2018届高考数学二轮参数方程与极坐标专题卷(全国通用)(11)
(2021年整理)2018高考数学试题分项版_极坐标参数方程[解析版]
2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)的全部内容。
2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整) 这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)〉这篇文档的全部内容。
2017年高考数学试题分项版—极坐标参数方程(解析版)一、填空题1.(2017·北京理,11)在极坐标系中,点A在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP|的最小值为________.1.【答案】1【解析】由ρ2-2ρcos θ-4ρsin θ+4=0,得x2+y2-2x-4y+4=0,即(x-1)2+(y-2)2=1,圆心坐标为C(1,2),半径长为1。
2018届高考数学二轮参数方程与极坐标专题卷(全国通用)(5)
参数方程与极坐标1.设点P 在曲线2sin =θρ上,点Q 在曲线1cos sin x y θθ=+⎧⎨=⎩(θ为参数)上,求|PQ |的最小值( )A .1B .2C .3D .4 【答案】A 【解析】试题分析:首先把两曲线化为直角坐标方程:222,(1)1y x y =-+=,数形结合知过x=1的直线与圆相交的较近的两点间的距离就是PQ的最小值.考点:直线与圆的位置关系.2.在直角坐标系xOy 中,直线l 的参数方程为()4x tt y t =⎧⎨=+⎩为参数.曲线C 的参数方程为2()2x y θθθ⎧=+⎪⎨=+⎪⎩为参数,则直线l 和曲线C 的公共点有( )(A )0个 (B )1个 (C )2个 (D )无数个【答案】B 【解析】试题分析:()4x t t y t =⎧⎨=+⎩为参数即y=x+4,2()2x y θθθ⎧=+⎪⎨=+⎪⎩为参数 即22(2)(2)8x y -+-=,=l 和曲线C 的公共点有1个,选B 。
考点:本题主要考查参数方程与普通方程的互化,直线与圆的位置关系。
点评:小综合题,将参数方程化为普通方程,实现了“化生为熟”,研究直线与圆的位置关系,两种思路,一是“代数法”,二是“几何法”。
3.坐标系中,圆θρsin 2-=的圆心的极坐标是( ) A .)2,1(πB .)2,1(π- C .)0,1( D .(1,)π【答案】B 【解析】试题分析:圆θρsin 2-=即为圆22s i n ρρθ=-化成直角坐标方程为2220x y y ++=,所以圆心的直角坐标为()0,1-,极坐标是)2,1(π-.考点:圆的极坐标方程与直角坐标方程的互化.4.将点M 的极坐标⎪⎭⎫⎝⎛310π,化成直角坐标是( )(A)(5, (B)()5 (C)()5,5 (D)()5-,-5 【答案】A【解析】本题考查极坐标与直角坐标的互化由点M 的极坐标⎪⎭⎫⎝⎛310π,,知10,3πρθ== 极坐标与直角坐标的关系为cos sin x y ρθρθ=⎧⎨=⎩,所以⎪⎭⎫⎝⎛310π,的直角坐标为10cos 5,10sin 33x y ππ====即(5, 故正确答案为A5.在直角坐标系xOy 中,圆C 的参数方程(φ为参数).以O 为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是ρ(sinθ+)=3,射线OM :θ=与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长. 【答案】(Ⅰ)ρ=2cosθ,(Ⅱ)2【解析】试题分析:(I )圆C 的参数方程(φ为参数).消去参数可得:(x﹣1)2+y 2=1.把x=ρcosθ,y=ρsinθ代入化简即可得到此圆的极坐标方程. (II )由直线l 的极坐标方程是ρ(sinθ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解:(I )圆C 的参数方程(φ为参数).消去参数可得:(x ﹣1)2+y 2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程. (II )如图所示,由直线l 的极坐标方程是ρ(sinθ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.联立,解得,即Q .联立,解得或.∴P.∴|PQ|==2.考点:简单曲线的极坐标方程;直线与圆的位置关系.视频6.[选修4-4:坐标系与参数方程]已知极坐标系中的曲线2cos sin ρθθ=与曲线πsin 4ρθ⎛⎫+= ⎪⎝⎭交于A ,B 两点,求线段AB 的长. 【答案】2a = 【解析】试题分析: 由将cos ,sin x y ρθρθ==极坐标方程2cos sin ρθθ=及πsin 4ρθ⎛⎫+= ⎪⎝⎭化为直角坐标方程2x y =,2x y +=,联立方程组解得交点坐标()1,1A ,()2,4B -,根据两点间距离公式求线段AB 的长.试题解析:曲线2cos sin ρθθ=化为2x y =;…………………………………4分πsin 4ρθ⎛⎫+= ⎪⎝⎭同样可化为2x y +=,…………………………8分联立方程组,解得()1,1A ,()2,4B -, 所以AB ==所以3222a a -=(0a >),解得2a =(负值已舍).………………10分考点:极坐标方程化为直角坐标方程7.在平面直角坐标系xOy 中,已知直线l的参数方程是x y ⎧=⎪⎪⎨⎪=+⎪⎩,(t 为参数);以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为2cos()4ρθπ=+.(1)写出直线l 的普通方程与圆C 的直角坐标方程; (2)由直线l 上的点向圆C 引切线,求切线长的最小值.【答案】曲线C:02222=+-+y x y x (2)62. 【解析】 试题分析:先将圆C 的极坐标方程化为直角坐标方程,再把直线上的点的坐标(含参数)代入,化为求函数的最值问题,也可将直线l 的参数方程化为普通方程, 根据勾股定理转化为求圆心到直线上最小值的问题.试题解析:(1曲线C:02222=+-+y x y x 4分 (2)因为圆C 的极坐标方程为θθρsin 2cos 2-=,所以θρθρρs i n 2c o s 22-=,所以圆C 的直角坐标方程为02222=+-+y x y x ,圆心为⎪⎪⎭⎫⎝⎛-22,22,半径为1, 6分因为直线l的参数方程为,x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),所以直线l上的点P+⎝向圆C引切线长是所以直线l上的点向圆C引的切线长的最小值是62. 10分考点:参数方程与极坐标,直线与圆的位置关系.8.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线2:sin2cosC aρθθ=(0)a>,过点()2,4P--的直线l的参数方程为(t为参数)。
高考专题全国卷真题2011至2018-极坐标与参数方程
4—4.坐标系与参数方程【高考真题】4.4-1(2011全国-23)在直角坐标系中,曲线的参数方程为(为参数),是上的动点,点满足,点的轨迹为曲线。
(Ⅰ)当求的方程;(Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.4.4-2(2012全国-23)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是。
正方形ABCD 的顶点都在上, 且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,)。
(1)求点A ,B ,C ,D 的直角坐标;(2)设为上任意一点,求的取值范围。
4.4-3(2013全国Ⅰ-23)已知曲线C 1的参数方程为⎩⎨⎧x =4+5costy =5+5sint(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sinθ。
(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π)4.4-4(2013全国Ⅱ-23)已知动点P ,Q 都在曲线C : 上,对应参数分别为β=α与α=2π为(0<α<2π)M 为PQ 的中点。
(Ⅰ)求M 的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为a 的函数,并判断M 的轨迹是否过坐标原点。
xOy 1C 2cos 22sin x y αα=⎧⎨=+⎩αM 1C P 2OP OM =P 2C 2C O x 3πθ=1C A 2C B ||AB 1C ⎩⎨⎧==ϕϕsin 3cos 2y x ϕx 2C 2=ρ2C 3πP 1C 2222||||||||PD PC PB PA +++()2cos 2sin x y βββ=⎧⎨=⎩为参数4.4-5(2014全国Ⅰ-23)已知曲线:,直线:(为 参数). (Ⅰ)写出曲线的参数方程,直线的普通方程;(Ⅱ)过曲线上任一点作与夹角为的直线,交于点,求的最大值与最小值.4.4-6(2014全国Ⅱ-23)在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为,.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.4.4-7(2015全国Ⅰ-23)在直角坐标系中,直线:=2,圆:,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系。
2018年高考数学真题专题汇编----极坐标与参数方程
( 1)求 的取值范围; ( 2)求 AB 中点 P 的轨迹的参数方程.
