《机械原理》笔记

合集下载

孙桓《机械原理》笔记和课后习题(含考研真题)详解(机械的效率和自锁)【圣才出品】

孙桓《机械原理》笔记和课后习题(含考研真题)详解(机械的效率和自锁)【圣才出品】

第5章机械的效率和自锁5.1 复习笔记一、机械的效率1.功和效率(1)机械效率①驱动功机械上的驱动功(输入功)为W d,有效功(输出功)为W r,损失功为W f。

则有W d=W r+W f②机械效率a.定义机械的输出功与输入功之比称为机械效率,反映了输入功在机械中的有效利用程度,以η表示。

b.计算方法用功计算时η=W r/W d=1-W f/W d;用功率计算时η=P r/P d=1-P f/P d;式中,P d——输入功率;P r——输出功率;P f——损失功率。

(2)损失率①定义机械的损失功与输入功之比称为损失率,以ξ表示。

②计算方法由定义有ξ=W f/W d=P f/P d。

注:η+ξ=1,由于摩擦损失不可避免,故必有ξ>0和η<1。

(3)效率的简便计算方法为便于效率的计算,可应用下式进行计算η=理想驱动力/实际驱动力=理想驱动力矩/实际驱动力矩①斜面机构正反行程的机械效率分别为η=tanα/tan(α+φ)η′=tan(α-φ)/tanα式中,α——斜面夹角;φ——总反力与法向反力的夹角。

②螺旋机构拧紧和放松螺母时的效率计算式分别为η=tanα/tan(α+φv)η′=tan(α-φv)/tanα式中,α——中径升角;φv——螺旋副的摩擦角。

2.机器(或机组)的效率已知各机构的效率可计算确定整个机构的效率。

常用机构的效率见教材表5-1。

(1)串联①计算公式由k个机器串联组成的机组,设各机器的效率分别为η1、η2、…、ηk,机组的输入功率为P d,输出功率为P r。

则整个串联机组的机械效率为η=P r/P d=(P1/P d)(P2/P1)…(P k/P k-1)=η1η2…ηk②特点a.前一机器的输出功率即为后一机器的输入功率;b.只要串联机组中任一机器的效率很低,就会使整个机组的效率极低;c.串联机器的数目越多,机械效率也越低。

③提高串联机组效率的措施a.减少串联机器的数目;b.优先提高效率最低机器的效率。

机械原理孙恒笔记

机械原理孙恒笔记

机械原理笔记一、基本概念1.机械:机械是一种人为的实物组合,各部分之间具有确定的相对运动,并能实现能量的转换或完成有用的机械功。

2.机构:机构是用来传递运动和力的、有一个构件为机架的、用构件间能够相对运动的连接方式组成的构件系统。

3.构件:构件是机构中的运动单元体,通常是一个整体,也可以是由几个零件刚性联接而成的一个整体。

4.零件:零件是制造的单元体,是构件的组成部分,制造后不再拆分。

二、机械的运动简图1.定义:用简单的线条和符号代表构件和运动副,并按一定比例表示各运动副的相对位置,这种表示机构中各构件间相对运动关系的图形称为机构运动简图。

2.作用:便于对机构进行运动分析和动力分析,是机构设计、分析的重要工具。

三、平面机构的自由度1.自由度:构件相对于参考系的独立运动参数的数目。

2.计算平面机构自由度:F = 3n - 2PL - PH,其中n为活动构件数,PL为低副数,PH为高副数。

四、连杆机构— 1 —1.定义:若干构件用低副(转动副和移动副)连接而成的机构称为连杆机构。

2.分类:平面连杆机构、空间连杆机构。

3.特点:易于制造、成本低、可靠性高、能承受较大载荷、能实现多种运动轨迹和运动规律。

五、凸轮机构1.定义:凸轮是具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动,与它相接触的从动件,作往复运动或摆动。

2.分类:按凸轮的形状分为盘形凸轮、移动凸轮、圆柱凸轮。

3.特点:能实现复杂的运动要求、机构紧凑、传动简单。

六、齿轮机构1.定义:依靠齿轮的啮合传动来传递运动和动力的机构。

2.分类:平面齿轮机构、空间齿轮机构。

3.特点:传动比准确、传动效率高、传动功率大、适应范围广。

七、间歇运动机构1.定义:有些机械需要其构件周期地运动和停歇,能够将原动件的连续转动转变为从动件周期性运动和停歇的机构。

2.分类:棘轮机构、槽轮机构、不完全齿轮机构、凸轮式间歇运动机构。

八、机械效率— 2 —1.定义:有用功与输入功之比称为机械效率。

【大二学习笔记】机械原理第八章 机械的运转及其速度波动的调节

【大二学习笔记】机械原理第八章 机械的运转及其速度波动的调节

ω
ωmax
ωmin
平均角速度:m
1
T
T d
0
φ
T
工程上常采用算术平均值:
ωm=(ωmax +ωmin)/2
ωmax-ωmin 表示了机器主轴速度波动范围的大小,称为
绝对不均匀度。
定义:δ=(ωmax-ωmin)/ ωm 为机器运转速度不均匀系数, 它表示了机器速度波动的程度。
由ωm=(ωmax +ωmin)/2 以及上式可得:
力矩所作功及动能变化:
Md Mr
ab c d E
e a' φ
φ ω
φ
区间
a-b b-c c-d
d-e
e-a’
外力矩所作功
Md<Mr 亏功“-”
Md>Mr Md<Mr 盈功“+”亏功“-”
Md>Mr Md<Mr 盈功“+” 亏功“-”
主轴的ω





动能E





机械运转的平均速度和不均匀系数
已知主轴角速度:ω=ω( )
二、机械运转过程的三个阶段
稳定运转阶段的状况有:
①匀速稳定运转:ω=常数
②周期变速稳定运转:ω(t)=ω(t+T) 注意:Wd = Wr
③非周期变速稳定运转
m
m
t
起动 稳定运转 停车
起动
稳定运转
t
停车
二、机械运转过程的三个阶段
阶段
名称
运动特征
功能关系
起 动
稳定 运转
停 车
角速度ω由零逐渐上升至 稳定运转时的平均角速 Wd Wr

孙桓《机械原理》笔记和课后习题(含考研真题)详解(平面机构的力分析)【圣才出品】

孙桓《机械原理》笔记和课后习题(含考研真题)详解(平面机构的力分析)【圣才出品】

第4章平面机构的力分析4.1 复习笔记一、机构力分析的任务、目的和方法1.作用在机械上的力根据力对机械运动影响的不同,可分为两大类。

(1)驱动力①定义驱动机械运动的力称为驱动力。

②特点驱动力与其作用点的速度方向相同或成锐角,其所作的功为正功,称为驱动功或输入功。

(2)阻抗力①定义阻止机械运动的力称为阻抗力。

②特点阻抗力与其作用点的速度方向相反或成钝角,其所作的功为负功,称为阻抗功。

③分类a.有效阻抗力机械在生产过程中为了改变工作物的外形、位置或状态而受到的阻力,即工作阻力。

克服这类阻力所完成的功称为有效功或输出功。

b.有害阻抗力机械在运转过程中所受到的非生产阻力。

克服这类阻力所作的功称为损失功。

2.机构力分析的任务和目的(1)确定运动副中的反力运动副反力是指运动副两元素接触处彼此作用的正压力和摩擦力的合力。

(2)确定机械上的平衡力或平衡力偶平衡力是指机械在已知外力的作用下,为了使该机构能按给定的运动规律运动,必须加于机械上的未知外力。

3.机构力分析的方法对于不同的研究对象,适用的方法不同。

(1)低速机械惯性力可以忽略不计,只需要对机械作静力分析。

(2)高速及重型机械①惯性力不可以忽略,需对机械作动态静力分析。

②设计新机械时,由于各构件尺寸、材料、质量及转动惯量未知,因此其动态静力分析方法如下:a.对机构作静力分析及静强度计算,初步确定各构件尺寸;b.对机构进行动态静力分析及强度计算,并据此对各构件尺寸作必要修正;c.重复上述分析及计算过程,直到获得可以接受的设计为止。

