2020届三省三校(贵阳一中,云师大附中,南宁三中)高三12月联考数学(文)试题(解析版)

合集下载

广西南宁市第三中学2020届高三数学第二次模拟考试试题 文

广西南宁市第三中学2020届高三数学第二次模拟考试试题 文

南宁三中2020届高三第二次模拟考试数学试题(文科)全卷满分150分 考试用时120分钟一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合,,则( )A.B.C.D.2.已知复数512z i=+,则z =( ) A. 1B.55C. 5D. 53.甲、乙两人参加歌唱比赛,晋级概率分别为45和34,且两人是否晋级相互独立,则两人中恰有一人晋级的概率为( )A.1920B.35C. 25D.7204.设等差数列的前项和为,若,则( )A.21B. 22C. 23D. 245.下列命题中,正确的是( ) A. 若22a bc c<,则a b <B. 若ac bc >,则a b >C. 若a b >,c d >,则a c b d ->-D. 若a b >,c d >,则ac bd >6.如图所示的流程图,最后输出的n 的值为( )A. 3B. 4C. 5D. 67.若抛物线在处的切线的倾斜角为,则( )A.45B.12C.45-D.12-8.一个几何体的三视图如图所示,则该几何体外接球的体积为( )A.6π B.3πC.32π D. 43π9.若将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度,则平移后图象的对称轴为( ) A.()24k x k Z ππ=+∈B. ()212k x k Z ππ=+∈C.()4x k k Z ππ=+∈ D. ()12x k k Z ππ=+∈10.已知命题:p x R ∃∈,220x ax a ++≤,若命题p 是假命题,则实数a 的取值范围是( ) A. ()0,1B. (]0,1C. ()(),01,-∞⋃+∞D. ][(),01,-∞⋃+∞11.已知圆()22:200M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆与圆()()22:111N x y -+-=的位置关系是( )A. 内切B. 相交C. 外切D. 相离12.已知当()1,x ∈+∞时,关于x 的方程()ln 21x x k xk+-=-有唯一实数解,则k 的取值范围是( )A. ()3,4B. ()4,5C. ()5,6D. ()6,7二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a v 与b v 的夹角为,且||1,|2|5a a b =-=v v v ,则||b v_______. 14.若实数,满足约束条件,则的最小值为__________.15.设数列{}n a 的前项和为,且11a =,131n n a S +=+,则4S =__________.16.如图,在正三棱柱111ABC A B C -中,若13AB BB =,则1AB 与1C B 所成角的余弦值为_______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本题满分12分)在锐角中,角,,的对边分别为,,,且3cos 3cos 2sin b A a B b C +=(Ⅰ)求角的大小;(Ⅱ)已知sin 4,sin a CA=ABC ∆的面积为,求边长的值.18.(本题满分12分)如图,三棱锥中,平面,,,是的中点,是的中点,点在上,. (1)证明:平面;(2)若,求点到平面的距离.19.(本题满分12分)2020年3月2日,国家环保部发布了新修订的《环境空气质量标准》,其中规定:居民区的PM2.5的年平均浓度不得超过35微克/立方米.某城市环保部门在2020年1月1日到 2020年4月30日这120天对某居民区的PM2.5平均浓度的监测数据统计如下:(Ⅰ)在这120天中采用分层抽样的方法抽取30天的数据做进一步分析,每一组应抽取多少天? (Ⅱ)在(I )中所抽取的样本PM2.5的平均浓度超过75(微克/立方米)的若干天中,随机抽取2天,求恰好有一天平均浓度超过115(微克/立方米)的概率.20.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,且过点T .(1)求椭圆的方程;(2)已知直线与椭圆交于,两点,求(为坐标原点)的面积取最大值时直线的方程.21.(本题满分12分)已知函数()cos f x x x ax a =-+,π[0,]2x ∈,(0)a ≠. (Ⅰ)当1=a 时,求)('x f 的最小值; (Ⅱ)求证:()f x 有且仅有一个零点.请考生在(22)、(23)两题中任选一题作答,如果多答,则按做的第一题记分. 22.(本题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的参数方程为(为参数),以为极点,轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为()6R πθρ=∈.(1)求曲线的极坐标方程;(2)设直线与曲线相交于两点,求的值.23.(本题满分10分)选修4-5:不等式选讲已知函数()222f x x a x b =++-+(0,0)a b >>的最小值为3. (1)求a b +的值;(2)求证:3413log a b a b ⎛⎫+≥-+⎪⎝⎭.南宁三中2020届高三第二次模拟考试数学试题(文科)参考答案1.B 【解析】由题得=={x|0,1,2},所以A∩B={0,1,2}.故选B.2.C 【解析】512z i ====+故选C3.D 【解析】根据题意,恰有一人晋级就是甲晋级乙没有晋级或甲没有晋级乙晋级, 则所求概率是4334711544520-+-=()()故选D . 4.A 【解析】由题意=15,,∴. 故选A .5.A 【解析】对于A .∵22a b c c <即20a bc -<,∴a b <,正确;对于B .∵ac bc >即()0a b c ->,c 的正负不知道,则a ,b 大小也无法判断,错误;对于C .∵a b >,c d >,无法判断a c -与b d -的大小关系,错误;对于D .∵a b >,c d >,不知道a ,b ,c ,d 正负,无法判断ac 与bd 的大小关系,故选A .6.C 【解析】执行程序有:n=1,n=n+1=2,此时,2n=4,n 2=4,故有n=n+1=3, 此时2n=8,n 2=9,故有n=n+1=4, 此时2n=16,n 2=16,故有n=n+1=5,此时2n=32,n 2=25,即满足2n>n 2故输出n 的值5. 故选:C .7.A 【解析】因为,所以, 则该切线的斜率, 则 .故选A .8.B 【解析】根据几何体的三视图,可知该几何体是底面是正方形,一条侧棱垂直于底面的四棱锥,即这五个点都是棱长为的正方体的顶点,所以该几何体的外接球就是对应正方体的外接球,所以外接球的直径是正方体的对角线为,所以半径,从而求的球的体积为,故选B.9.B 【解析】平移后函数解析式为,令,则,.故选B . 10.A 【解析】P 为假,即“∀x ∈R ,x 2+2ax +a >0”为真,∴△=4a 2−4a <0⇒0<a <1.本题选择A 选项.11.B 【解析】圆的标准方程为M :x 2+(y ﹣a )2=a 2(a >0),则圆心为(0,a ),半径R=a , 圆心到直线x+y=0的距离d=,Q 圆M :x 2+y 2﹣2ay=0(a >0)截直线x+y=0所得线段的长度是2,2222222222a R d a a ∴-=-=⇒=则圆心为M (0,2),半径R=2,圆N :(x ﹣1)2+(y ﹣1)2=1的圆心为N (1,1),半径r=1, 则MN=,Q R+r=3,R ﹣r=1, ∴R ﹣r <MN <R+r ,即两个圆相交. 故选:B . 12.B 【解析】因为()ln 21x x k xk+-=-,所以ln 21x x x k x +=-,令()ln 2,(1)1x x xf x x x +=>-,则()()2ln 3(1)1x x f x x x --=>-',再令()()1g ln 3(1)10x x x x g x x'=-->∴=-> ()()()000040,(5)0,4,5,0-ln 30g g x g x x x <>∴∃∈=∴-=Q ,因为关于x 的方程()ln 21x x k xk+-=-有唯一实数解,所以()()()()000000000000ln 21ln 24,5111x x x x x x x k f x x x x x +-+=====∈---,选B.13.1【解析】, 向量与的夹角为,0 ,解得,故答案为.14.2【解析】作出可行域如图所示,设,则表示可行域内的点与原点的距离的平方.由图知,所以. 故答案为:2.15.【解析】①,②,①②得:,又∴数列 首项为1,公比为的等比数列,∴. 故结果为85; 16.18【解析】取1BB 中点D ,11B C 中点E ,AB 中点F 则1//DE BC ,1//DF AB即EDF ∠为所求角,设1BB x =,12AB x =,得7EF x =DE DF x ==2222714cos 28x x x EDF x +-∠== 17.【解析】(1)由已知得,由正弦定理得, ∴, 又在中,, ∴ 所以 ∴.(2)由已知及正弦定理 又 S ΔABC =,∴,得 由余弦定理 得.18.【解析】(Ⅰ)证明:如图,取AD 中点G ,连接GE ,GF ,则GE //AC ,GF //AB ,因为GE ∩GF =G ,AC ∩AB =A ,所以平面GEF //平面ABC , 所以EF //平面ABC . (Ⅱ)∵平面ABC ,∴. 又∴平面PAB . 又∴, ∴.记点P到平面BCD的距离为d,则∴,∴,所以,点P到平面BCD的距离为.19.【解答】(Ⅰ)这120天中抽取30天,采取分层抽样,抽样比k==,第一组抽取32×=8天;第二组抽取64×=16天;第三组抽取16×=4天;第四组抽取8×=2天(Ⅱ)设PM2.5的平均浓度在(75,115]内的4天记为A,B,C,D,PM2.5的平均浓度在115以上的两天记为1,2.所以6天任取2天的情况有:AB,AC,AD,A1,A2,BC,BD,B1,B2,CD,C1,C2,D1,D2,12,共15种记“恰好有一天平均浓度超过115(微克/立方米)”为事件A,其中符合条件的有:A1,A2,B1,B2,C1,C2,D1,D2,共8种所以,所求事件A的概率P(A)=20.【解析】(1)依题意得解得∴椭圆的方程为.(2)由消去整理得,其中设,则,,∴,又原点到直线的距离.∴,令,则,∴当时,取得最大值,且,此时,即. ∴直线的方程为∴的面积取最大值时直线的方程为.21.(Ⅰ)解:依题意()cos sin f x x x x a '=--.令()cos sin g x x x x a =--,π[0,]2x ∈,则()2sin cos 0g x x x x '=--≤.所以()g x 在区间π[0,]2上单调递减. 所以)('x f 的最小值为122sin22cos)2()(min --=--==πππππa g x g . (Ⅱ)证明:由(Ⅰ)知,()g x 在区间π[0,]2上单调递减,且(0)1g a =-,ππ()22g a =--. 当1a ≥时,()f x 在π[0,]2上单调递减. 因为(0)0f a =>,ππ()(1)022f a =-<,所以()f x 有且仅有一个零点.当π02a --≥,即π2a ≤-时,()0g x ≥,即()0f x '≥,()f x 在π[0,]2上单调递增.因为(0)0f a =<,ππ()(1)022f a =->, 所以()f x 有且仅有一个零点.当π12a -<<时,(0)10g a =->,ππ()022g a =--<, 所以存在0π(0,)2x ∈,使得0()0g x =.x ,()f x ',()f x 的变化情况如下表:所以()f x 在0(0,)x 上单调递增,在0(,)2x 上单调递减.因为(0)f a =,ππ()(1)22f a =-,且0a ≠,所以2ππ(0)()(1)022f f a =-<,所以()f x 有且仅有一个零点.综上所述,()f x 有且仅有一个零点.22.【解析】(1)将方程消去参数得,∴曲线的普通方程为, 将代入上式可得, ∴曲线的极坐标方程为:. (2)设两点的极坐标方程分别为, 由消去得,根据题意可得是方程的两根, ∴, ∴.23.【解析】(1)()222f x x a x b =++-+()()222x a x b ≥+--+2a b =++所以23a b ++=,即1a b += (2)由1a b +=,则原式等价为:341log 2a b ⎛⎫+≥⎪⎝⎭,即419a b +≥,而()41414559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当41b aa b a b ⎧=⎪⎨⎪+=⎩,即21,33a b ==时,“=”成立, 故原不等式成立。

三省三校(贵阳一中、云师大附中高考临考冲刺数学试卷含解析

三省三校(贵阳一中、云师大附中高考临考冲刺数学试卷含解析

高考数学期末测试卷必考(重点基础题)含解析注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()e x f x x=,关于x 的方程()()()2140(f x m f x m m ++++=∈R)有四个相异的实数根,则m 的取值范围是( ) A .44,e e 1⎛⎫---⎪+⎝⎭B .()4,3--C .4e ,3e 1⎛⎫--- ⎪+⎝⎭D .4e ,e 1∞⎛⎫--- ⎪+⎝⎭ 2.已知α满足1sin 3α=,则cos cos 44ππαα⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭( ) A .718B .79C .718-D .79-3.把函数()sin 2(0)6f x A x A π⎛⎫=-≠ ⎪⎝⎭的图象向右平移4π个单位长度,得到函数()g x 的图象,若函数()()0g x m m ->是偶函数,则实数m 的最小值是( )A .512πB .56π C .6π D .12π4.已知随机变量X 服从正态分布()4,9N ,且()()2P X P X a ≤=≥,则a =( ) A .3B .5C .6D .75.已知a ,b ,c 是平面内三个单位向量,若a b ⊥,则232a c a b c +++-的最小值( )AB C D .56.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1B .23-C .13-D .34-7.已知集合{}|1A x x =>-,集合(){}|20B x x x =+<,那么A B 等于( )A .{}|2x x >-B .{}1|0x x -<<C .{}|1x x >-D .{}|12x x -<<8.设a=log 73,13b log 7=,c=30.7,则a ,b ,c 的大小关系是( )A .a b c <<B .c b a <<C .b c a <<D .b a c <<9.已知集合{}1,2,3,,M n =(*n N ∈),若集合{}12,A a a M =⊆,且对任意的b M ∈,存在{},1,0,1λμ∈-使得i j b a a λμ=+,其中,i j a a A ∈,12i j ≤≤≤,则称集合A 为集合M 的基底.下列集合中能作为集合{}1,2,3,4,5,6M =的基底的是( )A .{}1,5B .{}3,5C .{}2,3D .{}2,410.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .2-B .2C .12-D .1211.已知复数z 满足1z =,则2z i +-的最大值为( ) A .23+B.1+C.2D .612.已知四棱锥S ABCD -的底面为矩形,SA ⊥底面ABCD ,点E 在线段BC 上,以AD 为直径的圆过点E .若3SA ==,则SED ∆的面积的最小值为( )A .9B .7C .92D .72二、填空题:本题共4小题,每小题5分,共20分。