4.【 2018 江苏卷 21C】在极坐标系中,直线 l 的方程为 4cos ,求直线 l 被曲线 C 截得的弦长.
sin( π 6
) 2 ,曲线 C 的方程为
参考答案
一、填空题
1.1 2
1
2.
2
二、解答题
1.解: ( 1)由 x cos , y sin 得 C2 的直角坐标方程为 ( x 1)2 y2 4.
2018 年高考数学真题专题汇编 ----
极坐标与参数方程
一、填空题
1. 【 2018 北京卷 10】在极坐标系中,直线 cos 则 a=_______2cos 相切,
x 2.【2018 天津卷 12】 )已知圆 x2 y2 2 x 0的圆心为 C,直线
2 1 t,
( 2)由( 1)知 C2 是圆心为 A( 1,0) ,半径为 2 的圆.
2 ( t 为参数 )
y 3 2t 2
与该圆相交于 A,B 两点,则 △ ABC 的面积为
.
二、解答题
1.【 2018 全国一卷 22】在直角坐标系 xOy 中,曲线 C1 的方程为 y k|x| 2.以坐标原点为 极点, x 轴正半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为 2 2 cos 3 0 .
( 1)求 C2 的直角坐标方程; ( 2)若 C1 与 C2 有且仅有三个公共点,求 C1 的方程 .
x 2cos θ, 2【. 2018 全国二卷 22】在直角坐标系 xOy 中,曲线 C 的参数方程为 y 4sin θ( θ为参数) , 直线 l 的参数方程为
x 1 t cos α, ( t 为参数).
2018届高考数学二轮复习选修4-4 第二节参数方程专题
参数方程专题[基础达标](35分钟70分)一、选择题(每小题5分,共10分)1.已知曲线C的参数方程为x=2cos t,y=2sin t(t为参数),C在点(1,1)处的切线为l,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则l的极坐标方程为() A.ρ=2sin θ+π4B.ρsin θ+π4=2C.ρsin θ+π4=2D.ρ=sin θ+π4B【解析】把曲线C的参数方程x=2cos t,y=2sin t(t为参数)消去参数,化为普通方程为x2+y2=2,曲线C在点(1,1)处的切线为l:x+y=2,化为极坐标方程为ρcosθ+ρsinθ=2,即ρsin θ+π4=2.2x=t cosα,y=t sinα(t是参数)与圆x=4+2cosθ,y=2sinθ(θ是参数)相切,则直线的倾斜角α为()A.π6B.5π6C.π6或5π6D.π2C【解析】直线x=t cosα,y=t sinα(t是参数)的普通方程为y=x tanα,圆x=4+2cosθ,y=2sinθ(θ是参数)的普通方程为(x-4)2+y2=4,由于直线与圆相切,则1+tan2α=2,即tan2α=13,解得tan α=±33,由于α∈[0,π),故α=π6或5π6.二、填空题(每小题5分,共10分)3.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cos θ,直线l的参数方程为x=t+a,y=-22t(t为参数),若直线l将曲线C的周长分为1∶5,则实数a=.-1或5【解析】曲线C的直角坐标方程为x2+y2=4x,标准方程为(x-2)2+y2=4,直线l的普通方程为x+y-a=0,直线l将曲线C的周长分为1∶5,则弦所对的圆心角是60°,则圆心(2,0)到直线l的距离为3,即3=3,解得a=-1或5.4.以平面直角坐标系的原点为极点,以x轴的正半轴为极轴,建立极坐标系,则曲线x=7cosφ,y=7sinφ(φ为参数,φ∈R)上的点到曲线ρ(cosθ+sinθ)=4(ρ,θ∈R)的最短距离是.22−7【解析】曲线x=7cosφ,y=7sinφ的普通方程为x2+y2=7,曲线ρ(cosθ+sinθ)=4的直角坐标方程为x+y=4,圆心(0,0)到直线x+y=4的距离d=2>,所以圆x2+y2=7上的点到直线x+y=4的最短距离为d-r=2−.三、解答题(共50分)5.(10分C的直角坐标方程是x2+y2=2x,直线l的参数方程是x=32t+m,y=12t(t为参数).(1)求直线l的普通方程;(2)设点P(m,0),若直线l与曲线C交于A,B两点,且|PA|·|PB|=1,求实数m 的值.【解析】(1)直线l的参数方程是x=32t+m,y=12t(t为参数),消去参数t可得x=3y+m.(2)把x=32t+m,y=12t(t为参数)代入方程x2+y2=2x,得t2+(3m-3)t+m2-2m=0,由Δ>0,解得-1<m<3,∴t1t2=m2-2m.∵|PA|·|PB|=1=|t1t2|,∴m2-2m=±1,解得m=1±2,1.又∵Δ>0,∴实数m=1±2,1.6.(10分)在平面直角坐标系xOy中,直线l的参数方程为x=2-k,y=3-2k(k为参数),以原点O为极点,以x轴正半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.圆C的极坐标方程为ρ=2sin θ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A,B,若点M的坐标为(2,3),求|MA|·|MB|的值.【解析】(1)由ρ=2sin θ得ρ2=2ρsin θ,即x2+y2-2y=0,标准方程为x2+(y-1)2=1.故圆C的直角坐标方程为x2+(y-1)2=1.(2)直线l的参数方程为x=2-k,y=3-2k(k为参数),可化为x=2-55t,y=3-255t其中k=55t ,代入圆C的直角坐标方程,得2-55t2+2-255t2=1,即t2-1255t+7=0.由于Δ=12552-4×7=45>0,故可设t1,t2是上述方程的两实根,所以t1+t2=1255,t1·t2=7,又直线l过点M(2,3),故由上式及t的几何意义,得|MA|·|MB|=|t1|·|t2|=7.7.(10分xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为x=t,y=at(t为参数),曲线C1的方程为ρ(ρ-4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.【解析】(1)根据题意,得曲线C1的直角坐标方程为x2+y2-4y=12,设点P(x',y'),Q(x,y).根据中点坐标公式,得x'=2x-6,y'=2y,代入x2+y2-4y=12,得点Q的轨迹C2的直角坐标方程为(x-3)2+(y-1)2=4. (2)直线l的直角坐标方程为y=ax,根据题意,得圆心(3,1)到直线的距离d≤22-(3)2=1,即2≤1,解得0≤a≤34,∴实数a的取值范围为0,34.8.(10分xOy中,曲线C1:x=t cosα,y=t sinα(t为参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,C3:ρ=23cos θ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【解析】(1)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-2x=0.联立x2+y2-2y=0,x2+y2-23x=0,解得x=0,y=0或x=32,y=32.所以C2与C3交点的直角坐标为(0,0)和32,32.(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为(2sin α,α),B的极坐标为(23cos α,α).所以|AB|=|2sin α-23cos α|=4sin α-π3.当α=5π6时,|AB|取得最大值,最大值为4.9.(10分)已知直线l的参数方程为x=-1-32t,y=3+12t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sin θ-π6.(1)求圆C的直角坐标方程;(2)点P(x,y)是直线l与圆面ρ≤4sin θ-π6的公共点,求3x+y的取值范围.【解析】(1)因为圆C的极坐标方程为ρ=4sin θ-π6,所以ρ2=4ρsin θ-π6=4ρ32sinθ-12cosθ .又ρ2=x2+y2,x=ρcosθ,y=ρsinθ,所以x2+y2=23y-2x,所以圆C的直角坐标方程为x2+y2+2x-23y=0.(2)设z=3x+y,由圆C的方程x2+y2+2x-23y=0,得(x+1)2+(y-3)2=4,所以圆C的圆心是(-1,3),半径是2.将x=-1-32t,y=3+12t代入z=3x+y,得z=-t.又由题可知点P在圆C内,所以有-1-32t+12+3+12t-32≤4,解得-2≤t≤2,所以-2≤-t≤2,即3x+y的取值范围是[-2,2].[高考冲关](20分钟45分)1.(5分C:ρ=2sin θ,A,B为曲线C上的两点,以极点为原点,极轴为x轴非负半轴的直角坐标系中,曲线E:x=4t+2,y=-3t-3上一点P,则∠APB的最大值为()A.π4B.π3C.π2D.2π3B【解析】曲线C的直角坐标方程为x2+(y-1)2=1,曲线E的普通方程为3x+4y+6=0,易得直线E与圆C相离,且圆心C到直线E的距离d=2,则∠APB 取最大值时,PA,PB与圆C相切,且PC最短,此时在Rt△PAC中,sin ∠APC=12,故∠APC=π6,所以∠APB=π3.2.(10分)已知直线C1:x=1+t cosα,y=t sinα(t为参数),曲线C2:x=cosθ,y=sinθ(θ为参数).