二、构件惯性力的确定构件惯性力的确定有一般力学法和质量代换法。

1.一般力学方法如图4-1-1(a)所示为曲柄滑块机构,借此说明不同运动形式构件所产生的惯性力。

(1)作平面复合运动的构件惯性力系有两种简化方式。

①简化为一个加在质心S i上的惯性力F I2和一个惯性力偶矩M I2,即F I2=-m2a S2,M I2=-J S2α2②简化为一个大小等于F I2,而作用线偏离质心S2一定距离l h2的总惯性力F I2′,而l h2=M I2/F I2F′I2对质心S2之矩的方向应与α2的方向相反。

机械原理笔记

机械原理笔记

机械原理自我总结及之前笔记遗漏的知识点第一章绪论学什么:研究对象是机械(机器和机构的总称),重点研究对象是机构。

为何学:学习设计机构,巧妙地应用机构。

现代机械与机械原理内容密不可分。

如何学:具有理论系统性,注重理论联系实际,逐步建立工程观念。

具有全面考虑问题的习惯。

第二章机构的结构分析机器运动的观点:任何机器都是由若干个构件组合而成的。

机架也是一个构件。

运动副中的自由度f和约束度s的关系:f=6-s 点接触或线接触为高副,面接触为低副。

类似于螺旋副的运动副,转动和移动运动不是相互独立的,而是通过螺旋引入约束,所以不是Ⅳ级副,而是Ⅴ级副。

具有固定构件的运动链就变成了机构。

同一运动链当取不同构件为机架的时候可以获得不同的机构的类型。

机械原理课程体系就是从工作原理入手,然后研究性能和设计问题。

运动简图绘制时,有些齿轮和曲轴是同一构件,需要用焊接号把它们连接起来,这样才能表达成同一构件。

阻力最小定律:机构优先沿阻力最小的方向运动。

转动副的摩擦一般小于移动副的摩擦。

此定律可以增加机构的灵巧性和运动的自适应性。

计算运动副数目的时候,要特别注意是否是复合铰链,注意是否是同一运动副(转动副轴线重合,移动副移动方向平行,平面高副接触点公法线重合),注意是否是复合高副。

计算自由度时,要除去局部自由度、虚约束。

常发生虚约束的情况:轨迹重合、距离恒定不变、结构重复。

平面机构组成时,不能将同一杆组的各个外接运动副接于同一构件上,否则起不到增加杆组的作用。

第三章平面机构的运动分析较常用图解分析,要求方法方便、快捷、直观。

对于简单的机构,用速度瞬心法作其速度图解分析十分方便快捷。

结构复杂的机构的话,就采用综合法。

采用速度瞬心法时,待求的瞬心位置在两条下脚标中去掉公共号剩下的两个数字组合恰好和速度瞬心相同的延长线上的交点。

就比如说,速度瞬心P13在线段P12P23的延长线与线段P14P34的延长线的交点处。

利用瞬心法求解时,相对瞬心P24在两绝对瞬心P12、P14的延长线上时,与同向相对瞬心P24在两绝对瞬心P12、P14之间时,与向。

书作文之机械专业书籍读书笔记

书作文之机械专业书籍读书笔记

机械专业书籍读书笔记【篇一:机械设计之读书笔记】读书笔记一:《机械原理》主编:李杞仪,赵韩. 机械原理——武汉理工大学出版社本课程主要研究各种机械的一般共性问题,即研究机构的组成原理、机构运动学及机器动力学等;研究各种机器中常用机构的运动及动力性能分析与设计方法和机械传动系统方案设计的问题。

本课程的目的和任务是使学生通过本课程的学习,掌握机构学和机器动力学的基本理论、基本知识和基本技能,并初步具有拟定机械运动方案、分析和设计机构的能力。

它在培养高级工程技术人才的全局中,具有增强学生对机械技术工作的适应能力和开发创造能力的作用。

第一章绪论主要知识点:机械原理研究的对象和内容;学习机械原理课程的目的和方法;机械原理学科发展概貌。

基本要求:对课程的性质、主要内容等方面有个初步的了解,为以下学习打好基础。

第二章机构的结构分析主要知识点:机构结构分析的内容及目的;机构的组成、机构运动简图及机构具有确定运动的条件;平面机构与空间机构的自由度计算及应注意的事项;平面机构的组成原理、结构分类及结构分析;虚约束对机构工作性能的影响及机构结构的合理设计。

基本要求:明确机构组成的概念;能绘制常用机构的机构运动简图和计算平面机构的自由度,了解空间机构的自由度计算和平面机构的组成原理。

第三章平面机构的运动分析主要知识点:机构运动分析的任务、目的和方法;用速度瞬心法作机构的速度分析;用矢量方程图解法作机构的速度及加速度分析;用解析法(复数法或矩阵法)作机构的运动分析。

基本要求:用图解法和解析法对Ⅱ级机构进行运动分析,特别是能运用计算机进行机构的运动分析。

第四章平面机构的力分析主要知识点:作用在机械上的力;构件惯性力的确定(质量代换法);运动副中摩擦的概念、摩擦力的计算和总反力方向的确定;考虑摩擦时机构的受力分析。

基本要求:了解作用在机械中的力的分类,掌握运动副中摩擦力的计算方法和总反力方向的确定。

第五章机械的效率和自锁主要知识点:机械的效率和自锁的概念;机械与机组的机械效率计算;机械自锁条件的确定。

(完整版)机械原理笔记

(完整版)机械原理笔记

(完整版)机械原理笔记第⼀章平⾯机构的结构分析1.1 研究机构的⽬的⽬的:1、探讨机构运动的可能性及具有确定运动的条件2、对机构进⾏运动分析和动⼒分析3、正确绘制机构运动简图1.2 运动副、运动链和机构1、运动副:两构件直接接触形成的可动联接(参与接触⽽构成运动副的点、线、⾯称为运动副元素)低副:⾯接触的运动副(转动副、移动副),⾼副:点接触或线接触的运动副注:低副具有两个约束,⾼副具有⼀个约束2、⾃由度:构件具有的独⽴运动的数⽬(或确定构件位置的独⽴参变量的数⽬)3、运动链:两个以上的构件以运动副联接⽽成的系统。

其中闭链:每个构件⾄少包含两个运动副元素,因⽽够成封闭系统;开链:有的构件只包含⼀个运动副元素。

4、机构:若运动链中出现机架的构件。

机构包括原动件、从动件、机架。

1.3 平⾯机构运动简图1、机构运动简图:⽤简单的线条和规定的符号来代表构件和运动副并按⼀定的⽐例表⽰各运动副的相对位置。

机构⽰意图:不按精确⽐例绘制。

2、绘图步骤:判断运动副类型,确定位置;合理选择视图,定⽐例µl;绘图(机架、主动件、从动件)1.4 平⾯机构的⾃由度1、机构的⾃由度:机构中各活动构件相对于机架的所能有的独⽴运动的数⽬。

F=3n - 2p L - p H(n指机构中活动构件的数⽬,p L指机构中低副的数⽬,p H指机构中⾼副的数⽬)⾃由度、原动件数⽬与机构运动特性的关系:1):F≤0时,机构蜕化成刚性桁架,构件间不可能产⽣相对运动2):F > 0时,原动件数等于F时,机构具有确定的运动; 原动件数⼩于机构⾃由度时,机构运动不确定; 原动件数⼤于机构⾃由度,机构遭到破坏。

2、计算⾃由度时注意的情况1)复合铰链:m个构件汇成的复合铰链包含m-1个转动副(必须是转动副,不能多个构件汇交在⼀起就构成复合铰链,注意滑块和盘类构件齿轮容易漏掉,另外机架也是构件。

2) 局部⾃由度:指某些构件(如滚⼦)所产⽣的不影响整个机构运动的局部运动的⾃由度。

孙恒《机械原理》(第八版)复习笔记及课后习题(含考研真题)详解-第12~14章【圣才出品】

孙恒《机械原理》(第八版)复习笔记及课后习题(含考研真题)详解-第12~14章【圣才出品】
2.普通槽轮机构的运劢系数及运劢特性(见表 12-1-4)
3 / 68
圣才电子书 十万种考研考证电子书、题库视频学习平台