2020届高三数学三校联考试卷

2020届高三数学三校联考试卷

2020届高三数学三校联考试卷一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1、函数)01(31<≤-=+x y x 的反函数是…………………………………………………( )A .)0(log 13>+=x x yB .)0(log 13>+-=x x yC .)31(log 13<≤+=x x yD .)31(log 13<≤+-=x x y2、在ABC ∆中,“︒>30A ”是“21sin >A ”的…………………………………… ( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3、若)(x f 为偶函数并在),0(+∞上是减函数,若0)2(=f ,则0)(<xx f 的解集为………………………………………………………………………………………………( ) A .)2,0()0,2(Y - B .)2,0()2,(Y --∞ C .),2()2,(+∞--∞Y D .),2()0,2(+∞-Y 4) A .)6sin(π+=x yB .)62cos(π-=x yC .)62sin(π-=x yD .)34cos(π-=x y5、已知,log 1)(2x x f +=设数列}{n a 满足*))((N n n fa n ∈=,则数列}{n a 的前n 项和nS 等于……………………………………………………………………………………………( ) A .12-nB .121--n C .141--n D .14-n6、由函数x y 2log =与函数)2(log 2-=x y 的图象及2-=y 与3=y 所围成的封闭图形的面积是……………………………………………………………………………………………( ) A .15 B .20 C .10 D .以上都不对7、若函数)24lg(xa y ⋅-=在]1,(-∞上有意义,则实数a 的取值范围是…………… ( ) A .)2,(-∞B .]2,(-∞C .)2,0(D .]2,0(8、已知函数)2sin(5)(ϕ+=x x f ,若5)(=a f ,则)12(π+a f 与)65(π+a f 的大小关系是………………………………………………………………………………………………( )A .)65()12(ππ+>+a f a fB .)65()12(ππ+=+a f a f C .)65()12(ππ+<+a f a f D .与ϕ和a 有关x9、将2n 个正整数2,3,2,1n Λ填入n n ⨯方格中,使其每行,每列,每条对角线上的数的和相等,这个正方形叫做n 阶幻方.记)(n f 为n 阶幻方对角线的和,如右图就是一个3阶幻方,可知,15)3(=f 则=)5(f ………………………………………………………( ) A .63B .64C .65D .6610、已知方程01)1(2=+++++b a x a x 的两根为21,x x ,并且2110x x <<<,则ab的取值范围是………………………………………………………………………………………… ( ) A .]21,1(--B .)21,1(--C .]21,2(--D .)21,2(--二、填空题:本大题共6小题,每小题5分,共30分,把答案填在横线上. 11、设n S 是等差数列}{n a 的前n 项和,若,357=S 则=4a _____▲______.12、已知53sin ),,2(=∈αππα,则=+)4tan(πα________▲________.13、设集合}1212|{},2|||{<+-=<-=x x x B a x x A ,若B A ⊆,则a 的取值范围是___▲____.14、已知数列}{n a 满足*),2(113121,113211N n n a n a a a a a n n ∈≥-++++==-Λ.若2006=n a ,则=n _____▲________.15、若方程0sin cos 2=+-a x x 在20π≤<x 内有解,则a 的取值范围为______▲__________.16、对于函数)1lg()(2--+=a ax x x f 给出下列命题: (1))(x f 有最小值;(2)当0=a 时,)(x f 的值域为R ;(3)当0>a 时,)(x f 在),2[+∞上有反函数;(4)若)(x f 在区间),2[+∞上是增函数,则实数a 的取值范围是),4[+∞-. 上述命题中正确的是_____▲________.(填上所有正确命题的序号)三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分12分,第一、第二小问满分各6分) 已知函数R x x x x x x f ∈++=,cos 3cos sin 2sin )(22(1)写出函数)(x f 的最小正周期和单调递增区间; (2)若511)2(=x f 且π<<x 0,求x tan 的值. 18、(本小题满分14分,第一小问满分8分,第二小问满分6分)在等比数列}{n a 中,*)(0N n a n ∈>,公比)1,0(∈q ,且252825351=++a a a a a a ,又3a 与5a 的等比中项为2,(1)求数列}{n a 的通项公式;(2)设n n a b 2log =,数列}{n b 的前n 项和为n S ,当nS S S n +++Λ2121最大时,求n 的值.19、(本小题满分14分,第一小问、第二小问各7分)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为)(x C ,当年产量不足80千件时,x x x C 1031)(2+=(万元);当年产量不小于80千件时,14501000051)(-+=xx x C (万元).通过市场分析,若每件..售价为500元时,该厂年内生产该商品能全部销售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?20、(本小题满分14分,第一小问满分5分,第二小问满分4分,第三小问满分5分) 设函数c bx ax x f ++=23)(2,若0=++c b a ,0)1()0(>f f , (1)求证:方程0)(=x f 总有两个不相等的实根; (2)求ab的取值范围; (3)设21,x x 是方程0)(=x f 的两个实根,求||21x x -的取值范围.21、(本小题满分16分,第一小问满分4分,第二小问满分5分,第三小问满分7分) 已知数列}{n a 是由正数组成的等差数列,n S 是其前n 项的和,并且28,5243==S a a . (1)求数列}{n a 的通项公式; (2)求使不等式12)11()11)(11(21+≥+++n a a a a nΛ对一切*N n ∈均成立的最大实数a ; (3)对每一个*N k ∈,在k a 与1+k a 之间插入12-k 个2,得到新数列}{n b ,设n T 是数列}{n b 的前n 项和,试问是否存在正整数m ,使2008=m T ?若存在求出m 的值;若不存在,请说明理由.三校联考数学卷答案一、选择题:本大题共10小题,每小题5分,共50分。

2020届高三12月大联考数学(文)试题 pdf版含答案

2020届高三12月大联考数学(文)试题  pdf版含答案

7.设 a Z ,函数 f (x) ex x a ,命题 p :“ x (1,1), f (x) 0 ”是假命题,则 a 的
取值个数有 A. 4 个 B.3 个 C.2 个 D. l 个
8.已知 m > 0 ,执行如图所本程序框图,若输入的 x = 2020,输出的 y = l2,则 m
n
(xi x)( yi y)
bˆ i1 n
, aˆ y bˆx
(xi x)2
i1
18. (12 分)
已知数列{ an
}满足 a1
1,
(an
an an1 1)(an1 1)
1 2
.
(1)证明数列{
1 an
1
}是等差数列,并求数列{
an
}的通项公式;
(2)设 bn
an an
1 3
,证明 b1b2
A.0 B.1 C.2 D.e 二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
x 3y 6 0 13.已知 x, y 满足约束条件 x y 2 0 ,则 z 2x y 的最大值为 .
x 3
14. 为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节、元宵节、清明节、
某种新型嫁接巨丰葡萄,在新疆地区种植一般亩产不低于 5 千斤,产量高的达到上万斤, 受嫁接年限的影响,其产量一般逐年衰减,若在新疆地区不均亩产量低于 5 千斤,则从新嫁 接.以下 是新疆某地区从 2014 年开始嫁接后每年的不均亩产量单位:千斤)的数据表:
(1)求 y 关于 x 的线性回归方程. (2)利用(1)中的回归直线方程,预计哪一年开始从新嫁接. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:
∵PO∩CO=O,∴AB⊥平面 POC,∴AB⊥PC.(4 分)

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。

2019-2020学年广西壮族自治区南宁市第三中学高二12月月考数学(文)试题(解析版)

2019-2020学年广西壮族自治区南宁市第三中学高二12月月考数学(文)试题(解析版)

2019-2020学年广西壮族自治区南宁市第三中学高二12月月考数学(文)试题一、单选题 1.已知集合,,则( )A .B .C .D .【答案】C【解析】依题意得:,所以,故,故选C.2.若双曲线()222213x y a o a -=>的离心率为2,则a 等于( )A .2B 3C .32D .1【答案】D【解析】由222231323x y c a b e a a 可知虚轴,而离心率+-=====,解得a=1或a=3,参照选项知而应选D.3.若实数x ,y 满足2211y x y x y x ≥-⎧⎪≥-+⎨⎪≤+⎩,则3z x y =-的最大值是A .2-B .1-C .5D .3【答案】C【解析】画出可行域如下图所示,由图可知,目标函数在点()3,4处取得最大值为5.4.一个几何体的三视图如图所示,则该几何体的体积为( )A.1 B.13C.12D.14【答案】B【解析】首先由三视图得到几何体为四棱锥,根据图中数据明确底面和高,即可求得该几何体的体积.【详解】由已知三视图得到几何体是四棱锥,底面是两边分别为12的平行四边形,高为1,如图所示:∴该几何体的体积为111211323V =⨯⨯⨯⨯= 故选B. 【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.5.“x a >”是“x a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】将两个条件相互推导,根据能否推导的情况选出正确选项. 【详解】当“x a >”时,如1,1x a ==-,x a =,故不能推出“x a >” .当“x a >”时,必然有“x a >”.故“x a >”是“x a >”的必要不充分条件. 【点睛】本小题主要考查充分、必要条件的判断,考查含有绝对值的不等式,属于基础题. 6.已知22log 3a =,4logb π=,30.6c -=a ,b ,c 的大小关系为() A .b c a >> B .c b a >>C .b a c >>D .c a b >>【答案】B【解析】采用“0,1”分段法,找到小于0、在0~1之间和大于1的数,由此判断出三者的大小关系. 【详解】因为010.6c >=,401log 4b <<=,0a <,所以c b a >>.故选B. 【点睛】本题考查指数与对数值的大小比较,考查运算求解能力,属于基础题.7.某校高一年级从815名学生中选取30名学生参加庆祝建党98周年的大合唱节目,若采用下面的方法选取:先用简单随机抽样从 815 人中剔除5人,剩下的810人再按系统抽样的方法抽取,则每人入选的概率( ) A .不全相等 B .均不相等C .都相等,且为6163D .都相等,且为127【答案】C【解析】抽样要保证机会均等,由此得出正确选项. 【详解】抽样要保证机会均等,故从815名学生中抽取30名,概率为306815163=,故选C. 【点睛】本小题主要考查简单随机抽样、系统抽样等抽样方法的概念,属于基础题.8.设f(x)与g(x)是定义在同一区间[a ,b]上的两个函数,若函数y=f(x)- g(x)在x ∈[a ,b]上有两个不同的解,则称f(x)和g(x)在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f(x)=x 2-3x+4与g(x)=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( ). A .9,24⎛⎤-- ⎥⎝⎦B .[]1,0-C .(],2-∞-D .9,4⎛⎫-+∞ ⎪⎝⎭【答案】A 【解析】【详解】∵2()34f x x x =-+与()2g x x m =+在[0,3]上是“关联函数”∴函数2()()()54y h x f x g x x x m ==-=-+-在[0,3]上有两个不同零点∴(0)40(3)20525()4024h m h m h m ⎧⎪=-≥⎪=--≥⎨⎪⎪=-+-<⎩,解得924m -<≤-.故选A.9.已知数列{}n a 满足11a =,*12()n n n a a n N +⋅=∈,n S 是数列{}n a 的前n 项和,则( )A .201820182a =B .10092018323S =⋅- C .数列21{}n a -是等差数列 D .数列{}n a 是等比数列【答案】B【解析】分析:由11a =,()*12n n n a a n N +⋅=∈可知数列{}n a 隔项成等比,再结合等比的有关性质即可作出判断.详解:数列{}n a 满足11a =,()*12n n n a a n N +⋅=∈, 当n 2≥时,112n n n a a --⋅=两式作商可得:112n n a a +-=, ∴数列{}n a 的奇数项135a a a L ,,,,成等比, 偶数项246a a a L ,,,,成等比, 对于A 来说,20181100810092201822222aa -=⨯=⨯=,错误;对于B 来说,()()2018132017242018S a a a a a a L L =+++++++()()1009100910091122123231212⨯-⨯-=+=⋅---,正确;对于C 来说,数列{}21n a -是等比数列 ,错误; 对于D 来说,数列{}n a 不是等比数列,错误, 故选:B点睛:本题考查了由递推关系求通项,常用方法有:累加法,累乘法,构造等比数列法,取倒数法,取对数法等等,本题考查的是隔项成等比数列的方法,注意偶数项的首项与原数列首项的关系.10.已知 12,F F 是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且| PF 2 |>| PF 1 |,椭圆的离心率为1e ,双曲线的离心率为2e ,112||||PF F F =,则2133e e +的最小值为( ) A .4 B .6C.D .8【答案】D【解析】由题意可得112||||2PF F F c ==,再设椭圆和双曲线得方程,再利用椭圆和双曲线的定义和离心率可得2133e e +的表达式,化简后再用均值不等式即可求解. 【详解】由题意得:112||||2PF F F c ==,设椭圆方程为221122111(0)x y a b a b +=>>,双曲线方程为222222221(0,0)x y a b a b -=>>,又∵121212||||2,||||2PF PF a PF PF a +=-=.∴2122||+22,||22PF c a PF c a =-=,∴122a a c -=,则22112122393333e a a a c c e a c ca ++=+= 2222229(2)3633c a a c a c ca c a ++==++2236683a c c a =++≥=,当且仅当2233a c c a =,即23e =时等号成立.则2133e e +的最小值为8. 故答案为:8. 【点睛】考查椭圆和双曲的定义,焦半径公式以及离心率,其中将2133e e +化为22911(18)18)833a c c a ++≥=为解题关键,注意取等号. 11.设棱锥M ABCD -的底面是正方形,且,MA MD MA AB =⊥,AMD △的面积为1,则能够放入这个棱锥的最大球的半径为 A.2 B1C.12-D.1-【答案】B【解析】设球O 是与平面MAD 、平面AC 、平面MBC 都相切的球,然后找出球心所在的三角形,设AD EF a ==,求出内切圆半径然后利用基本不等式即可求出最大值. 【详解】解:AB AD ⊥Q ,AB MA ⊥,AB ∴⊥平面MAD ,由此,面MAD ⊥面ABCD . 记E 是AD 的中点,从而ME AD ⊥.ME ∴⊥平面ABCD ,ME EF ⊥.设球O 是与平面MAD 、平面ABCD 、平面MBC 都相切的球. 不妨设O ∈平面MEF ,于是O 是MEF V 的内心. 设球O 的半径为r ,则2MEFS r EF EM MF=++V设AD EF a ==,1AMD S =V Q所以2ME a ∴=,222MF a a ⎛⎫=+ ⎪⎝⎭所以222122222r a a a a =≤=-+⎛⎫+++ ⎪⎝⎭.当且仅当2a a=,即2a =时,等号成立. ∴当2AD ME ==时,满足条件的最大半径为21-.【点睛】涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系,注意多边形内切圆半径与面积和周长间的关系;多面体内切球半径与体积和表面积间的关系,属于中档题.12.定义在上的函数对任意都有,且函数的图象关于成中心对称,若满足不等式,则当时,的取值范围是( )A .B .C .D .【答案】D【解析】试题分析:由已知条件知函数为奇函数且在上为减函数,由有,所以,,若以为横坐标,为纵坐标,建立平面直角坐标系,如图所示,阴影部分为不等式表示的平面区域,即及其内部,,令,则,求出,所以,解得,∴的取值范围是,选D.【考点】1.函数的基本性质;2.线性规划.【方法点睛】本题主要考查了函数的性质:单调性和奇偶性,以及线性规划的相关知识,属于中档题. 利用已知条件得出函数是上的减函数,由函数的图象关于成中心对称,根据图象的平移,得出的图象关于原点成中心对称,所以为奇函数,解不等式,得出,画出不等式组表示的平面区域,,则,通过图形求关于的一次函数的斜率得出的范围,从而求出的范围.二、填空题13.已知x,y满足方程(x﹣2)2+y2=1,则yx的最大值为__________3【解析】求出圆的圆心坐标,圆的半径,利用圆心到直线的距离等于半径求出k的值即可.【详解】x,y满足方程(x﹣2)2+y2=1,圆的圆心(2,0),半径为1,设ykx=,即kx ﹣y=0,要求x,y满足方程(x﹣2)2+y 2=1,yx的最大值,就是求圆的圆心到直线的距离等于半径,即:2211kk=+,解得k3=±,所求yx的最大值为:3.故答案为3.【点睛】本题是基础题,考查直线与圆的位置关系,考查了表达式yx的几何意义,考查计算能力.14.若方程表示焦点在轴上的椭圆,则实数的取值范围为__★__【答案】【解析】根据椭圆的标准方程及焦点在轴上,可得k的不等式组,解不等式组即可得k的取值范围。

