第五讲数列

合集下载

第五讲 等差数列及运用

第五讲   等差数列及运用

第五讲等差数列及运用(二)姓名:典型例题 1.阳光影视城的一个放映厅有20排座位,第一排有30个座位,往后每一排都比前一排多2个座位,这个放映厅一共有多少个座位?思路点拨:由题义可知,放映厅“每排比前一排多2个座位”,这就是说,把每排的座位数按从小到大的顺序排列在一起,就是一个等差数列。

而且,第一排的座位数是首项,最后一排的座位数是末项,排数就是项数。

本题求一共有多少个座位就是求等差数列的和。

只是在本题中缺少末项的数字,需要先求出末项。

典型例题 2.建筑工地有一批砖码在一起,最上层码了2块砖,第二层码了6块砖,第三层码了10块砖……依次都比上面一层多4块砖,已知最下面的一层是198块砖,问这堆砖共有多少块?思路点拨:“依次都比上面一层多4块砖”,这就是说,把每层的砖块数按从小到大的顺序排列在一起,就是一个等差数列。

而且,最上层的块数是首项,最下层的块数是末项,层数就是项数。

本题求一共有多少块砖就是求等差数列的和。

在本题中缺少项数的具体数字,需要先求出项数。

已知首项、末项和公差,根据公式求出项数,也就是砖的层数,就是“(198-2)÷4+1”,再利用求和公式求一共有多少块砖。

典型例题 3.九年级二班有45位同学举行一次同学联欢会,同学们在一起一一握手,每两个同学只能握一次手,问同学们一共握了多少次手?思路点拨:假设同学们排成一列,第一个同学需要与其他44位同学握手,第二个同学由于与第一个同学握过手了,只能与他自己后面的43名同学握手,第三个同学只能与自己后面的42名同学握手……握手次数分别为44,43,42,41……3,2,1.这样就可以求出一共握了多少次手了。

基础夯实:1. 3,6,9,12,…300,303是一个等差数列,这个等差数列中所有数的和是()。

2.前25个自然数1+2+3+4+5…+24+25=325,求接下来25个自然数的和,即26+27+28…+49+50的和是多少?3.8×2+8×5+8×8…+8×2003=拓展运用4.时钟1点敲1下,2点敲2下,3点敲3下,依此类推,从1点到12点这12小时一共敲多少下?5.有30把钥匙弄混了,为了使每把钥匙配上自己的锁,至少要试多少次?综合创新:6.盒子里放有3个乒乓球,魔术师第一次从盒子里拿出一个乒乓球,把它变成3个乒乓球,放回盒子;第二次从盒子里拿出2个乒乓球,把每个乒乓球变成3个乒乓球,再放回盒子;第三次从盒子里拿出3个乒乓球,把每个乒乓球变成3个乒乓球,再放回盒子……第十次从盒子里拿出10个乒乓球,把每个乒乓球变成3个乒乓球,再放回盒子,这时盒子里一共有多少个乒乓球?。

人教版高数必修五第5讲:等差数列前n项和公式(学生版)

人教版高数必修五第5讲:等差数列前n项和公式(学生版)

