶轮和静压环来压缩气体。
气体进入离心叶轮,并在旋转时受到离心力的作用而被压缩。
优点:-高效率:离心式压缩机的机械效率高,能够提供高压缩比。
-多级压缩:离心式压缩机可以通过多级压缩来提供更高的压力。
-体积小:离心式压缩机的结构紧凑,占用空间相对较小。
缺点:-适用范围有限:离心式压缩机适用于低压和中压的气体压缩,不适用于高压气体压缩。
-润滑要求高:由于工作时的高速旋转,离心式压缩机对润滑要求较高。
综上所述,不同类型的压缩机在不同的应用场合中具有不同的优缺点。
选择合适的压缩机需要考虑所需的压力、流量、噪音要求以及经济效益等因素。
压缩机工作原理
压缩机工作原理
压缩机工作原理是利用动力机械能将低压、低温的流体(如气体或液体)压缩至高压、高温的流体。
这个过程分为三个阶段:吸入、压缩、排出。
1. 吸入:首先,压缩机会吸入低压、低温的流体,通过活塞来实现。
在活塞上部,有一个可变尺寸的环形空间,叫做缸体,当活塞上升时,缸体容积变大,这样,低压的流体就会通过排气口吸入到缸体里。
2. 压缩:随着活塞的下降,缸体的容积变小,从而使流体的压力增加,并将其压缩到高压、高温。
3. 排出:当活塞下降到底部时,高压、高温的流体就通过排气口排出,然后再次循环。
压缩机电气工作原理
压缩机电气工作原理
压缩机是一种能够将气体压缩为高压的设备,其电气工作原理主要有以下几个方面:
1. 电力供给:压缩机通常是通过电力驱动的,需要接入电源进行工作。
电气工作原理中的第一步就是连接压缩机到合适的电源,以提供所需的电力。
通常情况下,压缩机需要接入设备的电路系统中。
2. 控制电路:压缩机的工作需要一个控制电路来控制其启停和运行状态。
通常,控制电路包括一个控制面板,上面有启停开关、运行指示灯、报警指示灯等组件,通过控制面板的操作,可以控制压缩机的工作状态。
3. 电机驱动:压缩机的主要部件是电机,它将电能转换为机械能,驱动压缩机的压缩部件工作。
压缩机电机通常是交流电机,它的电气工作原理是通过电流在线圈中产生旋转磁场,进而带动电机转子旋转,实现机械压缩。
4. 控制电气元件:控制电气元件是控制压缩机工作的关键部分,比如起动器、接触器、保护器等。
起动器用于启动和停止压缩机,接触器用于控制电机的加速和减速,保护器则用于监测和保护电气系统,当出现过流、过载、过热等故障时,保护器会发出信号并切断电源。
5. 控制逻辑:压缩机的控制逻辑主要通过电气元件来实现,比如使用感应器或传感器来检测气体压力、温度、流量等参数,
然后通过控制电路和控制面板来进行相应的操作和控制,以实现压缩机的正常运行和保护。
综上所述,压缩机的电气工作原理主要涉及电力供给、控制电路、电机驱动、控制电气元件和控制逻辑等方面,通过这些元件的协调工作,实现压缩机的正常运行和控制。
空调压缩机工作原理
空调压缩机工作原理空调压缩机是空调系统中的核心部件,它通过压缩和循环工作,实现对空气的冷却和加热。
下面将详细介绍空调压缩机的工作原理。
一、压缩机的基本原理压缩机是将低温低压的气体吸入,通过增加气体的压力和温度,将其排出并传递给冷凝器的设备。
常见的压缩机有往复式压缩机和螺杆式压缩机两种。
往复式压缩机的工作原理是:气体通过活塞的上下运动,实现气体的吸入和压缩。
当活塞向下运动时,气体通过吸气阀进入气缸内;当活塞向上运动时,气体被压缩并通过排气阀排出。
螺杆式压缩机的工作原理是:两个螺杆相互啮合,通过旋转运动将气体吸入并将其压缩。
其中一个螺杆为主动螺杆,另一个为被动螺杆。
当螺杆旋转时,气体被挤压并排出。
