(北师大版)九年级下:2.2《二次函数y=ax2+bx+c的图象(1)》练习及答案

合集下载

2020春北师大版九年级数学下册第二章二次函数2二次函数的图像与性质练习

2020春北师大版九年级数学下册第二章二次函数2二次函数的图像与性质练习

2.2 二次函数的图象与性质第1课时二次函数y=x2和y=-x2的图象与性质1.填空:(1)y=x2的图像是;开口向;对称轴是;顶点坐标是;(2)y=-x2的图像是;开口向;对称轴是;顶点坐标是;(3)在抛物线y=x2的对称轴左侧y随x的减小而;而在对称轴的右侧是y随着x 的增大而;此时函数y=x2当x=时的值最是.(4)在抛物线y=-x2的对称轴左侧y随x的减小而;而在对称轴的右侧是y随着x 的增大而;此时函数y=x2当x=时的值最是.2.如图,⊙O的半径为2.C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是_________ .3.已知a≠0,在同一直角坐标系中,函数y=x与y=x2的图象有可能是()A.B.C.D.4.已知正方形的边长为ccm,面积为Scm2.(1)求S与c之间函数关系式;(2)画出图象;(3)根据图象,求出S =1cm 2时,正方形的边长; (4)根据图象,求出c 取何值时,S ≥4cm 2.2.2 二次函数的图象与性质第2课时 二次函数y =ax 2和y =ax 2+c 的图象与性质1.抛物线y=-3x 2+5的开口向________,对称轴是_______,顶点坐标是________,顶点是最_____点,所以函数有最________值是_____.2.抛物线y=4x 2-1与y 轴的交点坐标是_________,与x 轴的交点坐标是_____. 3.把抛物线y=x 2向上平移3个单位后,得到的抛物线的函数关系式为_______. 4.抛物线y=4x 2-3是将抛物线y=4x 2,向_____平移______个单位得到的.5.抛物线y=ax 2-1的图像经过(4,-5),则a=_________. 6.抛物线y=-3(2x 2-1)的开口方向是_____,对称轴是_____.7.在同一坐标系中,二次函数y=-21x 2,y=x 2,y=-3x 2的开口由大到小的顺序是______. 8.在同一坐标系中,抛物线y =4x 2,y =41x 2,y =-41 x 2的共同特点是( )A.关于y 轴对称,抛物线开口向上;B.关于y 轴对称,y 随x 的增大而增大 B.关于y 轴对称,y 随x 的增大而减小;D.关于y 轴对称,抛物线顶点在原点. 9.如图,函数y =ax 2与y =-ax+b 的图像可能是( ).10.求符合下列条件的抛物线y=ax 2-1的函数关系式: (1)通过点(-3,2);(2)与y=12x 2的开口大小相同,方向相反; (3)当x 的值由0增加到2时,函数值减少4.11..已知抛物线y=mx 2+n 向下平移2个单位后得到的函数图像是y=3x 2-1,求m,n 的值.2.2 二次函数的图象与性质第3课时 二次函数y =a (x -h )2的图象与性质1.把二次函数2x y =的图象向右平移3个单位长度,得到新的图象的函数表达式是( )A. 32+=x yB. 32-=x yC. 2)3(+=x yD. 2)3(-=x y2.抛物线2)3(2--=x y 的顶点坐标和对称轴分别是( ) A.3),0,3(-=-x 直线 B. 3),0,3(=x 直线 C. 3),3,0(-=-x 直线 D. 3),3,0(-=x 直线3.已知二次函数2)1(3+=x y 的图象上有三点 ),2(),,2(),,1(321y C y B y A - ,则321,,y y y 的大小关系为( )A.321y y y >>B. 312y y y >>C. 213y y y >>D. 123y y y >>4.把抛物线2)1(6+=x y 的图象平移后得到抛物线26x y =的图象,则平移的方法可以是( )A.沿y 轴向上平移1个单位长度B.沿y 轴向下平移1个单位长度C.沿x 轴向左平移1个单位长度D.沿x 轴向右平移1个单位长度5.若二次函数12+-=mx x y 的图象的顶点在x 轴上,则m 的值是( )A. 2B. 2-C.0D. 2± 6.对称轴是直线2-=x 的抛物线是( )A.22+-=x yB.22+=x y C.2)2(21+=x y D.2)2(3-=x y 7.对于函数2)2(3-=x y ,下列说法正确的是( )A. 当0>x 时,y 随x 的增大而减小B. 当0<x 时,y 随x 的增大而增大C. 当2>x 时,y 随x 的增大而增大D. 当2->x 时,y 随x 的增大而减小8.二次函数132+=x y 和2)1(3-=x y ,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y 轴,顶点坐标都是原点(0,0); ③当0>x 时,它们的函数值y 都是随着x 的增大而增大; ④它们的开口的大小是一样的. 其中正确的说法有( )A.1个B.2个C.3个D.4个9.抛物线2)1(3--=x y 的开口向 ,对称轴是 ,顶点坐标是 。

九年级数学下册《二次函数y=ax2+k的图象与性质》测试卷-北师大版(含答案)

九年级数学下册《二次函数y=ax2+k的图象与性质》测试卷-北师大版(含答案)

九年级数学下册《二次函数y=ax2+k 的图象与性质》测试卷-北师大版(含答案)1.抛物线y =2x²-1在y 轴右侧的部分是_____ ___(填“上升”或“下降”).2.二次函数y =3x2-3的图象开口向______,顶点坐标为________,对称轴为 ______,当x>0时,y 随x 的增大而______;当x<0时,y 随x 的增大而______.因为a =3>0,所以y 有最______值,当x =______时,y 的最______值是______.3.当m=_________时,抛物线2y (1)+9xm m m +=+开口向下,对称轴是_________.在对称轴左侧,y 的值随x 值的增大而_________;在对称轴右侧,y 的值随x 值的增大而_________.4.已知点(x 1,y 1),(x 2,y 2)均在抛物线y =x²-1上,下列说法中正确的是( )A .若y 1=y 2,则x 1=x 2B .若x 1=-x 2,则y 1=-y 2C .若0<x 1<x 2,则y 1>y 2D .若x 1<x 2<0,则y 1>y 25.对于二次函数y =3x²+2,下列说法错误的是( )A .最小值为2B .图象与y 轴没有公共点C .当x <0时,y 随x 的增大而减小D .其图象的对称轴是y 轴6.下列各图象中有可能是函数y =ax 2+a(a≠0)的图象的是( )7.在同一坐标系中,一次函数y =-mx +n 2与二次函数y =x 2+m 的图象可能是( )8.已知y =ax 2+k 的图象上有三点A(-3,y 1),B(1,y 2),C(2,y 3),且y 2<y 3<y 1,则a 的取值范围是( )A .a>0B .a<0C .a≥0D .a≤09.与抛物线y =-45x 2-1顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数解析式是( )A .y =-54x 2-1B .y =45x 2-1C .y =-45x 2+1D .y =45x 2+1 10.二次函数y=ax 2与一次函数y=ax+a 在同一平面直角坐标系中的图象可能是( ).11.函数y=ax2+1与在同一平面直角坐标系中的图象可能是().12.如图,在平面直角坐标系xOy中,抛物线y=x2+14与y轴相交于点A,点B在y轴上,且在点A的上方,AB=OA.(1)填空:点B的坐标是_______;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由.13.已知抛物线y=(m-1)x2+m2+2m-2开口向下,且经过点(0,1).(1)求m的值;(2)求此抛物线的顶点坐标及对称轴;(3)当x 为何值时,y 的值随x 值的增大而增大?14.一位篮球运动员跳起投篮,球沿抛物线21 3.55y x =-+运行,然后准确落入篮筐内.已知篮筐的中心离地面的距离为3.05 m .(1)求球在空中运行的最大高度是多少米;(2)如果该运动员跳投时,球出手离地面的高度为2.25 m ,那么他离篮筐中心的水平距离AB 是多少?参考答案1.上升2.上 (0,-3) y 轴 增大 减小 小 0 小 -33.-2 y 轴 增大 减小4.D5.B6.B7.D8.A9.B10.C11.B12.解:(1) (0,½)(2)∵B 点坐标为(0,12), ∴设直线的解析式为y =kx +12. 令y =0,得kx +12=0, 解得x =-12k. ∴OC =-12k. ∵PB =PC ,∴点P 只能在x 轴上方.过B 作BD ⊥l 于点D ,设PB =PC =m ,则BD =OC =-12k ,CD =OB =12, ∴PD =PC -CD =m -12. 在Rt △PBD 中,由勾股定理,得PB 2=PD 2+BD 2,即m 2=(m -12)2+(-12k)2, 解得m =14+14k 2. ∴PB =14+14k 2. ∴P 点坐标为(-12k ,14+14k 2). 当x =-12k 时,代入抛物线的解析式可得y =14+14k 2, ∴点P 在抛物线上.13.解:(1)把(0,1)代入y=(m-1)x2+m2+2m-2得,1=m2+2m-2,解得m=1或m=-3.因为开口向下,所以m=-3.(2)此抛物线的表达式为y=-4x2+1,顶点为(0,1),对称轴为y轴(直线x=0).(3)当x≤0时,y的值随x值的增大而增大.14.解:(1)3.5 m.(2)他离篮筐中心的水平距离AB是4 m.。

北师大版九年级数学下册第二章 二次函数 压轴题综合复习练习题

北师大版九年级数学下册第二章 二次函数 压轴题综合复习练习题
16.如图1,直线L:y=﹣x+1与x轴,y轴分别交于点B,点E,抛物线L1:y=ax2+bx+c经过点B,点A(﹣3,0)和点C(0,﹣3),并与直线L交于另一点D.
(1)求抛物线L1的解析式;
(2)如图2,点P为x轴上一动点,连接AD,AC,CP,当∠PCA=∠ADB时,求点P的坐标;
(3)如图3,将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,点M( ,0),点N是L2上且位于第一象限内一动点,MN交L2于Q点,QR∥x轴分别交OF,ON于S,R,试说明:QS与SR存在一个确定的数量关系.
5.已知抛物线L:y=x2+bx+c经过点A(﹣1,0)和(1,﹣2)两点,抛物线L关于原点O的对称的为抛物线L′,点A的对应点为点A′.
(1)求抛物线L和L′的表达式;
(2)是否在抛物线L上存在一点P,抛物线L′上存在一点Q,使得以AA′为边,且以A、A′、P、Q为顶点的四边形是平行四边形?若存在,求出P点坐标;若不存在,请说明理由.
∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,
则点C是RQ的中点,
在△BOC中,tan∠OBC= = =tan∠ROC= ,
则设RC=x=QB,则BC=2x,则RB= = x=BQ,
在△QRB中,S△RQB= ×QR•BC= BR•QK,即 2x•2x= KQ• x,解得:KQ= ,
11.如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是第二象限内抛物线上一动点.F点坐标为(﹣4,0).
(1)求这条抛物线的解析式;并写出顶点坐标;
(2)当D为抛物线的顶点时,求△ACD的面积;

北师大版九年级数学下册《第二章二次函数—有关二次函数的最值问题》练习题(附答案)

北师大版九年级数学下册《第二章二次函数—有关二次函数的最值问题》练习题(附答案)