表 12-1-4 普通槽轮机构的运劢系数及运劢特性
3.槽轮机构的几何尺寸计算 在机械中最常用的是径向槽均匀分布的外槽轮机构,对亍这种机构,其设计计算步骤大 致如下: (1)根据工作要求确定槽轮的槽数 z 和主劢拨盘的囿销数 n; (2)挄叐力情况和实际机械所允许的安装空间尺寸,确定中心距 L 和囿销半径 r; (3)最后挄图 12-1-4 所示的几何关系求出其他尺寸,即
解:牛头刨床送迚机构的运劢简图如图 12-2-1 所示,牛头刨床的横向迚给是通过齿轮 1、2,曲柄摇杆机构 2、3、4,棘轮机构 4、5、7 杢使不棘轮固连的丝杠 6 作间歇轩劢, 从而使牛头刨床工作台实现横向间接迚给。通过改发曲柄长度 O2 A 的大小可以改发迚给的 大小。当棘爪 7 处亍图示状态时,棘轮 5 沿逆时针方向作间歇迚给运劢。若将棘爪 7 拔出 绕自身轴线轩 180°后再放下,由亍棘爪工作面的改发,棘轮将改为沿顺时针方向间接迚给。

三、凸轮式间歇运劢机构 1.凸轮式间歇运劢机构的组成和特点(见表 12-1-5)
表 12-1-5 凸轮式间歇运劢机构的组成及特点
2.凸轮式间歇运劢机构的类型及应用(见表 12-1-6) 表 12-1-6 凸轮式间歇运劢机构的类型及应用
5 / 68
圣才电子书 十万种考研考证电子书、题库视频学习平台
12-1 棘轮机构除常用杢实现间歇运劢的功能外,还常用杢实现什么功能? 答:棘轮机构除了常用的间歇运劢功能外,还能实现制劢、迚给、轩位、分度、超越运 劢等功能。
12-2 某牛头刨床送迚丝杠的导程为 6mm,要求设计一棘轮机构,使每次送迚量可在 0.2~1.2mm 乊间作有级调整(共 6 级)。设棘轮机构的棘爪由一曲柄摇杆机构的摇杆杢推 劢,试绘出机构运劢简图,并作必要的计算和说明。

机械原理(PDF)孙桓 复习笔记chapter8

机械原理(PDF)孙桓 复习笔记chapter8

第8章 平面连杆机构及其设计平面连杆机构及其设计平面连杆机构及其设计 §8—1 1 连杆机构及其传动特点连杆机构及其传动特点连杆机构及其传动特点 1.定义:连 杆 机 构:构件用低副联接而成的机构。

平面连杆机构:组成机构的构件都在相互平行的平面中运动的连杆机构。

空间连杆机构:组成机构的构件不在相互平行的平面中运动的连杆机构。

2.特点: 优:1)低副联接,面接触,磨损小,承载能力大。

2)杆状件,圆柱形或平面形接触面,易制造,传递运动远。

3)运动多样性(转、摆、移、平面运动等) 4)轨迹多样性。

缺:1)设计较困难。

2)运动副的制造误差会累积,从而降低机构的传动精度。

3)惯性力难平衡,不适用于高速。

3.应用: 很广泛(e.g:自行车,缝纫机,纺机等中都有应用)§8—2 2 平面四杆机构的类型平面四杆机构的类型平面四杆机构的类型和应用和应用和应用 一.四杆机构的基本型式四杆机构的基本型式::四杆机构的基本型式为铰链四杆机构,其他四杆机构都可由其演化得到 1)铰链四杆机构: 四个构件通过转动副联接而成机构。

机机 架架:固定不动的构件——4. 连杆架连杆架连杆架::与机架相连的杆——1、3。

曲曲 柄柄:能整周转动的连架杆。

摇摇 杆杆:不能整周转动的连架杆。

连连 杆杆:不与机架相连的杆——2。

2)周转副和摆转副:周转副:组成转动副的两构件能相对整周转动的转动副 摆转副:组成转动副的两构件不能相对整周转动的转动副1.曲柄摇杆机构: 两个连架杆中,一个为曲柄,另一个为摇杆的铰链四杆机构 2.双曲柄机构: 两个连架杆均为曲柄的铰链四杆机构12343.双摇杆机构: 两个连架杆均为摇杆的铰链四杆机构二. 平面四杆机构的演化型式平面四杆机构的演化型式 1.改变构件的形状和运动尺寸1234AB CD12312344A A对对对对对对对对(ββ通通A )偏偏对对对对对对(ββ不通通A )l →∞CDββββββ2. 改变运动副的尺寸1234AB3.取不同的构件为机架:对-对对对导导对对摆对对对定对对对手手手4.运动副元素的转换:13241234§8—3 3 平面四杆机构的平面四杆机构的平面四杆机构的基本知识基本知识基本知识 一.铰链四杆机构铰链四杆机构有曲柄的条件有曲柄的条件有曲柄的条件::设:铰四机构ABCD 中,AB 能360°转动的曲柄则:AB 必能转至与机架AD 共线的两个位置A′B′和A″B″,在两共线位置有:a bcdAB C DABCDB′B″C′C″l l ll 1234(a)(b)B′C′B″C″1)a ≤d 时 (图a)∆A′B′D a+ d ≤ b+c a+ d ≤ b+ c a≤b ∆A″B″D b+(d -a) ≥ c => a+ c ≤ b+ d ② => a≤c ① c+(d -a) ≥ b a+ b ≤ c+ d a≤d 2) a >d 时(图6-3b)∆A′B′D a + d ≤ b +c a + d ≤ b +c d ≤ a ∆A″B″D b ≤ c +(a -d ) => b + d ≤ a + c ② => d ≤ b ① c ≤ b +(a -d ) c + d ≤ a + b d ≤ c 1.有曲柄的条件:1)连架杆和机架中有一最短杆2)最短杆和最长杆的长度和不大于其余两杆的长度和。

《机械原理》笔记

《机械原理》笔记

《机械原理》*号内容第一章概论第一节本课程的研究内容什么是机器、机构?机器的三特征:1)由一系列的运动单元体所组成。

2)各运动单元体之间都具有确定的相对运动。

3)能转换机械能或完成有用的机械功以代替或减轻人们的劳动。

具有以上1、2两个特征的实体称为机构。

构件——由一个或多个零件连接而成的运动单元体。

零件——机器中的制造单元体。

第二节机构的分析与综合及其方法机构分析:对已知机构的结构和各种特性进行分析。

机构综合:根据工艺要求来确定机构的结构形式、尺寸参数及某些动力学参数。

机构综合的内容: 1.机构的结构综合2.机构的尺度综合3.机构的动力学综合。

机构的结构综合:主要研究机构的组成规律。

机构的尺度综合(或运动学综合):研究已知机构如何按给定的运动要求确定其尺寸参数.概括为四类:(1)刚体导引:当机构的原动件做简单运动时,要求刚体连续地变换其位置。

(2)函数变换:使机构某从动件的运动参数为原动件运动参数的给定函数。

(3)轨迹复演:使连杆上某点的轨迹能近似地与给定曲线复合。

(4)瞬时运动量约束:按构件在某些特定位置时的运动量来设计机构的结构参数。

准点——符合预定条件的几个位置。

只要求几个位置处符合给定条件的机构综合方法称为准点法。

减小结构误差的途径是:合理确定准点的分布。

可按契比谢夫零值公式配置准点。

第三节学习本课的方法1.注意基本理论与基本方法之间的联系2. 用工程观点学习理论与基本方法3.注意加强感性认识和实践性环节第二章机构的结构分析第一节概述构成机构的基本要素——构件运动副运动链运动副:两构件间直接接触且能产生某些相对运动的联接称为运动副。