二、压缩机的循环过程空调压缩机的循环过程主要包括吸气、压缩、冷凝和膨胀四个阶段。
1. 吸气阶段:在这个阶段,压缩机的活塞或螺杆向下或向后移动,气缸内的气体通过吸气阀进入。
此时,气体的温度和压力较低。
2. 压缩阶段:在这个阶段,活塞或螺杆开始向上或向前移动,气体被压缩。
随着气体的压缩,温度和压力逐渐升高。
3. 冷凝阶段:在这个阶段,压缩机通过冷凝器将气体的温度降低。
冷凝器中流动的冷却剂吸收热量,使气体冷却并凝结成液体。
4. 膨胀阶段:在这个阶段,冷凝后的液体通过膨胀阀进入蒸发器。
在蒸发器中,液体蒸发吸收热量,将空气冷却并变成低温低压的蒸汽。
以上四个阶段循环往复,实现了空调系统中的冷却和加热功能。
三、压缩机的控制和保护为了确保空调系统的正常运行和安全性,压缩机还需要进行控制和保护。
1. 控制系统:压缩机的启停、运行速度和运行时间等可以通过控制系统进行调节。
常见的控制系统有手动控制和自动控制两种。
2. 保护系统:压缩机的保护系统用于监测和保护压缩机的运行状态。
例如,当压缩机出现过载、过热、过压等异常情况时,保护系统会自动停机或发出警报,以避免损坏压缩机。
常见的保护系统包括过载保护、过热保护、低压保护和高压保护等。
空调压缩机的原理及作用
空调压缩机的原理及作用空调压缩机是空调系统中的关键部件,其原理和作用对于了解空调工作原理以及整个系统的运行起到重要的作用。
下面将详细介绍空调压缩机的原理和作用。
一、原理:空调压缩机的原理是通过提高气体的压力,使其温度升高,然后通过冷凝器将热量排出去,实现空调系统的制冷效果。
空调压缩机的工作原理可以简单地分为三个过程:压缩、冷却和膨胀。
1. 压缩过程:压缩机通过机械方式将气体压缩,从而提高气体的密度和温度。
具体来说,空调压缩机主要有定子和转子两个部分,定子静止不动,转子通过电动机的驱动运动,以增加气体的压力。
当空气进入空调压缩机时,压缩机内的驱动机构会增加气体的压力。
这是通过将气体推入螺旋腔内,并沿螺旋线的长度进行压缩来实现的。
随着转子的旋转,螺旋线的长度减小,气体的体积相应减小,从而增加了气体的压力。
2. 冷却过程:当气体被压缩后,会变得非常热,因此需要通过冷却来降低温度。
这一过程主要通过冷凝器来实现。
冷凝器是空调系统中的一个重要部件,其作用是将热气体转化为液态冷媒。
热气体进入冷凝器时,通过冷却以使其温度降低,并将部分热量排出去。
在冷凝器中,冷凝器内的冷却介质(通常是水或空气)通过外部的管道螺旋周围,使周围的热气体和冷却介质之间进行热交换,使热量从热气体中传递到冷却介质中,从而降低了热气体的温度。
热气体在冷凝器中冷却后会变成液体,这是因为冷却会使气体分子减速并重新结合为液体形式。
液体冷媒将通过管道输送到蒸发器中。
3. 膨胀过程:冷却后的液体冷媒进入蒸发器,通过蒸发器内的膨胀阀进一步降低压力,从而降低温度。
膨胀阀是控制液态冷媒进入蒸发器的装置,它通过改变流体的流通面积来控制压力的变化。
当压力下降时,液体冷媒会蒸发为气体,同时吸收周围的热量。
这是因为当液体冷媒进入蒸发器时,蒸发器的压力较低,液体冷媒的分子会变得更加松散,相互之间的距离会增加,吸热的表面积也会增大。
蒸发过程中,液体冷媒从低温区域吸收热量,蒸发为气体状,并通过吸热而吸收了空气中的热量,从而使空气的温度降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要工作原理螺杆压缩机是利用一对相互啮合的阴阳转子来实现空气的持续吸气、压缩、排气等过程,主动转子为5纹螺旋,从动转子为6条齿槽,采用独特齿形,可产生高压缩效率。