等差数列的前n 项和__________________________________________________________________________________ __________________________________________________________________________________教学重点: 掌握等差数列前项和通项公式及性质, 数列最值的求解, 与函数的关系教学难点: 数列最值的求解及与函数的关系1. 数列的前n 项和一般地, 我们称为数列的前项和, 用表示;记法: 显然, 当时, 有 所以与的关系为n a = ①1S ()1n =②______________2. 等差数列的前n 项和公式___________________3. 等差数列前n 项和公式性质(1) 等差数列中, 依次项之和仍然是等差数列, 即 成等差数列, 且公差为_______(2) n S n ⎧⎫⎨⎬⎩⎭是等差数列 (3) 等差数列中, 若, 则;若 则(4) 若和均为等差数列, 前项和分别是和, 则有4. 项数为的等差数列, 有有偶 -奇 =, 奇 /偶 =5. 等差数列前n 项和公式与函数的关系等差数列前n 项和公式()112n n n S na d -=+可以写成____________________若令1,,22d d A a B =-=类型一: 数列及等差数列的求和公式例1.已知数列{}n a 的前n 项和22,n S n n =+ 求{}n a练习1.已知数列的前项和求.练习2: 已知数列的前项和求例2.已知等差数列的前项和为 , 求及练习3.已知等差数列的前项和为,,求.....练习4.已知等差数列的前项和为, 求.(1) 例3.在等差数列中, 前项和为(2) 若81248,168,S S ==求1a 和公差d(3) 若499,6,a a ==-求满足54n S =的所有n 的值练习5.设 是等差数列的前项和, 则___________练习6.在等差数列中, 则的前5项和 ______________类型二: 等差数列前项和公式的性质(1) 例4.在等差数列中,(2) 若, 求(3) 若共有项, 且前四项之和为21, 后四项之和为67, 前项和 , 求(4) 若10100100,10S S ==求110S练习7.(2014山东淄博一中期中)设 是等差数列的前项和, 若, 则等于() A.19 B.13 C.310 D.18练习8.(2014山东青岛期中)已知等差数列的公差, 则 ()A.2014B.2013C.1007D.1006例5.已知等差数列和的前项和分别为和, 且则=()A..........B...........C..........D..练习9.已知是等差数列, 为其前项和, 若则的值为______练习10.已知等差数列的公差为2, 项数是偶数, 所有奇数项之和为15, 所有偶数项之和为35, 则这个数列的项数为______________类型三: 等差数列前项和公式的最值及与函数的关系例6.已知数列{}n a 的前项和为2230n S n n =-(1) 这个数列是等差数列吗? 求出它的通项公式(2) 求使得n S 最小的n 值练习11.已知等差数列的前项和为, 为数列的前项和, 求数列的通项公式练习12.等差数列中, 若, 求=_____________例7.已知等差数列中, 求使该数列前项和取得最小值的的值练习13.已知等差数列中, 则使前项和取得最小值的值为()A.7B.8C.7或8D.6或7练习14.数列满足, 则使得其前项和取得最大值的等于()A.4B.5C.6D.71.四个数成等差数列, S4=32, a2a3=13, 则公差d 等于( )A. 8B. 16C. 4D. 02.设{an}是等差数列,Sn 为其前n 项和,且S5<S6,S6=S7>S8,则下列结论错误的是( )A. d<0B. a7=0C. S9>S5D. S6与S7均为Sn 的最大值.3.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,Sn 是等差数列{an}的前n 项和,则使得Sn 达到最大值的n 是( )A. 21B. 20C. 19D. 184.已知等差数列{an}的前n 项和为Sn ,a5=5,S5=15,则数列{}的前100项和为( )A.100101B.99101C.99100D.1011005.在等差数列{an}中, 若S12=8S4, 且d ≠0, 则等于( )A. B. C. 2 D.6.设Sn 为等差数列{an}的前n 项和,若a1=1,公差d =2,Sk +2-Sk =24,则k =( )A. 8B. 7C. 6D. 57.(2014·福建理,3)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( )A. 8B. 10C. 12D. 14_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.等差数列{an}的前n项和为Sn, 已知am-1+am+1-a=0, S2m-1=38, 则m=( )A. 38B. 20C. 10D. 92.数列{an}是等差数列, a1+a2+a3=-24, a18+a19+a20=78, 则此数列的前20项和等于( )A. 160B. 180C. 200D. 2203.等差数列{an}的公差为d, 前n项和为Sn, 当首项a1和d变化时, a2+a8+a11是一个定值, 则下列各数中也为定值的是( )A. S7B. S8C. S13D. S154.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )A. 5B. 4C. 3D. 25.在等差数列{an}中, a1>0, d=, an=3, Sn=, 则a1=________, n=________.6.设Sn是等差数列{an}(n∈N*)的前n项和, 且a1=1, a4=7, 则S5=________.7.设{an}是公差为-2的等差数列,若a1+a4+a7+…+a97=50,则a3+a6+a9+…+a99的值为________.8.若等差数列{an}满足a7+a8+a9>0, a7+a10<0, 则当n=________时, {an}的前n项和最大.9.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{a n}的通项公式;(2)求数列{}的前n项和.10.设{an}是等差数列,前n项和记为Sn,已知a10=30,a20=50.(1)求通项a n;(2)若Sn=242, 求n的值.能力提升11.在等差数列{an}和{bn}中, a1=25, b1=15, a100+b100=139, 则数列{an+bn}的前100项的和为( )A. 0B. 4 475C. 8 950D. 10 00012.等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值为4,则抽取的项是( )A. a8B. a9C. a10D. a1113.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )A. 12B. 16C. 9D. 16或914.已知一个等差数列的前四项之和为21,末四项之和为67,前n 项和为286,则项数n 为( )A. 24B. 26C. 27D. 2815.设Sn 为等差数列{an}的前n 项和,S3=4a3,a7=-2,则a9=( )A. -6B. -4C. -2D. 216.设Sn 是等差数列{an}的前n 项和,若=,则等于( )A.310B.13C.18D.1917.已知等差数列{an}的前n 项和为Sn, 若=a1+a200, 且A.B.C 三点共线(该直线不过点O), 则S200=( )A. 100B. 101C. 200D. 20118.已知等差数列{an}的前n 项和为18, 若S3=1, an +an -1+an -2=3, 则n =________.19.已知数列{an}的前n 项和Sn =n2-8,则通项公式an =________.20.设{an}是递减的等差数列, 前三项的和是15, 前三项的积是105, 当该数列的前n 项和最大时, n 等于( )A. 4B. 5C. 6D. 721.等差数列{an}中, d<0, 若|a3|=|a9|, 则数列{an}的前n 项和取最大值时, n 的值为______________.22.设等差数列的前n 项和为Sn.已知a3=12,S12>0,S13<0.(1)求公差d 的取值范围;(2)指出S1, S2, …, S12中哪一个值最大, 并说明理由.23.已知等差数列{an}中, a1=1, a3=-3.(1)求数列{a n }的通项公式;(2)若数列{an}的前k 项和Sk =-35, 求k 的值.24.在等差数列{an}中:(1)已知a5+a10=58, a4+a9=50, 求S10;(2)已知S7=42, Sn =510, an -3=45, 求n.25.已知等差数列{an}的前n 项和Sn =-n2+n, 求数列{|an|}的前n 项和Tn.课程顾问签字: 教学主管签字:。