(1)当α=π3时,求C1与C2的交点坐标;(2)过坐标原点O作C1的垂线,垂足为A,P为OA的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.【解析】(1)当α=π3时,C1的普通方程为y=3(x-1),C2的普通方程为x2+y2=1,联立方程组y=3(x-1),x2+y2=1,解得C1与C2的交点坐标分别为(1,0),12,-32.(2)依题意,C1的普通方程为x sinα-y cosα-sin α=0,则A点的坐标为(sin2α,-sin αcosα),故当α变化时,P点轨迹的参数方程为x=12sin2α,y=-12sinαcosα(α为参数),所以1-4x=cos2α,-4y=sin2α,所以P点轨迹的普通方程为 x-142+y2=116.故P点的轨迹是圆心为14,0,半径为14的圆.3.(10分)已知曲线C1的参数方程是x=2cosφ,y=3sinφ(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为2,π3.(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解析】(1)由已知可得A2cosπ3,2sinπ3,B2cosπ3+π2,2sinπ3+π2,C2cosπ3+π ,2sinπ3+π ,D2cosπ3+3π2,2sinπ3+3π2,即A(1,3),B(-3,1),C(-1,-3),D(3,-1).(2)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].4.(10分C :x 24+y 29=1,直线l :x =2+t ,y =2-2t(t为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA|的最大值与最小值.【解析】(1)曲线C 的参数方程为 x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x+y-6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d= 55|4cos θ+3sin θ-6|. 则|PA|=dsin 30°=2 55|5sin(θ+α)-6|,其中α为锐角,且tan α=43,当sin(θ+α)=-1时,|PA|取得最大值,最大值为22 55;当sin(θ+α)=1时,|PA|取得最小值,最小值为2 55.5.(10分l : x =1+12t ,y = 32t (t 为参数),曲线C 1:x =cos θ,y =sin θ(θ为参数).(1)设l 与C 1相交于A ,B 两点,求|AB|;(2)若把曲线C 1上各点的横坐标压缩为原来的12,纵坐标压缩为原来的 32,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 的距离的最小值. 【解析】(1)由题意得l 的普通方程为y= 3(x-1),C 1的普通方程为x 2+y 2=1. 联立方程y = 3(x -1),x 2+y 2=1,解得l 与C 1的交点为A (1,0),B 12,-32,则|AB|=1.(2)由题意可得C2的参数方程为x=12cosθ,y=32sinθ(θ为参数),故点P的坐标是12cosθ,32sinθ .从而点P到直线l的距离d=32cosθ-32sinθ-32=342sin θ-π4+2,当sin θ-π4=-1时,d取得最小值,最小值为64(2-1).。
【高三数学试题精选】2018高考数学(理)二轮复习极坐标与参数方程配套试题
2018高考数学(理)二轮复习极坐标与参数方程配套试题
5 精品题库试题
理数
1(x化为极坐标方程为ρcs θ+ρsin θ=1,即ρ= ∵0≤x≤1,∴线段在第一象限内(含端点),∴0≤θ≤ 故选A
2(4=0,
cρ=4cs θρ2=4ρcs θ,∴cx2+2=4x,
即(x-2)2+2=4,∴c(2,0),r=2
∴点c到直线l的距离d= = ,
∴所求弦长=2 =2 故选D
3(1上 D在直线=x+1上
[答案] 3B
[解析] 3曲线 (θ为参数)的普通方程为(x+1)2+(-2)2=1,该曲线为圆,圆心(-1,2)为曲线的对称中心,其在直线=-2x上,故选B
4 (2)2+(-1)2=1,由直线l与曲线c相交所得的弦长|AB|=2知,AB 为圆的直径,故直线l过圆心(2,1),注意到直线的倾斜角为 ,即斜率为1,从而直线l的普通方程为=x-1,从而其极坐标方程为ρsin θ=ρcs θ-1,即ρcs =1
9( +1=0,
又点的直角坐标为( ,1),
∴点到直线的距离d= =1
10(4坐标系与参数方程)
在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线(为参数)和曲线相交于两点,设线段的中点为,则点的直角坐标为.[答案] 21
[解析] 21 消去参数t可得曲线c1的普通方程为,曲线,根。
2018年高考全国卷Ⅱ理数试题+答案
2018年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。
123456.在ABC △中,cos 2C =1BC =,5AC =,则AB =( )A .BCD .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图, 则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )A .15B .56C .55D .2210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( )A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为3的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln1y x=+在点()00,处的切线方程为__________.14.若x y,满足约束条件25023050x yx yx+-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y=+的最大值为_________.1516.SAB△17.(记nS(1(218.(12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测改地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至年至2016(1(219.(. (1(220.(12分)如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.21.(12分)已知函数()2x f x e ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在()0+∞,只有一个零点,求a .(二)选考题:共10分。
2018年全国2卷省份高考模拟文科数学分类---参数方程极坐标
2018年全国2卷省份高考模拟文科数学分类---参数方程极坐标1.(2018陕西汉中模拟)的参数方程为 (为参数,),曲线的极坐标方程为.(Ⅰ)求曲线的直角坐标方程;(II )设直线与曲线相交于两点,求的最小值.解:(1)由,得,所以曲线的直角坐标方程为 …………..4分 (2)将直线的参数方程代入,得.设两点对应的参数分别为,则..6分 ∴当时,的最小值为4. ……………..10分2.(2018呼和浩特模拟)在平面直角坐标系xOy 中,圆O 的方程为224x y +=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是2cos21ρθ=. (Ⅰ)求圆O 的参数方程和曲线C 的直角坐标方程;(Ⅱ)已知M ,N 是曲线C 与x 轴的两个交点,点P 为圆O 上的任意一点. 证明:22PMPN +为定值.解:(1)圆C 的参数方程为2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)若2cos21ρθ=等价化为2222cos sin 1ρθρθ-=,再由互化公式cos x ρθ=,sin y ρθ=得其直角坐标方程为221x y -=(2)由(1)知()1,0M -,()1,0N ,设()2cos ,2sin P θθ,则()()2222222cos 14sin 2cos 14sin 10PM PN θθθθ+=+++-+=.l 1cos sin x t y t αα=+⎧⎨=⎩t 0απ<<C 2sin 4cos ρθθ=C l C A B 、AB 2sin 4cos ρθθ=()2sin 4cos ρθρθ=C 24y x =l 24y x =22sin 4cos 40t t αα--=A B 、12t t 、1212224cos 4,sin sin t t t t ααα+==-1224sin AB t t α=-==2πα=AB3.(2018东北育才中学模拟)在平面直角坐标系xOy 中,直线l的参数方程为1,1x y t⎧=⎪⎨=+⎪⎩(t 为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为2cos ρθ=.(Ⅰ)求直线l 的极坐标方程和曲线C 的直角坐标方程; (Ⅱ)设l 与C 交于,P Q 两点,求POQ ∠.