1.空气从进气口吸入,充满封闭的齿轮间。
2.转子通过旋转的啮合使封闭的齿形的容积缩小,从而使空气得到压缩。
3.空气从敞开的齿间排出以上过程随着转子不停的旋转啮合,不断产生脉动空气。
压缩空气中的水份来自何处?一般大气中的水份皆呈气态,不易察觉其存在,但若经空气压缩机压缩及管路冷却后,则会凝结成液态水滴。
举例说明:在大气温度30°c,相对湿度75%状况下,一台空气压缩机,吐出量3nm3/min,工作压力为0.7Mpa,运转24小时压缩空气中约含100l的水份。
为何须要干燥的空气?假如没有使用任何可以除去水气的方法,立即可见的影响是造成产品品质不良,设备发生故障,严重影响生产流程,增加生产成本等不良后果,损失甚巨。
什么是露点温度?即是一种检测压缩空气系统干燥度的温度,换句话说,就是空气中水份凝结成水滴的温度。
露点温度愈低,压缩空气中所含的水份就愈少。
冷冻式压缩空气干燥机根据空气冷冻干燥原理,利用制冷设备将压缩空气冷却到一定的露点温度后析出相应所含的水分,并通过分离器进行气液分离,再由自动排水器将水排出,从而使压缩空气获得干燥。
离心压缩机:指气体在压缩机中的运动是沿垂直于压缩机轴的径向进行的。
离心压缩机排气均匀,气流无脉冲,无油,性能曲线平坦,操作围较宽。
压缩和压缩比1、压缩绝热压缩是一种在压缩过程中气体热量不产生明显传入或传出的压缩过程。
在一个完全隔热的气缸上述过程可成为现实。
等温压缩是一种在压缩过程中气体保持温度不变的压缩过程。
2、压缩比:(R)压缩比是指压缩机排气和进气的绝对压力之比。
例:在海平面时进气绝对压力为0.1 MPa ,排气压力为绝对压力0. 8MPa。
则压缩比:P2 0.8R=--------- =--------- =8P1 0.1多级压缩的优点:(1)、节省压缩功;(2)、降低排气温度;(3)、提高容积系数;(4)、对活塞压缩机来说,降低气体对活塞的推力。
压缩介质为什么要用空气来作压缩介质?因为空气是可压缩、清晰透明的,并且输送方便(不凝结)、无害性、安全、取之不尽。
惰性气体是一种对环境不起化学作用的气体,标准压缩机能一样压缩惰性气体。
干氮和二氧化碳均为惰性气体。
空气的性质:干空气成分:氮气(N2)氧气(O2)二氧化碳(CO2)78.03% 20.93% 0.03%分子量:28.96比重:在0℃、760mmHg柱时,r0=1.2931kg/m3比热:在25℃、1个大气压时,Cp=0.241大卡/kg-℃在t℃、压力为H(mmhg)时,空气的比重:273 Hrt=1.2931× -------× -------kg/m3273+t 760湿空气的比重,还应考虑饱和水蒸气分压力(0.378ψ,Pb)。
压力1、压力这只是某一单位面积的力,如平方米上受1牛顿力度压力单位为1帕斯卡:即:1Pa = 1N/m21Kpa = 1,000 Pa = 0.01 kg/cm21Mpa = 106Pa = 10 kg/ cm22、绝对压力绝对压力是考虑到与完全真空或绝对零值相比,我们所居住的环境大气具有0.1Mpa 的绝对压力。
在海平面上,仪表压力加上0.1MPa的大气压力可得出绝对压力。
高度越高大气压力就越低。
3、大气压力气压表是用于衡量大气的压力。
当加上仪表压力上就可得出绝对压力。