(高级老师用)第五讲:找规律

(高级老师用)第五讲:找规律

(高级老师用)第五讲:找规律————————————————————————————————作者:————————————————————————————————日期:23 / 6品·淘奥数(高年段 老师用)第五讲:找规律专题简析:事物的发展是有规律的,只有认为观察事物,找到事物发展变化的规律,才能深入地了解和掌握它,从而找到解决问题的方法和途径。

在数学竞赛中,常常出现按规律填数的题目,一般可以分为数列规律或数表规律。

找数列规律的方法可以归纳如下:1、根据相邻两数找出规律;2、根据相隔两数找出规律。

找出数表规律的方法可以归纳如下:1、如果是填出数表第几行第n 个数字是多少,那么就可以只观察数表各行的第n 个数;2、不要被错综复杂的数学所迷惑,从问题入手,可以倒推。

总之,规律并不一定唯一,只要能够言之有理,就可以认为是正确的。

★小试牛刀1、请找出下列各组数排列的规律,并根据规律在括号里填上适当的数。

(1)1,5,9,13,( ),21,25。

(2)3,6,12,24,( ),96,192。

(3)1,4,9,16,25,( ),49,64,81。

(4)2,3,5,8,12,17,( ),30,38。

(5)21,4,16,4,11,4,( ),( )。

(6)1,6,5,10,9,14,13,( ),( )。

分析与解答:(1) 相邻两数的差是4,括号内应该填17;(2) 后一个数是前一个数的2倍,所以括号内应填48; (3) 第n 个数是n 的平方,所以括号内应填36; (4) 第n 个数是前一个数加n-1,所以括号内应填23;(5) 偶位数都是4不变,奇位数比上一位数依次减5,所以括号内应填6,5; (6) 分别加5再减1,以相邻两个数为一个周期,所以括号内应填18,17。