2020年三省三校高三联考 文科数学答案

2020年三省三校高三联考 文科数学答案

2020届“3+3+3”高考备考诊断性联考卷(一)文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)【解析】1.依题有接受调查的100名学生中有70位看过《我和我的祖国》,故全校学生中约有2300*0.7=1610人看过《我和我的祖国》这部影片,故选C .2.由2ii z+=,得|2i||i|||||z z +=,D .3.某单位共有老年人120人,中年人360人,青年人n 人,样本中的中年人为6人,则老年人为61202360⨯=, 青年人为636060n n =, 2686060n n m m ++=⇒+=,代入选项计算,C 不符合,故选C .4.原不等式等价于|sin ||cos |x x ≥,即正弦线长度长于或等于余弦线长度,故选D .5.设{}n a 的公差为d ,由24836149a a a a a ++=+,10a d =≠,1141419914()1415729()91032a a S d a a S d +⨯===+⨯,故选B .6.由题意可知2cos sin ax x a x y x -'=,故在点(π0)M ,处的切线方程为1(π)ππa y x x -=-=-b +,11a b =⎧⎨=⎩,则,故选C .7.由()f x 为奇函数,得()f x 的图象关于原点对称,排除C ,D ;又当π04x <<时,()0f x >,故选B .8.已知1260AB BC ABC ==∠=︒,,,由余弦定理可得2222cos60AC AB BC AB BC =+-︒g3=,所以22AC AB +2BC =,即AB AC ⊥,①正确;由PA ⊥平面ABCD ,得AB PA ⊥,所以AB ⊥平面PAC ,②正确;AB ⊥平面PAC ,得AB ⊥PC ,又AE PC ⊥,所以PC ⊥平面ABE ,③正确;由PC ⊥平面ABE ,得PC BE ⊥,④正确,故选D .9.由程序框图得0z =,第一次运行011101011a z n =+==+==+=,,;第二次运行0i i 1i 112b z n =+==+=+=,,;第三次运行,…,故(1111)(i i i)z =-++-+-+-L L0=,故选C .10.因为双曲线E 的一条渐近线方程为2y x =,所以2ba=,c e a ===,由OAF △的面积是221422b c b b a===g 得所以,,所以1a =,双曲线的实轴长为2,故选D .11.当00x y ==,时,即220x y +≤符合题意,此时0m =,排除A ,D ,由题意可知,以(00), 为圆心的圆在不等式24x y x y ⎧+⎪⎨-⎪⎩≤≤所表示的区域内,半径最大的圆22x y m +=应与直线相切,圆心到240x y --=的距离为1d ==,圆心到x y +=的距离为22d ==,由于12d d <,∴符合题意的最大的圆为222165x y +==,故选B . 12.设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,,将直线EF 的方程与圆的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,,得2221(1)204k x kbx b +++-=,由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以211221sin()sin cos cos sin 444()x y x y x kx b αβαβαβ+=+=+=+ 2212121222188244()84()11k b kb k x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B .二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.由()3a b a -=r r r ,得3a b a a -=r r r r g g ,即4a b =r r g ,故1cos 2||||a b a b a b 〈〉==r rr r g r r g ,,则向量a r 与b r 的夹角为π3. 14.由n S 的表达式知,{}n a 为等差数列,设公差为d ,则1114d d ++,,成等比数列,故2(1)14d d +=+,即220d d -=,解得0d =或2d =,若01n n d a S n ===,,,与0A ≠矛盾,故32125d a d ==+=,.1522233⨯=. 16.依题意,112||||2PF F F c ==,由椭圆的定义可得2||22PF a c =-,所以21cos PF F ∠=212||2||PF F F=1111224a c c e -⎛⎫=-= ⎪⎝⎭,从而21sin PF F ∠=因为离心率23c a =,所以12PF F S =△12g 212||||PF F F g 21sin PF F ∠=2()a c -,又12PF F S =△,解得24c =,所以2295a b ==,,故椭圆C 的方程为22195x y +=.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)解:(1)由已知得(0.110.065)20.5b ++⨯=,故0.075b =.……………………………………………………………………………(3分) 法一:212(0.110.0750.0750.0650.05)a =-⨯++++,0.125a =∴.……………………………………………………………………………(6分)法二:1()10.50.5P C -=-=,2(0.050.075)0.50.125a a ⨯++==∴,∴.………………………………………………(6分)(2)2(0.0520.07540.12560.1180.075100.06512)⨯⨯+⨯+⨯+⨯+⨯+⨯ 2(0.10.30.750.880.750.78)=⨯+++++2 3.567.12=⨯=,………………………………………………………………………(10分)估计女子的平均身高为163(7.121)169.12+-=(cm).……………………………………………………………………………………(12分)18.(本小题满分12分)解:(1)cos (2)cos 0b Cc a B +-=∵,cos cos 2cos b C c B a B +=∴,…………………………………………………………(1分)由正弦定理得sin cos cos sin 2sin cos B C B C A B +=,…………………………………(2分) sin()sin(π)sin 0B C A A +=-=≠, ……………………………………………………(3分)12cos 1cos 2B B ==∴,,………………………………………………………………(5分) (2)ABC ∵△为锐角三角形,π13B a ==,,2πππ362A C A+=<<∴,,……………………………………………………………(7分)由正弦定理得1sin sin sin b cA B C==, 2πsin πsinsin sin 33sin sin sin sin A B C b c A A A A ⎛⎫- ⎪⎝⎭+=+=+∴ …………………………………………(8分) 1sin cos 1122sin sin 22A AA A A +=+=++=+g ,ππ1cos 1cos 1126ππ222sin 2sin 26b c ⎫⎫++⎪⎪⎝⎭⎝⎭+<+<+∴,……………………………………(11分)2b c <+,即b c +的取值范围是2⎫⎪⎪⎝⎭. ……………………………………………………………………………………(12分)19.(本小题满分12分)解:(1)由已知底面ABCD 为正方形,PD ⊥平面ABCD ,2PD AD ==,得PD ⊥AD ,PD ⊥AB ,AD ⊥AB .………………………………………………………(1分) 又PD AD D =I ,∴AB ⊥平面P AD ,∴P A ⊥AB ,∴PA =PB =………………………………………………………………………………………(2分)∴PAB S =△2PAD S =△,…………………………………………………………(3分)同理PCB S =△2PCD S =△,4ABCD S =,∴8S =四棱锥表面积,…………………………………………………………………(4分)1833P ABCD ABCD V S PD -==g .………………………………………………………………(6分)(2)设内切球的半径为r ,球心为O ,则球心O 到平面P AB ,平面P AD ,平面PCB ,平面PCD ,平面ABCD 的距离均为r , 由P ABCD O PAB O PAD O PCB O PCD O ABCD V V V V V V ------=++++,可得11111113333333ABCD PAB PAD PCB PCD ABCD S PD S r S r S r S r S r S r =++++=g g g g g g g △△△△正方形四棱锥表面积,………………………………………………………………………………………(8分)∴2ABCD S PD r S ==g 正方形四棱锥表面积………………………………………………………(10分)∴24π(24πS r ==-内切球表面积.……………………………………………………………………………………(12分)20.(本小题满分12分)解:(1)21()(1)e x k f x x x =-=---,, 令()e 2(e 2)00x x f x x x x x '=--=-+=⇒=,………………………………………………………………………………………(2分) 故(0)()0(0)()0x f x x f x ''∈-∞>∈+∞<,,;,,, ………………………………………………………………………………………(3分) ()f x 的单调递增区间为(0)()f x -∞,,的单调递减区间为(0)+∞,.………………………………………………………………………………………(4分) (2)()e 2(e 2)x x f x kx x x k '=-=-,令2()0ln [0ln 2]f x x k'=⇒=∈,,其中[12]k ∈,.……………………………………(5分) 令2()ln [12]g x x x x =-∈,,, 211()21102x g x x x⎛⎫'=--=--< ⎪⎝⎭g ,……………………………………………………(6分) 故()g x 在[12],上单调递减, 故2()(1)ln 210lng x g k k=-<⇒<≤,…………………………………………………(7分) 故220ln ()0ln ()0x f x x k f x k k ⎛⎫⎛⎫''∈<∈> ⎪ ⎪⎝⎭⎝⎭,,;,,,从而()f x 在20ln k ⎛⎫ ⎪⎝⎭,上单调递减;在2ln k k ⎛⎫⎪⎝⎭,上单调递增,………………………………………………………………………………………(8分) 故在[0]k ,上,函数2max ()max{(0)()}max{(1)e }[12].k f x f f k k k k k k ==---∈,,,, ………………………………………………………………………………………(9分) 由于2()(0)(1)e [(1)e 1]k k f k f k k k k k k k -=--+=--+,令()(1)e 1[12]x h x x x x =--+∈,,,……………………………………………………(10分) ()e 10x h x x '=->,对于[12]x ∀∈,恒成立, 从而()(1)0h x h =≥,即()(0)f k f ≥,当1k =时等号成立,…………………………………………………(11分) 故2max ()()(1)e k f x f k k k k ==--.……………………………………………………(12分) 21.(本小题满分12分)(1)证明:依题意有104F ⎛⎫⎪⎝⎭,,直线14l y kx =+:,…………………………………(1分)设1122()()A x y B x y ,,,,直线l 与抛物线E 相交,联立方程214y x y kx ⎧=⎪⎨=+⎪⎩,,消去y ,化简得2104x kx --=,………………………………(2分)所以,121214x x k x x +==-,.…………………………………………………………(3分) 又因为2y x '=,所以直线1l 的斜率112k x =.同理,直线2l 的斜率222k x =,…………………………………………………………(4分) 所以,121241k k x x ==-,………………………………………………………………(5分) 所以,直线12l l ⊥,即90ADB ∠=︒.…………………………………………………(6分)(2)解:由(1)可知,圆Γ是以AB 为直径的圆, 设()P x y ,是圆Γ上的一点,则0PA PB =u u u r u u u rg ,所以,圆Γ的方程为1212()()()()0x x x x y y y y --+--=,………………………………………………………………………………………(7分)又因为22212121212121211111444216x x k x x y y kx kx k y y x x +==-+=+++=+==,,,,所以,圆Γ的方程可化简为222130216x y kx k y ⎛⎫+--+-= ⎪⎝⎭,………………………………………………………………………………………(8分) 联立圆Γ与抛物线E 得2222130216x y kx k y y x ⎧⎛⎫+--+-=⎪ ⎪⎝⎭⎨⎪=⎩,,即22211042x kx ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,即2213044x kx x kx ⎛⎫⎛⎫--++= ⎪⎪⎝⎭⎝⎭,………………………………………………………………………………………(9分) 若方程2104x kx --=与方程2304x kx ++=有相同的实数根0x , 则20020020010114032404x kx kx x x kx ⎧--=⎪⎪⇒=-⇒+=⎨⎪++=⎪⎩,,矛盾, ……………………………………………………………………………………(10分) 所以,方程2104x kx --=与方程2304x kx ++=没有相同的实数根, 所以,圆Γ与抛物线E有四个不同的交点等价于221030k k k k ⎧+>⎪⇔><⎨->⎪⎩,22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(1)由曲线C 的极坐标方程是6sin ρθ=,得直角坐标方程为226x y y +=,即22(3)9x y +-=.……………………………………………………………………(3分) (2)把直线l 的参数方程cos 2sin x t y t θθ=⎧⎨=+⎩,,(t 为参数),代入圆C 的方程得22(cos )(sin 1)9t t θθ+-=,化简得22sin 80t t θ--=.……………………………………………………………………………………(5分)设A B ,两点对应的参数分别是12t t ,,则122sin t t θ+=,128t t =-,………………………………………………………………………………(6分)故12||||AB t t =-=…………………………………………………………………………………(8分)得sin θ=,…………………………………………………………………………(9分) 得1k =±.………………………………………………………………………………(10分) 23.(本小题满分10分)【选修4−5:不等式选讲】证明:(1)由柯西不等式,得213411341()622a b c a b c a b c ⎛⎫++=+++++=+ ⎪⎝⎭≥所以1346a b c+++≥5分) (2)由柯西不等式,得222222211()()222c a b c a b a b c c a b ab c a b c ⎛⎫⎛⎫++=++++++= ⎪ ⎪⎝⎭⎝⎭≥,所以2222c a b a b c++≥.………………………………………………………………(10分)。