绝对压力=压力计压力+大气压力大气压力通常是以水银MM为单位,但是任何一个压力单位都能作出同样很好的解释:1个物理大气压力 = 760毫米汞柱 = 10.33米水柱 =1.033kgf/cm2≌0.1MPa.大气压同海拔高度的关系:HP=P0 ×(1- ----------)5.256 mmHg44300H——海拔高度,P0=大气压(0℃,760mmHg)4、压力单位换算:单位: MPa,Psi(bf/in2)1Psi=0.006895MPa,1bar=0.1MPa,1kgf/cm2=98.066KPa=0.098066MPa≌0.1Mpa温度1、温度温度是指衡量某一物质在某一时间能量水平的方法。
(或更简单的说,某一事物有多少热或多少冷)。
温度围是根据水的冰点和沸点。
在摄氏温度计上,水的冰点为零度,沸点为100度。
在华氏温度计上,水的冰点为32度,沸点为212度。
从华氏转换成摄氏:华氏=1.8摄氏+32,摄氏=5/9(华氏-32)2、绝对温度这是用绝对零度作为基点来解释的温度。
基点零度为华氏零下459.67度或摄氏零下273.15度绝对零度是指从物质上除去所有的热量时所存在的温度或从理论上某一容积的气体缩到零时所存在的温度。
3、冷却温度差冷却温度差是确定冷却器的效率的术语。
因为冷却器不可能达到100%的效率,我们只能用冷却温差衡量冷却器的效率。
冷却温度差是进入冷却器的冷水或冷空气温度和压缩空气冷却后的温度之差。
4、中间冷却器中间冷却器是用于冷却多级压缩机中的级与级之间的压缩空气或气体使温度降低的器件。
中间冷却器通过降低进入下一级压缩空气温度达到降低压缩功率以有助于增加效率。
露点和相对湿度1、露点和相对湿度就象晚上温度下降会产生露水一样,压缩空气系统的温度下降也会产生水气。
露点就是当湿空气在水蒸气分压力不变的情况下冷却至饱和的温度。
这是为什么呢? 含有水分的空气只能容纳一定量的水分。
如果通过压力或冷却使体积缩小,就没有足够的空气来容纳所有的水分,因此多于的水分析出成为冷凝水。
离开后冷却器的空气通常是完全饱和的。
分离器的冷凝水就显示了这一点,因此空气温度有任何的降低,就会产生冷凝水。
设定的湿度可认为是湿空气所含水蒸气的重量,即:水蒸气重量和干燥空气重量之比。
相对湿度ψχ-湿度 Psψ= ----------------- = -----------χ0-饱和绝对湿度 Pb当Ps=0, ψ=0时,称为干空气;Ps=Pb, ψ=1时,称为饱和空气。
绝对湿度——1M3湿空气所含水蒸气的重量。
Gs—水蒸气重量χ= ----------------------V—湿空气体积水蒸气重量含湿量= ---------------------干空气重量2、饱和空气当没有再多的水气能容纳在空气中时,就产生了空气的饱和,任何加压或降温均会导致冷凝水的析出。
3、水气分离器水气分离器是用于收集和除去在冷却过程中从空气或气体中冷凝出来水的器件。
储气筒是用于储存压缩机排放出来的压缩空气和气体的容器。
储气筒有利于消除排气管路中的脉冲,并在需求量大于压缩机的能力时,可起储存和补充提供压缩空气的作用。
4、干燥机干燥机是用于干燥空气的装置。
用我们的术语,就是用其干燥的压缩空气。
离开后冷却器的空气通常是完全饱和的,就是说任何降温都会产生冷凝水。
冷冻式干燥机是通过降低压缩空气的温度,析去水分,然后将空气再加热到接近原来的温度。
再生式干燥机是使空气通过含有化学物质的过滤器以析出水分。
这种装置比冷冻式装置更能吸附水气。
状态及气量1、标准状态标准状态的定义是:空气吸入压力为0.1MPa,温度为15.6℃(国行业定义是0℃)的状态下提供给用户系统的空气的容积。