北师大版九年级数学下册《第二章二次函数—有关二次函数的最值问题》练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题)1.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或2.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,03.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或34.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或25.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形P ABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm26.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣67.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连接DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8D.98.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或﹣C.2或﹣D.2或﹣或﹣9.已知二次函数y=mx2+2mx+1(m≠0)在﹣2≤x≤2时有最小值﹣2,则m=()A.3B.﹣3或C.3或﹣D.﹣3或﹣10.已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A.y3最小,y1最大B.y3最小,y4最大C.y1最小,y4最大D.无法确定二.填空题(共10小题)11.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.12.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.13.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是.14.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是.15.已知二次函数y=x2﹣2mx+1(m为常数),当自变量x的值满足﹣1≤x≤2时,与其对应的函数值y 的最小值为﹣2,则m的值为.16.当﹣7≤x≤a时,二次函数y=﹣(x+3)2+5恰好有最大值3,则a=.17.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.18.若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是.19.二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.20.设x≥0,y≥0,且2x+y=6,则μ=x2+2xy+y2﹣3x﹣2y的最小值是.三.解答题(共5小题)21.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=,max{0,3}=;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.22.在平面直角坐标系xOy中,抛物线y=ax2+bx+a﹣4(a≠0)的对称轴是直线x=1.(1)求抛物线y=ax2+bx+a﹣4(a≠0)的顶点坐标;(2)当﹣2≤x≤3时,y的最大值是5,求a的值;(3)在(2)的条件下,当t≤x≤t+1时,y的最大值是m,最小值是n,且m﹣n=3,求t的值.23.如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A 为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?24.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…y…5212n…(1)表中n的值为;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,且m>2,试比较y1与y2的大小.25.如图,函数y=﹣x2+x+c(﹣2020≤x≤1)的图象记为L1,最大值为M1;函数y=﹣x2+2cx+1(1≤x ≤2020)的图象记为L2,最大值为M2.L1的右端点为A,L2的左端点为B,L1,L2合起来的图形记为L.(1)当c=1时,求M1,M2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A,B重合时,求L上“美点”的个数;(3)若M1,M2的差为,直接写出c的值.参考答案与试题解析一.选择题(共10小题)1.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或解:二次函数的对称轴为直线x=m①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2综上所述,m的值为2或﹣.故选:C.2.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,0解:抛物线的对称轴是直线x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选:A.3.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或3解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5解得:h=5或h=1(舍);③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上,h的值为﹣1或5,故选:B.4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或2解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1故选:D.5.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形P ABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm2解:在Rt△ABC中,∠C=90°,AB=10cm,BC=8cm,∴AC==6cm.设运动时间为ts(0≤t≤4),则PC=(6﹣t)cm,CQ=2tcm∴S四边形P ABQ=S△ABC﹣S△CPQ=AC•BC﹣PC•CQ=×6×8﹣(6﹣t)×2t=t2﹣6t+24=(t﹣3)2+15.∵1>0,∴当t=3时,四边形P ABQ的面积取最小值,最小值为15cm2.6.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是直线x=2,且在x<2上y随x的增大而增大.又∵0≤x≤,∴当x=时,y取最大值,y最大=﹣2(﹣2)2+2=﹣2.5.故选:C.7.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连接DC,DB,则△BCD的面积的最大值是()A.7B.7.5C.8D.9解:设抛物线的解析式是y=ax2+bx+c∵抛物线经过A(1,0),B(4,0),C(0,﹣4)三点∴解得,∴y=﹣x2+5x﹣4设过点B(4,0),C(0,﹣4)的直线的解析式为y=kx+m解得,即直线BC的直线解析式为:y=x﹣4设点D的坐标是(x,﹣x2+5x﹣4)∴=﹣2(x﹣2)2+8∴当x=2时,△BCD的面积取得最大值,最大值是8.故选:C.8.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或﹣C.2或﹣D.2或﹣或﹣解:二次函数对称轴为直线x=m①m<﹣2时,x=﹣2取得最大值,﹣(﹣2﹣m)2+m2+1=4解得m=﹣,不合题意,舍去;②﹣2≤m≤1时,x=m取得最大值,m2+1=4,解得m=±∵m=不满足﹣2≤m≤1的范围,∴m=﹣;③m>1时,x=1取得最大值,﹣(1﹣m)2+m2+1=4,解得m=2.综上所述,m=2或﹣时,二次函数有最大值4.故选:C.9.已知二次函数y=mx2+2mx+1(m≠0)在﹣2≤x≤2时有最小值﹣2,则m=()A.3B.﹣3或C.3或﹣D.﹣3或﹣解:∵二次函数y=mx2+2mx+1=m(x+1)2﹣m+1,∴对称轴为直线x=﹣1①m>0,抛物线开口向上,x=﹣1时,有最小值y=﹣m+1=﹣2,解得:m=3;②m<0,抛物线开口向下∵对称轴为直线x=﹣1,在﹣2≤x≤2时有最小值﹣2∴x=2时,有最小值y=4m+4m+1=﹣2,解得:m=﹣;故选:C.10.已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A.y3最小,y1最大B.y3最小,y4最大C.y1最小,y4最大D.无法确定解:∵二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,且y3<y2<y4,∴抛物线开口向上,对称轴在0和1之间∴P1(﹣3,y1)离对称轴的距离最大,P3(1,y3)离对称轴距离最小∴y3最小,y1最大,故选:A.二.填空题(共10小题)11.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是s≥9.解:由x+y2=3,得:y2=﹣x+3≥0,∴x≤3代入s=x2+8y2得:s=x2+8y2=x2+8(﹣x+3)=x2﹣8x+24=(x﹣4)2+8当x=3时,s=(3﹣4)2+8=9,∴s≥9;故答案为:s≥9.12.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=9.解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4)当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.13.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是﹣1.5或.解:由二次函数y=x2﹣2mx(m为常数),得到对称轴为直线x=m,抛物线开口向上当m>2时,由题意得:当x=2时,y最小值为﹣2,代入得:4﹣4m=﹣2,即m=1.5<2,不合题意,舍去;当﹣1≤m≤2时,由题意得:当x=m时,y最小值为﹣2,代入得:﹣m2=﹣2,即m=或m=﹣(舍去);当m<﹣1时,由题意得:当x=﹣1时,y最小值为﹣2,代入得:1+2m=﹣2,即m=﹣1.5,综上,m 的值是﹣1.5或,故答案为:﹣1.5或.14.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是1,最大值是9.解:由题意可得:y=2(x+1)2+1,﹣2≤x≤1∵开口向上,∴当x=1时,有最大值:y max=9,当x=﹣1时,y min=1.故答案为1,9.15.已知二次函数y=x2﹣2mx+1(m为常数),当自变量x的值满足﹣1≤x≤2时,与其对应的函数值y 的最小值为﹣2,则m的值为﹣2或.解:由题意可知抛物线的对称轴为x=m,开口方向向上当m≤﹣1时,此时x=﹣1时,y可取得最小值﹣2,∴﹣2=1+2m+1,∴m=﹣2;当﹣1<m<2时,∴此时x=m,y的最小值为﹣2,∴﹣2=m2﹣2m2+1∴m=±,∴m=;当m≥2时,此时x=2时,y的最小值为﹣2,∴﹣2=4﹣4m+1,∴m=不符合题意故答案为:﹣2或.16.当﹣7≤x≤a时,二次函数y=﹣(x+3)2+5恰好有最大值3,则a=﹣5.解:∵y=﹣(x+3)2+5,∴该抛物线的开口方向向下,且顶点坐标是(﹣3,5).∴当x<﹣3时,y随x的增大而增大∴当x=a时,二次函数y=﹣(x+3)2+5恰好有最大值3把y=3代入函数解析式得到3=﹣(x+3)2+5,解得x1=﹣5,x2=﹣1.∴a=﹣5.故答案是:﹣5.17.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为1.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.18.若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是﹣4或2.解:∵y=﹣x2+mx,∴抛物线开口向下,抛物线的对称轴为x=﹣=∵=①当≤﹣1,即m≤﹣2时,当x=﹣1时,函数最大值为3,∴﹣1﹣m=3解得:m=﹣4;②当≥2,即m≥4时,当x=2时,函数最大值为3,∴﹣4+2m=3解得:m=(舍去).③当﹣1<<2,即﹣2<m<4时,当x=时,函数最大值为3,∴﹣+=3解得m=2或m=﹣2(舍去),综上所述,m=﹣4或m=2故答案为﹣4或2.19.二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=1.解:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3∴a﹣4=﹣3,∴a=1,故答案为1.20.设x≥0,y≥0,且2x+y=6,则μ=x2+2xy+y2﹣3x﹣2y的最小值是0.解:由题意得:x≥0,y=6﹣2x≥0,解得:0≤x≤3.∵μ=x2+2xy+y2﹣3x﹣2y=x2+2x(6﹣2x)+(6﹣2x)2﹣3x﹣2(6﹣2x)=x2﹣11x+24=﹣∴当x≤时,y随x的增大而减小,故当x=3时,μ的最小值为﹣=0.故答案为:0.三.解答题(共5小题)21.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=5,max{0,3}=3;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.解:(1)max{5,2}=5,max{0,3}=3.故答案为:5;3.(2)∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)联立两函数解析式成方程组,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.22.在平面直角坐标系xOy中,抛物线y=ax2+bx+a﹣4(a≠0)的对称轴是直线x=1.(1)求抛物线y=ax2+bx+a﹣4(a≠0)的顶点坐标;(2)当﹣2≤x≤3时,y的最大值是5,求a的值;(3)在(2)的条件下,当t≤x≤t+1时,y的最大值是m,最小值是n,且m﹣n=3,求t的值.解:(1)将x=1代入抛物线y=ax2+bx+a﹣4得,y=a+b+a﹣4=2a+b﹣4∵对称轴是直线x=1.∴﹣=1,∴b=﹣2a,∴y=2a+b﹣4=2a﹣2a﹣4=﹣4∴抛物线y=ax2+bx+a﹣4(a≠0)的顶点坐标为(1,﹣4);(2)①a<0时,抛物线开口向下,y的最大值是﹣4∵当﹣2≤x≤3时,y的最大值是5,∴a<0不合题意;②a>0时,抛物线开口向上∵对称轴是直线x=1.1到﹣2的距离大于1到3的距离,∴x=﹣2时,y的值最大∴y=4a﹣2b+a﹣4=5a﹣2b﹣4=5,将b=﹣2a代入得,a=1;(3)①t<0时,∵a=1,∴b=﹣2a=﹣2∴y的最大值是m=t2﹣2t+1﹣4=t2﹣2t﹣3,最小值是n=(t+1)2﹣2(t+1)﹣3∵m﹣n=3,∴t2﹣2t﹣3﹣[(t+1)2﹣2(t+1)﹣3]=3,解得:t=﹣1;②≤t<1时,∴y的最大值是m=(t+1)2﹣2(t+1)﹣3,最小值是n=﹣4∵m﹣n=3,∴(t+1)2﹣2(t+1)﹣3﹣(﹣4)=3,解得:t=±(不成立);③0<t≤时,y的最大值是m=t2﹣2t+1﹣4=t2﹣2t﹣3,最小值是n=﹣4m﹣n=t2﹣2t﹣3﹣(﹣4)=3,解得:t=±+1(不成立);④t≥1时,∴y的最大值是m=(t+1)2﹣2(t+1)﹣3,最小值是n=t2﹣2t﹣3m﹣n=(t+1)2﹣2(t+1)﹣3﹣(t2﹣2t﹣3)=3,解得:t=2;综上,t的值为﹣1或2.23.如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC 于点E,连接BE,设动点D运动的时间为x(s),AE的长为y (cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?解:(1)动点D运动x秒后,BD=2x.又∵AB=8,∴AD=8﹣2x.∵DE∥BC,∴∴∴y关于x的函数关系式为y=(0<x<4).(2)解:S△BDE===(0<x<4).当时,S△BDE最大,最大值为6cm2.24.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…y…5212n…(1)表中n的值为5;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,且m>2,试比较y1与y2的大小.解:(1)∵根据表可知:对称轴是直线x=2∴点(0,5)和(4,n)关于直线x=2对称,∴n=5,故答案为:5;(2)根据表可知:顶点坐标为(2,1),即当x=2时,y有最小值,最小值是1;(3)∵函数的图象开口向上,顶点坐标为(2,1),对称轴是直线x=2∴当m>2时,点A(m1,y1),B(m+1,y2)都在对称轴的右侧,y随x的增大而增大∵m<m+1,∴y1<y2.25.如图,函数y=﹣x2+x+c(﹣2020≤x≤1)的图象记为L1,最大值为M1;函数y=﹣x2+2cx+1(1≤x ≤2020)的图象记为L2,最大值为M2.L1的右端点为A,L2的左端点为B,L1,L2合起来的图形记为L.(1)当c=1时,求M1,M2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A,B重合时,求L 上“美点”的个数;(3)若M1,M2的差为,直接写出c的值.解:(1)当c=1时,函数y=﹣x2+x+c=﹣x2+x+1=﹣(x﹣)2+.又∵﹣2020≤x≤1,∴M1=,y=﹣x2+2cx+1=﹣x2+2x+1=﹣(x﹣1)2+2.又∵1≤x≤2020,∴M2=2;(2)当x=1时,y=﹣x2+x+c=c﹣;y=﹣x2+2cx+1=2c.若点A,B重合,则c﹣=2c,c=﹣,∴L1:y=﹣x2+x﹣(﹣2020≤x≤1);L2:y=﹣x2﹣x+1(1≤x≤2020).在L1上,x为奇数的点是“美点”,则L1上有1011个“美点”;在L2上,x为整数的点是“美点”,则L2上有2020个“美点”.又点A,B重合,则L上“美点”的个数是1011+2020﹣1=3030.(3)y=﹣x2+x+c(﹣2020≤x≤1)上时,当x=时,M1=+cy=﹣x2+2cx+1(1≤x≤2020),对称轴为x=c当2020≥c≥1时,M2=c2+1,∴|+c﹣c2﹣1|=,∴c=﹣1(舍去)或c=2;当c<1时,M2=2c,∴|2c﹣﹣c|=,∴c=3(舍去)或c=﹣;∴c=﹣或2.当c>2020时,M2=﹣20202+4040c+1,∴|﹣20202+4040c+1﹣﹣c|=∴c≈1010(舍弃),综上所述,c=﹣或2.。

北师大版九年级数学下册课件 2.2 第4课时 二次函数y=ax^2+bx+c的图象与性质

北师大版九年级数学下册课件 2.2 第4课时 二次函数y=ax^2+bx+c的图象与性质
由(1)知二次函数图象的对称轴为直线x=-2,
∴ 当x>-2时,y随x的增大而减小.
四、课堂小结
配方法
b 2 4ac b 2
y a( x )
2a
4a
y=ax2+bx+c(a ≠0)
(一般式)
(顶点式)
公式法
b 4ac b2
顶点: ( ,
)
2a
4a
b
对称轴: x
2a
五、当堂达标检测
议一议:二次函数y=ax2+bx+c的图象和性质是怎样的?
2
b
4
ac

b
)
二次函数y=ax2+bx+c的图象:顶点坐标(- ,
2a
4a
(a>0)
O
y
x b
2a
(a<0)
最大值
x
最小值
O
y x b
2a
x
二、自主合作,探究新知
知识要点
函数
开口方向
对称轴
二次函数y=ax2+bx+c的图象和性质
= + + (>0)
轴是直线=1,顶点坐标为(1,4).
(2) y=2x2-12x+8;
(2) y = 2x2-12x+8
= 2(x2-6x)+8
= 2(x2-6x+9-9)+8
= 2(x2-6x+9)-18+8
= 2(x-3)2-10
∴二次函数y=2x2-12x+8的对称轴
是直线=3,顶点坐标为(3,-10).
二、自主合作,探究新知

2022-2023学年北师大版九年级数学下册《第2章二次函数》解答压轴题优生辅导训练(附答案)

2022-2023学年北师大版九年级数学下册《第2章二次函数》解答压轴题优生辅导训练(附答案)