解法一:(1)由1,1,x y t ⎧=⎪⎨=+⎪⎩得l的普通方程为1x =,1分又因为cos ,sin ,x y ρθρθ=⎧⎨=⎩,所以l的极坐标方程为()cos 1ρθθ+=+ ................... 3分由2cos ρθ=得22cos ρρθ=,即222x y x +=, ............................................................... 4分所以C 的直角坐标方程为2220xy x +-=. ............................................................................ 5分(2)设,P Q 的极坐标分别为()()1122,,,ρθρθ,则12POQ θθ∠=-................................. 6分由()cos 12cos ,ρθθρθ⎧=⎪⎨=⎪⎩消去ρ得()2cos cos 1θθθ= ............. 7分化为cos22θθ=,即πsin 26θ⎛⎫+= ⎪⎝⎭, ....................................................... 8分 因为π02θ⎛⎫∈ ⎪⎝⎭,,即ππ7π2+666θ⎛⎫∈ ⎪⎝⎭,,所以ππ263θ+=,或π2π263θ+=, ................ 9分 即12π,12π,4θθ⎧=⎪⎪⎨⎪=⎪⎩或12π,4π,12θθ⎧=⎪⎪⎨⎪=⎪⎩所以12π=6POQ θθ∠=-. ........................................................ 10分解法2:(1)同解法一 ................................................................................................................... 5分(2)曲线C 的方程可化为()2211x y -+=,表示圆心为()1,0C 且半径为1的圆. ........ 6分将l的参数方程化为标准形式1,2112x y t ⎧'=-⎪⎪⎨⎪'=+⎪⎩(其中t '为参数),代入C 的直角坐标方程为2220x y x +-=得,221112102t ⎛⎫⎛⎫⎛⎫'''++-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 整理得,20t t ''+=,解得0t '=或1t '=-. ........................................................................... 8分设,P Q 对应的参数分别为12,t t '',则121PQ t t ''=-=.所以60PCQ ∠=︒, ................ 9分 又因为O 是圆C 上的点,所以302PCQPOQ ∠∠==︒ ........................................................ 10分 解法3:(1)同解法一 ................................................................................................................... 5分(2)曲线C 的方程可化为()2211x y -+=,表示圆心为()1,0C 且半径为1的圆. ........ 6分又由①得l的普通方程为(10x -=, .................................................................. 7分则点C 到直线l的距离为d =, ............................................................................................ 8分所以1PQ ==,所以PCQ △是等边三角形,所以60PCQ ∠=︒, .................. 9分 又因为O 是圆C 上的点,所以302PCQPOQ ∠∠==︒…………………10分 4.(2018黑龙江省模拟)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C :24cos 30ρρθ-+=,[0,2]θπ∈,曲线2C :34sin 6ρπθ=⎛⎫- ⎪⎝⎭,[0,2]θπ∈.(1)求曲线1C 的一个参数方程;(2)若曲线1C 和曲线2C 相交于A 、B 两点,求AB 的值.解析:(1)由24cos 30ρρθ-+=可知,22430x y x +-+=.∴22(2)1x y -+=.令2cos x α-=,sin y α=,∴1C 的一个参数方程为2cos sin x y αα=+⎧⎨=⎩(α为参数,R α∈).(2)2C :4sincos cossin 366ππρθθ⎛⎫-= ⎪⎝⎭,∴14322x y ⎛⎫-=⎪ ⎪⎝⎭,即230x --=.∵直线230x --=与圆22(2)1x y -+=相交于A 、B 两点, ∴圆心到直线的距离14d =,∴242AB =⨯=. 5.(2018重庆9校联盟模拟)已知极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合,圆C 的极坐标方程为ρ=4cosθ,直线l 的参数方程为(t为参数).(1)求直线l 和圆C 的直角坐标方程;(2)设点P (2,1),直线l 与圆C 交于A ,B 两点,求|PA |•|PB |的值. 【解答】(本小题满分10分)【选修4﹣4:坐标系与参数方程】解:(1)∵直线l 的参数方程为(t 为参数).∴直线l 的直角坐标方程为,∵圆C 的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ, ∴圆C 的直角坐标方程为x 2+y 2﹣4x=0.(2)将代入x 2+y 2﹣4x=0,整理得:,∴|PA |•|PB |=|t 1|•|t 2|=|t 1•t 2|=3.6.(2018重庆模拟)已知曲线12cos :1sin x t C y t =-+⎧⎨=+⎩ (t 为参数),24cos :3sin x C y θθ=⎧⎨=⎩(θ为参数).(Ⅰ)化1C ,2C 的方程为普通方程,并说明它们分别表示什么曲线。
2018年高考理科数学分类汇编---参数方程极坐标
2018年全国高考理科数学分类汇编——参数方程极坐标1.(江苏)在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.解:∵曲线C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,⇒x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin(﹣θ)=2,∴﹣=2,∴直线l的普通方程为:x﹣y=4.圆心C到直线l的距离为d=,∴直线l被曲线C截得的弦长为2.2.(全国1卷)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该直线关于y轴对称,且恒过定点(0,2).由于该直线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,解得:k=或0,(0舍去)故C1的方程为:.3. (全国2卷)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l 的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.【解答】解:直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,所以:,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.4.(全国3卷)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x+,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d=<1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+),设A(x1,y1),(B(x2,y2),P(x3,y3),联立,得(m2+1)x2+2+2m2﹣1=0,,=﹣+2,=,=﹣,∴AB中点P的轨迹的参数方程为,(m为参数),(﹣1<m<1).5.(天津)已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.【解答】解:圆x2+y2﹣2x=0化为标准方程是(x﹣1)2+y2=1,圆心为C(1,0),半径r=1;直线化为普通方程是x+y﹣2=0,则圆心C到该直线的距离为d==,弦长|AB|=2=2=2×=,∴△ABC的面积为S=•|AB|•d=××=.故答案为:.。
2018届高考数学(全国通用)二轮复习中档大题精品课件 第7讲 坐标系与参数方程
1.已知圆 C 的极坐标方程为 ρ2+2
解
π 2ρ· sinθ-4-4=0,求圆 C 的半径.
以极坐标系的极点为平面直角坐标系的原点O,以极轴为x轴
的正半轴,建立直角坐标系xOy.