如果需要用标准状态,来反映考虑实际的操作条件,诸如海拔高度、温度和相对湿度则将应实际吸入状态转换成标准状态。
2、常态空气规定压力为0.1MPa、温度为20℃、相对湿度为36%状态下的空气为常态空气。
常态空气与标准空气不同在于温度并含有水分。
当空气中有水气,一旦把水气分离掉,气量将有所降低。
3、吸入状态压缩机进口状态下的空气。
4、海拔高度按海平面垂直向上衡量,海拔只不过是指海平面以上的高度。
海拔在压缩机工程方面占有重要因素,因为在海拔高度越高,空气变得越稀薄,绝对压力变得越低。
既然在海拔上的空气比较稀薄,那么电动机的冷却效果就比较差,这使得标准电动机只能局限在一定的海拔高度运行。
EP200 标准机组的最大容许运行海拔高度为2286米。
5、影响排气量的因素:Pj、Tj、海拔高度、n、V余、泄漏等。
6、海拔高度对压缩机的影响:(1)、海拔越高,空气越稀薄,绝压越低,压比越高,Nd越大;(2)、海拔越高,冷却效果越差,电机温升越大;(3)、海拔越高,空气越稀薄,柴油机的油气比越大,N越小。
7、容积流量容积流量是指在单位时间压缩机吸入标准状态下空气的流量。
用单位:M3/min (立方米/分)表示。
标方用N M3/min表示。
1CFM=0.02832 M3/min, 或者 1 M3/min=35.311CFM,S--标准状态,A--实际状态8、余隙容积余隙容积是指正排量容积式(往复或螺杆)压缩机冲程终端留下的容积,此容积的压缩空气经膨胀后返回到吸入口,并对容积系数产生巨大的影响。
9、负载系数负载系数是指某一段时间压缩机的平均输出与压缩机的最大额定输出之比。
不明智的做法就是卖给用户的压缩机,正好满足用户的最大的需求,增加一个或几个工具或有泄漏会导致工厂的压力下降。
为了避免这种情况,英格索兰多年来一直建议采用负载系数:取用户系统所需气量的极大值,并除以0.9或0.8的负载系数。
(或任何用户认为是个安全系数)这种综合气量选择能顾及未预计到的空气需量的增加。
无需额外的资本的投入,就可做一些小型的扩建。
10、气量测试(1)、往复式压缩机气缸容积压缩机气缸的容积是指活塞移动的容积减去活塞杆占有的体积。
通常是用每分钟立方米来表示。
多级压缩机的容积只是第一级压缩的容积,因为逐一通过所有级的气体都来源于第一级。
(2)、测试低压喷嘴测试是一种精确衡量压缩机所提供空气的方法。
这一方法得到压缩空气和气体学会的认可,还为ASME能源测试代号委员会所接受。
ASME PTC-9中有关采用低压喷嘴测试往复式压缩机的描述。
ASME PTC-10中有有关采用低压喷嘴测试动力式压缩机的描述。
功率及比功率(能耗比、容积比能)1、压缩机效率容积效率是压缩机的实际气量和理论气量容积之比,用百分比表示。
压缩效率是压缩给定量气体实际所需的功率与理论功率之比。
理论功率可按等温工况或绝热工况来计算。
相应的压缩效率可用百分比来确定和表示。
就蒸汽驱动或燃机驱动的压缩机而言,机械效率是指压缩机的指示功分马力和在轴上的制动分马力之比。
就电动机驱动的压缩机而言,机械效率是指压缩气缸的指示功率同压缩机的轴功率之比。
用百分比来表示。
2、总体效率总体效率是压缩机的压缩效率和机械效率的总和。
压缩机轴功率(制动功率)包括:气体压缩功—指示功,摩擦功Ni机械效率ηm= --------Nad粗算:Nad=1.634PjVm(k/k-1)[ε(k-1/k)-1] KwN电机=N轴/η传,η传(皮带:0.92~0.98,齿轮:0.97~0.99)螺杆压缩机中,风冷压缩机的轴功率要加上风扇电机的功率。