2022-2023学年北师大版九年级数学下册《第2章二次函数》解答压轴题优生辅导训练(附答案)1.如图1所示,已知抛物线y=ax2+bx+c的对称轴为x=1,与y轴的交点为点A(0,2),且过点.(1)求抛物线y=ax2+bx+c的表达式;(2)连接AB.若抛物线的对称轴上存在两点C,D(点D位于点C下方),使△ABC和△ABD均是以AB为斜边的直角三角形,求点C和点D的坐标;(3)在(2)的条件下,如图2所示,点P是线段AB上一点,连接DP.一动点Q从D 点出发沿D→P→B运动,至点B时停止.如果点Q在DP上的运动速度与点Q在PB上的运动速度之比为,要使点Q在整个运动过程中用时最少,求点P的坐标.2.如图1,已知抛物线y=﹣x2+x与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,当△F′F″K为等腰三角形,直接写出OK的值.3.如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c交x轴于点A(1,0)、C,交y轴于点B(0,3).(1)求该抛物线的表达式;(2)设该抛物线的对称轴与x轴的交点为D,点E在该抛物线的对称轴上,若以点A、D、E所组成的三角形与△AOB相似(相似比不为1),求点E的坐标.4.已知一个二次函数的图象经过A(1,0)、B(3,0)、C(0,﹣3)三点,顶点为D.(1)求这个二次函数的解析式;(2)求经过A、D两点的直线的表达式;(3)设P为直线AD上一点,且以A、P、C、B为顶点的四边形是平行四边形,求点P 的坐标.5.已知抛物线L:y=x2﹣4x+2,其顶点为C.(1)求点C的坐标;(2)若M为抛物线L上一点,抛物线L关于点M所在直线x=m对称的抛物线为L',点C的对应点为C',在抛物线L上是否存在点M,使得△CMC′为等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.6.如图,抛物线与x轴交于点A(1,0),B(3,0),与y轴交于点C(0,3).(1)求二次函数的表达式及顶点坐标;(2)连接BC,在抛物线的对称轴上是否存在一点E,使△BCE是直角三角形?若存在,请直接写出点E的坐标;若不存在,请说明理由.7.如图,抛物线y=ax2+2x+c与直线y=kx+b交于点A(3,0)和B(0,3),点D是抛物线上的动点,过点D作DE⊥AB于点E,交x轴于点F,连接BF.(1)求抛物线的解析式:(2)当点D在第一象限且S△BEF=2S△AEF时,求点D的坐标;(3)连接AD,在抛物线上是否存在点D,使tan∠DAE=,若存在,请直接写出点D 的坐标;若不存在,请说明理由.8.已知抛物线y=x2﹣2mx+2m+1.(1)写出抛物线y=x2﹣2mx+2m+1的顶点坐标(用含m的式子表示).(2)当x≥1时,y随x的增大而增大,则m的取值范围是.(3)当﹣1≤x≤2时,函数y=x2﹣2mx+2m+1的图象记为G,设图象G的最低点的纵坐标为y0.当y0=﹣1时,求m的值.(4)当m>0时,分别过点A(2,1)、B(2,4)作y轴垂线,垂足分别为点D、点C,抛物线在矩形ABCD内部的图象(包括边界)的最低点到直线y=﹣2的距离等于最高点到x轴的距离,直接写出m的值.9.如图,直线与x轴交于点A,与y轴交于点B,抛物线+bx+c 经过点A,B,且与x轴交于点C,连接BC.(1)求b,c的值.(2)点P为线段AC上一动点(不与点A,C重合),过点P作直线PD∥AB,交BC于点D,连接PB,设PC=t,△PBD的面积为S.求S关于t的函数关系式,并求出S的最大值.(3)若点M在抛物线的对称轴上运动,点N在x轴运动,当以点B,M,N为顶点的三角形为等腰直角三角形时,称这样的点N为“美丽点”.请直接写出“美丽点”N的坐标.10.如图1,已知抛物线y=x2﹣4mx+4m2+2m﹣4(m是常数)的顶点为P,直线l:y=x﹣4.(1)求证:点P在直线l上;(2)已知直线l与抛物线的另一个交点为Q,当以O、P、Q为顶点的三角形是等腰三角形时,求m的值;(3)如图2,当m=0时,抛物线交x轴于A、B两点,M、N在抛物线上,满足MA⊥NA,判断MN是否恒过一定点,如果过定点,求出定点坐标;如果不过定点,说明理由.11.如图,点O为坐标原点,抛物线y=ax2+bx﹣2过点B(﹣2,2),点C是直线OB与抛物线的另一个交点,且点B与点C关于原点对称.(1)求抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为点Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣2<t<2),当t为何值时,四边形PBQC面积最大,说明理由.12.如图,抛物线y=x2+bx+c经过A(0,﹣2)、B(8,﹣2)两点,点C为抛物线的对称轴与x轴的交点,连接AC、AB.(1)求抛物线的函数表达式;(2)点E在AB下方的抛物线上,过点E作EF⊥AB于点F,连接AE,是否存在点E,使得△AEF与△AOC相似?若存在,求出点E的坐标;若不存在,请说明理由.13.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B,与y轴正半轴交于C,OB=OC=3OA.(1)求这条抛物线的解析式.(2)如图1,在抛物线对称轴上求一点P,使CP⊥BP.(3)如图2,若点E在抛物线对称轴上,在抛物线上是否存在点F,使以B,C,E,F 为顶点的四边形是平行四边形,若存在,求出点F的坐标;若不存在,请说明理由.14.已知二次函数解析式为y=x﹣1(a≠0),该抛物线与y轴交于点A,其顶点记为B,点A关于抛物线对称轴的对称点记为C.已知点D在抛物线上,且点D的横坐标为2,DE⊥y轴交抛物线于点E.(1)求点D的纵坐标.(2)当△ABC是等腰直角三角形时,求出a的值.(3)当0≤x≤2时,函数的最大值与最小值的差为2时,求a的取值范围.(4)设点R(a﹣3,﹣1),点A、R关于直线DE的对称点分别为N、M,当抛物线在以A、R、M、N为顶点的四边形内部的图象中,y随x的增大而增大或y随x的增大而减小时,直接写出a的取值范围.15.已知抛物线y=ax2+bx﹣4(a≠0)的对称轴是直线x=,且与x轴交于A、B(4,0)两点,与y轴交于C点.(1)求抛物线的解析式;(2)如图1,设点D是线段BC上的一动点,过D作x轴的垂线,交抛物线于E,当线段DE的长度最大时,判断此时四边形OCDE的形状并说明理由;(3)如图2,设P是抛物线上且位于直线BC上方的点,求△BCP面积的最大值.16.已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式及点C的坐标;(2)点D(m,0)是x轴上一动点,且m<3,过点D作直线l⊥x轴交直线BC于点E,交抛物线于点P,过点P作PH⊥BC于点H.当△BDE与△PHE全等时,求点P的坐标.17.如图,抛物线与x轴交于A和B两点(点B位于点A右侧),与y轴交于点C,对称轴是直线x=2,且OA=1,OC=3,连接AC,BC.(1)求此抛物线的函数解析式;(2)设抛物线的顶点为点P,请在x轴上找到一个点D,使以点P、B、D为顶点的三角形与△ABC相似?18.已知抛物线y=ax2+bx﹣3(a,b是常数,a≠0)的图象经过点,,与y轴交于点C,点P(m,n).(Ⅰ)求抛物线解析式和点C的坐标;(Ⅱ)过点作直线l⊥y轴,将抛物线向上平移,顶点E落在直线l上,若P 为抛物线一点,平移后对应点为P',当DP=DP'时,求P点坐标;(Ⅲ)若点P(m,n)为抛物线对称轴上一动点,连接P A,PC,若∠APC不小于60°,求n的取值范围.19.平面直角坐标系中,抛物线y=ax2﹣a(a<0)交x轴于点A,B(点A在点B的左侧),交y轴于点D,直线l:y=kx+b与抛物线交于点C.(1)若C(﹣,﹣),直线l过点B.①连接DC,BC,求△DCB的面积;②抛物线上两点M,N,点M在点N的左侧,且都在直线l上方,MG⊥直线l于点G,NH⊥直线l于点H,当四边形MGHN是正方形时,求点N的横坐标;(2)已知点Q(0,﹣2a),连接QA,QB,直线l交QA,QB分别于点E,F,且直线l 与抛物线只有一个公共点C,若此时QE+QF=3,求a的值.20.如图,在平面直角坐标系中,将抛物线C1:y=﹣(其中m为常数,且m<0)关于原点对称得到抛物线C2,抛物线C1,C2的顶点分别为M,N.(1)请直接写出抛物线C2的表达式;(用含有m的式子表示)(2)若抛物线C1与x轴的交点从左到右依次为A,B,抛物线C2与x轴的交点从左到右依次为C,D.①若A,B,C,D四点从左到右依次排列,且AD=3BC,求m的值;②是否存在这样的m,使以点M,A,N,D为顶点的四边形是矩形?若存在,求出m的值;若不存在,说明理由;(3)在抛物线C1对称轴右侧的部分任取一点G,设直线MG,NG分别与y轴相交于P,Q两点,且GM=pGP,GN=qGQ,求p﹣q的值.参考答案1.解:(1)∵函数y轴的交点为点A(0,2),∴c=2,∵抛物线的对称轴为x=1,∴﹣=1,∴b=﹣2a,∴y=ax2﹣2ax+2,将点代入y=ax2﹣2ax+2,∴=a﹣5a+2,解得a=2,∴y=2x2﹣4x+2;(2)∵y=2x2﹣4x+2=2(x﹣1)2,∴抛物线的对称轴为直线x=1,设C(1,m),D(1,n),∵A(0,2),点,∴AB=,AB的中点H(,),∵△ABC和△ABD均是以AB为斜边的直角三角形,∴CH=DH=AB,∴=,解得m=5或m=,∵点D位于点C下方,∴D(1,),C(1,5);(3)过点P作PQ⊥BC于Q,∵A(0,2),,C(1,5),∴AC=,AB=,BC=,∵AC⊥BC,∴PQ∥AC,∴=,即=,∴PQ=2BQ,∴tan∠PBQ=2,BP=BQ,sin∠PBQ=,∵点Q在DP上的运动速度与点Q在PB上的运动速度之比为,∴设Q点在DP上的运动时间为t,在PB上的运动时间为k,∴DP=2t,PB=k,∴PQ=BP•sin∠PBQ=k•=2k,∴从P点到B所用的时间与从P点到Q点所用的时间相同,∴当D、P、Q三点共线时,PD+PQ的路程最短,用时间也最短,∴PD+PQ=2t+2k=2(t+k),设直线AC的解析式为y=kx+b,∴,解得,∴y=3x+2,∵AC∥DQ,∴设DQ的解析式为y=3x+b',∴3+b'=,解得b'=﹣,∴y=3x﹣,设直线AB的解析式为y=k'x+b'',∴,解得,∴y=x+2,联立方程组,解得,∴P(,).2.解:(1)令x=0,则y=,∴C(0,),∴CO=,∵y=﹣x2+x=﹣(x﹣1)2+,∴抛物线的对称轴为直线x=1,∴D(2,),∵DH⊥x轴,∴H(2,0),令y=0,则﹣x2+x=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0),∴OA=1,∵AE⊥AC,∴∠CAO+∠OAE=90°,∠CAO+∠ACO=90°,∴∠OAE=∠ACO,∴=,即=,∴HE=,∴DE=2;(2)如图1,作C点关于直线DE的对称点H,作C点关于直线AE的对称点G,连接GH交AE于点F,交DE于点P,连接CP,CF,∴CP=PH,CF=GF,∴CF+PF+CP=GF+PF+PH=GH,∴当G、F、P、H四点共线时,△CPF的周长最小,∵C(0,),D(2,),∴H(4,),∵A(﹣1,0),∴G(﹣2,﹣),设直线GH的解析式为y=kx+b,∴,∴,∴y=x﹣,设直线AE的解析式为y=k'x+b',∴,解得,∴y=﹣x﹣,联立方程组,解得,∴F(0,﹣),∴P(2,),过点M作y轴的平行线交GN于点Q,设M(m,﹣m2+m),则Q(m,m﹣),∴MQ=﹣m2+m+,∴S△MPF=×2×(﹣m2+m+)=﹣(m﹣)2+,∵0<t<2,∴t=时,△PMF的面积有最大值;(3)由(2)可得CF=,CP=,∵OC=,OA=1,∴∠OCA=30°,∴∠CFP=60°,∴△CFP是等边三角形,边长为,∴翻折后形成边长为的菱形C'F'P'F'',且F'F''=4,①当KF'=KF''时,如图2,点K在F'F''的垂直平分线上,∴K与B重合,∴K(3,0),∴OK=3;②当F'F''=F'K时,如图3,如图4,∴F'F''=F'K=4,∵PF的解析式为y=x﹣,∴在平移的过程中,F'K与x轴的夹角为30°,∵∠OAF=30°,∴F'K=F'A,∴AK=4,∴OK=4﹣1或OK=4+1;③当F'F''=F''K时,如图5,∵在平移的过程中,F'F''始终与x轴的夹角为60°,∵∠OAF=30°,∴∠AF'F''=90°,∵F'F''=F''K=4,∴AF''=8,∴AK=12,∴OK=11;综上所述:OK的值为3或11或4﹣1或4+1.3.解:(1)将点A(1,0)、B(0,3)代入y=x2+bx+c,∴,解得,∴y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,∴D(2,0),设E(2,t),∴DE=|t|,AD=1,∵A(1,0)、B(0,3),∴OA=1,OB=3,∴tan∠OBA=,当∠OBA=∠AED时,==,解得t=3或t=﹣3,当t=±3时,DE=OB=3,AD=OA=1,∴△AOB≌△ADE,∴此时E不存在;当∠OBA=∠EAD时,==,解得t=或t=﹣,∴E(2,)或(2,﹣);综上所述:E点的坐标为(2,)或(2,﹣).4.解:(1)设y=ax2+bx+c,将点A(1,0)、B(3,0)、C(0,﹣3)代入y=ax2+bx+c,∴,解得,∴y=﹣x2+4x﹣3;(2)∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴D(2,1),设直线AD的解析式为y=kx+b,∴,解得,∴y=x﹣1;(3)设P(t,t﹣1),①当AB为平行四边形的对角线时,t=1+3=4,∴P(4,3);②当AC为平行四边形的对角线时,1=3+t,∴t=﹣2,∴P(﹣2,﹣3);③当AP为平行四边形的对角线时,t+1=3,∴t=2,∴P(2,1),此时﹣3+0≠1+0,∴P(2,1)不符合题意;综上所述:P点的坐标为(4,3)或(﹣2,﹣3).5.解:(1)∵y=x2﹣4x+2=(x﹣2)2﹣2,∴顶点C(2,﹣2);(2)存在点M,使得△CMC′为等腰直角三角形,理由如下:∵M点在直线x=m上,∴M(m,m2﹣4m+2),∵C(2,﹣2),∴C'(2m﹣2,﹣2),∵C点与C'点关于x=m对称,∴CM=C'M,过点M作EF∥x轴,过点C作CE⊥EF交于点E,过点C'作C'F⊥EF交于点F,∴∠EMC+∠FMC'=90°,∵∠EMC+∠ECM=90°,∴∠FMC'=∠ECM,∴△ECM≌△FMC'(AAS),∴EM=C'F,EC=MF,∵△CMC′为等腰直角三角形,∴EM=MF=CE=C'F,∵EM=|m﹣2|,CE=m2﹣4m+2+2,∴|m﹣2|=m2﹣4m+2+2,解得m=2(舍)或m=3或m=1,∴M(3,﹣1)或(1,﹣1).6.解:(1)设抛物线的解析式为y=a(x﹣1)(x﹣3),将点C(0,3)代入y=a(x﹣1)(x﹣3),∴3a=3,∴a=1,∴y=(x﹣1)(x﹣3)=x2﹣4x+3,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点为(2,﹣1);(2)存在一点E,使△BCE是直角三角形,理由如下:∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,设E(2,t),∵△BCE是直角三角形,∴BE⊥CE,∵B(3,0),C(0,3),∴BC=3,BE=,CE=,①当BC为斜边时,∴18=()2+()2,解得t=,∴E点坐标为(2,)或(2,);②当BE为斜边时,∴18+()2=()2,解得t=5,∴E点坐标为(2,5);③当CE为斜边时,∴18+()2=()2,解得t=﹣1,∴E点坐标为(2,﹣1);综上所述:E点坐标为(2,)或(2,)或(2,5)或(2,﹣1).7.解:(1)将点A(3,0)和B(0,3)代入y=ax2+2x+c,∴,解得,∴y=﹣x2+2x+3;(2)∵A(3,0)和B(0,3),∴OA=OB=3,∴∠BAO=45°,∵DF⊥AB,∴EF=AE,∵AB=3,S△BEF=2S△AEF,∴AE=,∴AF=2,∴F(1,0),∴E(2,1),∴设直线DF的解析式为y=k'x+b',∴,解得,∴y=x﹣1,联立方程组,解得x=或x=,∵点D在第一象限,∴x=,∴D(,);(3)存在点D,使tan∠DAE=,理由如下:设D(m,﹣m2+2m+3),∴DF的解析式为y=x﹣m2+m+3,联立方程组,解得x=,∴E(,),∴DE=||,AE=||,∵tan∠DAE=,∴=,解得m=1或m=3(舍)或m=﹣,∴D(1,4)或D(﹣,).8.解:(1)∵y=x2﹣2mx+2m+1=(x﹣m)2﹣m2+2m+1,∴顶点坐标为(m,﹣m2+2m+1);(2)∵抛物线开口向上,∴m≤1时,y随x的增大而增大,故答案为:m≤1;(3)当m<﹣1时,x=﹣1,函数有最小值,∴y0=2+4m,∵y0=﹣1,∴2+4m=﹣1,解得m=﹣(舍);当m>2时,x=2,函数有最小值,∴y0=5﹣2m,∵y0=﹣1,∴5﹣2m=﹣1,解得m=3;当﹣1≤m≤2时,x=m,函数有最小值,∴y0=﹣m2+2m+1,∵y0=﹣1,∴﹣m2+2m+1=﹣1,解得m=+1(舍)或m=﹣+1;综上所述:m的值为3或﹣+1;(4)当0<m≤时,﹣m2+2m+1+2=4,解得m=1(舍);当<m≤1时,﹣m2+2m+1+2=4﹣2m+1,解得m=+2(舍)或m=﹣+2;当1<m≤时,﹣m2+2m+1+2=2m+1,解得m=或m=﹣(舍);当<m≤2时,﹣m2+2m+1+2=4,解得m=1(舍);当m>2时,最高点纵坐标是4,最低点纵坐标是1,∴3≠4,∴此时不符合题意;综上所述:m的值为或2﹣.9.解:(1)令y=0,则﹣x+=0,解得x=3,∴A(3,0),令x=0,则y=,∴B(0,),将点A(3,0),B(0,),代入+bx+c,∴,解得;(2)由(1)可得+x+,令y=0,则﹣x2+x+=0,解得x=3或x=﹣2,∴C(﹣2,0),∵A(3,0),B(0,),∴AC=5,OB=,∴S△ABC=××5=,S△PBC=××t=t,∵PD∥AB,∴△PDC∽△ABC,∴=()2,即=()2,∴S△PCD=t2,∴S=S△PBC﹣S△PCD=t﹣t2,(0<t<5);∵S=t﹣t2=﹣(t﹣)2+,∴当t=时,S的最大值为;(3)∵+x+=﹣(x﹣)2+,∴抛物线的对称轴为直线x=,设M(,m),N(n,0),B(0,),①如图1,当∠BMN=90°,N点在x轴负半轴时,BM=MN,过点M作KL∥y轴交x轴于点L,过点B作BK⊥KL交于K,∴∠BMK+∠NML=90°,∵∠BMK+∠MBK=90°,∴∠NML=∠MBK,∴△BMK≌△MNL(AAS),∴BK=ML,NL=KM,∵BK=,KM=﹣m,ML=m,NL=﹣n,∴=m,﹣m=﹣n,∴n=1﹣,∴N(1﹣,0);②如图2,当∠BMN=90°,N点在x轴正半轴时,BM=MN,过点M作EF⊥y轴交于点E,过点N作NF⊥EF交于点F,∵∠BME+∠NMF=90°,∠BME+∠EBM=90°,∴∠NMF=∠EBM,∴△BEM≌△MFN(AAS),∴EM=NF,BE=NF,∵BE=﹣m,EM=,MF=n﹣,NF=﹣m,∴﹣m=n﹣,=﹣m,∴n=+1,∴N(+1,0);③如图3,当∠BNM=90°,N点在x轴的负半轴上是,BN=MN,过点N作ST⊥x轴,过点B作BS⊥ST交于S,过点M作MT⊥ST交ST于T,∴∠SNB+∠TNM=90°,∵∠SNB+∠SBN=90°,∴∠TNM=∠SBN,∴△SBN≌△TNM(AAS),∴SB=NT,SN=TM,∵SB=﹣n,SN=,NT=﹣m,MT=﹣n+,∴﹣n=﹣m,=﹣n+,∴n=﹣,∴N(﹣,0);④如图4,当∠BNM=90°,N点在x轴的正半轴上是,BN=MN,过点N作UV⊥x轴,过点B作BU⊥UV交于点U,过点M作MV⊥UV交于点V,∴∠BNU+∠MNV=90°,∵∠BNU+∠NBU=90°,∴∠MNV=∠NBU,∴△BNU≌△NMV(AAS),∴BU=VN,UN=MV,∵BU=n,UN=,NV=﹣m,MV=n﹣,∴n=﹣m,=n﹣,∴n=+,∴N(+,0);综上所述;N点坐标为(1﹣,0)或(+1,0)或(﹣,0)或(+,0).10.证明:(1)∵y=x2﹣4mx+4m2+2m﹣4=(x﹣2m)2+2m﹣4,∴顶点P(2m,2m﹣4),当x=2m时,y=2m﹣4,∴点P在直线l上;解:(2)联立方程组,整理得x2﹣4mx﹣x+4m2+2m=0,∵P点在直线y=x﹣4上,∴x=2m是方程的一个解,∴方程的另一个解为2m+1,∴Q(2m+1,2m﹣3),∴OQ=,QP=,OP=,当OP=OQ时,=,解得m=;当OP=PQ时,=,∴m无解;当OQ=PQ时,=,∴m无解;综上所述:m=;(3)∵m=0,∴y=x2﹣4,令y=0,则x=±2,∴A(2,0),B(﹣2,0),设直线MN的解析式为y=kx+b,M(x1,﹣4),N(x2,﹣4),联立方程组,∴x2﹣kx﹣b﹣4=0,∴x1+x2=k,x1•x2=﹣b﹣4,过点M作ME⊥x轴交于点E,过点N作NF⊥x轴交于点F,∵MA⊥NA,∴∠MAN=90°,∵∠MAE+∠NAF=90°,∠MAE+∠AME=90°,∴∠NAF=∠AME,∴△AME∽△NAF,∴=,∵ME=﹣4,NF=﹣4,AE=2﹣x1,AF=x2﹣2,∴=,∴2k﹣b+1=0,∴y=(1+x)b﹣x,∴当x=﹣2时,y=1,∴直线MN经过定点(﹣2,1).11.解:(1)∵B(﹣2,2),点B与点C关于原点对称,∴C(2,﹣2),将点B(﹣2,2),C(2,﹣2)代入y=ax2+bx﹣2,∴,解得,∴y=x2﹣x﹣2;(2)①设P(t,t2﹣t﹣2),∵P、Q关于原点的对称,∴Q(﹣t,﹣t2+t+2),∵点B与点C关于原点对称,∴O是对角线PQ、BC的交点,∴PQ⊥BC,∵B(﹣2,2),∴OB2=8,OP2=t2+(t2﹣t﹣2)2,PB2=(t+2)2+(t2﹣t﹣4)2,∴(t+2)2+(t2﹣t﹣4)2=8+t2+(t2﹣t﹣2)2,∴(t+2)2﹣8﹣t2=(t2﹣t﹣2)2﹣(t2﹣t﹣4)2,∴2t﹣2=t2﹣2t﹣6,解得t=﹣2+2或t=2+2,∴P(﹣2+2,2﹣2)或(2+2,2+2);②∵点B与点C关于原点对称,P、Q关于原点的对称,∴BC与PQ互相平分,∴四边形PBQC是平行四边形,过点P作PG∥y轴交直线BC于点G,设直线BC的解析式为y=kx+b,∴,解得,∴y=﹣x,∵P(t,t2﹣t﹣2),∴G(t,﹣t),∴PG=﹣t﹣(t2﹣t﹣2)=﹣t2+2,∴S△BCP=×4×(﹣t2+2)=﹣t2+4,∴S四边形BPCQ=2S△BCP=﹣2t2+8,当t=0时,四边形PBQC面积最大为8.12.解:(1)将A(0,﹣2)、B(8,﹣2)代入y=x2+bx+c,∴,解得,∴y=x2﹣3x﹣2;(2)存在点E,使得△AEF与△AOC相似,理由如下:∵AE⊥EF,OC⊥OA,∴∠COA=∠AEF,∵y=x2﹣3x﹣2=(x﹣4)2﹣8,∴抛物线的对称轴为直线x=4,∴C(4,0),∴OC=4,∵A(0,﹣2),∴OA=2,∴tan∠OCA=,设E(t,t2﹣3t﹣2),则F(t,﹣2),∴EF=﹣t2+3t,AF=t,当∠OCA=∠AEF时,△OAC∽△F AE,∴=,解得t=,∴E(,﹣);当∠F AE=∠OCA时,△OAC∽△FEA,∴=,解得t=,∴E(,﹣);综上所述:E点的坐标为(,﹣)或(,﹣).13.解:(1)∵A(﹣1,0),∴OA=1,∵OB=OC=3OA,∴BO=3,OC=3,∴B(3,0),C(0,3),将点A、B、C代入y=ax2+bx+c,∴,∴,∴y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,设P(1,t),∵B(3,0),C(0,3),∴BP2=4+t2,CP2=1+(t﹣3)2,BC2=18,∵CP⊥BP,∴18=4+t2+1+(t﹣3)2,解得t=,∴P(1,)或(1,);(3)存在点F,使以B,C,E,F为顶点的四边形是平行四边形,理由如下:设E(1,m),F(n,﹣n2+2n+3),①当BC为平行四边形的对角线时,3=1+n,∴n=2,∴F(2,3);②当BE为平行四边形的对角线时,3+1=n,∴n=4,∴F(4,﹣5);③当BF为平行四边形的对角线时,3+n=1,∴n=﹣2,∴F(﹣2,﹣5);综上所述:F点的坐标为(2,3)或(4,﹣5)或(﹣2,﹣5).14.解:(1)当x=2时,y=﹣3,∴D(2,﹣3);(2)令x=0,则y=﹣1,∴A(0,﹣1),∵y=x﹣1=(x﹣)2﹣,∴顶点B(,﹣),∵抛物线的对称轴为直线x=,∴C(a+2,﹣1),∵△ABC是等腰直角三角形,∴AB⊥BC,∴||=|﹣1+|,解得a=±2或a=﹣,当a=2时,B(0,1),C(0,﹣1),此时C点与A点重合,∴a=2(舍);∴a=﹣2或a=﹣;(3)∵抛物线的对称轴为直线x=,①当<0时,a<﹣2,此时当x=0时,函数有最大值﹣1,当x=2时,函数有最小值﹣3,∴函数的最大值与最小值的差为2;②当>2时,a>2,此时当x=0时,函数有最大值﹣1,当x=2时,函数有最小值﹣3,∴函数的最大值与最小值的差为2;③当0≤≤1时,﹣2≤a<0,此时当x=,函数有最大值﹣,当x=2时,函数有最小值﹣3,∵函数的最大值与最小值的差为2,∴﹣+3=2,∴=1,解得a=﹣2;④当1<≤2时,0<a≤2,此时当x=0时,函数有最大值﹣1,当x=时,函数有最小值﹣,∵函数的最大值与最小值的差为2,∴﹣1+=2,∴=3,解得a=2;综上所述:a≤﹣2或a≥2时,函数的最大值与最小值的差为2;(4)∵D(2,﹣3),DE⊥y轴,∴DE所在直线为y=﹣3,∵A(0,﹣1),R(a﹣3,﹣1),∴N(0,﹣5),R(a﹣3,﹣5),当a>0且≥a﹣3时,∴0<a≤8,∵a﹣3>0,∴3<a≤8;此时抛物线在以A、R、M、N为顶点的四边形内部的图象,y随x的增大而减小;当a>0且<a﹣3时,解得a>8,∵a﹣3>0,∴a>3,∵(a﹣3)2﹣•(a﹣3)﹣1≤﹣5,解得a≥15;此时抛物线在以A、R、M、N为顶点的四边形内部的图象,y随x的增大而减小;当a<0时,﹣≥﹣1,解得a<0,此时抛物线在以A、R、M、N为顶点的四边形内部的图象,y随x的增大而增大;综上所述:a≥15或a<0或3<a≤8时,符合题意.15.解:(1)∵抛物线y=ax2+bx﹣4的对称轴是直线x=,∴=﹣,∴b=﹣5a,∴y=ax2﹣5ax﹣4,将点B(4,0)代入y=ax2﹣5ax﹣4,∴16a﹣20a﹣4=0,解得a=﹣1,∴y=﹣x2+5x﹣4;(2)四边形OCDE是平行四边形,理由如下:令x=0,则y=﹣4,∴C(0,﹣4),令y=0,则﹣x2+5x﹣4=0,解得x=4或x=﹣1,∴A(﹣1,0),设直线BC的解析式为y=kx+b,∴,∴,∴y=x﹣4,设D(t,t﹣4),则E(t,﹣t2+5t﹣4),∴DE=﹣t2+5t﹣4﹣t+4=﹣t2+4t=﹣(t﹣2)2+4,∴当t=2时,DE的长度最大为4,∴D(2,﹣2),E(2,2),∵OC=DE=4,DE∥OC,∴四边形OCDE是平行四边形;(3)过点P作PG∥y轴交BC于点G,设P(m,﹣m2+5m﹣4),则G(m,m﹣4),∴PG=﹣m2+5m﹣4﹣m+4=﹣m2+4m,∴S△BCP=×4×(﹣m2+4m)=﹣2m2+8m=﹣2(m﹣2)2+8,∴当m=2时,S△BCP的值最大为8.16.解:(1)把A(﹣1,0),B(3,0)两点的坐标代入抛物线y=x2+bx+c,∴,解得.∴抛物线的解析式为:y=x2﹣x﹣.令x=0,则y=﹣,∴C(0,﹣).(2)由(1)可知,OC=,OB=3,∴BC=2,即BC=2OC,∴∠OBC=30°,∠OCB=60°,∵DE⊥x轴,∴DE∥OC,∴∠E=60°,∵PH⊥BC于点H,∴∠PHC=∠BOC=90°,∴若△BDE与△PHE全等,只需要BE=PE即可.∵D(m,0)(m<3),∴BD=3﹣m,∴BE=(3﹣m),∵PE⊥x轴,∴P(m,m2﹣m﹣),∵B(3,0),C(0,﹣),∴y=x﹣.∴E(m,m﹣),∴PE=|m2﹣m﹣﹣(m﹣)|=|m2﹣m|,∴|m2﹣m|=(3﹣m),∴m=3(舍去)或m=﹣2或m=2.∴P(﹣2,)或P(2,﹣).17.解:(1)∵抛物线的对称轴x=2,∴设此抛物线的函数解析式为y=a(x﹣2)2+h,∵OA=1,OC=3,∴A(1,0),C(0,3),∴,解得,∴抛物线的解析式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)∵点A(1,0),抛物线的对称轴x=2,∴B(3,0),∴OC=OB=3,AB=2,∴BC=,∠ABC=45°,∴∠CAB<135°,又∠CAB是△AOC的外角,∴90°<∠CAB<135°,由y=(x﹣2)2﹣1可知点P的坐标是(2,﹣1),∴∠PBO=45°,PB=,∴∠PBO≠∠BAC,∴点D不可能在B点右侧的x轴上,∴要使以点P、B、D为顶点的三角形与△ACB相似,则∠PBD=∠ABC=45°,且或,故分以下两种情况考虑:①当时,∠PBD=∠ABC=45°时,△PBD∽△ABC,∴,解得BD=3,又OB=3,∴点D与点O重合,即D1(0,0);②当时,∠DBP=∠ABC=45°时,△DBP∽△ABC,∴,解得DB=,又OB=3,∴OD=OB﹣DB=3﹣=,∴D2的坐标是(,0),综上所述,满足要求的点D的坐标是(0,0)或(,0).18.解:(Ⅰ)将点,代入y=ax2+bx﹣3,得,解得,∴y=x2﹣x﹣3,令x=0,则y=﹣3,∴C(0,﹣3);(Ⅱ)∵过点作直线l⊥y轴,∴直线l的解析式为y=,∵y=x2﹣x﹣3=(x﹣)2﹣,∵抛物线向上平移,顶点E落在直线l上,∴平移后的抛物线解析式为y=(x﹣)2+=x2﹣x+1,∴抛物线向上平移+=4个单位,∵点P(m,n)平移后的点为P'(m,n+4),∵DP=DP',∴m2+(﹣n)2=m2+(﹣n﹣4)2,解得n=﹣,∴m=2+或m=﹣2+,∴P(2+,﹣)或(﹣2+,﹣);(Ⅲ)∵y=x2﹣x﹣3=(x﹣)2﹣,∴抛物线的对称轴为直线x=,∴P(,n),∵点,C(0,﹣3),∴AC=2,∴∠ACO=30°,∠CAO=60°,作∠CAO的角平分线交y轴于点M,以M为圆心,AM为半径做圆交抛物线的对称轴于点P,连接MP,∴∠MAC=∠MCA=30°,∴∠AMC=120°,∴∠APC=60°,在Rt△AOM中,∠OAM=30°,∴OM=1,∴M(0,﹣1),∵MP=CM=2,∴+(n+1)2=4,∴n=﹣1或n=﹣﹣1,∴P点坐标为(,﹣1)或(,﹣﹣1),∵∠APC不小于60°,∴﹣﹣1≤n≤﹣1.19.解:(1)①令y=0,则ax2﹣a=0,∴x=﹣1或x=1,∴A(﹣1,0),B(1,0),令x=0,则y=﹣a,∴D(0,﹣a),∵C(﹣,﹣),B(1,0)在直线y=kx+b上,∴,解得,∴y=x﹣1,∵C(﹣,﹣)在y=ax2﹣a上,∴a﹣a=﹣,∴a=﹣2,∴D(0,2),∵直线y=x﹣1与y轴的交点为(0,﹣1),∴S△BCD=×3×(1+)=;②∵MN∥直线l,设直线MN的解析式为y=x+m,∵M、N在直线l的上方,∴m>﹣1,设M(x1,﹣2x12+2),N(x2,﹣2x22+2),联立方程组,整理得2x2+x+m﹣2=0,∴x1+x2=﹣,x1•x2=,∴|x1﹣x2|=,∴MN==|x1﹣x2|=•,设直线MN与y轴的交点为T,直线l与y轴的交点为L,过点T作TK⊥直线l交于K 点,∵L(0,﹣1),B(1,0),∴∠TLK=45°,∵TL=m+1,∴TK=,∵四边形MGHN是正方形,∴TK=MN,∴•=,解得m=﹣5+或m=﹣5﹣,∵m>﹣1,∴m=﹣5+,∴直线MN的解析式为y=x﹣5+,∴2x2+x+﹣7=0,解得x=或x=,∴N(,);(2)联立方程组,整理得ax2﹣kx﹣a﹣b=0,∵直线l与抛物线只有一个公共点,∴Δ=k2+4a(a+b)=0,∴k2=﹣4a(a+b),∵A(﹣1,0),Q(0,﹣2a),设直线AQ的解析式为y=k2x+b2,∴,解得,∴y=﹣2ax﹣2a,联立方程组,解得x=,∴E点的横坐标为,∵B(1,0),Q(0,﹣2a),设直线BQ的解析式为y=k3x+b3,∴,解得,∴y=2ax﹣2a,联立方程组,解得x=,∴F点的横坐标为,过点E作EP⊥y轴交于P点,过点F作FJ⊥y轴交于J点,∵A、B关于y轴对称,∴∠AQO=∠BQO,∵OA=1,OQ=﹣2a,∴AQ=,∴sin∠AQO=,∴EQ===•,FQ==•,∵QE+QF=3,∴•+•=•(2a+b)•(+)=•(2a+b)•()=•(2a+b)•()=•(2a+b)•()==3,∴a=±,∵a<0,∴a=﹣.20.解:(1)设抛物线c2上任意一点(x,y),则点(x,y)关于原点的对称点为(﹣x,﹣y),将点(﹣x,﹣y)代入抛物线,∴抛物线c2的解析式为y=(x+m)2﹣;(2)①对函数,令y=0,解得x=﹣1+m或x=1+m,∵m<0,∴A(﹣1+m,0),B(1+m,0),对函数c2y=(x+m)2﹣,令y=0,解得x=1﹣m或x=﹣1﹣m,∵m<0,∴C(﹣1﹣m,0),D(1﹣m,0),∴AD=2﹣2m,BC=﹣2﹣2m,∵AD=3BC,∴2﹣2m=3(﹣2﹣2m),∴m=﹣2;②存在m,使以点M,A,N,D为顶点的四边形是矩形,理由如下:∵抛物线c1的对称轴为x=m,∴M(m,),∵抛物线c2的对称轴为x=﹣m,∴N(﹣m,﹣),∵M、N关于原点对称,A、D关于原点对称,∴MN为矩形的对角线,∴AM2+AN2=MN2,∴1+3+(2m﹣1)2+3=12+4m2,解得m=﹣1;(3)设G点的横坐标为t,过点G作x轴的平行线交y轴于点I,过点M作x轴的平行线交y轴于点H,过点N作y轴的平行线交GI于点K,∴GI∥MH,∴=,∵GM=pGP,∴==,∴|t|=,∵NK∥y轴,∴=,∵GN=qGQ,∴==,∴|t|=,∴=,∴p﹣q=2.。