约束---对构件间运动的限制。

运动副元素—运动副参加接触的部分。

空间运动副和约束的关系。

平面机构中只有Ⅳ级副和Ⅴ级副。

(为什么?)低副---副元素为面接触(如移动副、转动副);高副----副元素为点(线)接触。

运动链---构件由运动副连接而成的系统。

机构—选定机架,给相应的原动件,其余构件作确定运动的运动链。

孙桓《机械原理》笔记和课后习题(含考研真题)详解-第一章至第三章【圣才出品】

孙桓《机械原理》笔记和课后习题(含考研真题)详解-第一章至第三章【圣才出品】

第1章绪论1.1复习笔记一、本课程研究的对象及内容1.本课程研究的对象本课程研究的对象是机械,机械是机器和机构的总称。

(1)机构是用来传递与变换运动和力的可动装置。

(2)机器是根据某种使用要求而设计的用来变换或传递能量、物料和信息的执行机械运动的装置,机器都是由各种机构组合而成的。

2.本书研究的内容本书研究的内容是有关机械的基本理论问题,具体包括以下几个方面:(1)机构结构分析的基本知识;(2)机构的运动分析;(3)机器动力学;(4)常用机构的分析与设计;(5)机械系统的方案设计。

二、学习机械原理课程的目的(1)机械工业是国家综合国力发展的基石,本课程是机械类专业的重要基础课程而且本课程的内容是有关机械的基础知识。

(2)为了创造出满足人们需求的新产品,需要创造型人才,而机械原理课程在培养机械方面的创造型人才中将起到不可或缺的重要作用。

三、如何进行机械原理课程的学习(1)搞清基本概念,理解基本原理,掌握机构分析和综合的基本方法。

(2)明确机械原理课程中对机械的研究的两大内容:①研究各种机构和机器所具有的一般共性问题;②研究各种机器中常用的一些机构的性能及其设计方法,以及机械系统方案设计的问题。

(3)培养自己运用所学的基本理论和方法去发现、分析和解决工程实际问题的能力,着重培养自己的创新精神和能力。

(4)坚持科学严谨的工作作风,认真负责的工作态度,讲求实效的工程观点。

四、机械原理学科发展现状简介现代机械的发展日新月异,对机械提出的要求越来越苛刻。

为适应生产发展的需要,当前在各类型机构和机械驱动方面的研究上取得了很大的进展。

在机械的分析和综合中日益广泛地应用了计算机并加强了对机械的实验研究。

总之,作为机械原理学科,其研究领域十分广阔,内涵非常丰富。

1.2课后习题详解本章无课后习题。

1.3名校考研真题详解本章内容只是对整个课程的一个总体介绍,基本上没有学校的考研试题涉及到本章内容,读者简单了解即可,不必作为复习重点,所以本部分也就没有选用考研真题。

机械原理重点总结

机械原理重点总结

机械原理重点总结第一篇:机械原理重点总结机械原理零件:独立的制造单元什么叫机械?什么叫机器?什么叫机构?它们三者之间的关系机械是机器和机构的总称机器是一种用来变换和传递能量、物料与信息的机构的组合。

讲运动链的某一构件固定机架,当它一个或少数几个原动件独立运动时,其余从动件随之做确定的运动,这种运动链便成为机构。

零件→构件→机构→机器(后两个简称机械)构件:机器中每一个独立的运动单元体运动副:由两个构件直接接触而组成的可动的连接运动副元素:把两构件上能够参加接触而构成的运动副表面运动副的自由度和约束数的关系f=6-s运动链:构件通过运动副的连接而构成的可相对运动系统平面运动副的最大约束数为2,最小约束数为1;引入一个约束的运动副为高副,引入两个约束的运动副为平面低副机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目;根据机构的组成原理,任何机构都可以看成是由原动件、从动件和机架组成高副:两构件通过点线接触而构成的运动副低副:两构件通过面接触而构成的运动副由M个构件组成的复合铰链应包括M-1个转动副平面自由度计算公式:F=3n-(2Pl+Ph)局部自由度:在有些机构中某些构件所产生的局部运动而不影响其他构件的运动虚约束:在机构中有些运动副带入的约束对机构的运动只起重复约束的作用虚约束的作用:为了改善机构的受力情况,增加机构刚度或保证机械运动的顺利基本杆组:不能在拆的最简单的自由度为零的构件组速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。

若绝对速度为零,则该瞬心称为绝对瞬心相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同点:后者绝对速度为零,前者不是三心定理:三个彼此作平面平行运动的构件的三个瞬心必位于同一直线上速度多边形:根据速度矢量方程按一定比例作出的各速度矢量构成的图形驱动力:驱动机械运动的力阻抗力:阻止机械运动的力矩形螺纹螺旋副:拧紧:M=Qd2tan(α+φ)/2放松:M’=Qd2tan(α-φ)/2三角螺纹螺旋副:拧紧:M=Qd2tan(α+φv)/2放松:M=Qd2tan(α-φv)/2质量代换法:为简化各构件惯性力的确定,可以设想把构件的质量按一定条件用集中于构件上某几个选定点的假想集中质量来代替,这样便只需求各集中质量的惯性力,而无需求惯性力偶距,从而使构件惯性力的确定简化质量代换法的特点:代换前后构件质量不变;代换前后构件的质心位置不变;代换前后构件对质心轴的转动惯量不变机械自锁:有些机械中,有些机械按其结构情况分析是可以运动的,但由于摩擦的存在却会出现无论如何增大驱动力也无法使其运动判断自锁的方法:1、根据运动副的自锁条件,判定运动副是否自锁移动副的自锁条件:传动角小于摩擦角或当量摩擦角转动副的自锁条件:外力作用线与摩擦圆相交或者相切螺旋副的自锁条件:螺旋升角小于摩擦角或者当量摩擦角2、机械的效率小于或等于零,机械自锁3、机械的生产阻力小于或等于零,机械自锁4、作用在构件上的驱动力在产生有效分力Pt的同时,也产生摩擦力F,当其有效分力总是小于或等于由其引起的最大摩擦力,机械自锁机械自锁的实质:驱动力所做的功总是小于或等于克服由其可能引起的最大摩擦阻力所需要的功提高机械效率的途径:尽量简化机械传动系统;选择合适的运动副形式;尽量减少构件尺寸;减小摩擦铰链四杆机构有曲柄的条件:1、最短杆与最长杆长度之和小于或等于其他两杆长度之和2、连架杆与机架中必有一杆为最短杆在曲柄摇杆机构中改变摇杆长度为无穷大而形成的曲柄滑块机构在曲柄滑块机构中改变回转副半径而形成偏心轮机构曲柄摇杆机构中只有取摇杆为主动件是,才可能出现死点位置,处于死点位置时,机构的传动角为0急回运动:当平面连杆机构的原动件(如曲柄摇杆机构的曲柄)等从动件(摇杆)空回行程的平均速度大于其工作行程的平均速度极为夹角:机构在两个极位时原动件AB所在的两个位置之间的夹角θθ=180°(K-1)/(K+1)压力角:力F与C点速度正向之间的夹角α传动角:与压力角互余的角(锐角)行程速比系数:用从动件空回行程的平均速度V2与工作行程的平均速度V1的比值K=V2/V1=180°+θ/(180°—θ)平面四杆机构中有无急回特性取决于极为夹角的大小试写出两种能将原动件单向连续转动转换成输出构件连续直线往复运动且具有急回特性的连杆机构:偏置曲柄滑块机构、摆动导杆加滑块导轨(牛头刨床机构)曲柄滑块机构:偏置曲柄滑块机构、对心曲柄滑块机构、双滑块四杆机构、正弦机构、偏心轮机构、导杆机构、回转导杆机构、摆动导杆机构、曲柄摇块机构、直动滑杆机构机构的倒置:选运动链中不同构件作为机架以获得不同机构的演化方法刚性冲击:出现无穷大的加速度和惯性力,因而会使凸轮机构受到极大的冲击柔性冲击:加速度突变为有限值,因而引起的冲击较小在凸轮机构机构的几种基本的从动件运动规律中等速运动规律使凸轮机构产生刚性冲击,等加速等减速,和余弦加速度运动规律产生柔性冲击,正弦加速度运动规律则没有冲击在凸轮机构的各种常用的推杆运动规律中,等速只宜用于低速的情况;等加速等减速和余弦加速度宜用于中速,正弦加速度可在高速下运动凸轮的基圆半径是从转动中心到理论轮廓的最短距离,凸轮的基圆的半径越小,则凸轮机构的压力角越大,而凸轮机构的尺寸越小齿廓啮合的基本定律:相互啮合传动的一对齿轮,在任一位置时的传动比,都与其连心线O1O2被其啮合齿廓在接触点处的公法线所分成的两线段长成反比渐开线:当直线BK沿一圆周作纯滚动时直线上任一一点K的轨迹AK渐开线的性质:1、发生线上BK线段长度等于基圆上被滚过的弧长AB2、渐开线上任一一点的发线恒于其基圆相切3、渐开线越接近基圆部分的曲率半径越小,在基圆上其曲率半径为零4、渐开线的形状取决于基圆的大小5、基圆以内无渐开线6、同一基圆上任意弧长对应的任意两条公法线相等渐开线函数:invαK=θk=tanαk-αk渐开线齿廓的啮合特点:1、能保证定传动比传动且具有可分性传动比不仅与节圆半径成反比,也与其基圆半径成反比,还与分度圆半径成反比I12=ω1/ω2=O2P/O1P=rb2/rb12、渐开线齿廓之间的正压力方向不变渐开线齿轮的基本参数:模数、齿数、压力角、(齿顶高系数、顶隙系数)记P180表10-2一对渐开线齿轮正确啮合的条件:两轮的模数和压力角分别相等一对渐开线齿廓啮合传动时,他们的接触点在实际啮合线上,它的理论啮合线长度为两基圆的内公切线N1N2渐开线齿廓上任意一点的压力角是指该点法线方向与速度方向间的夹角渐开线齿廓上任意一点的法线与基圆相切根切:采用范成法切制渐开线齿廓时发生根切的原因是刀具齿顶线超过啮合极限点N1 一对涡轮蜗杆正确啮合条件:中间平面内蜗杆与涡轮的模数和压力角分别相等重合度:B1B2与Pb的比值ξα;齿轮传动的连续条件:重合度大于或等于许用值定轴轮系:如果在轮系运转时其各个轮齿的轴线相对于机架的位置都是固定的周转轮系:如果在连续运转时,其中至少有一个齿轮轴线的位置并不固定,而是绕着其它齿轮的固定轴线回转复合轮系:包含定轴轮系部分,又包含周转轮系部分或者由几部分周转轮系组成定轴轮系的传动比等于所有从动轮齿数的连乘积与所有主动轮齿数的连乘积的比值中介轮:不影响传动比的大小而仅起着中间过渡和改变从动轮转向的作用第二篇:机械原理知识点归纳总结第一章绪论基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。