圆 C 的极坐标方程为 ρ +2
2
2ρ
2 2 sin θ - cos θ -4=0, 2 2
1 2 3 4
解答
4.在以 O 为极点的极坐标系中,直线 l 与曲线 C 的极坐标方程分别是
π ρcosθ+4=3
2和 ρsin2θ=8cos θ,直线 l 与曲线 C 交于点 A,B,求线段
AB 的长.
1
2
3
4
解答
考点二 参数方程与普通方程的互化
要点重组 常见曲线的参数方程
2 x = 2 pt , 2 (4)抛物线 y =2px(p>0)的参数方程为 (t 为参数). y=2pt
方法技巧
参数方程化为普通方程:由参数方程化为普通方程
就是要消去参数,消参数时常常采用代入消元法、加减消元法、
乘除消元法、三角代换法,且消参数时要注意参数的取值范围 对x,y的限制.
5 6 7
(t 为参数),
8
解答
(2)设直线l与圆C相交于A,B两点,求|PA|· |PB|的值.
x=1+ 3t, 2 解 把直线 l 的参数方程 1 y=2+2t
得1+
代入 x2+y2=16,
3 2 1 2 + 2+ t =16, 2 t 2
由|AP|=d,得3sin θ-4cos θ=5,
3 4 又 sin θ+cos θ=1,得 sin θ=5,cos θ=-5.
2018届高考数学二轮复习选考系列:参数方程学案含答案(全国通用)
参数方程【考点梳理】1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎨⎧x =f (t ),y =g (t )并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧x =f (t ),y =g (t )就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.3.常见曲线的参数方程和普通方程考点一、参数方程与普通方程的互化【例1】已知直线l 的参数方程为⎩⎨⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. [解析] (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点, 故圆C 的圆心到直线l 的距离d =|-2a |5≤4, 解得-25≤a ≤2 5. 【类题通法】1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数.2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响,要保持同解变形. 【对点训练】在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值. [解析] 直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1, 所以椭圆C 的右顶点坐标为(3,0), 若直线l 过椭圆的右顶点(3,0), 则3-0-a =0,所以a =3.考点二、参数方程的应用【例2】已知曲线C :x 24+y 29=1,直线l :⎩⎨⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.[解析] (1)曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|,则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255. 当sin(θ+α)=1时,|P A |取得最小值,最小值为255. 【类题通法】1.解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系 解决问题.2.对于形如⎩⎨⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. 【对点训练】在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数),直线l 经过点P (1,2),倾斜角α=π6.(1)写出圆C 的普通方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A ,B 两点,求|P A |·|PB |的值. [解析] (1)由⎩⎨⎧x =4cos θ,y =4sin θ,消去θ,得圆C 的普通方程为x 2+y 2=16. 又直线l 过点P (1,2)且倾斜角α=π6, 所以l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =2+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =2+12t(t 为参数).(2)把直线l 的参数方程⎩⎪⎨⎪⎧x =1+32t ,y =2+12t代入x 2+y 2=16,得⎝ ⎛⎭⎪⎫1+32t 2+⎝ ⎛⎭⎪⎫2+12t 2=16,t 2+(3+2)t -11=0, 所以t 1t 2=-11,由参数方程的几何意义,|P A |·|PB |=|t 1t 2|=11.考点三、参数方程与极坐标方程的综合应用【例3】在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. [解析] (1)C 1的普通方程为x 23+y 2=1, 由于曲线C 2的方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22,所以ρsin θ+ρcos θ=4,因此曲线C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值, 又d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2, 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12.【类题通法】1.参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.2.数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,可化繁为简. 【对点训练】在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =22t ,y =3+22t(t 为参数),在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=4sin θ-2cos θ.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与y 轴的交点为P ,直线l 与曲线C 的交点为A ,B ,求|P A ||PB |的值.[解析] (1)直线l 的普通方程为x -y +3=0, ∵ρ2=4ρsin θ-2ρcos θ,∴曲线C 的直角坐标方程为(x +1)2+(y -2)2=5. (2)将直线l 的参数方程⎩⎪⎨⎪⎧x =22t ,y =3+22t (t 为参数)代入曲线C :(x +1)2+(y -2)2=5,得到t 2+22t -3=0,∴t 1t 2=-3, ∴|P A ||PB |=|t 1t 2|=3.。
2018届高考数学二轮复习极坐标、参数方程、直角坐标方程的互化课件(全国通用)
【解析】 (1)曲线C 的普通方程为(x-2)2+y2=4,即x2+y2-4x=0,将
代入方程
x2+y2-4x=0,化简得ρ =4cosθ .所以,曲线C的极坐标方程为ρ =4cosθ .
(2)∵直线l 的直角坐标方程为x+y-4=0,由 坐标为(2,2),(4,0),所以直线l被曲线C截得的弦长为 得直线l与曲线C的交点
.
【答案】
(θ 为参数) 【解析】 曲线C的直角坐标方程是 (θ 为参数).
(x-1)2+y2=1,其参数方程为
10.已知曲线C1的参数方程为 ( ρ =2cosθ +6sinθ .
θ 为参数),曲线C2的极坐标方程为
将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.
【解析】 由 (
θ 为参数),得(x+2)2+y2=10.∴曲线C1的普通方程为
(x+2)2+y2=10.∵ρ =2cosθ +6sinθ ,∴ρ 2=2ρ cosθ +6ρ sinθ .∴x2+y2=2x+6y,即(x1)2+(y-3)2=10.∴曲线C2的直角坐标方程为(x-1)2+(y-3)2=10.
7.参数方程(Βιβλιοθήκη 为参数)所表示的曲线的普通方程为
.
【答案】
y=-2x2+1(-1≤x≤1) 【解析】 由于cos2θ =1-2sin2θ ,故y=1-2x2,即
y=-2x2+1(-1≤x≤1).