三省三校(贵阳一中、云师大附中2021-2022学年高三下学期联考数学试题含解析

三省三校(贵阳一中、云师大附中2021-2022学年高三下学期联考数学试题含解析

2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线的两条渐近线与抛物线22,(0)y px p =>的准线分别交于点、,O 为坐标原点.若双曲线的离心率为2,三角形AOB 3p=( ). A .1B .32C .2D .32.已知平面α,β,直线l 满足l α⊂,则“l β⊥”是“αβ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .即不充分也不必要条件3.i 为虚数单位,则32i 1i-的虚部为( )A .i -B .iC .1-D .14.已知函数()sin()f x x ωθ=+,其中0>ω,0,2πθ⎛⎫∈ ⎪⎝⎭,其图象关于直线6x π=对称,对满足()()122f x f x -=的1x ,2x ,有12min2x x π-=,将函数()f x 的图象向左平移6π个单位长度得到函数()g x 的图象,则函数()g x 的单调递减区间是() A .()2,6k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C .()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D .()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ 5.已知向量()1,2a =,()2,2b =-,(),1c λ=-,若()//2c a b +,则λ=( ) A .2-B .1-C .12-D .126.若复数z 满足1zi i =-(i 为虚数单位),则其共轭复数z 的虚部为( ) A .i -B .iC .1-D .17.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +=( )A .1B .32C .2D .38.记n S 为等差数列{}n a 的前n 项和.若25a =-,416S =-,则6a =( ) A .5B .3C .-12D .-139.已知向量()1,3a =,b 是单位向量,若3a b -=,则,a b =( ) A .6π B .4π C .3π D .23π 10.已知命题p :若1a >,1b c >>,则log log b c a a <;命题q :()00,x ∃+∞,使得0302log x x <”,则以下命题为真命题的是( ) A .p q ∧B .()p q ∧⌝C .()p q ⌝∧D .()()p q ⌝∧⌝11.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cos cos 4c a B b A -=,则2222a bc-=( ) A .32B .12C .14D .1812.若a R ∈,则“3a =”是“()51x ax +的展开式中3x 项的系数为90”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。