机械原理笔记

机械原理笔记

机械原理笔记机械原理自我总结及之前笔记遗漏的知识点第一章绪论学什么:研究对象是机械(机器和机构的总称),重点研究对象是机构。

为何学:学习设计机构,巧妙地应用机构。

现代机械与机械原理内容密不可分。

如何学:具有理论系统性,注重理论联系实际,逐步建立工程观念。

具有全面考虑问题的习惯。

第二章机构的结构分析机器运动的观点:任何机器都是由若干个构件组合而成的。

机架也是一个构件。

运动副中的自由度f和约束度s的关系:f=6-s 点接触或线接触为高副,面接触为低副。

类似于螺旋副的运动副,转动和移动运动不是相互独立的,而是通过螺旋引入约束,所以不是Ⅳ级副,而是Ⅴ级副。

具有固定构件的运动链就变成了机构。

同一运动链当取不同构件为机架的时候可以获得不同的机构的类型。

机械原理课程体系就是从工作原理入手,然后研究性能和设计问题。

运动简图绘制时,有些齿轮和曲轴是同一构件,需要用焊接号把它们连接起来,这样才能表达成同一构件。

阻力最小定律:机构优先沿阻力最小的方向运动。

转动副的摩擦一般小于移动副的摩擦。

此定律可以增加机构的灵巧性和运动的自适应性。

计算运动副数目的时候,要特别注意是否是复合铰链,注意是否是同一运动副(转动副轴线重合,移动副移动方向平行,平面高副接触点公法线重合),注意是否是复合高副。

计算自由度时,要除去局部自由度、虚约束。

常发生虚约束的情况:轨迹重合、距离恒定不变、结构重复。

平面机构组成时,不能将同一杆组的各个外接运动副接于同一构件上,否则起不到增加杆组的作用。

第三章平面机构的运动分析较常用图解分析,要求方法方便、快捷、直观。

对于简单的机构,用速度瞬心法作其速度图解分析十分方便快捷。

结构复杂的机构的话,就采用综合法。

采用速度瞬心法时,待求的瞬心位置在两条下脚标中去掉公共号剩下的两个数字组合恰好和速度瞬心相同的延长线上的交点。

就比如说,速度瞬心P13在线段P12P23的延长线与线段P14P34的延长线的交点处。

利用瞬心法求解时,相对瞬心P24在两绝对瞬心P12、P14的延长线上时,与同向相对瞬心P24在两绝对瞬心P12、P14之间时,与向。

孙桓《机械原理》笔记和课后习题(含考研真题)详解(凸轮机构及其设计)【圣才出品】

孙桓《机械原理》笔记和课后习题(含考研真题)详解(凸轮机构及其设计)【圣才出品】

第9章凸轮机构及其设计9.1 复习笔记一、凸轮机构的应用及分类1.凸轮机构的应用(1)相关概念①凸轮a.定义凸轮是指一个具有曲线轮廓或凹槽的构件;b.运动形式凸轮通常为主动件作等速转动,也有作往复摆动或移动的。

②推杆被凸轮直接推动的构件称为推杆,常为从动件。

③反凸轮机构凸轮为从动件而以推杆为主动件的机构称为反凸轮机构。

(2)凸轮机构的特点①优点a.适当地设计出凸轮的轮廓曲线,就能使推杆得到各种预期的运动规律;b.响应快速,机构简单紧凑。

②缺点a.凸轮廓线与推杆之间为点、线接触,易磨损;b.凸轮制造较困难。

(3)凸轮机构的应用发展①提出了许多适于在高速条件下采用的推杆运动规律以及一些新型凸轮机构;②凸轮机构的计算机辅助设计和制造、反求设计已获得普遍地应用,提高了设计和加工的速度及质量。

2.凸轮机构的分类(1)按凸轮的形状分①盘形凸轮a.具有变化向径的盘形构件绕固定轴线回转;b.作往复直线移动的盘形凸轮,称为移动凸轮。

②圆柱凸轮a.在圆柱面上开有曲线凹槽,或是在圆柱端面上作出曲线轮廓的构件;b.是一种空间凸轮机构,可认为是将移动凸轮卷于圆柱体上形成的。

(2)按推杆的形状分①尖顶推杆a.构造最简单,易磨损;b.只适用于作用力不大和速度较低的场合。

②滚子推杆a.磨损较小,可用来传递较大的动力;b.滚子常采用特制结构的球轴承或滚子轴承。

③平底推杆a.凸轮与平底的接触面间易形成油膜,润滑较好;b.常用于高速传动中。

(3)按推杆的运动形式分①作往复直线运动的直动推杆若轴线通过凸轮的回转轴心,则称为对心直动推杆,否则称为偏置直动推杆。

②作往复摆动的摆动推杆(4)根据凸轮与推杆保持接触的方法不同分①力封闭凸轮机构利用推杆的重力、弹簧力来使推杆与凸轮保持接触;②几何封闭的凸轮机构利用凸轮或推杆的特殊几何结构使凸轮与推杆保持接触。

二、推杆的运动规律1.研究推杆运动的意义(1)根据工作要求选定合适的凸轮机构的形式、推杆的运动规律和有关的基本尺寸;(2)根据选定的推杆运动规律设计凸轮的轮廓曲线;(3)推杆运动的选择,关系到凸轮机构的工作质量。

机械原理(PDF)孙桓 复习笔记chapter10

机械原理(PDF)孙桓 复习笔记chapter10

59第10章 齿轮机构及其设计齿轮机构及其设计齿轮机构及其设计§1010——1 1 齿轮机构的特点及类型齿轮机构的特点及类型齿轮机构的特点及类型 1.用于平行轴间传动的齿轮机构1)直齿圆柱齿轮机构(外啮合、内啮合、齿轮-齿条啮合) 2)斜齿圆柱齿轮机构(外啮合、内啮合、齿轮-齿条啮合) 3)人字齿轮机构。

2.用于相交轴间传动的齿轮机构: 圆锥齿轮机构(直齿、斜齿、曲齿) 3.用于交错轴间传动的齿轮机构: 1)交错轴斜齿轮机构 2)蜗杆传动 3)准双曲面齿轮机构 4.优缺点: 优:1)定传动比,结构紧凑,工作可靠。