9.(广东高考)已知曲线C的极坐标方程为ρ =2cosθ .以极点为原点,极轴为x轴的正半 轴建立直角坐标系,则曲线C的参数方程为
高考数学专项训练:极坐标与参数方程
极坐标与参数方程典型题专项训练 第一卷1、(2018全国III 卷高考)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),且倾斜角为α的直线l 与O ⊙交于A B ,两点. ⑴求α的取值范围;⑵求AB 中点P 的轨迹的参数方程.2、(2017全国III 卷高考)在直角坐标系xOy 中,直线l 1的参数方程为,,x t y kt =2+⎧⎨=⎩(t 为参数),直线l 2m 为参数),设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程:(2)以坐标原点为极点,xM 为l 3与C 的交点,求M 的极径.3、(2016全国III 卷高考)在直角坐标系xOy 中,曲线1C 的参数方程为以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为(I )写出1C 的普通方程和2C 的直角坐标方程;(II )设点P 在1C 上,点Q 在2C 上,求|PQ |的最小值及此时P 的直角坐标.4、(成都市2018届高三第二次诊断)在平面直角坐标系xOy 中,曲线C的参数方程为其中α为参数,(0,)απ∈.在以坐标原点O 为极点,轴的正半轴为极轴的极坐标系中,点P 的极坐标为(1)求直线的直角坐标方程与曲线C 的普通方程;(2)若Q 是曲线C 上的动点,M 为线段PQ 的中点.求点M 到直线的距离的最大值5、(成都市2018届高三第三次诊断)在极坐标系中,曲线C 的极坐标方程是4cos ρθ=,直线l 的在直线l 上.以极点为坐标原点O ,极轴为x 轴的正半轴,建立平面直角坐标系xOy ,且两坐标系取相同的单位长度. (I )求曲线C 及直线l 的直角坐标方程;(Ⅱ)若直线l 与曲线C 相交于不同的两点,A B ,求QA QB +的值.6、(达州市2017届高三第一次诊断)在平面直角坐标系中,以原点为极点,x 轴的非负半轴为极轴建立极坐标系,直线l的参数方程为222x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),曲线C 的极坐标方程为4ρ=. (1)若l的参数方程中的t =M 点,求M 的极坐标和曲线C 直角坐标方程; (2)若点(0,2)P ,l 和曲线C 交于,A B 两点,求11PA PB+.7、(德阳市2018届高三二诊考试)在平面直角坐标系xOy 中,直线l :22x ty t=+⎧⎨=-⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C :2sin ρθ=. (1)求直线l 的极坐标方程及曲线C 的直角坐标方程; (2) 记射线0,02πθαρα⎛⎫=≥<<⎪⎝⎭与直线l 和曲线C 的交点分别为点M 和点N (异于点O ),求ON OM的最大值.8、(广元市2018届高三第一次高考适应性统考)在平面直角坐标系xOy 中,曲线C 的参数方程为4cos 2(4sin x a a y a =+⎧⎨=⎩为参数),以O 为极点,以x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为()6R πθρ=∈.(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 相交于,A B 两点,求AB 的值.9、(泸州市2018届高三第二次教学质量诊断)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线lcos sin 0θρθ+,C 的极坐标方程为4sin()6πρθ=-.(I )求直线l 和C 的普通方程;(II )直线l 与C 有两个公共点A 、B ,定点P (2,,求||||||PA PB -的值.10、(绵阳市2018届高三第一次诊断)在直角坐标系xOy 中,曲线C 的参数方程是35cos ,45sin x y αα=+⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系. (1)求曲线C 的极坐标方程; (2)设1:6l πθ=,2:3l πθ=,若12,l l 与曲线C 分别交于异于原点的,A B 两点,求AOB ∆的面积.11、(南充市2018届高三第二次高考适应性考试)在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧α=α=sin cos 3y x (其中α为参数),曲线()11:222=+-y x C ,以坐标原点O 为极点,以x 轴正半轴为极轴建立极坐标系.(Ⅰ)求曲线1C 的普通方程和曲线2C 的极坐标方程;(Ⅱ)若射线)(06>ρπ=θ与曲线1C ,2C 分别交于B A ,两点,求AB .12、(仁寿县2018届高三上学期零诊)在平面直角坐标系xoy 中,圆C 的参数方程为⎩⎨⎧θ+=θ+-=sin 42y cos 41x (θ为参数),以原点O 为极点,以x 轴非负半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρsin (θ+43π)=7. (1)求直线l 的直角坐标方程;(2)A ,B 分别是圆C 和直线l 上的动点,求|AB|的最小值.13、(遂宁市2018届高三第一次诊断)已知直线l 的参数方程为t ty t x (213231⎪⎪⎩⎪⎪⎨⎧+=--=为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为)32cos(4πθρ-=. (1)求圆C 的直角坐标方程;(2)若),(y x P 是直线l 与圆面24cos()3πρθ≤-的公共点,求y x +3的取值范围.14、(遂宁市2018届高三三诊考试)点P 是曲线2ρ=(0θπ≤≤)上的动点,()2,0A ,AP 的中点为Q .(1)求点Q 的轨迹C 的直角坐标方程;(2)若C 上点M处的切线斜率的取值范围是⎡⎢⎣⎦,求点M 横坐标的取值范围.15、(雅安市2018届高三下学期三诊)在直角坐标系中,已知圆C 的圆心坐标为(2,0),,以坐标原点为极点,X 轴的正半轴为极轴建立极坐标系,直线l 的参数方程为:1x ty t=-⎧⎨=+⎩(t 为参数).(1)求圆C 和直线l 的极坐标方程; (2)点P 的极坐标为1,2π⎛⎫ ⎪⎝⎭,直线l 与圆C 相交于A ,B ,求PA PB +的值.16、(宜宾市2018届高三第一次诊断)在直角坐标系xOy 中,曲线C 的参数方程为⎪⎩⎪⎨⎧=+=θθsin 5cos 53y x(其中参数R ∈θ).(1)以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,求曲线C 的极坐标方程;(2)直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩ (其中参数R t ∈,α是常数),直线l 与曲线C 交于B A ,两点,且32=AB ,求直线l 的斜率.17、(资阳市2018届高三4月模拟考试(三诊))在平面直角坐标系中,直线l的参数方程为4x y ⎧=⎪⎪⎨⎪=-⎪⎩,(其中t 为参数),现以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为4cos ρθ=.(1)写出直线l 普通方程和曲线C 的直角坐标方程;(2)过点(10)M ,且与直线l 平行的直线l '交C 于A ,B 两点,求||AB .18、(成都市石室中学高2018届高三下期二诊)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为2sin 2cos (0)a a ρθθ=>,过点的直线的参数方程为222242x t y t ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线与曲线相交于两点.(1)写出曲线的直角坐标方程和直线的普通方程;(2)若2PA PB AB ⋅=,求a 的值.坐标系与参数方程 第二卷一、解答题【2018,22】在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.【2017,22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l a .【2016,23】在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C .(Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【2015,23】在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(I )求1C ,2C 的极坐标方程; (II )若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.【2014,23】已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.【2013,23】已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【2012,23】已知曲线1C 的参数方程为⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ。
专题11 极坐标与参数方程(原卷版)