2.找出下面各组数排列的规律,并根据规律在括号里填上合适的数。

(1)1,4,3,6,5,( ),( )。

数学分析第五讲 上下极限定义与基本性质与应用

数学分析第五讲 上下极限定义与基本性质与应用
1 N yn A x k A n k 1 两边取上极限, 则有
能否用数列 极限保序性?
1 N lim sup yn A lim( xk A ) . n n n k 1
由 任意性: limsup yn A 0.
n
因此 lim inf yn A limsup yn A 0
n n
所以 lim yn A.
n
数列上下极限的定义与基本性质
例3 证明:
xn 0, lim xn A 0, 证明:lim n x1 x2
n n
xn A.
因为 lim xn A, 所以
n
0, N N * , n N : A xn A
n
8n +3
8n
8n
sinΒιβλιοθήκη 8n+3 4
1 2 = 1 8n 2
8n
lim x8n e
n n
lim x8n 1
n
2 e 2 2 2
lim x8n 2 e 1
lim x8n 3 e
总习题课

2 2
lim x8n 4 e , lim x8n 5 e
n n
2 , 2
lim x8n 6 e 1, lim x8n 7 e
2 n n 2 2 lim sup xn e 1,lim inf xn e n n 2
斯笃茨定理的应用
例3 1p 2 p 求极限 lim p n n
p p 1 2 n
np
n , p N *. p1
解:原式 lim

【小升初专项训练】2 数列分组

【小升初专项训练】2 数列分组

第5讲数列分组第一关【例1】将下列6个数分成两组,每组3个,要求两组中各数的和相等:6,12,26,38,50,68【答案】6+26+68=12+38+50【例2】将下列10个数分成两组,每组5个,要求两组中各数的乘积相等:6,8,9,13,21,26,35,44,50,55【答案】44×13×21×50×6=55×26×35×8×9【例3】将下列10个数分成2组,每组5个,要求一组为公差是8的等差数列,一组是公比是3的等比数列。

2,6,18,26,34,42,50,54,58,162【答案】等比数列:2,6,18,54,162;等差数列:26,34,42,50,58【例4】将下列9个数分成2组,每组5个(可重复使用),要求一组为公差是5的等差数列,一组是公比是2的等比数列。

7,8,13,14,18,23,28,56,112【答案】等比数列:7,14,28,56,112;等差数列:8,13,18,23,28【例5】将下列10个数分成2组,每组5个,要求一组为公差是35的等差数列,一组是公比是5的等比数列。

5,15,25,50,85,120,125,155,625,3125【答案】等比数列:5,25,125,625,3125;等差数列:15,50,85,120,155第二关等差等比数列【例6】按规律填数:1,2,4,4,7,8,______,______,13,______,______。

【答案】10,16,32,16【例7】按规律填数:3,5,6,10,12,15,______,______,48,______,______。

【答案】24,20,25,92【例8】自然数按下图所示的方法排列.问:(l)射线b上第1995个数是几?(2)数1995在哪条射线上?【答案】(1)5984;(2)C【例9】有一列数:1,1993,1992,1,1991,1990,1,…,从第三个数起,每一个数都是它前面两个数中大数减小数的差,求从第一个起到1993个数这1993个数之和.【答案】1766241第三关【例10】下面是一组有规律排列的数组11 123(,,);111 456(,,);111 789(,,)……;求第100个括号内三个分数分母的和。

四年级奥数第五讲-等差数列(二)-教师版

四年级奥数第五讲-等差数列(二)-教师版

第五讲等差数列(二)解题方法某些问题以转化为求若干个数的和解决这些问题时先要判断这些数是否成为等差数列,如果是等差数列才可以运用它的一些公式。

在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。

例题1小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。

这本书共有多少页?提示根据条件“以后每天比前一天多看2页”可以知道他每天看的页数都是按照一定规律排列的数,即20、22、24、…、76、78。

要求这本书共有多少页也就是求出这列数的和。

解:由题意可知,这列数是一个等差数列,首项=20,末项=78,项数=30,所以这本书共有(20+78)×30÷2=1470(页)答:这本书共有1470页。

引申1、文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。

文丽在这些天中共学会了多少个英语单词?解:文丽每天学会的单词个数是一个等差数列,即3、4、5、6、…、21。

首项=3,末项=21,项数=(21-3)÷2+1=10。

所以,文丽在这些天中共学会了(3+21)×10÷2=120(个)答:文丽在这些天中共学会了120个英语单词。

2、李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。

这批零件共有多少个?答:(25+63)×20÷2=880(个)3、小李读一本短篇小说,她第一天读了20页这个等差数列共有多少项?答:这个等差数列共有29项。

例题2 建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。

提示:根据图可以知道,这是一个以3为首项,以1为公差的等差数列,求钢管一共有多少根其实是求这列数的和。

解:求钢管一共有多少根,其实就是求3+4+5+…+9+10的和。

项数=(10-3)÷1+1=8,根据公式求和为:3+4+5+…+9+10=(3+10)×8÷2=13×8÷ 2=52(根)。

高中数学竞赛辅导讲义-第五章--数列【讲义】

高中数学竞赛辅导讲义-第五章--数列【讲义】

第五章 数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。

其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。

定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。

若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn .定义3 等比数列,若对任意的正整数n ,都有q a a nn =+1,则{a n }称为等比数列,q 叫做公比。