北师大版九年级下册数学第二章 二次函数 含答案

北师大版九年级下册数学第二章 二次函数 含答案

北师大版九年级下册数学第二章二次函数含答案一、单选题(共15题,共计45分)1、若抛物线经过点P(1,-3),则此抛物线也经过点()A.PB.PC.P (1,3)D.P2、已知二次函数y=2(x+1)(x-a),其中a>0,若当x≤2时,y随x增大而减小,当x≥2时y随x增大而增大,则a的值是A.3B.5C.7D.不确定3、二次函数图象上部分点的坐标满足下表:x…-3 -2 -1 0 1 …y…-3 -2 -3 -6 -11 …则该函数图象的顶点坐标为()A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)4、如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M 是抛物线y= x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是()A.0或2B.0或1C.1或2D.0,1或25、已知函数(m为常数)的图象上有三点,,,其中,,,则、、的大小关系是()A. B. C. D.6、有一个二次函数y=x2+ax+b,其中a、b为整数.已知此函数在坐标平面上的图形与x轴交于两点,且两交点的距离为4.若此图形的对称轴为x=-5,则此图形通过下列哪一点?()A.(-6,-1)B.(-6,-2)C.(-6,-3)D.(-6,-4)7、将抛物线y = x2向上平移2个单位后得到新的抛物线的表达式为()A. B. C. D.8、如图所示,抛物线的顶点为,与轴的交点在点和之间,以下结论:①;②;③;④.其中正确的是()A.①②B.③④C.②③D.①③9、将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位得抛物线y =﹣(x+2)2+3,则()A. a=﹣1,b=﹣8,c=﹣10B. a=﹣1,b=﹣8,c=﹣16C. a=﹣1,b=0,c=0D. a=﹣1,b=0,c=610、如图,一条抛物线与x轴相交于M、N两点(点M在点N的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(﹣2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1B.﹣3C.﹣5D.﹣711、抛物线(a,b,c为常数,)的对称轴是直线,抛物线与x轴的一个交点在点和点之间,其部分图象如图所示有下列结论:①;②;③;④关于x的方程有两个不相等的实数根.其中,正确结论的个数是()A.1B.2&nbsp;C.3D.412、下表是满足二次函数的五组数据,是方程的一个解,则下列选项中正确的是()x 1.6 1.8 2.0 2.2 2.4 y -0.80 -0.54 -0.20 0.22 0.2A. B. C. D.13、如图,抛物线与轴的一个交点为,与轴的交点在点与点之间(包含端点),顶点的坐标为.则下列结论:①;②;③对于任意实数,总成立;④关于的方程没有实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个14、若函数y=a 是二次函数且图象开口向上,则a=()A.﹣2B.4C.4或﹣2D.4或315、将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A. B. C. D.二、填空题(共10题,共计30分)16、二次函数的图像的顶点坐标是________.17、在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为________.18、把20cm长的铁丝剪成两段后,分别围成正方形,则两个正方形面积之和的最小值是________.19、如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是________.20、已知下列抛物线:①y=x2,②y=-2x2+1,③y= x2+2x-1,则开口最小的抛物线是________(填写序号).21、若将抛物线向左平移3个单位,则所得图象的函数表达式为________.22、二次函数y=2x2+3x﹣9的图象与x轴交点的横坐标是________.23、已知(﹣1,y1),(-2,y2),都在函数y=x2图象上,则y1, y2,的大小关系为________(用“<”连接).24、抛物线y=3(x﹣2)2+5的顶点坐标是________.25、抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为________.三、解答题(共5题,共计25分)26、一个二次函数y=(k﹣1).求k值.27、若抛物线y=x2﹣2x﹣2的顶点为A,与y轴的交点为B,求过A,B两点的直线的函数解析式.28、已知抛物线与x轴交于点(﹣1,0),(2,0),且过点(1,3),求这条抛物线的解析式.29、如图,利用一墙面(墙的长度不超过45m),用80m长的篱笆围成一个矩形场地,当宽AD为多长时,矩形场地的面积最大,最大值为多少?30、已知二次函数.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、D5、A6、C7、A8、B9、D10、C11、B12、C13、B14、B15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

初三数学下册(北师大版)《2. 2 二次函数的图象与性质(1)》【教案匹配版】最新中小学课程

初三数学下册(北师大版)《2. 2 二次函数的图象与性质(1)》【教案匹配版】最新中小学课程
是(
)
A. = 2 和 = − 2 有共同的顶点和对称轴
B. = 2 和 = − 2 开口方向相反
C. = 2 和 = − 2 都是关于轴成轴对称
D. 点A(-3,9)在 = 2 ,也在 = − 2
1.二次函数y=x²的图象顶
(0,0)
点是___________,对称
【复习引入】
你还记得学习过哪些函数吗?
一次函数、反比例函数
怎么研究这些函数?
1.解析式
2.图象
3.性质
4.应用
1.解析式
一次函数:
y=kx+b
(k,b为常数, k≠0)
反比例函数:

y=

(k为常数,k≠0)
画一个函数图象的基本步骤是什么?
描点法:
1.列表
2.描点
3.连线
2.图象
一次函数的图象是一条直线,
反比例函数的图象是双曲线.
y
y
0
一次函数图象
x
0
反比例函数图象
x
二次函数的解析式:
y=ax²+bx+c (a,b,c为常数,a ≠0)
【讲授新课】
想一想,动手画一画:
能否用描点法,画出二次函数y=x²的图象呢?
y=x²的图像
描点法:列表→描点→连线
1.列表:选择适当的x值,并计算相应的y值.