专题11 极坐标与参数方程【考点1】极坐标方程的概念(1)、极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)、极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ. 一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.常见圆与直线的极坐标方程二、考点再现一、核心先导曲线 图形 极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆)(πθθρ≤≤=0sin 2r 过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或 (2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<【考点2】极坐标与直角坐标的互化(1)、互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)、互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩ 222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角.【考点3】直角的参数方程直线参数方程中t 的几何意义的应用:为参数)(t t y y t x x ⎩⎨⎧+=+=θθsin cos 00 t 表示直线上任意一点到定点00(,)P x y 的距离. 直线参数方程为参数)(t t y y t x x ⎩⎨⎧+=+=θθsin cos 00(t 为参数),椭圆方程2222:1x y C a b ,相交于,A B 两点,直线上定点00(,)P x y将直线的参数方程带入椭圆方程,得到关于t 的一元二次方程,则: (1)2121212()4ABt t t t t t ⎪⎩⎪⎨⎧<->+=+=+02121212121t t t t t t t t t t PB PA 21t t PB PA =⋅若M 为AB 的中点,则122t t PM【考点4】曲线的参数方程1.圆的参数方程如图所示,设圆O 的半径为r ,点M 从初始位置0M 出发,按逆时针方向在圆O 上作匀速圆周运动,设(,)M x y ,则cos ()sin x r y r θθθ=⎧⎨=⎩为参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数方程与极坐标1.在平面直角坐标系xOy 中,直线l 的参数方程为,(1x tt y t =⎧⎨=+⎩为参数,t R ∈),圆C 的参数方程为cos 1,(sin x y θθθ=+⎧⎨=⎩为参数,[)0,2θπ∈),则圆心C 到直线l 的距离为( )A .0B .2C .2【答案】C【解析】试题分析:直线l 的普通方程为10x y -+=,圆的直角坐标方程为()2211x y -+=,圆心为()1,0C ,所以圆心C 到直线l 的距离为d == C. 考点:直线的参数方程与圆的极坐标方程. 2.⊙O 1极坐标方程为θρcos 4=,⊙O 2参数方程为θθθ(sin 22cos 2⎩⎨⎧+-==y x 为参数),则⊙O 1与⊙O 2公共弦的长度为( )A .2B .12+C .22D .1 【答案】C【解析】因为⊙O 1的普通方程为2240x y x +-=,⊙O 2的普通方程为22(2)4x y ++=,所以两圆作差可得0x y +=,所以圆O 1到直线x+y=0所以公共弦的长度为l ==3.已知点(1,0),M -直线:1l y x =+与曲线2c o s :(sin x C y ααα=⎧⎨=⎩为参数)两点相交于21,P P ,2121)2(;)1(P P MP MP 求求【答案】(1)1.2(2【解析】试题分析:解(1)曲线C :⎩⎨⎧==ααsin cos 2y x 的一般方程为:1422=+y x 直线l :1+=x y 的参数方程为:⎪⎪⎩⎪⎪⎨⎧=+-=ty t x 22221把直线方程⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 22221代入曲线C :1422=+y x ,得:062252=--t t 设21,t t 是方程的两根,则21MP MP =5621=t t 6分 21)2(P P =528564)522(4)(22122121=⨯+=-+=-t t t t t t . 12分 考点:直线与圆的位置关系点评:主要是考查了直线与圆的位置关系的运用,属于基础题。
4.在直角坐标系xOy 中,直线l 过点()3,4M ,其倾斜角为45︒,以原点为极点,以x 正半轴为极轴建立极坐标,并使得它与直角坐标系xOy 有相同的长度单位,圆C 的极坐标方程为4sin ρθ=.(1)求直线l 的参数方程和圆C 的普通方程; (2)设圆C 与直线l 交于点,A B ,求MA MB ⋅的值.【答案】(1)2240x y y +-=;(2)12129MA MB t t t t ⋅=⋅==【解析】试题分析:(Ⅰ)直线l 过点M (3,4),其倾斜角为45°,参数方程为32{ 4x y =+=+,(t 为参数).由极坐标与直角坐标互化公式代入化简即可得出圆C 的普通方程;(Ⅱ)直线l的参数方程代入圆方程得290t ++=,利用|MA|•|MB|=|t 1|•|t 2|=|t 1t 2|即可得出. 试题解析:(1)直线l 过点()3,4M ,其倾斜角为45︒,参数方程为32{4x y =+=(t 为参数).圆C 的极坐标方程为4sin ρθ=,直角坐标方程为2240x y y +-=;(2)将直线的参数方程代入圆方程得:290t ++= 设,A B 对应的参数分别为12,t t,则12129t t t t +=-=, 于是12129MA MB t t t t ⋅=⋅==.5.在直角坐标系xOy 中,以坐标原点O 为极点, x 轴正半轴为极轴建立极坐标系,曲线1C :24cos 30ρρθ-+=, []0,2θπ∈,曲线2C : 34sin 6ρπθ=⎛⎫- ⎪⎝⎭,[]0,2θπ∈.(Ⅰ)求曲线1C 的一个参数方程;(Ⅱ)若曲线1C 和曲线2C 相交于A , B 两点,求AB 的值. 【答案】(Ⅰ)2{x cos y sin αα=+=(α为参数, R α∈);. 【解析】试题分析:(1)先将曲线1C 的普通方程求出,然后根据圆的参数方程{x a rcos y b rsin αα=+=+即可(2)化曲线2C为直线230x --=,问题转化为求直线与圆的弦长,按弦长公式(Ⅰ)由24cos 30ρρθ-+=可得, 22430x y x +-+=,∴()2221x y -+=.令2cos x α-=, sin y α=.∴1C 的一个参数方程为2{x cos y sin αα=+=(α为参数, R α∈).(Ⅱ)2C : 4sincos cossin 366ππρθθ⎛⎫-= ⎪⎝⎭,∴1432x y ⎛⎫=⎪ ⎪⎝⎭,即230x --=.∵直线230x --=与圆()2221x y -+=相交于A , B 两点,∴圆心到直线的距离14d =,∴22AB ===.6.(本小题满分12分)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ2sin θ=cos a θ (a >0),过点(2,4)P --的直线l的参数方程为2,2,x y ⎧⎪⎪⎨⎪⎪⎩=-+=-4 (t 为参数),直线l 与曲线C 相交于A ,B 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若2||||||PA PB AB ⋅=,求a 的值.【答案】(Ⅰ)2(0)y ax a =>,2y x =- (Ⅱ)2. 【解析】试题分析:(Ⅰ)根据222cos ,sin x y x y ρρθρθ=+==,可将曲线C 的极坐标方程化为直角坐标2(0)y ax a =>,两式相减消去参数得直线l 的普通方程为2y x =-.(Ⅱ)由直线参数方程几何意义有1212,||PA PB t t AB t t ⋅=⋅=-,因此将直线l 的参数方程代入曲线C 的直角坐标方程2(0)y ax a =>中,得28)4(8)0t a t a +++=,由韦达定理有12128),4(8)t t a t t a ++⋅=+.解之得:2a =或8a =- (舍去)试题解析:(Ⅰ)由2sincos (0)a a ρθθ=>得22sin cos (0)a a ρθρθ=>,∴曲线C 的直角坐标方程为2(0)y ax a =>. 直线l 的普通方程为2y x =-.(Ⅱ)将直线l 的参数方程代入曲线C 的直角坐标方程2(0)y ax a =>中,得28)4(8)0t a t a +++=, 设A B 、两点对应的参数分别为12t t ,,则有12128),4(8)t t a t t a +=+⋅=+.∵2PA PB AB ⋅=,∴21212()t t t t -=⋅, 即21212()5t t t t +=⋅.∴22)]20(8),6160a a a a +=++-=.解之得:2a =或8a =- (舍去),∴a 的值为2.考点:极坐标方程化为直角坐标,参数方程化普通方程,直线参数方程几何意义7.在平面直角坐标系xOy 中,直线l的参数方程为22x ty =--⎧⎪⎨=⎪⎩(t 为参数)直线l 与曲线22:(2)1C y x --=交于,A B 两点. (1)求AB 的长; (2)在以O 为极点,x 轴的正半轴为极轴建立极坐标系,设点P的极坐标为3(,)4π,求点P 到线段AB 中点M 的距离.【答案】(1);(2)2||=PM . 【解析】试题分析:(1)把直线的参数方程代入曲线C 的方程,得12124,10t t t t +=-=-,即可求解;(2)根据中点坐标的性质可得AB 中点M 对应的参数为1222t t +=-,由t 的几何意义,可运算结果.试题解析:(1)直线l 的参数方程化为标准型⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 232212(t 为参数)代入曲线C 方程得01042=-+t t 设B A ,对应的参数分别为21,t t ,则421-=+t t ,1021-=t t ,所以142||||21=-=t t AB(2)由极坐标与直角坐标互化公式得P 直角坐标)2,2(-,所以点P 在直线l ,中点M 对应参数为2221-=+t t , 由参数t 几何意义,所以点P 到线段AB 中点M 的距离2||=PM 考点:直线的参数方程;极坐标方程的应用. 8.求直线()11:{5x t l t y =+=-+为参数和直线2:0l x y --=的交点P 的坐标,及点P 与()1,5Q -的距离。