2019-2020学年贵州省贵阳一中高三第二学期月考(文科)数学试卷 含解析

2019-2020学年贵州省贵阳一中高三第二学期月考(文科)数学试卷 含解析

2019-2020学年高三第二学期月考(文科)数学试卷一、选择题1.已知集合A={(x,y)|x2+y2≤2,x∈Z,y∈Z},B={(x,y)|x+1>0},则A∩B的元素个数为()A.9B.8C.6D.52.i是虚数单位,x,y是实数,x+i=(2+i)(y+yi),则x=()A.3B.1C.D.3.平面向量,满足||=4,||=2,(+2)=24,则|﹣2|=()A.2B.4C.8D.164.命题p:∀x∈R,e x>x,命题q:∃x0∈R,x02<0,下列给出四个命题①p∨q;②p∧q;③p∧¬q;④¬p∨q所有真命题的编号是()A.①③B.①④C.②③D.②④5.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.下列说法中,错误的是()A.服药组的指标x的均值和方差比未服药组的都低B.未服药组的指标y的均值和方差比服药组的都高C.以统计的频率作为概率,患者服药一段时间后指标x低于100的概率约为0.94 D.这种疾病的患者的生理指标y基本都大于1.56.已知,则sin2α=()A.﹣1B.1C.D.07.直线x=m与椭圆交于A,B两点,△OAB(O为原点)是面积为3的等腰直角三角形,则b等于()A.1B.2C.3D.48.函数f(x)=A sin(ωx+φ)(其中A>0,|φ|<)的部分图象如图所示,为得到的图象,可以将函数f(x)的图象()A.向右平移个单位长度﹣1B.向左平移个单位长度C.向左平移个单位长度D.向右平移个单位长度9.在正方体ABCD﹣A1B1C1D1中,E,F分别在B1B和C1C上(异于端点),则过三点A,F,E的平面被正方体截得的图形(截面)不可能是()A.正方形B.不是正方形的菱形C.不是正方形的矩形D.梯形10.已知数列{a n}满足a1=1,a n+1=2a n+1,如图是计算该数列的前n项和的程序框图,图中①②③应依次填入()A.i<n,a=2a+1,S=S+a B.i<n,S=S+a,a=2a+1C.i≤n,a=2a+1,S=S+a D.i≤n,S=S+a,a=2a+111.过点A(2a,0)作双曲线的一条渐近线的垂线,垂足为B,与另一条渐近线交于点C,B是AC的中点,则双曲线的离心率为()A.B.C.2D.12.x1=1是函数f(x)=+(b﹣3)x+2b﹣a的一个极值点,则ab的取值范围是()A.B.C.D.二、填空题(共4小题)13.函数的零点个数为.14.在四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=AB=AD=1,BC=CD=BD=,则四棱锥的外接球的表面积为.15.在△ABC中,D是AB边上一点,AD=2DB,DC⊥AC,DC=,则AB =.16.奇函数f(x)满足f(1+x)=f(1﹣x),当0<x≤1时,f(x)=log2(4x+a),若,则a+f(a)=.三、解答题(共70分.)17.为抗击“新冠肺炎”,全国各地“停课不停学”,各学校都开展了在线课堂,组织学生在线学习,并自主安排时间完成相应作业为了解学生的学习效率,某在线教育平台统计了部分高三备考学生每天完成数学作业所需的平均时间,绘制了如图所示的频率分布直方图.(1)如果学生在完成在线课程后每天平均自主学习时间(完成各科作业及其他自主学习)为5小时,估计高三备考学生每天完成数学作业的平均时间占自主学习时间的比例(同一组中的数据用该组区间的中点值为代表)(结果精确到0.01);(2)以统计的频率作为概率,估计一个高三备考学生每天完成数学作业的平均时间不超过45分钟的概率.18.S n是等差数列{a n}的前n项和,对任意正整数n,2S n是a n a n+1与1的等差中项.(1)求数列{a n}的通项公式;(2)求数列的最大项与最小项.19.点P是直线y=﹣2上的动点,过点P的直线l1,l2与抛物线y=x2相切,切点分别是A,B.(1)证明:直线AB过定点;(2)以AB为直径的圆过点M(2,1),求点P的坐标及圆的方程.20.如图,在多面体ABCDE中,平面ACD⊥平面ABC,AC⊥BC,BC=2AC=4,DA=DC,CD=3,F是BC的中点,EF⊥平面ABC,.(1)证明:A,B,E,D四点共面;(2)求三棱锥B﹣CDE的体积.21.已知函数;(1)试讨论f(x)的单调性;(2)当函数f(x)有三个不同的零点时,a的取值范围恰好是,求b的值.请考生在第22、23两题中任选一题作答,并用2B铅笔在答题卡上把所选题目的题号涂黑,注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题如果多做,则按所做的第一题计分.(本小题满分10分)[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若曲线C的极坐标方程为,P点的极坐标为,在平面直角坐标系中直线l经过点P,且倾斜角为60°.(1)写出曲线C的直角坐标方程以及点P的直角坐标;(2)设直线与曲线C相交于A,B两点,求的值.[选修4-5:不等式选讲](本小题满分0分)23.已知f(x)=|x﹣m|(x+2)+|x|(x﹣m).(1)当m=2时,求不等式f(x)<0的解集;(2)若x>1时,f(x)>0,求m的取值范围.参考答案一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={(x,y)|x2+y2≤2,x∈Z,y∈Z},B={(x,y)|x+1>0},则A∩B的元素个数为()A.9B.8C.6D.5【分析】利用交集定义先求出A∩B,由此能求出A∩B的元素个数.解:∵集合A={(x,y)|x2+y2≤2,x∈Z,y∈Z},B={(x,y)|x+1>0},∴A∩B={(x,y)|}={(0,﹣1),(0,0),(0,1),(1,﹣1),(1,0),(1,1)},∴A∩B的元素个数为6.故选:C.2.i是虚数单位,x,y是实数,x+i=(2+i)(y+yi),则x=()A.3B.1C.D.【分析】先利用复数代数形式的乘除运算化简,再利用复数相等的定义计算即可.解:(2+i)(y+yi)=y+3yi,所以3y=1,x=y=,故选:D.3.平面向量,满足||=4,||=2,(+2)=24,则|﹣2|=()A.2B.4C.8D.16【分析】先根据数量积求出•=4,再求模长的平方,进而求得结论.解:因为平面向量,满足||=4,||=2,∵(+2)=24⇒+2•=24⇒•=4,则|﹣2|2=﹣4•+4=42﹣4×4+4×22=16;∴|﹣2|=4;故选:B.4.命题p:∀x∈R,e x>x,命题q:∃x0∈R,x02<0,下列给出四个命题①p∨q;②p∧q;③p∧¬q;④¬p∨q所有真命题的编号是()A.①③B.①④C.②③D.②④【分析】判定出p真q假⇒¬p为假,¬q为真,①③为真命题.解:令f(x)=e x﹣x,利用导数可求得当x=0时,f(x)=e x﹣x=1,1是极小值,也是最小值,从而可判断p为真命题,命题q为假命题.故①p∨q为真;②p∧q为假;③p∧¬q为真;④¬p∨q为假.所有真命题的编号是①③.故选:A.5.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.下列说法中,错误的是()A.服药组的指标x的均值和方差比未服药组的都低B.未服药组的指标y的均值和方差比服药组的都高C.以统计的频率作为概率,患者服药一段时间后指标x低于100的概率约为0.94 D.这种疾病的患者的生理指标y基本都大于1.5【分析】由图可得服药组的指标x的均值和方差比未服药组的都低判断A;未服药组的指标y的取值相对集中,方差较小判断B;再求出患者服药一段时间后指标x低于100的频率判断C;直接由图象判断D.解:由图可知,服药组的指标x的均值和方差比未服药组的都低,∴A说法正确;未服药组的指标y的取值相对集中,方差较小,∴B说法不对;以统计的频率作为概率,患者服药一段时间后指标x低于100的概率约为0.94,∴C说法正确;这种疾病的患者的生理指标y基本都大于1.5,∴D说法正确.故选:B.6.已知,则sin2α=()A.﹣1B.1C.D.0【分析】由题意利用诱导公式求得2α=2kπ﹣,可得sin2α的值.解:由诱导公式及,可得cos(+α)=cos(+α),可得(舍去),或(+α)+(+α)=2kπ,k∈Z,即2α=2kπ﹣,∴sin2α=﹣1,故选:A.7.直线x=m与椭圆交于A,B两点,△OAB(O为原点)是面积为3的等腰直角三角形,则b等于()A.1B.2C.3D.4【分析】利用△OAB(O为原点)是面积为3的等腰直角三角形,求出A的坐标,代入椭圆方程求解即可.解:直线x=m与椭圆交于A,B两点,△OAB是等腰直角三角形,解得m=±,不妨A取,A点在椭圆上,代入椭圆,可得,解得b=2,故选:B.8.函数f(x)=A sin(ωx+φ)(其中A>0,|φ|<)的部分图象如图所示,为得到的图象,可以将函数f(x)的图象()A.向右平移个单位长度﹣1B.向左平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【分析】由函数图象可得A,利用周期公式可求ω,由f()=sin(2×+φ)=﹣1,结合范围|φ|<,可求φ,可求函数解析式f(x)=sin(2x+),进而化简g(x)解析式由函数y=A sin(ωx+φ)的图象变换即可求解.解:由函数f(x)=A sin(ωx+φ)(其中A>0,|φ|<)的图象,可得A=1,=﹣=,即=π求得ω=2,∵f()=sin(2×+φ)=﹣1,即sin(+φ)=1,∴+φ=+2kπ,k∈Z,即φ=+2kπ,k∈Z,∵|φ|<,∴φ=,∴f(x)=2sin(2x+).由图可知,,,所以把f(x)的图象向右平移个单位得到g(x)的图象.故选:D.9.在正方体ABCD﹣A1B1C1D1中,E,F分别在B1B和C1C上(异于端点),则过三点A,F,E的平面被正方体截得的图形(截面)不可能是()A.正方形B.不是正方形的菱形C.不是正方形的矩形D.梯形【分析】画出图形,通过特殊位置判断截面形状即可.解:当BE=CF时,截面是矩形;当2BE=CF时,截面是菱形;当BE>CF时,截面是梯形,故选:A.10.已知数列{a n}满足a1=1,a n+1=2a n+1,如图是计算该数列的前n项和的程序框图,图中①②③应依次填入()A.i<n,a=2a+1,S=S+a B.i<n,S=S+a,a=2a+1C.i≤n,a=2a+1,S=S+a D.i≤n,S=S+a,a=2a+1【分析】模拟程序的运行过程,即可得出程序框图中应填的内容.解:取n=1,有S=a=1,即a1=1,不能进入循环,判断框应是i<n进入循环;进入循环后第一次加上的应该是a2=2a1+1,所以先算a=2a+1.故选:A.11.过点A(2a,0)作双曲线的一条渐近线的垂线,垂足为B,与另一条渐近线交于点C,B是AC的中点,则双曲线的离心率为()A.B.C.2D.【分析】有题意BO垂直平分AC∠AOB=∠BOC,又∠AOB,AOC互为补角,所以∠AOB为60°,求出渐近线的斜率,即得出a,b的关系,再由a,b,c之间的关系进而求出a,c的关系,即求出离心率.解:依题意,一条渐近线是x轴与另一条渐近线的对称轴,OB垂直平分AC,∠AOB=∠BOC,又∠AOB,AOC互为补角,所以渐近线的倾斜角是60°或120°,所以渐近线的斜率为,即=,c2=a2+b2,所以离心率e====2,故选:C.12.x1=1是函数f(x)=+(b﹣3)x+2b﹣a的一个极值点,则ab的取值范围是()A.B.C.D.【分析】先求导,再f'(1)=0得2a+b﹣2=0且△>0,所以a≠﹣1,ab=a(2﹣2a),(a≠﹣1)利用二次函数图象和性质求出答案.解:f'(x)=x2+2ax+b﹣3,f'(1)=0⇒2a+b﹣2=0,若函数f(x)有一个极值点,则△=4a2﹣4(b﹣3)=4a2﹣4(2﹣2a﹣3)=4a2+4(2a+1)=4(a+1)2>0所以a≠﹣1,ab=a(2﹣2a)=,故选:A.二、填空题(共4小题,每小题5分,共20分)13.函数的零点个数为3.【分析】条件等价于函数与y=x2的图象交点个数,数形结合即可.解:令,分别作与y=x2的图象如图,又因为指数函数的增长速度最终会远远超过幂函数的增长速度,所以两函数图象有3个交点,即f(x)有3个零点,故答案为3.14.在四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=AB=AD=1,BC=CD=BD=,则四棱锥的外接球的表面积为5π.【分析】根据已知条件定出球心的位置,然后求出球的半径,代入球的表面积公式可求.解:如图,由已知,在底面ABCD中,AB⊥BC,AD⊥CD,由PA⊥底面ABCD,易得△PAC,△PBC,△PCD都是直角三角形,所以球心是PC的中点,,S=4πR2=5π.故答案为:5π15.在△ABC中,D是AB边上一点,AD=2DB,DC⊥AC,DC=,则AB =3.【分析】设BD=x,由已知结合锐角三角函数定义及余弦定理分别表示cos A,建立关系x的方程,可求.解:如图,设BD=x,则由余弦定理可得,,又由余弦定理可得,7=BC2=9x2,=13x2﹣3,即7=6+x2,解得x=1,∴AB=3.故答案为:116.奇函数f(x)满足f(1+x)=f(1﹣x),当0<x≤1时,f(x)=log2(4x+a),若,则a+f(a)=2.【分析】根据题意,分析可得f(x)是以4为周期的奇函数,结合函数的解析式分析可得,解可得a=2,分析可得f(2)的值,计算可得答案.解:根据题意,函数f(x)满足f(1+x)=f(1﹣x),则f(﹣x)=f(x+2),又由f(x)为奇函数,则f(﹣x)=﹣f(x),则有f(x+2)=﹣f(x),则有f(x+4)=﹣f(x+2)=f(x),即f(x)是以4为周期的奇函数,又由当0<x≤1时,f(x)=log2(4x+a),则,解可得a=2,又由f(x)是以4为周期的奇函数,则f(2)=f(﹣2)且f(2)+f(﹣2)=0,则f (2)=0,故a+f(a)=2+f(2)=2;故答案为:2.三、解答题(共70分.解答题应写出文字说明,证明过程或演算步骤)17.为抗击“新冠肺炎”,全国各地“停课不停学”,各学校都开展了在线课堂,组织学生在线学习,并自主安排时间完成相应作业为了解学生的学习效率,某在线教育平台统计了部分高三备考学生每天完成数学作业所需的平均时间,绘制了如图所示的频率分布直方图.(1)如果学生在完成在线课程后每天平均自主学习时间(完成各科作业及其他自主学习)为5小时,估计高三备考学生每天完成数学作业的平均时间占自主学习时间的比例(同一组中的数据用该组区间的中点值为代表)(结果精确到0.01);(2)以统计的频率作为概率,估计一个高三备考学生每天完成数学作业的平均时间不超过45分钟的概率.【分析】(1)先利用每组的频率×该组区间的中点值再相加求出平均值的估计值,再处于总时间5小时,即可得到所求的结果;(2)由直方图,算出[25,35)和[35,45)这两组的概率,再相加即可得到样本中高三备考学生每天完成数学作业的平均时间不超过45分钟的频率,以样本估算总体,进而得出每个高三备考学生每天完成数学作业的平均时间不超过45分钟的概率.解:(1)高三备考学生每天完成数学作业的平均时间的平均值的估计值为30×0.1+40×0.18+50×0.3+60×0.25+70×0.12+80×0.05=52.6,完成数学作业的平均时间占自主学习时间的比例估计值为;(2)由直方图,样本中高三备考学生每天完成数学作业的平均时间不超过45分钟的频率为0.28,估计每个高三备考学生每天完成数学作业的平均时间不超过45分钟的概率为0.28.18.S n是等差数列{a n}的前n项和,对任意正整数n,2S n是a n a n+1与1的等差中项.(1)求数列{a n}的通项公式;(2)求数列的最大项与最小项.【分析】(1)设{a n}的首项为a1,公差为d,取n=1,2,求出数列的通项公式即可.(2)记,利用函数图象结合函数的单调性推出当n≤4时,递增且都大于﹣1,当n≥5时,递增且都小于﹣1,得到结果即可.解:(1)设{a n}的首项为a1,公差为d,取n=1,2,得,解得或,当a1=1,d=2时,满足条件;当时,不满足条件,舍去,综上,数列{a n}的通项公式为a n=2n﹣1.(2),记,f(x)在(﹣∞,4.5)与(4.5,+∞)上都是增函数(图象如图3),对数列,当n≤4时,递增且都大于﹣1,当n≥5时,递增且都小于﹣1,数列的最大项是第4项,值为9,最小项是第5项,值为﹣11.19.点P是直线y=﹣2上的动点,过点P的直线l1,l2与抛物线y=x2相切,切点分别是A,B.(1)证明:直线AB过定点;(2)以AB为直径的圆过点M(2,1),求点P的坐标及圆的方程.【分析】(1)设A,B,P的坐标,求出直线AP,BP的方程,因为两条直线的交点P,可得直线AB的方程为:,整理可得恒过(0,2)点;(2)因为AB为直径的圆过点M(2,1),所以,由(1)设直线AB的方程,与椭圆联立求出两根之和及两根之积,进而可得直线AB的斜率,即求出P的坐标,即求出直线AB,进而求出圆心坐标.解:(1)证明:设点A(x1,y1),B(x2,y2),P(b,﹣2),过点A,P的直线方程为,同理过点B,P的直线方程为,因为点P是两切线的交点,所以,即y=2bx+2恒过(0,2).(2)解:设直线AB为y=kx+2(k=2b),与抛物线方程联立得x2﹣kx﹣2=0,其中△>0,x1x2=﹣2,x1+x2=k,因为M(2,1)在AB为直径的圆上,所以,即(x1﹣2,y1﹣1)(x2﹣2,y2﹣1)=0⇔(x1﹣2)(x2﹣2)+(y1﹣1)(y2﹣1)=0⇔(x1﹣2)(x2﹣2)+(kx1+1)(kx2+1)=0,整理得(k2+1)x1x2+(k﹣2)(x1+x2)+5=0,即k2+2k﹣3=0,解得k=1或k=﹣3.当k=1时,,圆心为,半径,圆的标准方程为;当k=﹣3时,,圆心为,半径,圆的标准方程为.20.如图,在多面体ABCDE中,平面ACD⊥平面ABC,AC⊥BC,BC=2AC=4,DA=DC,CD=3,F是BC的中点,EF⊥平面ABC,.(1)证明:A,B,E,D四点共面;(2)求三棱锥B﹣CDE的体积.【分析】(1)设M是AC的中点,则DM⊥AC,且,从而DM⊥平面ABC,由EF⊥平面ABC,得DM∥EF,且,四边形DEFM是平行四边形,从而DE∥MF,推导出MF∥AB,DE∥AB,由此能证明A,B,E,D四点共面.(2)D到平面BCE的距离是A到平面BCE距离的,EF⊥平面ABC,从而EF⊥AC,AC⊥BC,进而AC⊥平面BCE,由V B﹣CDE=V D﹣BCE.能求出三棱锥B﹣CDE的体积.解:(1)证明:如图4,设M是AC的中点,因为DA=DC=3,所以DM⊥AC,且,因为平面ACD⊥平面ABC,交线为AC,DM⊂平面ACD,所以DM⊥平面ABC,又EF⊥平面ABC,所以DM∥EF,且,四边形DEFM是平行四边形,从而DE∥MF,在△ABC中,M,F是AC,BC的中点,所以MF∥AB,所以DE∥AB,从而A,B,E,D四点共面.(2)解:由(1),所以D到平面BCE的距离是A到平面BCE距离的,EF⊥平面ABC⇒EF⊥AC,又AC⊥BC⇒AC⊥平面BCE,所以D到平面BCE的距离为,△BCE的面积,故三棱锥B﹣CDE的体积为.21.已知函数;(1)试讨论f(x)的单调性;(2)当函数f(x)有三个不同的零点时,a的取值范围恰好是,求b的值.【分析】(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)求出f(x)的极值,函数f(x)有3个零点等价于f(a)•f(1)<0,即(a3﹣3a2﹣6b)(3a﹣1+6b)>0,根据函数的单调性求出b的值即可.解:(1)f'(x)=x2﹣(a+1)x+a=(x﹣1)(x﹣a),当a=1时,f'(x)=(x﹣1)2≥0,f(x)在(﹣∞,+∞)上单调递增;当a<1时,在(a,1)上,f'(x)<0,f(x)单调递减;在(﹣∞,a)和(1,+∞)上,f'(x)>0,f(x)单调递增;当a>1时,在(1,a)上,f'(x)<0,f(x)单调递减;在(﹣∞,1)和(a,+∞)上,f'(x)>0,f(x)单调递增;综上,当a=1时,f(x)在(﹣∞,+∞)上单调递增;当a<1时,f(x)在(a,1)上单调递减;在(﹣∞,a)和(1,+∞)上单调递增;当a>1时,f(x)在(1,a)上单调递减;在(﹣∞,1)和(a,+∞)上单调递增.(2)当a≠1时,函数有两个极值和,若函数f(x)有三个不同的零点⇔f(a)•f(1)<0,即(a3﹣3a2﹣6b)(3a﹣1+6b)>0,又因为a的取值范围恰好是,所以令g(a)=(a3﹣3a2﹣6b)(3a﹣1+6b)恰有三个零点,若a=3时,g(3)=﹣6b(6b+8),b=0或;当b=0时,g(a)=a2(3a﹣1)(a﹣3)>0,解得符合题意;当时,g(a)=(a3﹣3a2+8)(3a﹣9)=0,则a3﹣3a2+8=0不存在这个根,与题意不符,舍去,所以b=0.请考生在第22、23两题中任选一题作答,并用2B铅笔在答题卡上把所选题目的题号涂黑,注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题如果多做,则按所做的第一题计分.(本小题满分10分)[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若曲线C的极坐标方程为,P点的极坐标为,在平面直角坐标系中直线l经过点P,且倾斜角为60°.(1)写出曲线C的直角坐标方程以及点P的直角坐标;(2)设直线与曲线C相交于A,B两点,求的值.【分析】(1)运用极坐标和直角坐标的关系:x=ρcosθ,y=ρsinθ,x2+y2=ρ2,代入化简可得所求;(2)由题意可设直线l的参数方程,代入曲线C的直角坐标方程,运用韦达定理和参数的几何意义,化简可得所求值.解:(1)因为,所以ρ﹣ρsinθ=2,则,即=y+2,两边平方整理得x2=4y+4;由P点的极坐标,可得P点的直角坐标x=ρcosθ=0,y=ρsinθ=1,所以P(0,1).(2)由题意设直线l的参数方程为(t为参数),与曲线C的方程x2=4y+4联立,得,设PA,PB对应的参数分别为t1,t2,则,t1t2=﹣32,所以==,而,所以.[选修4-5:不等式选讲](本小题满分0分)23.已知f(x)=|x﹣m|(x+2)+|x|(x﹣m).(1)当m=2时,求不等式f(x)<0的解集;(2)若x>1时,f(x)>0,求m的取值范围.【分析】(1)将f(x)写成分段函数式,讨论x≤0时,0<x<2时,x≥2时,不等式的解,再求并集可得所求解集;(2)由题意可得f(m)=0,且x>m恒成立,求得m的范围,检验可得所求范围.解:(1)当m=2时,f(x)=|x﹣2|(x+2)+|x|(x﹣2)=,当x≤0时,﹣2x2+2x+4<0⇒x<﹣1;当0<x<2时,﹣2x+4<0⇒x>2矛盾;当x≥2时,2x2﹣2x﹣4<0⇒﹣1<x<2矛盾,综上,x<﹣1,则f(x)<0的解集为{x|x<﹣1};(2)对任意的x>1时,因为f(m)=0,f(x)>0=f(m),所以x>m,则m≤1,当m≤1,x>1时,x﹣m>0,则f(x)=(x﹣m)(x+2)+x(x﹣m)>0恒成立,所以m的取值范围是m≤1.。