2)效率高(可η>0.99)寿命长。

3)转速范围大、功率范围大、齿轮直径范围大(几个µm ~150m ) 缺:精度要求高,制造难,成本高。

5.应用: 非常广泛§1010——2 2 齿轮的齿轮的齿轮的齿廓齿廓齿廓曲线曲线曲线 一. 齿廓啮合基本定律齿廓啮合基本定律齿廓啮合基本定律;; 齿轮1和2的齿廓C 1和C 2接触于K 点,nn 是C 1、C 2 在点K 的公法线,它与连心线O 1O 2交于P 点 1.啮合节点P: nn 与O 1O 2的交点,即1、2的瞬心 ∵ ω1 O 1P =ω2 O 2P∴ 12122112ωωr r p O p O i ′′===上式表明,节点P 的位置必须随传动比的改变,即: 2.齿廓啮合基本定律:两轮齿廓接触点的公法线nn 必须通过按瞬时传动比确定的节点P 。

603.定传动比的条件:1)条件:公法线nn 与连心线O 1O 2交于一定点,即节点P 固定。

2)节圆:定传动比时,节点P 在齿轮平面中的轨迹圆。

注: r 1′= O 1P 、 r 2′= O 2P 称为节圆半径3)两节圆作纯滚动:∵ P 是1、2的同速点∴ 两节圆作纯滚动,即两齿廓在节点啮合时无相对滑动。

二.齿廓齿廓曲线的选择曲线的选择曲线的选择1.共轭齿廓: 能按预定传动比规律相互啮合传动的一对齿廓 2.常用齿廓: 渐开线、摆线、圆弧等,其中,渐开线齿廓最常用。

孙恒《机械原理》(第八版)复习笔记及课后习题(含考研真题)详解-第1~3章【圣才出品】

孙恒《机械原理》(第八版)复习笔记及课后习题(含考研真题)详解-第1~3章【圣才出品】

1.2 课后习题详解 本章无课后习题。
1.3 名校考研真题详解 本章内容只是对整个课程的一个总体介绍,没有涉及到本章内容的考研试题,读者简单 了解即可。
1 / 144
圣才电子书 十万种考研考证电子书、题库规频学习平台

第 2 章 机构的结构分析
2.1 复习笔记 本章作为重要的基础章节乊一,主要介绍了机构的组成和分类、机构具有确定运劢的条 件和自由度的计算、机构的组成原理和结构分析等内容。学习时需要重点掌插机构自由度的 计算和组成原理等内容,主要以分析计算题的形式考查。除此乊外,机构的组成、分类、具 有确定运劢的条件等内容,常以选择题、填穸题和判断题的形式考查,复习时需要把插其具 体内容,重点记忆。 一、机构的组成及分类 1.机构的组成 (1)构件、运劢副和自由度(见表 2-1-1)
圣才电子书

十万种考研考证电子书、题库规频学习平台
第 1 章 绪论
1.1 复习笔记
本章作为《机械原理》的开篇章节,简单介绍了本书的研究对象及内容、学习目的和学 科的収展现状。本章无重难点知识,只需了解即可。
研究对象及内容(见表 1-1-1) 表 1-1-1 研究对象及内容

四、平面机构自由度的计算 1.平面机构的特点 (1)在平面机构中每个自由构件具有三个自由度。 (2)每个平面低副提供两个约束、一个自由度,每个平面高副提供一个约束、两个自 由度。 2.平面机构自由度的计算方法 设平面机构中除机架外共有 n 个活劢构件,pl 个低副和 ph 个高副,则此平面机构的自 由度为 F=3n-(2p1+ph)。 五、计算平面机构自由度时应注意的事项(见表 2-1-7)
9 / 144
圣才电子书 十万种考研考证电子书、题库规频学习平台

《机械原理》笔记

《机械原理》笔记

第一章概论第一节本课程得研究内容什么就是机器、机构?机器得三特征:1)由一系列得运动单元体所组成。

2)各运动单元体之间都具有确定得相对运动。

3)能转换机械能或完成有用得机械功以代替或减轻人们得劳动。

具有以上1、2两个特征得实体称为机构。

构件——由一个或多个零件连接而成得运动单元体。

零件——机器中得制造单元体。

第二节机构得分析与综合及其方法机构分析:对已知机构得结构与各种特性进行分析。

机构综合:根据工艺要求来确定机构得结构形式、尺寸参数及某些动力学参数。

机构综合得内容: 1、机构得结构综合2、机构得尺度综合3、机构得动力学综合。

机构得结构综合:主要研究机构得组成规律。

机构得尺度综合(或运动学综合):研究已知机构如何按给定得运动要求确定其尺寸参数、概括为四类:(1)刚体导引:当机构得原动件做简单运动时,要求刚体连续地变换其位置。

(2)函数变换:使机构某从动件得运动参数为原动件运动参数得给定函数。

(3)轨迹复演:使连杆上某点得轨迹能近似地与给定曲线复合。

(4)瞬时运动量约束:按构件在某些特定位置时得运动量来设计机构得结构参数。

准点——符合预定条件得几个位置。

只要求几个位置处符合给定条件得机构综合方法称为准点法。

减小结构误差得途径就是:合理确定准点得分布。

可按契比谢夫零值公式配置准点。

第三节学习本课得方法1.注意基本理论与基本方法之间得联系2、用工程观点学习理论与基本方法3.注意加强感性认识与实践性环节第二章机构得结构分析第一节概述构成机构得基本要素——构件运动副运动链运动副:两构件间直接接触且能产生某些相对运动得联接称为运动副。

约束---对构件间运动得限制。

运动副元素—运动副参加接触得部分。

空间运动副与约束得关系。

平面机构中只有Ⅳ级副与Ⅴ级副。

(为什么?)低副---副元素为面接触(如移动副、转动副);高副----副元素为点(线)接触。

运动链---构件由运动副连接而成得系统。

机构—选定机架,给相应得原动件,其余构件作确定运动得运动链。

机械原理知识点总结笔记

机械原理知识点总结笔记

机械原理知识点总结笔记
机械原理是一门研究机械运动、力学性能、传动原理及运动控制等方面的学科。

以下是机械原理的一些重要知识点总结笔记:
1. 运动学:研究物体的运动状态、位置、速度和加速度等因素的学科。

包括点运动、直线运动、曲线运动、旋转运动等。

2. 动力学:研究物体的运动引起的力和加速度之间的关系的学科。

包括牛顿定律、作用力和反作用力、动量守恒定律等。

3. 静力学:研究物体处于静止状态下的受力和平衡条件的学科。

包括力的合成与分解、力的平衡、力矩和力的偶等。

4. 机械传动原理:研究机械元件之间的传动关系和力的传递方式的学科。

包括齿轮传动、皮带传动、链条传动等。

5. 运动副:具有相对运动关系的机械元件之间的接触部分。

常见的运动副有转动副、滑动副、滚动副等。

6. 运动链:由多个运动副按照一定顺序连接而成的机械系统。

运动链可以用于实现机械传动、运动转换和力的放大等功能。

7. 齿轮传动:通过齿轮的啮合将动力传递给机械元件的一种传动方式。

齿轮传动具有传递效率高、传动比稳定等特点。

8. 皮带传动:通过套在轮壳上的皮带将动力传递给机械元件的一种传动方式。

皮带传动具有传动平稳、减震降噪等特点。

9. 运动平面:在运动学研究中,用来描述物体运动及其组成的几何形状的平面。

常见的运动平面包括竖直平面、水平平面、垂直平面等。

10. 运动轨迹:物体在运动过程中经过的轨迹。

运动轨迹可以是直线、曲线、圆形、椭圆形等形状。

以上是机械原理的一部分重要知识点总结笔记,希望对你的学习有所帮助。

孙桓《机械原理》笔记和课后习题(含考研真题)详解(机械的平衡)【圣才出品】

孙桓《机械原理》笔记和课后习题(含考研真题)详解(机械的平衡)【圣才出品】

第6章机械的平衡6.1 复习笔记一、机械平衡的目的及内容1.机械平衡的目的(1)设法将构件的不平衡惯性力加以平衡以消除或减小其不良影响;(2)对于利用不平衡惯性力产生的振动来工作的机械,则需考虑如何合理利用不平衡惯性力的问题。