5 25
( , )
2 4
y=x²
顶点:抛物线的对
称轴与抛物线的交
点是抛物线的顶点.
y=x²
归纳:
1.一条抛物线
2.开口向上
3.关于y轴(直线x=0)对称
4.有顶点(0,0),

北师大版九年级下册数学第5讲《二次函数y=ax2(a≠0)的图象与性质》知识点梳理(1)

北师大版九年级下册数学第5讲《二次函数y=ax2(a≠0)的图象与性质》知识点梳理(1)

北师大版九年级下册数学第 5 讲《二次函数y=ax2(a≠0)的图象与性质》知识点梳理【学习目标】1.经历探索二次函数y=ax2 和y=ax2+c 的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.2.会作出y=ax2 和y=ax2+c 的图象,并能比较它们与y=x2 的异同,理解a 与c 对二次函数图象的影响.3.能说出y=ax2+c 与y=ax2 图象的开口方向、对称轴和顶点坐标.4.体会二次函数是某些实际问题的数学模型.【要点梳理】要点一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=a x2(a≠0)的图象二次函数y=ax2的图象(如图),是一条关于y 轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y 轴,它的顶点是坐标原点.当a>0 时,抛物线的开口向上,顶点是它的最低点;当a<0 时,抛物线的开口向下,顶点是它的最高点.2.二次函数y=a x2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x 的值,求出相应的y 值,填入表中.(自变量x 的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x 和y 的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来.要点诠释:(1)用描点法画二次函数y=ax2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值.(2)二次函数y=ax2(a≠0)的图象,是轴对称图形,对称轴是y 轴.y=ax2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.3.二次函数y=a x2(a≠0)的图象的性质二次函数y=ax2(a≠0)的图象的性质,见下表:要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a│相同,抛物线的开口大小、形状相同.│a│越大,开口越小,图象两边越靠近y 轴,│a│越小,开口越大,图象两边越靠近x 轴.要点二、二次函数y=a x2+c(a≠0)的图象与性质1.二次函数y=a x2+c(a≠0)的图象(1)a 0yy = ax 2+ c (c > 0)c Oxyy = ax 2 + c (c < 0) Oc x(2) a < 0yc OxyOcx2.二次函数 y =a x 2+c (a ≠0)的图象的性质y = ax 2 + c (c > 0)y = ax 2 + c (关c < 0于) 二 次 函 数y = ax 2 + c (a ≠ 0) 的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:函数y= ax 2 + c (a > 0, c > 0)y = ax 2 + c (a < 0, c > 0)图象开口方向 向上 向下 顶点坐标 (0,c) (0,c) 对称轴y 轴y 轴函数变化当 x > 0 时,y 随 x 的增大而增大; 当 x < 0 时,y 随 x 的增大而减小.当 x > 0 时,y 随 x 的增大而减小; 当 x < 0 时,y 随 x 的增大而增大.最大(小)当x = 0 时,y最小值=c当x = 0 时,y最大值=c 值【典型例题】类型一、二次函数y=ax2(a≠0)的图象与性质1.(2014 秋•青海校级月考)二次函数y=ax2与直线y=2x﹣1 的图象交于点P(1,m)(1)求a,m 的值;(2)写出二次函数的表达式,并指出x取何值时该表达式y随x的增大而增大?(3)写出该抛物线的顶点坐标和对称轴.【思路点拨】(1)把点P(1,m)分别代入二次函数y=ax2与直线y=2x﹣1 即可求出未知数的值;(2)把a 代入二次函数y=ax2与即可求出二次函数表达式;根据二次函数的对称轴及增减性判断出x 的取值.(3)根据二次函数的性质直接写出即可.【答案与解析】解:(1)点P(1,m)在y=2x﹣1 的图象上∴m=2×1﹣1=1 代入y=ax2∴a=1(2)二次函数表达式:y=x2因为函数y=x2的开口向上,对称轴为y 轴,当x>0 时,y 随x 的增大而增大;(3)y=x2的顶点坐标为(0,0),对称轴为y 轴.【总结升华】本题考查了用待定系数法求函数解析式的方法,及二次函数的增减性.举一反三:【变式1】二次函数y =ax2与y =-2x2的形状相同,开口大小一样,开口方向相反,则a=.【答案】2.【变式2】(2015•山西模拟)抛物线y=﹣x2不具有的性质是().A.开口向上B. 对称轴是y 轴C. 在对称轴的左侧,y 随x 的增大而增大D. 最高点是原点【答案】A.2.已知y=(m+1)x m2+m 是二次函数且其图象开口向上,求m 的值和函数解析式.【思路点拨】根据二次函数的定义以及函数y=ax2(a≠0)的图象性质来解答.【答案与解析】⎩⎧m 2 + m = 2由题意, ⎨m +1>0 ,解得 m=1,∴二次函数的解析式为:y= 2x 2 .【总结升华】本题中二次函数还应该有 m+1≠0 的限制条件,但当 m +1>0 时,一定存在 m+1≠0,所以就不再考虑了.类型二、二次函数 y =a x 2+c (a ≠0)的图象与性质3. 求下列抛物线的解析式:(1) 与抛物线 y = - 1 x 2+ 3 形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线; 2(2) 顶点为(0,1),经过点(3,-2)并且关于 y 轴对称的抛物线.【思路点拨】抛物线形状相同则| a | 相同,再由开口方向可确定 a 的符号,由顶点坐标可确定 c 的值,从而确定抛物线的解析式 y = ax 2 + c .【答案与解析】(1) 由于待求抛物线 y = -1x 2 + 3 21形状相同,开口方向相反,可知二次项系数为 , 2又顶点坐标是(0,-5),故常数项 k = -5 ,所以所求抛物线为 y = 1x 2 - 5 .2(2) 因为抛物线的顶点为(0,1),所以其解析式可设为 y = ax 2 +1 ,又∵该抛物线过点(3,-2),∴ 9a +1 = -2 ,解得 a = - 1.3∴所求抛物线为 y = - 1x 2 +1.3【总结升华】本题考察函数 y = ax 2 + c (a ≠ 0) 的基本性质,并考察待定系数法求简单函数的解析式.4. 在同一直角坐标系中,画出 y = -x 2 和 y = -x 2 +1的图象,并根据图象回答下列问题.(1)抛物线y =-x2+1向平移个单位得到抛物线y =-x2;(2)抛物线y =-x2+1开口方向是,对称轴为,顶点坐标为;(3)抛物线y =-x2+1,当x时,随x 的增大而减小;当x时,函数y 有最值,其最值是.【思路点拨】利用描点法画出函数图象,根据图象进行解答.【答案与解析】函数y =-x2与y =-x2+1的图象如图所示:(1)下;l ;(2)向下;y 轴;(0,1);(3)>0;=0;大;大; 1.【总结升华】本例题把函数y =-x2+1与函数y =-x2的图象放在同一直角坐标系中进行对比,易得出二次函数y =ax2+c(a ≠ 0) 与y =ax2 (a ≠ 0) 的图象形状相同,只是位置上下平移的结论.y =ax2+c(a ≠ 0) 可以看作是把y =ax2 (a ≠ 0) 的图象向上(k > 0) 或向下(k < 0) 平移| k | 个单位得到的.举一反三:【变式】函数y = 3x2可以由y = 3x2-1 怎样平移得到?【答案】向上平移1 个单位.。

北师大版九年级数学下册2.2 二次函数的图像与性质课件

北师大版九年级数学下册2.2 二次函数的图像与性质课件
增大。
y ax2 当a<0时,在对称轴的 右侧,y随着x的增大而 减小。
二次函数y=ax2的性质
y=ax2
a>0
a<0图象开口 对性顶点 增减性O O
开口向上
开口向下
a的绝对值越大,开口越小 关于y轴对称
-5
-6
-7
-8 -9
y=-21 x2
-10 y=-2x2
函数y=- 1 x2,y=-2x2的图像与y=-x2的
2
图像相比,有什么共同点和不同点?
共同点: 开口向下,顶点是原点,对称轴是y轴, 顶点是抛物线的最高点
除顶点外,图像都在x轴下方
不同点: 开口大小不同
y 1
性质:当a<0时,图象
开口向下,顶点是抛物
4.5 2 0.5
y 10
9 8 7 6 5 4
3 2 1
0 0.5
1 1.5
2 4.5
2…
8…
-5 -4 -3 -2 -1 o 1 2 3 4 5 x
函数y=
1 2
x2,y=2x2的图像与函数y=x2的
图像相比,有什么共同点和不同点?
共同点: 开口向上,顶点是原点,顶点是抛物线 的最低点,对称轴是y轴, 除顶点外,图像都在x轴上方 y= 2x2 y=x2
y
y=x2
o
x
y
o
x
y=-x2
从图象可以看出,二次函数 y=x2和y=-x2的图象都是轴对 称图形,y轴是它们的对称轴.
抛物线与对称轴的交点叫做抛物线的顶点.
抛物线y=x2的顶点(0,0)是它的最低点.
抛物线y=-x2的顶点(0,0)是它的最高点.
实际上,每条抛物线都有对称轴, 抛物线与对称轴的交点叫做抛物线 的顶点;顶点是抛物线的最低点或 最高点

2 2 4 二次函数y=ax2+bx+c的图象与性质 北师大版九年级数学下册课时作业(含答案)

2 2 4 二次函数y=ax2+bx+c的图象与性质 北师大版九年级数学下册课时作业(含答案)

2.2 二次函数的图象与性质第4课时二次函数y=ax2+bx+c的图象与性质一、选择题1.用配方法将二次函数y=x2-8x-9化为y=a(x-h)2+k的形式为()A.y=(x-4)2+7B.y=(x-4)2-25C.y=(x+4)2+7D.y=(x+4)2-252.抛物线y=-3x2+6x+2的对称轴是()A.直线x=2B.直线x=-2C.直线x=1D.直线x=-13.关于二次函数y=2x2+4x-1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为-34.如果二次函数y=ax2+bx+c的图象全部在x轴的下方,那么下列判断正确的是()A.a<0,b<0B.a>0,b<0C.a<0,c>0D.a<0,c<05.若点(-1,y1),(1,y2),(4,y3)都在抛物线y=-x2+4x+m上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y26.已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n的值为()A.-2B.-4C.2D.47.一次函数y=ax+b和反比例函数y=c在同一平面直角坐标系中的图象如图1所示,则二次函x数y=ax2+bx+c的图象大致为()图1图28.二次函数y=ax2+bx+c的图象如图3所示,有如下结论:①abc>0;①2a+b=0;①3b-2c<0;①am2+bm≥a+b(m为实数).其中正确结论的个数是()图3A.1B.2C.3D.4二、填空题9.当二次函数y=x2+4x+9取最小值时,x的值为.10.某市政府大楼前的广场上有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.若以水平地面为x轴,建立如图4所示的平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x的一部分,则水喷出的最大高度是米.图411.将抛物线y=x2-2x向下平移3个单位长度,再向右平移4个单位长度得到的抛物线的表达式是.12.如图5,在平面直角坐标系xOy中,A,B为x轴上的点,C,D为抛物线y=-x2+2x+3上的两点(点C在点D的右侧),且四边形ABCD是正方形,则正方形ABCD的面积是.图5三、解答题13.已知二次函数y=-2x2+4x+6.(1)求出该函数图象的顶点坐标、对称轴及图象与x轴、y轴的交点坐标,并在如图6所示的网格中画出这个函数的大致图象.(2)利用函数图象回答:①当x在什么范围内时,y随x的增大而增大?当x在什么范围内时,y随x的增大而减小?①当x在什么范围内时,y>0?图614.已知抛物线y=x(x-2)+2.(1)用配方法把这个抛物线的表达式化成y=a(x-h)2+k的形式,并写出它的顶点坐标;(2)将抛物线y=x(x-2)+2上下平移,使顶点移到x轴上,求新抛物线的表达式.15.如图7,一位篮球运动员在离篮圈水平距离4 m处跳起投篮,球运行的高度y(m)与运行的水平距离x(m)满足关系式y=ax2+x+2.25.球在空中达到最大高度后,准确落入篮圈内.已知篮圈中心离地面的距离为3.05 m.(1)当球运行的水平距离为多少时达到最大高度?最大高度为多少?(2)若该运动员身高1.8 m,这次跳投时,球在他头顶上方0.25 m处出手,则球出手时,他跳离地面多高?图7参考答案1.B2.C3.D4.D5.D6.B7.C8.D9.-2.10.411.y=x2-10x+2112.24-8√513.解:(1)①a=-2,b=4,c=6,①-b2a =-42×(-2)=1,4ac-b2 4a =4×(-2)×6−164×(−2)=8,①该函数图象的顶点坐标为(1,8),对称轴为直线x=1.当y=0时,-2x2+4x+6=0,解得x1=3,x2=-1;当x=0时,y=6,①函数图象与x轴的交点坐标为(-1,0),(3,0),与y轴的交点坐标为(0,6).画图略.(2)①当x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小.①当-1<x<3时,y>0.14.解:(1)y=x(x-2)+2=x2-2x+2=(x-1)2+1,则它的顶点坐标为(1,1).(2)由(1)知抛物线y=x(x-2)+2的顶点坐标为(1,1),将抛物线向下平移1个单位长度,所得抛物线的顶点坐标为(1,0),在x轴上,此时新抛物线的表达式为y=(x-1)2.15.解:(1)依题意,知抛物线y=ax2+x+2.25经过点(4,3.05),①16a+4+2.25=3.05,解得a=-0.2.①y=-0.2x2+x+2.25=-0.2(x-2.5)2+3.5.①当球运行的水平距离为2.5 m时达到最大高度,最大高度为3.5 m.(2)①当x=0时,y=2.25,①2.25-0.25-1.8=0.2(m),即球出手时,他跳离地面0.2 m.。

(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》检测题(包含答案解析)

(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》检测题(包含答案解析)