三省三校(贵阳一中云师大附中南宁三中)2020届高三12月联考理科综合答案

三省三校(贵阳一中云师大附中南宁三中)2020届高三12月联考理科综合答案
2020 届“3+3+3”高考备考诊断性联考卷(一) 理科综合参考答案
一、选择题:本题共 13 小题,每小题 6 分。 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 答案 B C A D C B C D C D A B B
二、选择题:本题共 8 小题,每小题 6 分。在每小题给出的四个选项中,第 14~18 题只有一 项符合题目要求;第 19~21 题有多项符合题目要求,全部选对的给 6 分,选对但不全的给 3 分,有选错的给 0 分。
4.在探究酵母菌呼吸方式时,利用了有氧和无氧的两组实验装置进行对比实验,并且通过澄 清的石灰水和酸性条件的重铬酸钾对产物进行检测,采用的是对比实验的方法,A 正确。 摩尔根采用假说—演绎法,利用果蝇作为实验材料,证明了控制果蝇眼色的基因位于 X 染
理科综合参考答案·第 1 页(共 17 页)
1
色体上,B 正确。细胞膜破裂后,把细胞匀浆放入离心管中,利用不同的离心速度所产生
形态,因此该果蝇不可能是雄果蝇,C正确。若该细胞此时没有染色单体,说明该细胞处
于减数第二次分裂后期,则该细胞可能来自于卵巢或精巢,D错误。
6.若基因 D 对基因 d 为不完全显性,则子代中性状分离比为 1∶2∶1,A 错误。若含 D 基因
的精子致死,则父本只提供含 d 的基因,与母本产生的两种卵细胞(D∶d=1∶1)结合,
3.随着环境温度的持续升高,酶的活性不会持续提高,因此 CD 段位置不会一直上移,A 错 误。A 点时,光照强度为 0,此时测定的 CO2 释放量可表示小麦细胞的呼吸速率,B 正确。 AC 段光合速率随着光照强度的增大而增强,限制的主要因素是光照强度,C 正确。B 点表 示净光合速率为 0,没有有机物的积累,小麦长时间处于这种条件下将无法正常生长,D 正确。

2020届三省三校(贵阳一中、云师大附中、南宁三中)高三12月联考英语试题 扫描版

2020届三省三校(贵阳一中、云师大附中、南宁三中)高三12月联考英语试题 扫描版

2020届“3+3+3”高考备考诊断性联考卷(一)英语参考答案第一部分听力(共两节,满分30分)1~5 CBACC 6~10 ACBCA 11~15 ABBAC 16~20 BCABB第二部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)21~25 DCBAD 26~30 BBADC 31~35 BCADC第二节(共5小题;每小题2分,满分10分)36~40 GFADB第三部分语言知识运用(共两节,满分45分)第一节(共20小题;每小题1.5分,满分30分)41~45 BDACA 46~50 CBDAD 51~55 ABDCA 56~60 CCBDB第二节(共10小题;每小题1.5分,满分15分)61.where 62.Located 63.filled 64.depth 65.feet66.an 67.to leave 68.to 69.features 70.easier第四部分写作(共两节,满分35分)第一节短文改错(共10小题;每小题1分,满分10分)DoorDash is an app that people order food without having to call a phone number or find correct①wherechanges to pay the driver.Many people complain that order food for delivery is a pain because the ②change ③orderingphone is always busier.For the convenience of customers,DoorDash provide an easy-to-use menu④busy ⑤providesand an ordering system for each restaurant in it network. You pay right in your smart phone. What is⑥its ⑦on/withunusual about DoorDash is that you can track from where your driver is.However,you know how⑧⑨Therefore/Thuslong you have to wait.Best of all,you get∧same price as you order from the restaurant!⑩the第二节书面表达(满分25分)【参考范文】Dear Mr. Roger,I’m Li Hua. It is an honor for me to provide voluntary services and teach kids Chinese in your school next month,but I’m in need of more information. Therefore,I’d like to ask for some details.To begin with,I am eager to know the course arrangements,like how many class hours there are per week. What’s more,I wonder if you could tell me some basic information about the students,such as their Chinese ability,so as to know them better.Last,could you be so kind as to tell me about the accommodation and the food?Your attention to the e-mail would be highly appreciated. I’m looking forward to your early reply.Yours faithfully,Li Hua【解析】第二部分阅读理解第一节A【语篇导读】本文是一篇应用文,主要介绍了一些位于加拿大的旅游景点。

【KS5U解析】广西南宁市第三中学2020届高三上学期期末考试大联考文科数学试题 Word版含解析

【KS5U解析】广西南宁市第三中学2020届高三上学期期末考试大联考文科数学试题 Word版含解析
2020届高三期末大பைடு நூலகம்考文数试卷
第Ⅰ卷
一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,则 中元素的个数为( )
A.2B.3C.4D.5
【答案】B
【解析】
【分析】
化简集合 ,根据交集的定义,即可求解.
【详解】因为 ,

所以 ,所以 中元素的个数为3.
直线l与双曲线左、右支均相交,
所以 .
故选:C.
【点睛】本题考查双曲线的简单几何性质,数形结合是解题的关键,属于中档题.
11.在如图所示的平面四边形ABCD中, , , , ,则 的最小值为()
A. 4B.8C. D.
【答案】B
【解析】
【分析】
在 中由三角函数求出 ,在 中由余弦定理得 ,再由基本不等式可得 即可求出 的最小值.
执行第四次循环: , ,满足条件;
执行第五次循环: , ,满足条件,
退出循环,所以输出S的值为-12.
故选:D.
【点睛】本题考查循环结构的运算,属于基础题.
10.设F是双曲线 的右焦点.过点F作斜率为-3的直线l与双曲线左、右支均相交.则双曲线离心率的取值范围为( )
A. B. C. D.
【答案】C
A. 83.5;83B. 84;84.5C. 85;84D. 84.5;84.5
【答案】B
【解析】
【分析】
根据茎叶图,即可求出 小区“空巢老人”年龄的平均数和B小区“空巢老人”年龄的中位数.
【详解】解:A小区“空巢老人”年龄的平均数为 ,
B小区“空巢老人”年龄的中位数为 .
故选:
【点睛】本题考查茎叶图数据的处理,涉及到平均数和中位数,考查运算能力,属于基础题.

三省三校(贵阳一中,云师大附中,南宁三中)2019-2020学年高三上学期12月联考语文试题(原卷版)

三省三校(贵阳一中,云师大附中,南宁三中)2019-2020学年高三上学期12月联考语文试题(原卷版)

2020届“3+3+3”高考备考诊断性联考卷(一)语文注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效。

3.考试结束后,请将本试卷和答题卡一并交回。

满分150分,考试用时150分钟。

一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成下面小题。

什么才是典型的中国文化?换句话说,即中国文化的特点,什么在中国比较明显,在外国不太明显,什么在中国有,外国没有,这样,我们才能把它称作“中国文化”。

这里做一个界定,下面所讲的主要是汉族中国的文化特性。

第一是汉字思维。

除极少数外,全世界以象形为基础的文字基本消失了,只有汉字仍然保留着它最起初的象形性、原初性。

古人以图像直接描绘事物,即汉字象形,日月木水火手口刀等等,这个在古代中国叫作“文”“初文”。

这些字不够,就加上标志意义的符号。

比如说刀口上加上一点,就是“刃”;爪放在树上,就是“采”。

会意还不够,就加上声音,成为形声字,比如说江河松柏等。

汉字主要是这三类,基础都是形。

因此,用汉字来说话、思考、阅读、书写,会重感觉重联想。

以象形为基础的汉字,历史上没有中断,对我们的思维、阅读和书写影响很大,甚至影响到了东亚,形成了所谓的“汉字文化圈”。

第二是“家、家族、家国以及在这一社会结构中产生的儒家学说”。

贾宝玉管林黛玉、薛宝钗、史湘云叫什么?外国人说sister,中国人说,表姐、表妹。

这里有中国的家、家族、家族共同体讲究的伦理原则和等级秩序:一个是“内外有别”,父母夫妻之间,分内和外,比如说,叔叔、伯怕,那是父党,同姓;舅舅、阿姨,那是母党,不同姓;一个是“上下有序”,必须讲上下,分清伯仲季叔。

西方不论是country,state都没有“家”的意思,中国有“国家”和“家国”,在中国,国是放大的家,家是缩小的国。

三省三校(贵阳一中,云师大附中,南宁三中)2020届高三12月联考试题(含解析)

三省三校(贵阳一中,云师大附中,南宁三中)2020届高三12月联考试题(含解析)
4.十九世纪六七十年代,出身满人的文祥、奕诉等大臣极力维护汉族官僚曾国藩等人的主张。这说明( )
A。 洋务运动的实质是维护清政府统治B。 中央集权在晚清时期遭到严重削弱
C。 汉族官僚的地位得到了显著的提升D。 民族危机加剧满汉官员之间的矛盾
【答案】A
【解析】
【详解】文祥等大臣极力维护曾国藩是由于曾国藩等人领导的洋务运动有助于维护清政府统治,故A符合题意;材料中没有体现地方权力的增强,故B不符合题意;材料没有体现汉族官僚地位的变化,故C不符合题意;材料中文祥等和曾国藩之间并没有体现满汉官员矛盾加剧,故D不符合题意。故选A。
7.根据记载,雅典陶片放逐法实施后共有12个被放逐的案例,包括政治家克利斯提尼和史学家修昔底德。最后一次发生在公元前417年,对象是群众领袖海柏波拉斯,他遭到政治对手联手对付,遭到流放。这反映了当时雅典( )
A. 阶级矛盾异常尖锐B. 民主政治走向衰落
C. 民主程序遭到破坏D。 贵族权力严重削弱
【答案】B
3。《南史·王懿传》记载:“北土重同姓,并谓之骨肉,有远来相投者,莫不竭力营赡,若不至者,以为不义,不为乡里所容。”这反映了北朝( )
A。 宗法制得到继承和发展B. 北方经济领先于南方
C。 强调同宗族的相互帮助由材料“北土重同姓,并谓之骨肉,有远来相投者,莫不竭力营赡",可得出强调同宗族的相互帮助,故选C;宗法制在西周之后受到了严重削弱,故A不符合题意;材料没有反映南北方经济的状况,故B不符合题意;儒学伦理思想在材料中仍然有体现,故D不符合题意.故选C.
【答案】D
【解析】
【详解】根据材料“政府官员批评美国教育忽视了基本的学术科”可知,冷战时期的美苏争霸促进美国重视并发展教育,故D不符合题意;材料没有体现出美国教育的落后和苏联科技的领先,也没有体现出美苏的科技交流,故 A、B、C不符合题意。故选D.

2020年贵州省贵阳市第一中学高三数学文联考试卷含解析

2020年贵州省贵阳市第一中学高三数学文联考试卷含解析

2020年贵州省贵阳市第一中学高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有()A.36种B.108种C.216种D.432种参考答案:答案:C2. 下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题参考答案:D【考点】命题的否定;必要条件、充分条件与充要条件的判断.【分析】对于A:因为否命题是条件和结果都做否定,即“若x2≠1,则x≠1”,故错误.对于B:因为x=﹣1?x2﹣5x﹣6=0,应为充分条件,故错误.对于C:因为命题的否定形式只否定结果,应为?x∈R,均有x2+x+1≥0.故错误.由排除法即可得到答案.【解答】解:对于A:命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”.因为否命题应为“若x2≠1,则x≠1”,故错误.对于B:“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件.因为x=﹣1?x2﹣5x﹣6=0,应为充分条件,故错误.对于C:命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”.因为命题的否定应为?x∈R,均有x2+x+1≥0.故错误.由排除法得到D正确.故答案选择D.3. 根据二分法原理求解方程x2-2=0得到的算法框图可称为A.工序流程图B.程序框图C.知识结构图D.组织结构图参考答案:B利用程序框图中的循环结构可以求x2-2=0的近似值,故选择B.4. 已知函数在区间上是增函数,则常数的取值范围是A. B. C. D.参考答案:A5. 等式成立是成等差数列的()A.充分不必要条件 B. 充要条件 C.必要不充分条件 D. 既不充分也不必要条件参考答案:【答案解析】A 解析:若等式成立,则,此时不一定成等差数列,若成等差数列,则,等式成立,所以“等式成立”是“成等差数列”的.必要而不充分条件.故选A.【思路点拨】由正弦函数的图象及周期性以及等差数列进行双向判断即可.6. 已知实数满足,则的最小值为A、2B、3C、4D、5参考答案:A7. 某四面体的三视图如图所示,该四面体四个面的面积中,最大的是()(A)(B)(C)(D)参考答案:略8. 己知是定义在R上的奇函数,当时,,那么不等式的解集是( )A. B.或C. D.或参考答案:B略9. 设点P是双曲线上一点,,,,,则()A.2 B.C.3 D.参考答案:C由于,所以,故,由于,解得,故选C.10. 设满足约束条件,则的取值范围是()A. B. C. D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 设,,,,且,∥,则=____参考答案:【知识点】向量的运算;向量的坐标表示.【答案解析】解析:解:因为,,,又因为,所以,即,故;又因为,所以,即,故,则,故答案为.【思路点拨】先利用,∥解出的值,再进行坐标运算即可.12. 用[x]表示不超过x的最大整数,例如[3]=3,[1.2]=1,[﹣1.3]=﹣2.已知数列{a n}满足a1=1,a n+1=a n2+a n,则[++…+]=.参考答案:2015【考点】数列递推式.【分析】a1=1,a n+1=a n2+a n>1,可得=﹣,于是+…+=1﹣∈(0,1).又=1﹣.可得++…+=2016﹣.即可得出.【解答】解:∵a1=1,a n+1=a n2+a n>1,∴==﹣,∴=﹣,∴+…+=++…+=1﹣∈(0,1).又=1﹣.∴++…+=2016﹣.∴[++…+]=2015.故答案为:2015.13. 已知数列的前项和为,且是与2的等差中项,求数列的通项为:____________________参考答案:14. (08年全国卷Ⅰ理)等边三角形与正方形有一公共边,二面角的余弦值为,分别是的中点,则所成角的余弦值等于.参考答案:【解析】.(方法一):综合法(略解)证明四棱锥为正四棱锥(略)。