2.机械平衡的内容(1)绕固定轴回转的构件的惯性力平衡绕固定轴回转的构件统称为转子,分为刚性转子和挠性转子。

①刚性转子的平衡a.刚性转子的定义在工作过程中产生的弹性形变甚小的转子称为刚性转子。

b.特点第一,刚性较好,共振转速较高;第二,工作转速低于(0.6~0.75)n c1(n c1为转子的第一阶临界转速)。

c.平衡理论刚性转子的平衡按理论力学中的力系平衡来进行。

d.转子的静平衡和动平衡第一,转子的静平衡只要求其惯性力平衡,称为转子的静平衡;第二,转子的动平衡同时要求其惯性力和惯性力矩平衡,称为转子的动平衡。

②挠性转子的平衡a.挠性转子的定义在工作过程中产生较大的弯曲变形,使其惯性力显著增大的转子称为挠性转子。

b.特点第一,质量和跨度很大;第二,径向尺寸较小,共振转速较低;第三,工作转速n很高(n≥(0.6~0.75)n c1)。

c.平衡理论挠性转子的平衡原理是基于弹性梁的横向振动理论。

(2)机构的平衡作往复移动或平面复合运动的构件,其所产生的惯性力无法在该构件本身上平衡,必须研究整个机构使各运动构件惯性力的合力和合力偶得到完全或部分平衡,以消除或降低最终传到机械基础上的不平衡惯性力,满足上述条件的平衡称为机械在机座上的平衡。

二、刚性转子的平衡计算1.刚性转子的静平衡计算(1)静不平衡①定义 由于质心不在回转轴心上而使转子在静态时表现出来的不平衡现象称为静不平衡。

②特点a .对象为转子轴向宽度b 与其直径D 之比b/D <0.2的转子;b .转子的质心不在回转轴线上,当其转动时,偏心质量就会产生离心惯性力。

(2)静平衡的计算如图6-1-1所示为一盘状转子,已知其具有偏心质量m 1、m 2,各自的回转半径为r 1、r 2,转子角速度为ω。

《机械原理》基础知识点

《机械原理》基础知识点

《机械原理》基础知识点1构件:具有确定运动的单元体组成的,这些运动单元体称为构件零件:组成构件的制造单元体运动副:两构件直接接触的可动联接构件的自由度:构件的独立运动数目运动链:若干个构件通过运动副所构成的系统机架:固定的构件原动件:机构中做独立运动的构件从动件:机构中除原动件外其余的活动构件运动链→机构:将运动链中的一个构件固定,并且它的一个或几个构件作给定的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构2机构运动简图:表示机构中各构件间相对运动关系的简单图形。

机构运动简图必须与原机械具有完全相同的运动特性。

示意图:只为了表明机械的结构,不按比例来绘制简图3约束和自由度的关系:增加一个约束,构件就失去一个自由度4机构具有确定运动的条件:机构自由度等于机构的原动件数5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该重合点称为他们的瞬心速度中心绝对瞬心:运动构件上瞬时绝对速度为零的点相对瞬心:两运动构件上瞬时绝对速度相等的重合点6摩擦力增大并不是运动副元素材料间摩擦因数发生了变化,而是运动副元素的几何结构形状发生变化所致。

7摩擦圆:对于一具体的轴颈,r和fv为定值,因此ρ为定值,以轴心O为圆心,ρ为半径做一圆,该圆成为摩擦圆。

8机械自锁:由于摩擦的存在,会出现无论施加多大的驱动力,都不能使机械沿驱动方向产生运动的现象。

自锁条件:η≤0 机械发生自锁9连杆机构(低副机构):若干个构件通过低副联接所组成的机构10平面四杆机构基本形式:铰链四杆机构11曲柄:在两连杆中能做整周回转机构摇杆:只能在一定角度范围内摆动的构件周转副:将两构件能做360°相对转动的转动副摆动副:不能将两构件能做360°相对转动的转动副12铰链四杆机构的曲柄存在条件:1最短杆与最长杆长度之和小于或等于其他两杆长度之和 2连架杆和机架中有一杆是最短杆13最短杆为连杆时,该机构为双摇杆机构;最短杆为连架杆时,该机构为曲柄摇杆机构;最短杆为机架时,该机构为双曲柄机构;14有急回运动:θ≠0时,偏置曲柄滑块机构和导杆机构无急回运动:对心曲柄滑块机构和双摇杆机构15死点位置:压力角为90°,传动角为0°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【&《机械原理》*号内容第一章概论第一节本课程的研究内容什么是机器、机构机器的三特征:1)由一系列的运动单元体所组成。

2)各运动单元体之间都具有确定的相对运动。

"3)能转换机械能或完成有用的机械功以代替或减轻人们的劳动。

具有以上1、2两个特征的实体称为机构。

构件——由一个或多个零件连接而成的运动单元体。

零件——机器中的制造单元体。

第二节机构的分析与综合及其方法机构分析:对已知机构的结构和各种特性进行分析。

机构综合:根据工艺要求来确定机构的结构形式、尺寸参数及某些动力学参数。

机构综合的内容: 1.机构的结构综合2.机构的尺度综合3.机构的动力学综合。

机构的结构综合:主要研究机构的组成规律。

机构的尺度综合(或运动学综合):研究已知机构如何按给定的运动要求确定其尺寸参数.概括为四类:?(1)刚体导引:当机构的原动件做简单运动时,要求刚体连续地变换其位置。

(2)函数变换:使机构某从动件的运动参数为原动件运动参数的给定函数。

(3)轨迹复演:使连杆上某点的轨迹能近似地与给定曲线复合。

(4)瞬时运动量约束:按构件在某些特定位置时的运动量来设计机构的结构参数。

准点——符合预定条件的几个位置。

只要求几个位置处符合给定条件的机构综合方法称为准点法。

减小结构误差的途径是:合理确定准点的分布。

可按契比谢夫零值公式配置准点。

第三节学习本课的方法1.注意基本理论与基本方法之间的联系2. 用工程观点学习理论与基本方法|3.注意加强感性认识和实践性环节第二章机构的结构分析第一节概述构成机构的基本要素——构件运动副运动链运动副:两构件间直接接触且能产生某些相对运动的联接称为运动副。

约束---对构件间运动的限制。

运动副元素—运动副参加接触的部分。

空间运动副和约束的关系。

平面机构中只有Ⅳ级副和Ⅴ级副。

(为什么)低副---副元素为面接触(如移动副、转动副);高副----副元素为点(线)接触。

)运动链---构件由运动副连接而成的系统。

机构—选定机架,给相应的原动件,其余构件作确定运动的运动链。

第二节平面机构自由度机构自由度——机构具有确定运动所必须的独立运动参数的数目。

高副提供一个约束,低副提供两个约束。

机构的自由度为:F=3n-(2p l+p h)。

(各符号的意义)机构具有确定运动的条件1, F>0;2, F=原动件数。

(F原动件数、F原动件数时会出现什么情况)主动件—机构中传入驱动力(矩)的构件。

原动件——运动规律已知的构件。

其余的活动构件统称从动件。

》输出构件——输出运动或动力的从动件复合铰链——两个以上的构件构成的同轴线的转动副,其转动副个数等于构件数减1。

局部自由度——与机构整体运动无关的自由度。

虚约束——对运动不起实际限制作用的约束。

第三节机构的组成F=0的不可再拆分的最简单的运动链——基本杆组。

机构的组成原理——由若干基本杆组依次连接到原动件和机架上构成机构。

n=2;p l=3,——Ⅱ级组。

n=4;p l=6,且具有一个含三个低副的中心构件的基本组——Ⅲ级组。

n=4;p l=6,不含三个低副的中心构件的基本组——Ⅳ级组。

注意:基本杆组中是没有高副的。

:机构的级别是以其中含有的杆组的最高级别确定的。

机构拆组的一般原则1.除掉虚约束和局部自由度,高副低代;2.从远离原动件开始拆组,先Ⅱ级后Ⅲ级;3.杆与其上运动副一并拆下;4.剩余部分必为一机构,最后为机架、原动件.第四节平面机构的高副低代高副低代——将机构中的高副用低副代替。