【答案】(1)t =;(2)PQ ==【解析】本试题主要考查了直线与直线的交点坐标的运用。
解:将1{5x t y =+=-+代入0x y --=得t =…………………………6分得()1P +,而()1,5Q -,得PQ ==分9.圆O 1和圆O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过圆O 1、圆O 2交点的直线的直角坐标方程.【答案】(1)x 2+y 2+4y =0(2)y =-x.【解析】以极点为原点、极轴为x 轴正半轴建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x =ρcos θ,y =ρsin θ,由ρ=4cos θ得ρ2=4ρcos θ,所以x 2+y 2=4x.即圆O 1的直角坐标方程为x 2+y 2-4x =0,同理圆O 2的直角坐标方程为x 2+y 2+4y =0.(2)由22224040x y x x y y ⎧⎪⎨⎪⎩+-=,++=,解得1100x y ⎧⎨⎩=,=,或者2222x y ⎧⎨⎩=,=-,即圆O 1、圆O 2交于点(0,0)和(2,-2),故过交点的直线的直角坐标方程为y =-x.10.选修4—4:坐标系与参数方程 已知直线l 经过点1,12P ⎛⎫⎪⎝⎭,倾斜角6πα=,圆C 的极坐标方程为4πρθ⎛⎫=- ⎪⎝⎭.(Ⅰ)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (Ⅱ)设l 与圆C 相交于,A B 两点,求点P 到,A B 两点的距离之积.【答案】(1)22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(2)14.【解析】试题分析:(1)由参数方程的概念可以写成l 的参数方程为126{16x tcos y tsinππ=+=+,化简为12{112x y t=+=+ (t为参数) ;在4πρθ⎛⎫=- ⎪⎝⎭两边同时乘以ρ,且ρ2=x 2+y 2,ρcosθ=x ,ρsinθ=y ,∴22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.(2)在l 取一点,用参数形式表示122{ 112x y t=+=+,再代入22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,得到t 2+12t -14=0,|PA|·|PB|=|t 1t 2|=14.故点P 到点A 、B 两点的距离之积为14. 试题解析:(1)直线l 的参数方程为126{16x tcos y tsin ππ=+=+,即12{ 112x y t==+ (t 为参数)由4πρθ⎛⎫=- ⎪⎝⎭,得ρ=cosθ+sinθ,所以ρ2=ρcosθ+ρsinθ,∵ρ2=x 2+y 2,ρcosθ=x ,ρsinθ=y ,∴22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.(2)把122{112x y t=+=+代入22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭. 得t 2+12t -14=0,|PA|·|PB|=|t 1t 2|=14.故点P 到点A 、B 两点的距离之积为14. 考点:1.参数方程的应用;2.极坐标方程与直角坐标方程的转化.11.以直角坐标系的原点O 为极点, x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为1{2x tcos y tsin θθ=+=,( t 为参数, 0θπ<<),曲线C 的极坐标方程为2sin2cos 0ραα-=.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A , B 两点,当θ变化时,求AB 的最小值. 【答案】(1)22y x =(2)2【解析】试题分析:(1)本问考查极坐标与直角坐标互化公式,根据{x cos y sin ρθρθ==可得22sin 2cos ραρα=,所以曲线C 的直角坐标方程为22y x = ;(2)本问考查直线参数方程标准形式下的几何意义,即将直线参数方程的标准形式1{2x tcos y tsin θθ=+=,代入到曲线C 的直角坐标方程,得到关于t 的一元二次方程,设,A B 两点对应的参数分别为12,t t ,列出12t t +, 12t t ⋅,12AB t t =-=AB 的最小值.试题解析:(I )由2sin 2cos 0ραα-=由,得22sin 2cos .ραρα= 曲线 C 的直角坐标方程为(II )将直线l 的参数方程代入,得22sin 2cos 10.t t θθ--=设,A B 两点对应的参数分别为12,t t 则1222cos sin t t θθ+=, 1221sin t t θ⋅=-,12AB t t =-==22.sin θ= 当2πθ=时, AB 的最小值为2.考点:1.极坐标方程;2.参数方程.12.(本小题满分12分) 在平面直角坐标系xOy 中,已知曲线162cos :2sin x C y θθ=+⎧⎨=⎩(θ为参数),过点(02)P ,且斜率为k 的直线与曲线1C 相交于不同的两点A B ,. (Ⅰ)求k 的取值范围;(Ⅱ)设(6,0)Q ,是否存在常数k ,使得向量OA OB + 与PQ共线?如果存在,求k值;如果不存在,请说明理由.【答案】(Ⅰ)304⎛⎫- ⎪⎝⎭,;(Ⅱ)没有符合题意的常数k ,理由详见解析.【解析】试题分析:(Ⅰ)首先将曲线1C 的方程化为普通方程22(6)4x y -+=,设过(02)P ,且斜率为k 的直线方程为2y kx =+,然后联立圆方程与直线方程,消去y 得到一个关于x 的一元二次方程,由已知此方程的判别式大于零,从而得到关于k 的不等式,解此不等式即得k 的取值范围;(Ⅱ)假设存在常数k ,使得向量OA OB + 与PQ共线,设1122()()A x y B x y ,,,,则1212()OA OB x x y y +=++,由(Ⅰ)及韦达定理,可用k 的代数式表示出向量OA OB + ,再写出向量PQ的坐标,然后由向量共线的坐标条件得到关于字母k 的方程,解之求得k 的值,最后看此k 的值是否符合题目的条件,符合则存在,不符合则不存在.试题解析:(Ⅰ)曲线1C 的方程可写成22(6)4x y -+= 过(02)P ,且斜率为k 的直线方程为2y kx =+ 代入曲线1C 的方程得22(2)12320x kx x ++-+=整理得22(1)4(3)360k x k x ++-+= ① 直线与圆交于两个不同的点A B ,等价于2222[4(3)]436(1)4(86)0k k k k ∆=--⨯+=-->解得304k -<<,即k 的取值范围为304⎛⎫- ⎪⎝⎭, (Ⅱ)设1122()()A x y B x y ,,,,则1212()OA OB x x y y +=++,由方程①,1224(3)1k x x k -+=-+ ②又1212()4y y k x x +=++ ③而(02)(60)(62)P Q PQ =-,,,,,所以OA OB + 与PQ共线等价于12122()6()x x y y -+=+将②③代入上式,解得34k =-由(Ⅰ)知304k ⎛⎫∈- ⎪⎝⎭,,故没有符合题意的常数k 考点:1.参数方程与普通方程的互化;2.直线与圆的位置关系;3.向量平行.13.(坐标系与参数方程选做题)在极坐标系) , (θρ中,直线4πθ=(R ρ∈)被圆θρsin 2=截得的弦的长是 .【解析】试题分析:直线方程化为y x =,圆方程化为:222x y y +=,即22(1)1x y +-=,圆心坐标为(0,1),半径r =1,圆心到直线的距离为:2d ==,所以,截得的弦长为:=. 考点:1、极坐标方程化为普通方程;2、点到直线的距离;3、直线被圆所截弦长的求法;4、数形结合的数学思想方法.14.(坐标系与参数方程)已知曲线21,C C 的极坐标方程分别为1cos =θρ,)20,0(cos 4πθρθρ<≤≥=则曲线1C 与2C 交点的极坐标...为 .【答案】)3,2(π 【解析】试题分析:∵cos 14cos ρθρθ=⎧⎨=⎩,∴24c o s1θ=,∴21c o s 4θ=,由02πθ≤<,∴1co s 2θ=,∴3πθ=,代入cos 1ρθ=中,得2ρ=,∴曲线1C 与2C 交点的极坐标...为)3,2(π考点:极坐标方程.15.在直角坐标系中,圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2+2sin α(α为参数),若以原点O 为极点,以x 轴正半轴为极轴建立坐标系,则圆C 的极坐标方程为________【答案】ρ=4sin θ 【解析】略。