贵州省贵阳市大学附属中学 2020年高三数学文联考试卷含解析

贵州省贵阳市大学附属中学 2020年高三数学文联考试卷含解析

贵州省贵阳市大学附属中学 2020年高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. i是虚数单位,复数z满足,则z=()A.1+2i B.2+i C.1-2i D.2-i参考答案:B2. 设是虚数单位,若,则的值是A、-1B、1C、D、参考答案:D3. 设函数f(x)= 则满足f(x)≤2的x的取值范围是()A.[1,2] B.[0,2] C.[1,+∞) D.[0,+∞)参考答案:D略4. 已知命题;命题,则下列命题中为真命题的是()A、 B、 C、 D、参考答案:C略5. 某程序框图如右图所示,若输出的S=57,则判断框内填A. B. C. D.参考答案:A略6. 复数(i是虚数单位)的虚部是()A. 3iB. 6iC. 3D. 6参考答案:C【分析】直接利用复数的除法的运算法则化简求解即可.【详解】解:复数2+3i.复数(i是虚数单位)的虚部是3.故选:C.【点睛】本题考查复数的除法的运算法则以及复数的基本概念,是基础题.7. 设向量的模分别为6和5,夹角为等于()A. B. C. D.参考答案:D略8. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积可能为()A.B.C.D.参考答案:A9. 已知函数,若,则实数的取值范围是()A. B.C. D.参考答案:A略10. 已知集合,,若,则实数的值是()A.0 B.0或2 C.2 D.0或1或2B试题分析:由得,所以.故选B.考点:集合的包含关系,集合的定义.二、填空题:本大题共7小题,每小题4分,共28分11. 将参数方程(为参数)化为普通方程,所得方程是__________。