一、选择题1.已知二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则m 的取值范围是( )A .18m >B .18mC .18m >-且0m ≠ D .18m 且0m ≠ 2.在同一坐标系中,函数y ax b =+与2(0)y ax bx a =+≠的图象可能是( ) A . B . C . D . 3.对称轴为y 轴的二次函数是( )A .y=(x+1)2B .y=2(x-1)2C .y=2x 2+1D .y=-(x-1)2 4.已知二次函数()222y mx m x =+-,它的图象可能是( )A .B .C .D .5.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<;②13a c =-;③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有 A .1个B .2个C .3个D .4个 6.抛物线221y x =--的顶点坐标是( )A .(2,1)--B .(2,1)C .(0,1)-D .(0,1)7.二次函数223y x =-+在14x -≤≤内的最小值是( )A .3B .2C .-29D .-308.汽车刹车后行驶的距离s (单位:m )关于行驶的时间t (单位:s )的函数解析式是2156s t t =-.汽车刹车后到停下来前进了多远?( )A .10.35mB .8.375mC .8.725mD .9.375m 9.已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列结论:①abc >0;②a ﹣b +c >0;③4a ﹣2b +c <0,其中结论正确的个数为( )A .0个B .1个C .2个D .3个10.已知二次函数223y x x =--+,下列叙述中正确的是( )A .图象的开口向上B .图象的对称轴为直线1x =C .函数有最小值D .当1x >-时,函数值y 随自变量x 的增大而减小11.二次函数2y ax bx c =++的图像如图,现有以下结论:①0abc >;②42a c b +<;③320b c +<;④()(1)m am b b a m ++<≠-,其中正确结论序号为( )A .①③④B .②③④C .①②③D .①②③④ 12.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤二、填空题13.如图,直线334y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线233384y x x =-++经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为_____.14.如图,二次函数2y x mx =-+的图象与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在14x <<的范围内有解,则t 的取值范围是_______.15.二次函数2y ax bx c =++的图象如图所示,有如下结论:①0abc >;②20a b -=;③320b c +>;④2(am bm a b m +≤-为实数).其中正确结论是_____________(只填序号).16.如图1,AO ,BC 是两根垂直于地面的立柱,且长度相等.在两根立柱之间悬挂着一根绳子,如图2建立坐标系,绳子形如抛物线21410y x x =-+的图象.因实际需要,在OA 与BC 间用一根高为2.5m 的立柱MN 将绳子撑起,若立柱MN 到OA 的水平距离为3m ,MN 左侧抛物线的最低点D 与MN 的水平距离为1m ,则点D 到地面的距离为______.17.已知抛物线2(0)y ax bx c a =++>经过(2,0)A ,(4,0)B 两点.若()15,P y ,()2,Q m y 是抛物线上的两点,且12y y >,则m 的取值范围是______.18.写出一个二次函数,使其满足:①图象开口向下;②当0x >时,y 随着x 的增大而减小.这个二次函数的解析式可以是______.19.若函数2(1)42y a x x a =+-+的图像与x 轴有且只有一个交点,则a 的值为____. 20.把函数y =x 2+3的图像向下平移1个单位长度得到的图像对应的函数关系式为________.三、解答题21.某产品的成本是120元/件,在试销阶段,当产品的售价为x (元/件)时,日销售量为(200-x )件.(1)写出用售价x (元/件)表示每日的销售利润y (元)的表达式(2)当日销售利润是1500元时,产品的售价是多少?日销售量是多少件?(3)当售价定位多少时,日销售利润最大?最大日销售利润是多少元?22.已知地物线2y x bx c =-++()0a ≠与y 轴交于点A ,点()3,2B 在该抛物线上 (1)若抛物线的对称轴是直线x m =,请用含b 的式子表示m ;(2)如图1,过点B 作x 轴的垂线段,垂足为点C .连结AB 和AC ,当ABC 为等边三角形时,求抛物线解析式;(3)如图2,在(2)条件下,已知P 为x 轴上的一动点,连结AP 和BP ,当30APB ∠=︒时,求满足条件的点P 的坐标.23.抛物线y =2x 2+4mx +m -5的对称轴为直线x =1,求m 的值及抛物线的顶点坐标. 24.已知抛物线的顶点坐标是()1,4-,且过点(0,3).()1求这个抛物线对应的函数表达式.()2在所给坐标系中画出该函数的图象.()3当x 取什么值时,函数值小于0?25.已知抛物线2y ax c =+经过点()0,2A 和点()1,0B -.(1)求抛物线的解析式;(2)将(1)中的抛物线平移,使其顶点坐标为()2,1,平移后的抛物线与x 轴的两个交点分别为点,C D (点C 在点D 的左边).求点,C D 的坐标;(3)将(1)中的抛物线平移,设其顶点的纵坐标为m ,平移后的抛物线与x 轴两个交点之间的距离为n .若15m <≤,直接写出n 的取值范围.26.如图,已知某二次函数的顶点坐标是(1,4)-,且经过点(4,5)A(1)求该二次函数的表达式;(2)点(,)P m n 是该二次函数图象上一点,若点P 到y 轴的距离不大于4,请根据图象直接写出n 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,可得△=221410m m m -⨯->(+)()且0m ≠求解后即可得出结论.【详解】解:∵原函数是二次函数,∴0m ≠,∵二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则△=240b ac ->,即221410m m m -⨯->(+)(), 解得18m >-. ∴m 的取值范围是18m >-且0m ≠. 故选:C .【点睛】本题考查了抛物线与x 轴的交点问题,掌握抛物线与x 轴的交点问题与一元二次方程根之间的关系是解题的关键.2.A解析:A【分析】根据二次函数的c 值为0,确定二次函数图象经过坐标原点,再根据a 值确定出二次函数的开口方向与一次函数所经过的象限即可得解.【详解】解:2(0)y ax bx a =+≠,0c ,∴二次函数经过坐标原点,故B 、C 选项错误; A 、根据二次函数开口向上0a >,对称轴b x 02a =->, 所以,0b <,一次函数经过第一三象限,0a >,与y 轴负半轴相交,所以,0b <,符合,故本选项正确;D 、二次函数图象开口向下,0a <,一次函数经过第一三象限,0a >,矛盾,故本选项错误.故选:A .【点睛】本题考查了二次函数的图象,一次函数的图象,熟练掌握函数解析式的系数与图象的关系是解题的关键.3.C解析:C【分析】由已知可知对称轴为x =0,从而确定函数解析式y =ax 2+bx +c 中,b =0,由选项入手即可.【详解】解:二次函数的对称轴为y 轴,则函数对称轴为x =0,即函数解析式y =ax 2+bx +c 中,b =0,故选:C .【点睛】本题考查二次函数的性质;熟练掌握二次函数的图象及性质是解题的关键.4.B解析:B【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-, ∴抛物线一定经过原点,∴选项A 排除;∵()222y mx m x =+- , ∴对称轴为直线x=22224m m m m ---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m -<0, ∴对称轴在直线x=14的左边, B 选项的图像符合;C 选项的图像不符合; 当m <0时,抛物线开口向下,24m ->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合;故选B.【点睛】 本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.5.D解析:D【分析】先根据图象与x 轴的交点A ,B 的横坐标分别为﹣1,3确定出AB 的长及对称轴,再由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①由抛物线的开口方向向上可推出a >0,∵图像与x 轴的交点A 、B 的横坐标分别为-1,3,∴对称轴x =1,∴当x =1时,y <0,∴a +b +c <0;故①正确;②∵点A 的坐标为(﹣1,0),∴a ﹣b +c =0,又∵b =﹣2a ,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴13a c =-∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E , ,要使△ABD 是等腰直角三角形,则AD =BD ,∠ADB =90°,∵DE ⊥x 轴,∴点E 是AB 的中点,∴DE =BE ,即|244ac b a -|()312--==2,又∵b =﹣2a ,c =﹣3a ,∴|()()24324a a a a⨯---|=2,a >0, 解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形, 结论③正确 ④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC ,Ⅰ、当AB =BC =4时,在Rt △OBC 中,∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7,即c 2=7,∵抛物线与y 轴负半轴交于点C ,∴c <0,c 7=-,∴a 73c =-=.Ⅱ、当AB =AC =4时,在Rt △OAC 中,∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15,即c 2=15,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 3c =-= Ⅲ、当AC =BC 时,∵OC ⊥AB ,∴点O 是AB 的中点,∴AO =BO ,这与AO =1,BO =3矛盾,∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确.故答案选:D【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2b a=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.6.C解析:C【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.【详解】解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1),故选:C .【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答. 7.C解析:C【分析】根据图象,直接代入计算即可解答 【详解】解:由图可知,当x=4时,函数取得最小值y 最小值=-2×16+3=-29.故选:C . 【点睛】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.8.D解析:D 【分析】求出函数的最大值即可得求解. 【详解】∵22575156648s t t t ⎛⎫--- ⎪⎝⎭==+, ∴当54t =时,s 取得最大值759.3758=,即汽车刹车后到停下来前进的距离是9.375m 故选D . 【点睛】本题主要考查二次函数的应用,根据题意理解其最大值的实际意义是解题的关键.9.D解析:D 【分析】由抛物线开口向下,得到a <0,再由对称轴在y 轴左侧,得到a 与b 同号,可得出b <0,又抛物线与y 轴交于正半轴,得到c >0,可得出abc >0,得到①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,得到②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,得到③正确,从而得出结论. 【详解】解:∵抛物线的开口向下,∴a <0.∵02ba -<, ∴b <0.∵抛物线与y 轴交于正半轴, ∴c >0,∴abc >0,故①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,故②正确; 根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,故③正确. 则其中正确的有3个,为①②③. 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,对于二次函数y =ax 2+bx +c (a ≠0)来说,a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;此外还要注意利用抛物线的对称性及x =﹣1,﹣2时对应函数值的正负.10.D解析:D 【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论. 【详解】解:A. 2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,故选项A 错误; B.2223=(1)4y x x x =--+-++∴图象的对称轴为直线1x =-,故选项B 错误; C.2223=(1)4y x x x =--+-++ ∵a=-1<0,∴图象的开口向下,函数有最大值,故选项C 错误; D. 2223=(1)4y x x x =--+-++∴当1x >-时,函数值y 随自变量x 的增大而减小,故选项D 正确; 故选:D . 【点睛】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.11.A解析:A 【分析】由函数图像与对称轴的方程结合可判断①,由抛物线的对称性结合点()2,42a b c --+的位置可判断②,由抛物线的图像结合点()1,a b c ++的位置,对称轴方程,可判断③,由函数的最大值可判断④,从而可得答案. 【详解】 解:图像开口向下, a ∴<0,12bx a=-=-<0, b ∴<0,函数图像与y 轴交于正半轴,c ∴>0,abc ∴>0,故①符合题意; 抛物线与x 轴的一个交点在0~1之间,由抛物线的对称性可得:抛物线与x 轴的另一个交点在3~2--之间,∴ 当2x =-时,42y a b c =-+>0,4a c ∴+>2,b 故②不符合题意;12bx a=-=-, 2,b a ∴= 即1,2a b =当1x =时,y a b c =++<0, 12b bc ∴++<0, 32b c ∴+<0,故③符合题意; 当1x =-时,函数有最大值,y a b c =-+当1x m =≠-,2,y am bm c =++2am bm c ∴++<,a b c -+()m am b b ∴++<,a 故④符合题意.故选:.A 【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.12.D解析:D 【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案. 【详解】解:由图象开口向上,可知a<0, 与y 轴的交点在x 轴的下方,可知c<0,又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误;∵122b a -= ∴=-a b ,∴0a b +=,故B 错误;当12x =时,则11042y a b c =++>,∵=-a b ,∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误; 当21x n =+时,222(1)(1)y a n b n c =++++ 4222an an a an a c =++--+ 42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥, ∴22(1)an n c c ++≤, 即y c ≤,故D 正确; 故选:D . 【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】设出E 的坐标表示出M 坐标进而表示出EM 化成顶点式即可求得EM 的最大值【详解】解:∵点E 是直线BC 上方抛物线上的一动点∴点E 的坐标是(m )点M 的坐标是(m )∴EM =﹣()==(m2﹣4m )=(解析:32【分析】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【详解】解:∵点E 是直线BC 上方抛物线上的一动点, ∴点E 的坐标是(m ,233384m m -++),点M 的坐标是(m ,334m -+), ∴EM =233384m m -++﹣(334m -+)=23382m m -+=38-(m 2﹣4m )=38-(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32, 故答案为32. 【点睛】本题考查了二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.14.【分析】求出函数解析式求出函数值取值范围把t 的取值范围转化为函数值的取值范围【详解】先由已知可得二次函数y=−x2+mx 的图象与x 轴交于坐标原点和(40)所以对称轴x==所以m=4代入方程y=−x2 解析:04t <≤【分析】求出函数解析式,求出函数值取值范围,把t 的取值范围转化为函数值的取值范围. 【详解】先由已知可得,二次函数 y=−x 2+mx 的图象与 x 轴交于坐标原点和 (4,0) 所以对称轴 x=2b a-=()221m -=⨯-, 所以m=4,代入 方程y=−x 2+mx 得, y=-x 2+4x , 当x=2时,y=4 即顶点坐标是(2,4) 当x=1时,y=3, 当x=4时,y=0 由x 2−mx+t=0 得 t=-x 2+4x=y因为当 1<x<4 时, 0<y≤4,所以在 1<x<4 范围内有实数解,则 t 的取值范围是0<t≤4, 故答案为:0<t≤4 . 【点睛】本题考查了二次函数和一元二次方程数形结合分析问题,注意函数的最低点和最高点.15.①②④【分析】根据抛物线开口向下对称轴抛物线与轴相交于正半轴可得可以判断①和②正确;当时有解得由图像可知化简后可判断得③错误;由图像可知当时抛物线有最大值当时根据得到化简后得故④正确【详解】解:抛物解析:①②④. 【分析】根据抛物线开口向下,对称轴12bx a=-=-,抛物线与y 轴相交于正半轴,可得0a <,20b a =<,0c >,可以判断①和②正确;当0y =时,有210a x c a ,解得11a cx a ,21a cx a,由图像可知,011a c a,化简后可判断得③错误;由图像可知,当1x =-时,抛物线有最大值1y a bc ,当x m =时,22y am bmc ,根据12y y ≥得到20a bcam bmc化简后得2am bm a b +≤-,故④正确.【详解】 解:抛物线开口向下,0a ∴<,抛物线的对称轴12bx a=-=-, 20b a ∴=<,抛物线与y 轴相交于正半轴,0c ∴>,∴0abc >,故①正确;∴2220a b a a -=-=,故②正确;当0y =时,2220ax bx c ax ax c ,∴210a x c a∴11a cx a, 21a cx a由图像可知,011a c a∴14a c a则有30a c +<,∴62320a c b c +=+<,故③错误; 由图像可知,当1x =-时,抛物线有最大值1y a bc ,当x m =时,22y am bmc ,∵12y y ≥ ∴20a bcam bmc则2am bm a b +≤-,故④正确; 故答案是:①②④. 【点睛】本题考查了二次函数的图象与系数的关系,熟悉相关性质是解题的关键.16.2m 【分析】根据起始抛物线确定点A 的坐标结合已知确定N 的坐标从而确定新抛物线的解析式即可求解【详解】∵抛物线解析式为∴点A 的坐标为(04)∵立柱到的水平距离为左侧抛物线的最低点与的水平距离为∴新抛物解析:2m . 【分析】根据起始抛物线,确定点A 的坐标,结合已知确定N 的坐标,从而确定新抛物线的解析式即可求解. 【详解】∵抛物线解析式为21410y x x =-+, ∴点A 的坐标为(0,4),∵立柱MN 到OA 的水平距离为3m ,MN 左侧抛物线的最低点D 与MN 的水平距离为1m ,∴新抛物线的顶点坐标的横坐标为2,点N 的坐标为(3,52), 设抛物线的解析式为y=a 2(2)x k -+,把(0,4),(3,52)分别代入解析式,得 5a 244k a k ⎧+=⎪⎨⎪+=⎩, 解得1a 22k ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为y=21(2)22x -+, ∴抛物线的最小值为2即点D 到地面的距离为2, 故答案为:2. 【点睛】本题考查了二次函数的生活应用,解析式的确定,熟练把生活问题转化为函数问题,灵活确定抛物线的解析式是解题的关键.17.【分析】根据图像经过的两点确定抛物线的对称轴利用对称轴确定P 的对称点利用数形结合思想确定m 的范围即可【详解】∵抛物线经过两点∴解得b=-6a ∴抛物线的对称轴为直线x==3∴的对称点为∵∴故填【点睛】解析:15m <<. 【分析】根据图像经过的两点,确定抛物线的对称轴,利用对称轴,确定P 的对称点,利用数形结合思想,确定m 的范围即可. 【详解】∵抛物线2(0)y ax bx c a =++>经过(2,0)A ,(4,0)B 两点,∴4201640a b c a b c ++=⎧⎨++=⎩, 解得b=-6a ,∴抛物线的对称轴为直线x=2ba-=3, ∴()15,P y 的对称点为()11,P y ', ∵12y y >, ∴15m <<, 故填15m <<. 【点睛】本题考查了二次函数的对称性,熟记二次函数的性质是解题的关键.18.y=-x2-2x-1【分析】首先由①得到a <0;由②得到-≤0;只要举出满足以上两个条件的abc 的值即可得出所填答案【详解】解:二次函数y=ax2+bx+c①开口向下∴a <0;②当x >0时y 随着x 的解析:y=-x 2-2x-1. 【分析】首先由①得到a <0;由②得到-2ba≤0;只要举出满足以上两个条件的a 、b 、c 的值即可得出所填答案. 【详解】解:二次函数y=ax 2+bx+c , ①开口向下, ∴a <0;②当x >0时,y 随着x 的增大而减小,-2ba≤0,即b <0; ∴只要满足以上两个条件就行,如a=-1,b=-2,c=-1时,二次函数的解析式是y=-x 2-2x-1.故答案为:y=-x2-2x-1.【点睛】本题主要考查了二次函数的性质,熟练运用性质进行计算是解此题的关键.此题是一道开放型的题目.19.或或【分析】分该函数是一次函数和二次函数两种情况求解若为二次函数由抛物线与x轴只有一个交点时b2−4ac=0据此求解可得【详解】解:当a+1=0即a=−1时函数解析式为y=−4x−2与x轴只有一个交-或1解析:2-或1【分析】分该函数是一次函数和二次函数两种情况求解,若为二次函数,由抛物线与x轴只有一个交点时b2−4ac=0,据此求解可得.【详解】解:当a+1=0,即a=−1时,函数解析式为y=−4x−2,与x轴只有一个交点;当a+1≠0,即a≠−1时,根据题意知,(−4)2−4×(a+1)×2a=0,整理,得:a2+a−2=0,解得:a=1或a=−2;综上,a的值为−1或−2或1.-或1.故答案为:2-或1【点睛】本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2−4ac决定抛物线与x轴的交点个数:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.20.y=x2+2【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标再利用顶点式写出解析式即可【详解】解:函数y=x2+3的顶点坐标为(03)∵函数图象向下平移1个单位长度∴得到的函数图象顶点坐标为(0解析:y=x2+2.【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标,再利用顶点式写出解析式即可.【详解】解:函数y=x2+3的顶点坐标为(0,3),∵函数图象向下平移1个单位长度,∴得到的函数图象顶点坐标为(0,2),∴得到函数解析式为y=x2+2.故答案为:y=x2+2.【点睛】本题考查了二次函数的平移变换,通过平移求出新图象顶点坐标是关键.三、解答题21.(1)y=-x 2+320x-24000 ;(2)当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件;(3)当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元. 【分析】(1)根据利润=(销售价-成本价)×销售量可以得到解答;(2)令(1)中y=1500可以得到关于x 的一元二次方程,解方程即可得到产品售价x 的值,并进一步得到日销售量;(3)把(1)得到的函数配方,再根据二次函数的性质即可得到解答 . 【详解】解:(1)y =(x -120)(200-x )=-x 2+320x-24000 ; (2)日销售利润是1500元,即y=1500,则 1500=-x 2+320x-24000 解得:x 1=170,x 2=150当x=170时,日销售量是30件,当x=150时,日销售量是50件∴当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件 .(3)∵y=-x 2+320x-24000 =-(x-160)2+1600∴当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元. 【点睛】本题考查二次函数的综合应用,由题意列出二次函数关系式,然后根据二次函数的性质求解即可.22.(1)2b m =;(2)21y x =-+;(3))12,0P ,)22,0P【分析】(1)直接根据对称轴为2bx a=-代入a ,b 计算即可得出答案; (2)首先根据点B 的坐标及等边三角形求出AC ,OC 的长度,然后利用勾股定理求出AO 的长度,从而得出c 的值,最后将点B 代入解析式中即可求解;(3)根据等边三角形的性质及圆周角定理确定出点P 的位置从而可确定出点P 的坐标. 【详解】 (1)∵22b b x a =-=, ∴2b m =.(2)∵ABC 为等边三角形,BC x ⊥轴,)B ,∴2AC BC ==,3OC =, 在Rt AOC 中, 221AO AC OC =-=∴1c =把()3,2B 代入21y x bx =-++,得43b =, ∴2431y x x =-++. (3)如图,由(2)知ABC 为等边三角形,∴60ACB ∠=︒,∵30APB ∠=︒,∴2ACB APB =∠∠,由同弦所对圆周角等于圆心角的一半可知,以点C 为圆心,BC 为半径作圆,经过点P . ∵P 在x 轴上,∴点P 即为圆C 与x 轴的交点,∵2BC =,∴2r,2CP = ∵()3,0C, ∴()132,0P -, 由轴对称性可知,()232,0P +.【点睛】本题主要考查二次函数与几何综合,掌握待定系数法,等边三角形的性质及圆的有关性质是解题的关键.23.m 的值是-1,抛物线的顶点坐标是(1,-8).【分析】根据y=2x 2+4mx+m-5的对称轴为直线x=1,可以求得m 的值,然后代入原来的解析中,将解析式化为顶点式即可解答本题.【详解】解:∵y =2x 2+4mx +m -5的对称轴为直线x =1,∴-422m ⨯=1, 解得m =-1, ∴y =2x 2-4x -6=2(x -1)2-8,∴此抛物线的顶点坐标为(1,-8),∴m 的值是-1,抛物线的顶点坐标是(1,-8).【点睛】本题考查二次函数的性质,解答本题的关键是知道抛物线的对称轴是直线x=-2b a,由二次函数的顶点式可以写出它的顶点坐标.24.()()2114y x =-++或223y x x =--+;()2见解析;()33x <-或1x > 【分析】(1)由抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,由抛物线()214y a x =++过点(0,3),1a =-即可;(2)列表,描点在平面直角坐标系中描出点(-3,0),(-2,3),(-1,4),(0,3),(1,0)用平滑曲线连接即可;(3)由函数值小于0,可得函数图像再x 轴下方,在-3左侧和1右侧即可.【详解】解:(1)∵抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,抛物线()214y a x =++过点(0,3), 4=3a +,1a =-,抛物线的解析式为()214y x =-++;(2)列表:0)连线:用平滑曲线连接,(3)∵函数值小于0,∴函数图像再x 轴下方,在-3左侧和1右侧,当x<-3或x>1时,函数值小于0.【点睛】本题考查抛物线的解析式,画函数图像,函数图像的位置关系,掌握抛物线的解析式的求法,描点画函数图像的方法,函数图像与x 轴关系自变量范围是解题关键.25.(1)222y x =-+;(2)222,0,222C D ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(3210n <≤【分析】(1)把点A 、B 的坐标分别代入函数解析式,列出关于a 、c 的方程组,通过解方程求得它们的值;(2)根据平移的规律写出平移后抛物线的解析式,然后令0y =,则解关于x 的方程,即可求得点C 、D 的横坐标;(3)根据抛物线与x 轴两个交点之间的距离为2211212||()4x x x x x x -+-的关系来即可求n 的取值范围;【详解】解:(1)抛物线2y ax c =+经过点(0,2)A 和点(1,0)B -, ∴20c a c =⎧⎨+=⎩, 解得:22a c =-⎧⎨=⎩, ∴此抛物线的解析式为222y x =-+;(2)此抛物线平移后顶点坐标为(2,1),∴抛物线的解析式为22(2)1y x =--+,令0y =,即22(2)10x --+=,解得 1222x =+,2222x =-,点C 在点D 的左边,(C ∴ 2-0),(2D +,0); (3)设平移后抛物线的解析式是22y x m =-+,该抛物线与x 轴的两交点横坐标为1x ,2x ,整理为:220x m -=.此时120x x +=,122m x x =-.则21||x x n -==.当1m =时,n =当5m =时,n =.所以,n n <≤【点睛】本题考查了待定系数法求二次函数解析式,二次函数图象的几何变换.要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.26.(1)223y x x =--;(2)421n -.【分析】(1)设二次函数的解析式是y=a (x-h )2+k ,先代入顶点A 的坐标,再把B 的坐标代入,即可求出a ,即可得出解析式;(2)由点P 到y 轴的距离不大于4,得出 ,结合二次函数的图象可知,请根据图象直接写出n 的取值范围.【详解】解:(1)某二次函数的顶点坐标是(1,4)-,且经过点(4,5)A ,设二次函数的解析式为2(1)4y a x =--,把(4,5)A 代入得:25(41)4a =--解得:1a =,所以函数表达式为:223y x x =--.(2)点P 到y 轴的距离为||m ,∴||m ≤4,∴44m -,∵2223(1)4y x x x =--=--,在44m -时,当m=1时,有最小值n=-4;当m=-4时,有最大值n=21,∴421n -.【点睛】本题考查了待定系数法求二次函数的表达式,二次函数求最值,二次函数图象和性质的应用,求二次函数的取值范围,掌握二次函数的图象和性质的应用是解题的关键.。