高副低代的替代条件:1,机构的自由度不变;2,机构的瞬时运动不变。

将高副C用具有两个铰链的构件代替,铰链的中心分别位于高副接触点的曲率中心处且与高副元素的所属构件相连。

机构在不同位置其低副替代机构也不同——高副低代的瞬时性。

第三章平面机构的运动分析概述!第一节第二节Ⅱ级机构的运动分析运动分析的步骤:建立机构的位置方程式;位置方程式对时间t求导一次、两次得速度方程式、加速度方程。

一、铰链四杆机构的运动分析将坐标逆时针方向旋转求构件的角速度、角加速度二、曲柄滑块机构的运动分析导路平行坐标轴线时不可用坐标旋转法(为什么)三、导杆机构的运动分析第七节速度瞬心及其位置确定—瞬心——作一般平面运动的两构件上的瞬时等速重合点或瞬时相对速度为零的重合点。

绝对瞬心——重合点的绝对速度为零.相对瞬心——重合点的绝对速度不为零。

k=N(N-1)/2 k——瞬心的数目;N——机构的总构件数。

三心定理——彼此作平面运动的三个构件有三个速度瞬心,它们位于同一条直线上。

第四章机构的力分析第一节概述机构的静力分析—不计惯性力的机构力分析。

机构的动力分析—考虑惯性力的机构力分析。

如将惯性力视为一般外力加于产生该惯性力的构件上,该机械视为处于静力平衡状态。

&驱动力—凡是驱使机械产生运动的力。

阻抗力—凡是阻止机械产生运动的力。

平衡力—与作用在机械上的已知外力相平衡的未知外力。

机构力分析的目的:1)求运动副反力;2)计算平衡力(矩).第二节运动副反力及构件组静定条件不论是否楔形滑块,R21和N21之间的夹角可表示为v楔面接触较平面接触时所产生的摩擦力大。

(为什么)摩擦圆——以为半径圆。

(rf)对轴颈的总反力将始终切于摩擦圆。

(为什么)静定条件—所有未知外力都可以用静力学的方法确定出来的条件。

其条件为:3n=2p。

所有的基本杆组都是静定杆组。

、第三节不考虑摩擦的机构力分析一,矩阵法RRR——Ⅱ级组的力分析RPR——Ⅱ级组的力分析可以直接确定移动副反力的方向,不必按X、Y分解二,机构力分析的等功率法机构处于平衡状态时,作用于机构上的所有外力的瞬时功率之和为零。

用于只求平衡力(力矩)情况的简便方法三,首解运动副法“首解运动副”—两构件相连的“内运动副”,且构件上的所有外载荷均为已知。

&两构件分别对外运动副中心求矩可导出“首解运动副”反力的求解式。

四,直接求解法应用有关二力杆和三力汇交的理论,直接求解。

第四节考虑摩擦的机构力分析第五节机械效率与机械自锁一,机械的效率机械正常运转时W d=W r+W f机械效率—表示输入功在机械中有效利用的程度。

、W r/W d=1- W f/W d P r/P d F0/F M0/M。

(各符号的意义)1)W f不可能为零,故<1 2)为提高机械效率应尽量减小机械中的损耗。

理想机械—不存在摩擦和损耗的机械。

其效率0=1。

=理想驱动力F0(M0)与实际驱动力F(M)之比。

斜面机构的效率:将正行程公式中的主动力与阻力置换,摩擦角符号反向即反行程公式。

机组—由若干台机器组成的系统串联机组的总效率等于组成该机组的各个机器的效率的连乘积。

(1)串联机组的总效率小于各机器的效率<i;(2)并联机组的总效率:(i) min<< (i) max。

若各个机器的效率均相等有=i|无论驱动力如何增大,也无法使机械运动的现象—机械的自锁。

机械出现自锁的条件即:≤0凡使机器反行程自锁的机构通称为自锁机构。

当螺旋升角小于摩擦角时,螺旋发生自锁。

第五章机构的型综合第一节概述机构结构分类法—研究由多少个构件、运动副能构成多少个给定自由度的不同机构,从中选择出最佳满足工艺要求的机构。

第二节机构结构分类法讨论机构的类型即探讨运动链F、N、p间的关系。

运动链的环—由构件和运动副构成的独立封闭系统。

L=p-N+1(各符号的意义)^用数组表示多元连杆与二元连杆间的连接方式的规则……第三节连杆组合分类法机构型综合机构型综合的原则:1)最简原则——应首先考虑最简单的运动链。

2)不存在无功能结构原则——机构中不出现不起实际作用的结构部分;3)最易综合原则——选择二元连杆为机架,易得到高级别机构;4)最低成本原则——运动副的加工成本按转动副、移动副、高副递增;5)最符合工艺要求原则第六章平面连杆机构第一节概述:平面连杆机构——由低副连接而成的平面机构一.平面连杆机构的特点:1)实现远距离传动或增力;2)可完成某种轨迹3)寿命较长,适于传递较大的动力;4)便于制造。

缺点:1,设计困难,一般只能近似地满足运动要求2,多数构件作变速运动,其惯性力难以平衡。

二、平面连杆机构设计的基本问题机构运动简图参数——各杆尺寸及机架、某点的位置尺寸设计的基本问题——根据工艺要求来确定机构运动简图的参数。

设计的两类基本问题:1,实现已知的运动规律;2,实现已知的轨迹。

第二节连杆机构的运动特性机构的运动特性—机构的运动学和传力性能(有曲柄条件、传动角、急回运动、止点。

)一、有曲柄条件'连架杆——与机架相连的构件;连杆——作一般平面运动的构件;机架——相对固定的构件;摇(摆)杆——往复摆动的连架杆;曲柄——整周转动的连架杆。

四杆运动链具有两个全转副的条件1,具有两个全转副的构件为最短杆;2,最短杆与最长杆之和<(或=)其它两杆之和(称为杆长之和条件)。

低副的运动性质不随机架变更而改变——低副运动的可逆性。

四杆铰链机构满足杆长之和条件时:最短杆的邻杆为机架得曲柄摇杆机构;最短杆为机架得双曲柄机构;最短杆的对杆为机架得双摇杆机构。

四杆铰链机构的有曲柄条件:1)满足杆长之和条件;2)最短杆或者最短杆的邻杆为机架。

推论:不满足杆长之和条件时,得到双摇杆机构。

曲柄滑块机构的有曲柄条件:b e+a。

二、压力角和传动角压力角——从动件受力方向与受力点速度方向所夹的锐角。

—与压力角互余的角——称为传动角。

四杆铰链机构的最小传动角出现在曲柄与机架共线的两位置之一。

曲柄滑块机构的最小传动角发生在曲柄垂直于导路且远离偏心一边的位置。

三、行程速度变化系数极位夹角:机构在两极位处,一曲柄与另一曲柄反向线间的夹角。

行程速比系数表示从动件的空行程与工作行程平均速度之比:k= v2 /v1=(1800+)/(1800-);= 1800(k-1)/(k+1).k=1,=0机构无急回特性k>1,>0机构有急回特性。

k =3时,=90°。

k>3, 为钝角。

!四、止点位置当连杆与从动件共线时(=900、=0),机构不能运动,此位置称为止点位置。

第三节机构综合的位移矩阵法一、刚体平面有限位移的位移矩阵刚体的平面转角j——刚体位置j对位置1的转角;[D1j]为构件上已知点位置参数的系数矩阵,称为刚体平面运动的位移矩阵。

位移矩阵法——用位移矩阵对机构尺寸进行综合的一种方法。

以杆长不变或角不变为约束条件建立方程。

有较强的通用性与适用性。

但无法考虑机构的运动和传力性能。

使用场合:受力很小主要实现位置要求的机构的综合。

二、按连杆给定位置设计铰链四杆机构若已知P j (x pj,y pj),(j=1,2…n), q j (j=2,3…n)设计此机构。

根据杆的长度不变求解。

@三、按给定连杆位置设计曲柄滑块机构已知P j(j=1,2…n); q j (j=2,3…n).求一带有滑块的机构,实现该刚体导引。

相关文档
最新文档