参考答案:答案:412. 已知集合,,,则= .参考答案:{3,5}13. 已知=1-mi,其中m,n是实数,i是虚数单位,则m的值为____参考答案:214. 已知双曲线(>0)的一条渐近线的方程为,则= . 参考答案:2本题考查双曲线的渐近线方程,容易题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届三省三校(贵阳一中,云师大附中,南宁三中)高三12月联考数学(文)试题一、单选题1.2019年国庆黄金周影市火爆依旧,《我和我的祖国》、《中国机长》、《攀登者》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《我和我的祖国》或《中国机长》的学生共有80位,看过《中国机长》的学生共有60位,看过《中国机长》且看过《我和我的祖国》的学生共有50位,则该校高三年级看过《我和我的祖国》的学生人数的估计值为( ) A .1150 B .1380C .1610D .1860【答案】C【解析】根据样本中看过《我和我的祖国》的学生人数所占的比例等于总体看过《我和我的祖国》的学生人数所占的比例,即可计算出全校中看过该影片的人数. 【详解】依题有接受调查的100名学生中有70位看过《我和我的祖国》,故全校学生中约有23000.7=1610人看过《我和我的祖国》这部影片,故选C . 【点睛】本题考查根据样本的频率分布与总体的频率分布的关系求值,难度较易.注意样本的频率和总体的频率分布一致. 2.若复数z 满足2iz+=i ,则|z |=( )A B C .D 【答案】D【解析】由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解,也可以运用复数模的运算性质,等式两侧直接求模. 【详解】方法1:由2ii z+=,得|2i||i|||||z z +==,方法2:由2i i z+=,可得2i1-2i z i +==,z D . 【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.某单位共有老年人120人,中年人360人,青年人n 人,为调查身体健康状况,需要从中抽取一个容量为m 的样本,用分层抽样的方法进行抽样调查,样本中的中年人为6人,则n 和m 的值不可以是下列四个选项中的哪组( ) A .n =360,m =14 B .n =420,m =15 C .n =540,m =18 D .n =660,m =19【答案】C【解析】个体有明显差异的几个部分组成时往往采用分层抽样,分层抽样中每个个体被抽到的可能性和个体在每个部分中被抽到的可能性相等,总人数等于各层抽取人数的和,列出等式即可进行求解. 【详解】某单位共有老年人120人,中年人360人,青年人n 人,样本中的中年人为6人,则老年人为61202360⨯=, 青年人为636060n n =, 2686060n n m m ++=⇒+=,代入选项计算,C 不符合,故选C . 【点睛】本题考查分层抽样方法,是一个基础题,解题的依据是在抽样过程中每个个体被抽到的概率是相等的,这种题目经常出现在高考卷中,属于基础题. 4.22sin cos 0x x -≥的解集为( ) A .[2,2],2k k k Z πππ+∈ B .[,],2k k k Z πππ+∈, C .[,],44k k k Z ππππ-+∈ D .3[,],44k k k Z ππππ++∈ 【答案】D【解析】利用三角函数线解不等式得解. 【详解】原不等式等价于|sin ||cos |x x ≥,即正弦线长度大于或等于余弦线长度,故选D . 【点睛】本题主要考查三角函数线的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.已知n S 是等差数列{n a }的前n 项和,若24836149a a a a a ++=+,则149=SS ( )A .149B .73 C .32D .2【答案】B【解析】先通过24836149a a a a a ++=+,设首项和公差分别为1a 和d ,代入即可找出二者之间的关系,再由()112n n n S na d -=+,计算可得149S S 的值. 【详解】设{}n a 的公差为d ,由24836149a a a a a ++=+,10a d =≠,1141419914()1415729()91032a a S d a a S d +⨯===+⨯,故选B . 【点睛】本题考查等差数列的基本量以及前n 项和公式,关键是求出1a 和d 的值,考查了计算能力,是中档题. 6.已知函数sin a x y x =在点M (π,0)处的切线方程为xb y π-+=,则( ) A .a =-1,b =1 B .a =-1,b =-1C .a =1,b =1D .a =1,b =-1【答案】C【解析】先对函数求导,求得()af ππ'=-,(0)0f =,再由点斜式求得切线方程.【详解】 由题意可知2cos sin ax x a xy x-'=,故在点(π0)M ,处的切线方程为 1(π)ππa y x x -=-=-b +,11a b =⎧⎨=⎩,则,故选C . 【点睛】本题考查导数的几何意义,求切线的方程即函数()f x 在()()00,x f x 处的切线方程为()()()000y f x f x x x '-=-.7.函数2cos2()1x xf x x =+的图象大致为( )A .B .C .D .【答案】B【解析】根据函数的奇偶性排除C ,D ,再根据函数值的正负即可判断. 【详解】由()f x 为奇函数,得()f x 的图象关于原点对称,排除C ,D ;又当π04x <<时,()0f x >,故选B . 【点睛】有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:①由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.8.如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,且AB =1,BC =2, ∠ABC =60°,PA ⊥平面ABCD ,AE ⊥PC 于E ,下列四个结论:①AB ⊥AC ;②AB ⊥平面PAC ;③PC ⊥平面ABE ;④BE ⊥PC .正确的个数是( ) A .1 B .2 C .3 D .4【答案】D【解析】在ABC ∆中,由余弦定理可求出90o BAC ∠=,再由P A ⊥平面ABCD ,可证出AB ⊥平面P AC ,再由AE ⊥PC 于E ,线面垂直的判定定理,可证明PC ⊥平面ABE ,根据线面垂直的判定,可证出BE ⊥PC ,因此可知正确命题的个数. 【详解】已知1260AB BC ABC ==∠=︒,,,由余弦定理可得2222cos60AC AB BC AB BC =+-⋅︒3=,所以22AC AB +2BC =,即AB AC ⊥,①正确; 由PA ⊥平面ABCD ,得AB PA ⊥,所以AB ⊥平面PAC ,②正确;AB ⊥平面PAC ,得AB ⊥PC ,又AE PC ⊥,所以PC ⊥平面ABE ,③正确;由PC ⊥平面ABE ,得PC BE ⊥,④正确, 故选:D . 【点睛】本题考查线面垂直的判定定理和线面垂直的性质定理,考查了逻辑推理能力,属于中档题.9.已知i 为虚数单位,执行如图所示的程序框图,则输出的z 为( )A .-iB .iC .0D .1+i【答案】C【解析】由程序框图,先确定n 的值,再判定其和20之间的关系,逐次运行,即可求出结果. 【详解】由程序框图得0z =,第一次运行011101011a z n =+==+==+=,,; 第二次运行0i i 1i 112b z n =+==+=+=,,;第三次运行,…, 故(1111)(i i i)z =-++-+-+-L L 0=,故选C . 【点睛】本题考查的是算法与流程图,对算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,分清是求和还是求项.10.双曲线E :22221x y a b-=(a >0,b >0)的一条渐近线方程为y =2x ,过右焦点F 作x 轴的垂线,与双曲线在第一象限的交点为A ,若△OAF 的面积是O 为原点),则双曲线E 的实轴长是( ) A .4 B .C .1D .2【答案】D【解析】先由近线方程为2y x =,可求出,,a b c 之间的关系,再结合△OAF 的面积是【详解】因为双曲线E 的一条渐近线方程为2y x =,所以2b a =,c e a ===OAF △的面积是221422b c b b a⨯===得所以,,所以1a =,双曲线的实轴长为2,故选D . 【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.11.对于不等式22x y m +≤的解(x ,y ),x ,y ∈R,都能使得不等式组24x y x y ⎧+≤⎪⎨-≤⎪⎩立,则m 的取值范围是( ) A. B .16[0,]5C. D .(0,2] 【答案】B【解析】首先由()0,0在区域内,可求得此时m=0,即可排除AD,当0m >时,表示圆在不等式表示的可行域内,进而利用圆心到直线的距离小于等于半径,即可求出m 的取值范围. 【详解】当00x y ==,时,即220x y +≤符合题意,此时0m =,排除A ,D ,由题意可知,以(00),为圆心的圆在不等式24x y x y ⎧+≤⎪⎨-≤⎪⎩所表示的区域内,半径最大的圆22x y m +=应与直线相切,圆心到240x y --=的距离为1d ==,圆心到x y +=22d ==,由于12d d <,∴符合题意的最大的圆为222165x y +==,故选B .【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定参数的范围. 12.已知圆O :2214x y +=,直线l :y =kx +b (k ≠0),l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α,β,给出如下3个命题: ①当k 为常数,b 为变数时,sin (α+β)是定值; ②当k 为变数,b 为变数时,sin (α+β)是定值; ③当k 和b 都是变数时,sin (α+β)是定值. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】B【解析】首先设出11()E x y ,,22()F x y ,,进而可得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,,再将直线和圆联立方程组,运用韦达定理即可进行判断. 【详解】设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,,将直线EF 的方程与的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得2221(1)204k x kbx b +++-=,由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以2112sin()sin cos cos sin 44x y x y αβαβαβ+=+=+=222112121222188244()4()84()11k b kb k x kx b x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭+++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B (特值法可秒杀) 【点睛】本题考查了三角函数的定义和韦达定理,运算求解是关键,考查了转化和化归思想,属于中档题.二、填空题13.已知|a r|=1,|b r|=8,·()3a b a ⋅-=rrr,则向量a r与b r向量的夹角是________.【答案】π3【解析】由()3a b a ⋅-=r r r,运算可求得4a b ⋅=r r ,再由平面向量的数量积即可求出向量a r 与b r向量的夹角.【详解】由()3a b a ⋅-=r r r ,得3a b a a ⋅-⋅=r r r r ,即4a b ⋅=r r ,故1cos 2||||a b a b a b ⋅〈〉==⋅r rr r r r ,,则向量a r 与b r 的夹角为π3.【点睛】本题考查平面向量的数量积,由公式cos ||||a ba b a b ⋅〈〉=⋅r rr r r r ,即可求出夹角,属于基础题. 14.数列{n a }的前n 项和2n S An Bn =+(A ≠0),若1=1a ,125,,a a a 成等比数列,则3=a ________.【答案】5【解析】由题意,设等差数列{}n a 的公差为d ,由125,,a a a 成等比数列,求得0d =或2d =,进而求得3a .【详解】由n S 的表达式知,{}n a 为等差数列,设公差为d ,则1114d d ++,,成等比数列,故2(1)14d d +=+,即220d d -=,解得0d =或2d =,若01n n d a S n ===,,,与0A ≠矛盾,故32125d a d ==+=,.【点睛】本题主要考查了等比数列和等差数列的前n 项和公式的应用,其中根据等差数列的前n 项和公式求出通项,再由等比数列列出方程,求解公差是解题的关键,着重考查了推理与运算能力.15.如图,正八面体的棱长为2,则此正八面体的体积为____.82【解析】上下是两个相同的正四棱锥,由棱长由勾股定理求得斜高,再由棱锥的体积公式即可求解. 【详解】由边长为22213-=312-=222822⨯⨯=. 【点睛】本题考查了棱锥的体积公式,考察了运算求解能力,属于基础题.16.已知点F 1,F 2,是椭圆C :22221x y a b+=(a >b >0)的左、右焦点,以F 1为圆心,F 1F 2为半径的圆与椭圆在第一象限的交点为P .若椭圆C 的离心率为23,1215PF F S =△则椭圆C 的方程为________.【答案】22195x y +=【解析】首先由椭圆的定义可得2||22PF a c =-,再求得21sin PF F ∠,结合三角形12PF F 的面积,即可求得椭圆的方程. 【详解】依题意,112||||2PF F F c ==,由椭圆的定义可得2||22PF a c =-,所以21cos PF F ∠=212||2||PF F F=1111224a c c e -⎛⎫=-= ⎪⎝⎭,从而21sin PF F ∠=因为离心率23c a =,所以12PF F S =△12g 212||||PF F F ⋅21sin PF F ∠=2()a c -=,又12PF F S =△,解得24c =,所以2295a b ==,故椭圆C 的方程为22195x y +=.【点睛】本题考查了椭圆的定义和性质,合理转化和求解是解题的关键,属于中档题.三、解答题17.根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方(梯)队和联合军乐团,总规模约1.5万人,是近几次阅兵中规模最大的一次.其中,徒步方队15个.为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行.徒步方队队员,男性身高普遍在175cm 至185cm 之间;女性身高普遍在163cm 至175cm 之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184cm 至190cm 之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C 为事件:“某一阅兵女子身高不低于169cm ”,根据直方图得到P (C )的估计值为0.5.(1)求直方图中a ,b 的值;(2)估计这个阵营女子身高的平均值 (同一组中的数据用该组区间的中点值为代表) 【答案】(1)a=0.125 0.075b = (2)169.12cm【解析】(1)根据频率分布直方图可得频率,结合P (C )的估计值为0.5从而可计算,a b . (2)利用组中值可计算这个阵营女子身高的平均值. 【详解】解:(1)由已知得(0.110.065)20.5b ++⨯=, 故0.075b =法一:212(0.110.0750.0750.0650.05)a =-⨯++++, 0.125a =∴.法二:1()10.50.5P C -=-=,2(0.050.075)0.50.125a a ⨯++==∴,∴. (2)2(0.0520.07540.12560.1180.075100.06512)⨯⨯+⨯+⨯+⨯+⨯+⨯ 2(0.10.30.750.880.750.78)=⨯+++++ 2 3.567.12=⨯=,估计女子的平均身高为163(7.121)169.12+-=(cm ). 【点睛】本题考查频率的计算及频率分布直方图的应用,属于基础题.18.在锐角△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,bcosC +(c -2a )cosB =0. (1)求角B ;(2)若a =1,求b +c 的取值范围. 【答案】(1) π3B =.(2) 3132⎫+⎪⎪⎝⎭,【解析】(1)先根据正弦定理可求得1cos 2B =,再由特殊角的三角函数求得B ;(2)根据正弦定理求b +c 的表达式,再由23B A π=-,结合A 的范围即得b +c 的取值范围. 【详解】解:(1)cos (2)cos 0b C c a B +-=∵,cos cos 2cos b C c B a B ∴+=,由正弦定理得sin cos cos sin 2sin cos B C B C A B +=, sin()sin(π)sin 0B C A A +=-=≠, 12cos 1cos 2B B ==∴, 又B 是ABC V 的内角,π3B ∴=. (2)ABC QV 为锐角三角形,π13B a ==,,2πππ362A C A +=<<∴,,由正弦定理得1sin sin sin b cA B C==, 2πsin πsinsin sin 33sin sin sin sin A B C b c A A A A⎛⎫- ⎪⎝⎭+=+=+∴1sin cos 1122sin sin 22A AA A A +==⨯+=+, ππ62A b c <<+∵,∴关于A 为减函数ππ1cos 1cos 1126ππ222sin 2sin 26b c ⎫⎫++⎪⎪⎝⎭⎝⎭+<+<+∴,2b c <+,即b c +的取值范围是2⎫⎪⎪⎝⎭. 【点睛】本题考查正弦定理,考查了三角函数的单调性,求出A 的范围是解题的关键,考查了运算求解能力,属于中档题.19.如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PD ⊥平面ABCD ,PD =AD =2.(1)求该四棱锥P -ABCD 的表面积和体积; (2)求该四棱锥P -ABCD 内切球的表面积.【答案】(1) S =8+2,,V =83(2) (24-2)π.【解析】(1) 四个侧面都是直角三角形,进而求出边长,即可求得侧面积,底面是正方形,二者相加即可求出表面积,PD ⊥平面ABCD ,故四棱锥的高为PD ,再由棱锥的体积公式求出体积;(2) 设内切球的半径为r ,球心为O ,根据等体积法求出内切球的半径,则由P ABCD O PAB O PAD O PCB O PCD O ABCD V V V V V V ------=++++,即可求得半径,进而求出内切球的表面积. 【详解】(1) 解:(1)由已知底面ABCD 为正方形,PD ⊥平面ABCD ,2PD AD ==,得PD ⊥AD ,PD ⊥AB ,AD ⊥AB .又PD AD D ⋂=,∴AB ⊥平面P AD ,∴P A ⊥AB ,∴P A 2=,PB 3=, ∴22PAB S =V ,2PAD S =△,同理22PCB S =V ,2PCD S =△,4ABCD S =, ∴428S =四棱锥表面积, 1833P ABCD ABCD V S PD -=⋅=.S =8+2,,V =83(2)设内切球的半径为r ,球心为O ,则球心O 到平面P AB ,平面P AD ,平面PCB ,平面PCD ,平面ABCD 的距离均为r , 由P ABCD O PAB O PAD O PCB O PCD O ABCD V V V V V V ------=++++,可得11111113333333ABCD PAB PAD PCB PCD ABCD S PD S r S r S r S r S r S r ⋅=⋅+⋅+⋅+⋅+⋅=⋅△△△△正方形四棱锥表面积,∴2ABCD S PD r S ⋅==正方形四棱锥表面积∴24π(24πS r ==-内切球表面积.∴r =2,S =(24-)π. 【点睛】此题考查求锥体的表面积和内切球的表面积,考查通式通法,尤其是几何体内切球的大小通常用等体积法求其半径.20.已知函数2()(1)x f x k x e x =--,其中k ∈R . (1)当k =-1时,求函数()f x 的单调区间;(2)当k ∈[1,2]时,求函数()f x 在[0,k ]上的最大值.【答案】(1) ()f x 的单调递增区间为(0)()f x -∞,,的单调递减区间为(0)+∞, (2)2max ()(1)e k f x k k k =-- 【解析】(1) 首先求出()'fx ,再由()'0f x >求得单调递增区间,由()'0f x <,解不等式即可求出单调减区间;(2) 首先求得()0f x '=,结合k 的范围,可求得函数在20ln k ⎛⎫⎪⎝⎭,上单调递减;在2ln k k ⎛⎫⎪⎝⎭,上单调递增,再比较(0)()f f k ,的大小,即可求得最大值. 【详解】解:(1)21()(1)e x k f x x x =-=---,, 令()e 2(e 2)00x x f x x x x x '=--=-+=⇒=, 故(0)()0(0)()0x f x x f x ''∈-∞>∈+∞<,,;,,, ()f x 的单调递增区间为(0)()f x -∞,,的单调递减区间为(0)+∞,(2)()e 2(e 2)x x f x kx x x k '=-=-,令2()0ln [0ln 2]f x x k'=⇒=∈,,其中[12]k ∈,. 令2()ln [12]g k k k k=-∈,,, 211()21102k g k k k⎛⎫'=⨯--=--< ⎪⎝⎭,故()g k 在[12],上单调递减, 故2()(1)ln 210lng k g k k=-<⇒<≤,故220ln ()0ln ()0x f x x k f x k k ⎛⎫⎛⎫∈<∈> ⎪ ⎪⎝⎭⎝⎭'',,;,,, 从而()f x 在20ln k ⎛⎫ ⎪⎝⎭,上单调递减;在2ln k k ⎛⎫⎪⎝⎭,上单调递增, 故在[0]k ,上,函数2max ()max{(0)()}max{(1)e }[12].k f x f f k k k k k k ==---∈,,,, 由于2()(0)(1)e [(1)e 1]kkf k f k k k k k k k -=--+=--+, 令()(1)e 1[12]k h k k k k =--+∈,,, ()e 10k h k k '=->,对于[12]k ∀∈,恒成立, 从而()(1)0h k h =≥,即()(0)f k f ≥,当1k =时等号成立, 故2max ()()(1)e k f x f k k k k ==--. 【点睛】本题考查函数的单调性和函数的最值,(1)一般来说,判断函数的单调区间,就要考察函数的导函数在此区间上的符号,若函数中含有参数,这就可能引起分类讨论;(2)求函数在某区间上的最值,一般仍是先考察函数在此区间上的单调性,再求其最值,本题中的参数是引起分类讨论的原因,难度较大,分类时要层次清晰.21.已知抛物线E :2y x =,的焦点为F ,过点F 的直线l 的斜率为k ,与抛物线E 交于A ,B 两点,抛物线在点A ,B 处的切线分别为l 1,l 2,两条切线的交点为D . (1)证明:∠ADB =90°;(2)若△ABD 的外接圆Γ与抛物线C 有四个不同的交点,求直线l 的斜率的取值范围.【答案】(1)证明见解析 (2) k >k <【解析】(1)首先设出直线l 的方程,再设1122()()A x y B x y ,,,,直线与抛物线联立方程组,进而求出1212x x x x +,的值,再对抛物线求导,结合导数的几何意义,即可证明; (2)外接圆的直径为AB,进而写出圆的方程,圆和抛物线联立方程组,消去y,等价于方程有两个不同的根,即可求出k 的范围. 【详解】(1)证明:依题意有104F ⎛⎫⎪⎝⎭,,直线14l y kx =+:,设1122()()A x y B x y ,,,,直线l 与抛物线E 相交,联立方程214y x y kx ⎧=⎪⎨=+⎪⎩,,消去y ,化简得2104x kx --=,所以,121214x x k x x +==-,. 又因为2y x '=,所以直线1l 的斜率112k x =. 同理,直线2l 的斜率222k x =, 所以,121241k k x x ==-,所以,直线12l l ⊥,即90ADB ∠=︒.(2)解:由(1)可知,圆Γ是以AB 为直径的圆, 设()P x y ,是圆Γ上的一点,则0PA PB ⋅=u u u r u u u r,所以,圆Γ的方程为1212()()()()0x x x x y y y y --+--=,又因为22212121212121211111444216x x k x x y y kx kx k y y x x +==-+=+++=+==,,,,所以,圆Γ的方程可化简为222130216x y kx k y ⎛⎫+--+-= ⎪⎝⎭,联立圆Γ与抛物线E 得2222130216x y kx k y y x ⎧⎛⎫+--+-=⎪ ⎪⎝⎭⎨⎪=⎩,, 消去y ,得422130216x k x kx ⎛⎫----= ⎪⎝⎭,即22211042x kx ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,即2213044x kx x kx ⎛⎫⎛⎫--++= ⎪⎪⎝⎭⎝⎭,若方程2104x kx --=与方程2304x kx ++=有相同的实数根0x , 则20020020010114032404x kx kx x x kx ⎧--=⎪⎪⇒=-⇒+=⎨⎪++=⎪⎩,,矛盾,所以,方程2104x kx --=与方程2304x kx ++=没有相同的实数根, 所以,圆Γ与抛物线E 有四个不同的交点等价于221030k k k k ⎧+>⇔><⎨->⎩,综上所述,k k >< 【点睛】本题考查了直线、圆和抛物线的交汇,联立方程组,运用韦达定理是解题的关键,考查了运算求解能力和化归思想,属于难题.22.已知曲线C 的极坐标方程是ρ=6sinθ,建立以极点为坐标原点,极轴为x 轴正半轴的平面直角坐标系.直线l 的参数方程是cos 2sin x t y t θθ=⎧⎨=+⎩,(t 为参数).(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|ABk .【答案】(1) 22(3)9x y +-=. (2) 1k =±.【解析】(1)运用x =ρcosθ,y =ρsinθ,即可将曲线C 的极坐标方程化为直角坐标方程; (2)方法1:化直线的参数方程为普通方程,再由条件,即可得到直线方程,再求出圆心到直线的距离,结合|AB2:直接把直线的参数方程代入圆,运用韦达定理,计算12t t -,结合|AB率. 【详解】解:(1)由曲线C 的极坐标方程是6sin ρθ=,得直角坐标方程为226x y y +=,即22(3)9x y +-=.(2)把直线l 的参数方程cos 2sin x t y t θθ=⎧⎨=+⎩,,(t 为参数),代入圆C 的方程得22(cos )(sin 1)9t t θθ+-=, 化简得22sin 80t t θ--=.设A B ,两点对应的参数分别是12t t ,,则122sin t t θ+=,128t t =-故12||||AB t t =-=得sin 2θ=±, 得1k =±. 【点睛】本题考查参数方程、极坐标方程和普通方程的互化,考查直线与圆相交的弦长问题,运用点到直线的距离公式,结合弦长运用勾股定理即可求得斜率,考查运算能力,属于中档题.23.已知a ,b ,c ∈R +,且a +b +c =2.求证:(1)1346a b c++≥+; (2)2222c a b a b c++≥.【答案】(1) 证明见解析 (2)证明见解析【解析】(1)运用柯西不等式,求1134()2a b c a b c ⎛⎫++++ ⎪⎝⎭的最小值,即可证明;(2)运用柯西不等式,计算2221()2c a b a b c a b c ⎛⎫++++ ⎪⎝⎭,即可证明. 【详解】证明:(1)由柯西不等式,得213411341()622a b c a b c a b c ⎛⎫++=++++=+ ⎪⎝⎭≥,所以1346a b c++≥+. (2)由柯西不等式,得222222211()()222c a b c a b a b c c a b ab c a b c ⎛⎫⎛⎫++=++++++= ⎪ ⎪⎝⎭⎝⎭≥, 所以2222c a b a b c++≥.【点睛】本题考查了柯西不等式的应用,考查了推理论证能力.。

相关文档
最新文档