北师大版九年级下册数学第二章 二次函数 含答案

北师大版九年级下册数学第二章 二次函数 含答案

北师大版九年级下册数学第二章二次函数含答案一、单选题(共15题,共计45分)1、已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0),对于下列命题:①abc>0;②(a﹣b)c>0;③b﹣c >0;④4a+3b+2c>0;⑤b﹣2a=1;⑥a+b+c<0;⑦4a﹣2b+c<0.其中所有正确结论有()A.1个B.2个C.3个D.4个2、已知关于x的二次函数y=(x-h)2+3,当1≤x≤3时,函数有最小值2h,则h的值为()A. B. 或2 C. 或6 D. 或2或63、若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=14、已知某二次函数的图象如图所示,则这个二次函数的解析式为()A. B. C. D.5、同时抛掷A,B两个均匀的小正方体(每个面上分别标有数字1、2、3、4、5、6),设两个正方体朝上的数字分别是x,y,并以此确定点P(x,y),那么点P落在抛物线y=﹣x2+3x上的概率是()A. B. C. D.6、如图,一场篮球赛中,篮球运动员跳起投篮,已知球出手时离地面高2.2m,与篮圈中心的水平距离为8m,当球出手后水平距离为4m时达到最大高度4m,篮圈运行的轨迹为抛物线的一部分,篮圈中心距离地面3m,运动员发现未投中,若假设出手的角度和力度都不变,要使此球恰好通过篮圈中心,运动员应该跳得()A.比开始高0.8mB.比开始高0.4mC.比开始低0.8mD.比开始低0.4m7、在平面直角坐标系中,抛物线与x轴交于两点,与y轴交于C点,过C点作轴交抛物线于另一点D,,O为坐标原点,则()A.4B.6C.3D.58、如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为;②若点在这个二次函数图象上,则;③该二次函数图象与x轴的另一个交点为;④当时,,所有正确结论的序号是()A.①③B.①④C.②③D.②④9、如图是二次函数y=ax2+bx+c(a≠0)的图象,下列结论正确的个数是()①顶点是(﹣1,4)②方程ax2+bx+c=0的解是x1=﹣3,x2=1③4a+2b+c>0④不等式ax2+bx+c>0的解为﹣2<x<0.A.1B.2C.3D.410、若是二次函数,则m等于( )A.±2B.2C.-2D.不能确定11、若抛物线y=(x﹣a)2+(a﹣1)的顶点在第一象限,则a的取值范围为()A.a>1B.a>0C.a>﹣1D.﹣1<a<012、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正确的结论是()A.①②B.①③C.①③④D.①②③④13、抛物线y=x2﹣6x+5的顶点坐标为()A.(3,﹣4)B.(3,4)C.(﹣3,﹣4)D.(﹣3,4)14、如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a<﹣1;④b2+8a>4ac.其中正确的有()A.1个B.2个C.3个D.4个15、若m、n(m<n)是关于x的一元二次方程2﹣(x﹣3)(x﹣a)=0的两个根,且3<a,则m、n,3,a的大小关系是()A.m<3<a<nB.3<m<n<aC.m<3<n<aD.3<a<m <n二、填空题(共10题,共计30分)16、函数是二次函数,则k=________;17、抛物线的图象先向右平移个单位再向下平移个单位,所得图象的解析式为,则________18、某大学的校门如图所示是抛物线形水泥建筑物,大门内侧的地面宽度为8米,两侧距地面4米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,那么校门内侧距地面的高是________米.19、如图抛物线与x轴分别交于A、B两点,顶点C在y轴负半轴上,也在正方形ADEB的边上,已知正方形ADEB的边长为2,若正方形FGMN的顶点F、G落在x轴上,顶点M、N落在图中的抛物线上,则正方形FGMN的边长为________.20、已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax2+bx+c=﹣2的根是________.x …-5 -4 -3 -2 -1 …y … 3 -2 -5 -6 -5 …21、将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为________.22、如图,抛物线与轴交于点,,把抛物线在轴及其上方的部分记作,将向右平移得,与轴交于点,,若直线与,共有个不同的交点,则的取值范围是________.23、已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x …0 1 2 3 4 …y … 3 4 3 0 ﹣5 …则此二次函数图象的对称轴为直线________;当y>0时,x的取值范围是________.24、在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y= (m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为________.25、如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有________.三、解答题(共5题,共计25分)26、已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB =2,求m的值.27、已知函数y= x2+x﹣.请用配方法写出这个函数的对称轴和顶点坐标.28、如图,抛物线与x轴交于A、B两点,与y轴交于点C.(1)分别求出点A、B、C的坐标;(2)设抛物线的顶点为M,求四边形ABMC的面积.29、已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值30、已知抛物线的顶点坐标是(2,1),且该抛物线经过点A(3,3),求该抛物线解析式.参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、D5、A6、A7、D8、C9、B10、C11、A12、C13、A14、D15、A二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。

北师大版九年级数学下册第二章《二次函数》单元练习题(含答案)

北师大版九年级数学下册第二章《二次函数》单元练习题(含答案)

北师大版九年级数学下册第二章《二次函数》单元练习题(含答案)1.在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3)(x-5),则这个变换可以是( )A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位2.抛物线y=2x2-5x+3与坐标轴的交点共有( )A.4个 B.3个 C.2个 D.1个3.若二次函数y=x2-6x+c的图象过A(-1,y1)、B(2,y2)、C(5,y3),则y1、y2、y3的大小关系是( )A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y24.若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,则m的值为( )A.0 B.0或2 C.2或-2 D.0,2或-25.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是( )A.b>1 B.b<1 C.b≥1 D.b≤16.设计师以y=2x2-4x+8的图形为灵感设计杯子如图所示.若AB=4,DE=3,则杯子的高CE 等于( )A.17 B.11 C.8 D.77.已知抛物线y=-x2-2x+3,当-2≤x≤2时,对应的函数值y的取值范围为 .8.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式y<0的解集是 .9. 二次函数y=-3x2-6x+5的图象的顶点坐标是 .10. 已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(-1,y1),(2,y2),试比较y1和y2的大小:y1y2(填“>”“<”或“=”).11. 已知抛物线:y=ax2+bx+c(a>0)经过A(-1,1)、B(2,4)两点,顶点坐标(m,n),有下列结论:①b<1;②c<2;③0<m<12;④n≤1.则所有正确结论的序号是 .12. 如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(-2,-2),且过点B(0,2),则二次函数的表达式为 .13. 如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长14m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是 m2.14. 如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使△MOB的面积是△AOB面积的3倍?若存在,求出点M的坐标;若不存在,请说明理由.15. 某工厂制作A、B两种手工艺品,B每件获利比A多105元,获利30元的A与获利240元的B 数量相等.(1)制作一件A和一件B分别获利多少元?(2)工厂安排65人制作A、B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A、C两种手工艺品的数量相等.设每天安排x人制作B,y人制作A,写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.参考答案:1-6 BBBDDB 7. -5≤y ≤4 8. x >5或x <-1 9. (-1,8) 10. >11. ① ② ④12. y =(x +2)2-2 13. 11214. 解:(1)设抛物线的解析式为y =a(x -2)2+1,把(0,0)代入得4a +1=0,解得a =-14.所以抛物线的解析式为y =-14(x -2)2+1,即y =-14x 2+x ;(2)存在.因为抛物线的对称轴为直线x =2,则B(4,0),设M(x ,-14x 2+x),根据题意得12×4×|-14x 2+x|=12×4×1×3,所以-14x 2+x =3(舍)或-14x 2+x =-3,解-14x 2+x =-3得x 1=-2,x 2=6,此时M 点的坐标为(-2,-3)或(6,-3).15. (1) 解:设制作一件A 获利x 元,则制作一件B 获利(105+x)元,由题意得:30x =240x +105,解得:x =15,经检验,x =15是原方程的根,当x =15时,x +105=120,答:制作一件A 获利15元,制作一件B 获利120元;(2) 解:设每天安排x 人制作B ,y 人制作A ,则2y 制作C ,于是有:y +x +2y =65,∴y =-13x+653,答:y 与x 之间的函数关系式为:y =-13x +653; (3) 解:由题意得:W =15×2×y +[120-2(x -5)]x +2y ×30=-2x 2+130x +90y ,又∵y =-13x+653, ∴W =-2x 2+130x +90y =-2x 2+130x +90(-13x +653)=-2x 2+100x +1950,∵W =-2x 2+100x +1950,对称轴为x =25,而x =25时,y 的值不是整数,根据抛物线的对称性可得:当x =26时,W 最大=-2×262+100×26+1950=3198元,此时制作A 产品的13人,B 产品的26人,C 产品的26人,获利最大,最大利润为3198元.。

二次函数y=ax2的图象和性质练习题(含答案)

二次函数y=ax2的图象和性质练习题(含答案)

二次函数y=a 2x 的图象和性质练习题第1题. 对于抛物线22y x =+和2y x =-的论断:(1)开口方向不同;(2)形状完全相同;(3)对称轴相同.其中正确的有〔 〕 A .0个B .1个C . 2个D .3个第2题. 以下关于抛物线221y x x =++的说法中,正确的选项是〔 〕 A .开口向下B .对称轴是直线x =1C .与x 轴有两个交点D .顶点坐标是(-1,0)第3题. 二次函数y =ax 2+bx +c (a ≠0)的图象如图,a ,b ,c 的取值范围〔 〕 A .a <0,b <0,c <0 B .a <0,b >0,c <0 C .a >0,b >0,c <0D .a >0,b <0,c <0第4题. 与抛物线224y x x =--关于y 轴对称的图象表示的函数关系式是〔 〕 A .224y x x =-++ B .224y x x =++ C .224y x x =+-D .224y x x =-+第5题. 假设抛物线2(1)221y m x mx m =-++-的图象的最低点的纵坐标为零,那么m =_______. 第6题. 对于抛物线2(0)y ax bx c a =++≠,当顶点纵坐标等于_________时,顶点在x 轴上,此时抛物线与x 轴只有一个公共点,而a ≠0,所以,抛物线与x 轴只有一个公共点的条件是_________. 第7题. 假设抛物线22y x x m =++与x 轴只有一公共点,那么m =_________.第8题. 函数243y x x =+-的图象开口向_________,顶点坐标为__________第9题. 二次函数22y x =+的图象开口_____,对称轴是________,顶点坐标是_______. 第10题. 抛物线223y x x =+-与x 轴交点个数为________.第11题. 二次函数2(3)y x =-的图象向右平移3个单位,在向上平移1个单位,得到的图象的关系式是____.第12题. 抛物线2261y x x =-+-的顶点坐标为_________,对称轴为________. 第13题. 作出以下函数的图象:222y x =- 第14题. 作出以下函数的图象:22y x =-第15题. 用描点法画出以下二次函数的图象:2y x = 第16题. 二次函数2y ax =的图象经过点A(-1,1) ① 求这个二次函数的关系式; ② 求当x =2时的函数y 的值.第17题. 假设抛物线2221y x mx m m =-+++的顶点在第二象限,那么常数m 的取值范围是〔 〕 A .12m m <->或 B .12m -<< C .10m -<<D .1m >第18题. 如以下图,抛物线顶点坐标是P 〔1,3〕,那么函数y 随自变量x 的增大而减小的x 的取值范围是〔 〕 A .x >3B .x <3C .x >1D .x <1第19题. 二次函数243y x x =-+的图象交x 轴于A 、B 两点,交y 轴于点C ,那么△ABC 的面积为〔 〕 A .6B .4C .3D .1第20题. 抛物线24y x =-与x 轴交于B 、C 两点,顶点为A ,那么△ABC 的面积为〔 〕 A 16B 8C 4D 2第21题. 假设抛物线21y a x =,22y a x =的形状相同,那么〔 〕 A .12a a =B .12a a =-C .|a 1|=|a 2|D .a 1与a 2的关系无法确定第22题. 为了备战世界杯,中国足球队在某次集训中,一队员在距离球门12米处的挑射,正好射中了2.4米高的球门横梁.假设足球运行的路线是抛物线c bx ax y ++=2〔如图6〕,那么以下结论:①a <601-;②601-<a <0; ③a -b +c >0;④0<b <-12a .其中正确的选项是〔 〕A .①③B .①④C .②③D .②④第23题. 与抛物线242y x x =--关于x 轴对称的图象表示为〔 〕A .242y x x =++B .242y x x =+-OXY 2.412C .242y x x =-+D .242y ax x =--第24题. 假设抛物线2y ax bx c =++全部在x 轴的下方,那么a _________0,同时,b 2-4ac _________0. 第25题. 把抛物线22y x =向右平移一个单位,在向下平移3个单位,得到的抛物线的解析式是_________.第26题. 假设点(2,-1)在抛物线2y ax =上,那么,当x =2时,y =________第27题. 抛物线2(0)y ax bx c a =++≠,关于x 轴对称的图象的关系式是_______________. 第28题. 抛物线22y x =和23y x =-中开口较大的是__________.第29题. 抛物线213y x =,另一条抛物线y 2的顶点为〔2,5〕,且形状、大小与y 1相同,开口方向相反,那么抛物线y 2的关系式为______________.第30题. 抛物线2y x k =-的顶点为P ,与x 轴交于A 、B 两点,如果△ABP 是正三角形,那么,k =_________.第31题. 设二次函数2y ax bx c =++的图象开口向下,顶点在第二象限内. ①确定a ,b ,24b ac -的符号;②假设此二次函数的图象经过原点,且顶点的横坐标与纵坐标互为相反数,顶点与原点的距离为32求此二次函数的关系式第32题. 抛物线226y x x m =-+与x 轴交于A 、B 两点,如果要求点A 在(0,0)与(1,0)之间,点B 在(2,0)与(3,0)之间,请确定m 的取值范围第33题. 是否存在以y 轴为对称轴的抛物线,经过〔3,-4〕和〔-3,4〕两点,假设存在,请写出抛物线的解析式;假设不存在请说明理由.第34题. 假设点P 〔1,a 〕和Q 〔-1,b 〕都在抛物线21y x =+上,那么线段PQ 的长为_____第35题. 二次函数224y x x c =-+的值永远为正,那么c 的取值范围是〔 〕 A .2c =B .4c =C .2c >D .4c >第36题. 二次函数2y ax bx c =++的图象如图,那么点M 〔bc,a 〕在〔 〕A .第一象限B .第二象限C .第三象限D .第四象限第37题. 假设二次函数2y ax c =+,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,那么当x 取x 1+x 2时,函数值为〔 〕 A .a c +B .a c -C .c -D .c第38题. 二次函数2()2(0)y a x m m a =-+≠的顶点在〔 〕 A .2y x =B .2y x =-C .x 轴上D .y 轴上第39题. 关于二次函数247y x x =+-的最大〔小〕值,表达正确的选项是〔 〕 A .当2x =时,函数有最大值 B .当2x =时,函数有最小值 C .当2x =-时,函数有最大值 D .当2x =-时,函数有最小值第40题. 假设直线y =2y ax b =+不经过第三,第四象限,那么抛物线2y ax bx c =++〔 〕 A .开口向上,对称轴是y 轴 B .开口向下,对称轴是y 轴 C .开口向上,对称轴平行于y 轴 D .开口向下,对称轴平行于y 轴 第41题. 抛物线2(2)3y x =-+对称轴是〔 〕A .直线3x =-B .直线3x =C .直线2x =-D .直线2x =第42题. 函数215322y x x =---,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2<x 3,那么对应的函数值的大小关系是〔 〕A .y 3>y 2>y 1B .y 1>y 3>y 2C .y 2<y 3<y 1D .y 3<y 2<y 1 第43题. 以下关于抛物线221y x x =++的说法中,正确的选项是〔 〕 A .开口向下 B .对称轴方程为x =1 C .与x 轴有两个交点D .顶点坐标为〔-1,0〕第44题. 函数2ax y =〔a ≠0〕的图象与a 的符号有关的是〔 〕 A .对称轴 B .顶点坐标 C .开口方向 D .开口大小第45题. 请你写出函数21)(+=x y 与12+=x y 具有一个共同性质为__________. 第46题. 试写出一个开口向上,对称轴为直线x=2,与y 轴的交点的坐标为〔0,3〕的抛物线的解析式____________________.第47题. 函数21(1)73y x =--的图象可以通过213y x =的图象向____移动______个单位,再向______移动____个单位后得到.第48题. 二次函数26y x x m =-+的最小值为1,那么m 的值是 .第49题. 由函数解析式画图象,一般按 、 、 三个步骤进行. 第50题. 抛物线l 1:243y x x =-+(1)在平面直角坐标系中,画出抛物线243y x x =-+,并求出抛物线l 1的顶点关于y 轴对称的点的坐标; (2)抛物线l 2与抛物线l 1关于y 轴对称,求抛物线l 2的函数解析式.第51题. 二次函数2(2)(3)2y m x m x m =-++++的图象过点〔0,5〕. 〔1〕求m 的值,并写出二次函数的解析式; 〔2〕求出二次函数图象的顶点坐标、对称轴第52题. 判断函数242+-=x x y 的图象是否经过第三象限?说明理由. 第53题. 函数y ax b =+与2y ax bx c =++如下图,那么以下选项中正确的选项是〔 〕 A .ab >0,c>0 B .ab <0,c>0 C .ab >0,c<0 D .ab <0,c<0参考答案第1题.答案:D 第2题.答案:D 第3题. 答案:D 第4题. 答案:C第5题. 答案:352+ 第6题.答案:0,4ac -b 2=0,且a ≠0 第7题. 答案:1第8题. 答案:上,(-2,-7) 第9题. 答案:向上, y 轴,〔0,2〕 第10题. 答案:2个第11题.答案:21237y x x =-+或2(6)1y x =-+第12题.答案:〔32,72〕,x =32第13题. 答案:略第14题. 作出以下函数的图象:22y x =-答案:略 第15题. 用描点法画出以下二次函数的图象:2y x =答案:略 ③ 第16题. 答案:2y x =,4y =第17题.答案:C 第18题. 答案:C 第19题. 答案:C 第20题.答案:B 第21题.答案:C 第22题. 答案:D 第23题. 答案:A第24题. 答案:<,< 第25题. 答案:2241y x x =-- 第26题. 答案:-1 第27题. 答案:2y ax bx c =-- 第28题..答案:22y x =第29题. 答案:223127y x x =-+- 第30题. 答案:3 第31题. 答案:① a <0,b <0,b 2-4ac >0; ②2123y x x=-- 第32题. 答案:04m ≤≤ 第33题.答案:不存在.假设存在以y 轴为对称轴的抛物线,经过〔3,-4〕和〔-3,4〕两点,必然也过他们的对称点〔-3,-4〕、〔3,4〕这样,抛物线的解析式便可以有两种形式,y =a (x +3)(x -3)+4和y =a (x +3)(x -3)-4,这样的a 不存在第34题. 答案:2 第35题. 答案:C 第36题. 答案:D 第37题. 答案:D 第38题.答案:A 第39题. 答案:D 第40题. 答案:C第41题. 答案:D 第42题.答案:A 第43题.答案:D 第44题.答案:C 第45题. 答案:图象都是抛物线,开口向上,都有最低点〔或最小值〕 第46题. 答案:如243y x x =-+等 第47题. 答案:右,1,下,7 第48题. 答案:10第49题. 答案:列表,描点,连线 第50题.答案:(1)图略,〔-2,-1〕(2)243y x x =++ 第51题. 答案:〔1〕m =3,那么265y x x =++ 〔2〕顶点坐标为〔-3,-4〕,对称轴3x =-11 第52题. 答案:不经过第三象限,当0<x 时, 04,02>->x x ,那么042>-x x ,024>+-x x 即0242>+-=x x y ,故当点),(y x 的横坐标0<x 时,纵坐标y总是正数,也就是说横纵坐标不能同时为负数,因而该函数图象不可能经过第三象限 第53题.答案:D。

《二次函数y=ax2的图象与性质》练习题

《二次函数y=ax2的图象与性质》练习题

1 2 1 2 8.如图,⊙O的半径为2,C1是函数y= 2 x 的图象,C2是函数y=- 2 x 2π 的图象,则阴影部分的面积是________.
9.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1), (x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可 ①③ 填上所有正确答案的序 以判断下面所给的函数中,是增函数的有________( 号). 1 ①y=2x;②y=-x+1;③y=x2(x>0);④y=- . x
5.二次函数y=mxm2-1在其图象对称轴的左侧,y随x的增大而增大,则m=
- 3 ________.
a 6.已知反比例函数y= (a≠0),当x<0时,y随x的增大而减小,则函 x 数y=ax2的图象经过的象限是( B ) A.第三、四象限 B.第一、二象限 C.第二、四象限 D.第一、三象限 7.如图,若抛物线y=ax2(a<0)的图象经过点A(-1,y1),B(2,y2), C(3,y3),则( A ) A.y1>y2>y3 B.y1<y2<y3 C.y2<y1<y3 D.y3<y1<y2
1 2 3.抛物线 y=2x ,y=-2x ,y=2x 共有的性质是(B
2 2
பைடு நூலகம்
)
A.开口向下 B.对称轴是 y 轴 C.都有最低点 D.y 随 x 的增大而减小 4.如图,根据图形写出一个符合图象的二次函数关系式: 1 2 y=-2x (答案不唯一) __________________________.
10.函数y=ax2(a≠0)与直线y=2x-3交于点(1,b). (1)求a、b的值; (2)求抛物线y=ax2的顶点坐标和对称轴;
(3)x取何值时,函数y=ax2中,y随x的增大而增大?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2二次函数y=ax 2+bx +c 的图象(一)
一、选择题
1.已知抛物线的解析式为y=(x -2)2+1,则抛物线的顶点坐标是 ( ) A .(-2,1) B .(2,1) C .(2,-1) D .(1,2)
2.已知二次函数y =x 2-4x +5的顶点坐标为( )
A .(-2,-1)
B .(2,1)
C .(2,-1)
D .(-2,1)
3.抛物线y =x 2-4x +3的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为( )
A .(4,-1)
B .(0,-3)
C .(-2,-3)
D .(-2,-1)
4.已知二次函数的图象(0≤x ≤3)如图3-4-4.关于该函数在所给自变量的取值范围内,下列说法正确的是( )
图3-4-4
A .有最小值0,有最大值3
B .有最小值-1,有最大值0
C .有最小值-1,有最大值3
D .有最小值-1,无最大值
二、填空题: 5.抛物线y =2(x -
14)2-25
8
的顶点坐标是 ,对称轴是 ,与x 轴的交点是 ,与y 轴的交点是 .
6.抛物线y=(x 十1)2-2的对称轴是 ,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.
7.如果抛物线y =a(x 十2b a )2+2
44ac b a
的对称轴是x =-2,开口大小和方向与
抛物线y=
3
2
x2的相同,且经过原点,那么a=,b=,c=.
8.(2011年浙江宁波)将抛物线y=x2的图象向上平移1个单位,则平移后的抛物线的解析式为____________.
9.写出一个开口向下的二次函数的表达式______________________.
10.如图3-4-7,已知二次函数y=x2+bx+c的图象经过点(-1,0),(1,-2),当y随x的增大而增大时,x的取值范围是____________.
图3-4-7
11.(2011年江苏淮安)抛物线y=x2-2x+3的顶点坐标是__________.三、解答题
12.将抛物线y=3
4
(x+5)2-6向右平移4个单位,再向上平移5个单位,求此
时抛物线的解析式.
13.已知抛物线y=(x-1)2+a-l的顶点A在直线y=-x+3上,直线y=-x+3与x轴的交点为B,求△AOB的面积(O为坐标原点).
14.(2011年江苏盐城)已知二次函数y =-12x 2-x +3
2.
(1)在如图3-4-8中的直角坐标系中,画出这个函数的图象; (2)根据图象,写出当y <0时,x 的取值范围;
(3)若将此图象沿x 轴向右平移3个单位,请写出平移后图象所对应的函数关系式.
图3-4-8
15.(2013年广东)已知抛物线y =1
2x 2+x +c 与x 轴没有交点.
(1)求c 的取值范围;
(2)试确定直线y =cx +1经过的象限,并说明理由.
16.如图2 - 50所示,抛物线y =-(x+1)2+m(x+1)(m 为常数)与x 轴交于A ,B 两点,与y 轴交于点C ,顶点M 在第一象限,△AOC 的面积为1.5,点D 是线段AM 上一个动点,在矩形DEFG 中,点G ,F 在x 轴上,点E 在MB 上. (1)求抛物线的解析式;
(2)当DE=1时,求矩形DEFG的面积;
(3)矩形DEFG的面积是否存在最大值?如果存在,请求出这个最大值,并指出此时点D的坐标;如果不存在,请说明理由.
参考答案
1.B[提示:由顶点坐标公式可以得到顶点坐标为(2,1).]
2.B
3.A
4.C
5.(125
,
48
-) x=
1
4
(-1,0)和(
3
2
,0) (0,-3)
6. x=-l >-1 <-l
7.
3
2
--6 0
8.y=x2+1
9.y=-x2+2x+1(答案不唯一)
10.x>1 2
11.(1,2)
12.提示:解析式为y=3
4
(x+1)2-1.
13.提示:S
△AOB =
1
2
×3×2=3.
14.解:(1)画图(如图D8).
图D8
(2)当y<0时,x的取值范围是x<-3或x>1.
(3)平移后图象所对应的函数关系式为
y=-1
2
(x-2)2+2





或写成y=-
1
2
x2+2x.
15.解:(1)∵抛物线与x轴没有交点,
∴Δ<0,即1-2c<0,解得c>1 2 .
(2)∵c>1 2,
∴直线y=cx+1随x的增大而增大.
∵b=1,
∴直线y=cx+1经过第一、二、三象限.
16.解:(1)由y=-(x+1)2+m(x+1),得A(-1,0),C(0,m-1),则OA=l,
OC=m-1.∵S
△OAC =1.5,∴
1
2
×1×(m-1)=1.5,∴m=4,∴y=-x2+2x+3.(2)由
y=-(x-1)2+4,令y=0,得-(x-1)2+4=0,解得x
1=-1,x
2
=3,∴A(-l,0),
B(3,0),M(1,4),∴直线AM的解析式为y=2x+2.由点D在线段AM上,可设点D的坐标为(a,2a+2),-1<a<1.当DE=1时,由抛物线对称性可知1-a=0.5,
∴a=0.5,2a+2=3,∴S
矩形DEFG =DE·DG=1×3=3. (3)S
矩形DEFG
存在最大值.设
D点坐标为(a,2a+2),-l<a<l,由抛物线对称性可知D E=2(1-a),DG=2a+2.∴S
矩形DEFG
=DE·DG=2(1-a)·(2a+2)=-4a2+4,而-1<a<l,∴当a=0时,S取得最大值为4,此时D点坐标为(0,2).。

相关文档
最新文档