定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。

第五讲 级数

第五讲  级数

发散点的全体称为其发散域 . 发散域
机动 目录 上页 下页 返回 结束
在收敛域上, 函数项级数的和是 x 的函数 为级数的和函数 , 并写成 和函数
称它
若用
表示函数项级数前 n 项的和, 即
令余项 则在收敛域上有
机动
目录
上页
下页
返回
结束
用±R 表示幂级数收敛与发散的分界点, R = 0 时, 幂级数仅在 x = 0 收敛 ; R = ∞ 时, 幂级数在 (-∞, +∞) 收敛 ;
若 un ≥ 0, 则称 ∑un 为正项级数 .
n=1 ∞
比较审敛法) 定理 (比较审敛法 比较审敛法 且存在 则有 (1) 若强级数 (2) 若弱级数
设 有
是两个正项级数, (常数 k > 0 ), 也收敛 ; 也发散 .
对一切
收敛 , 则弱级数 发散 , 则强级数
机动
目录
上页
下页
返回
结束
定理
(比较审敛法的极限形式) 设两正项级数
说明: 说明 (1) 性质2 表明收敛级数可逐项相加或减 . (2) 若两级数中一个收敛一个发散 , 则 ∑( un ± vn ) 必发散 . (3)但若二级数都发散 ,
n=1 ∞
不一定发散.
例如, 取un = (1)2n , vn = (1)2n+1, 例如
机动
目录
上页
下页
返回
结束
一,正项级数及其审敛法
0 < R < ∞ , 幂级数在 (-R , R ) 收敛 ; 在[-R , R ]
外发散; 在 x = ±R 可能收敛也可能发散 . 收敛区间. 收敛区间 R 称为收敛半径 ,(-R , R ) 称为收敛区间 收敛半径 (-R , R ) 加上收敛的端点称为收敛域 收敛域. 收敛域

第五讲 数学教学设计1

第五讲 数学教学设计1

教学难点
是指学生接受起来比较困难的知识点。 是指学生接受起来比较困难的知识点。 往往是由于学生的认知能力、 往往是由于学生的认知能力 、 接受水平与新 老知识之间的矛盾造成的,也可能是学新知识时, 老知识之间的矛盾造成的,也可能是学新知识时, 所用到的旧知识不牢固造成的。 所用到的旧知识不牢固造成的。 一般地,知识过于抽象, 一般地 , 知识过于抽象 , 知识的内在结构过 于复杂,概念的本质属性比较隐蔽,知识由旧到 于复杂,概念的本质属性比较隐蔽, 新要求用新的观点和方法去研究, 新要求用新的观点和方法去研究,以及各种逆运 算都是产生难点的因素。 算都是产生难点的因素。
2、如何进行教材分析
结构分析 数学思想方法分析 功能分析 智力价值、思想教育价值、应用价值) (智力价值、思想教育价值、应用价值) 学习任务分析
3、数学教材分析的意义 数学教材分析的意义
只有深入分析教材,才能确定教学的重点, 只有深入分析教材,才能确定教学的重点,难 点以及知识的衔接点,并制定出突出重点和解 点以及知识的衔接点, 决难点的教学策略。 决难点的教学策略。 只有通过教材分析,才能找出有关章节的特点, 只有通过教材分析,才能找出有关章节的特点, 再根据这些特点, 再根据这些特点,选择教学活动的组织形式与 教学模式。 教学模式。
了解和研究学生
问题:针对我们的教学, 问题:针对我们的教学,你认为应该了解和 研究学生的哪些方面呢? 研究学生的哪些方面呢?
知已知彼, 知已知彼,百战不殆
1.了解学生个体的自然情况与班级整体情况; 1.了解学生个体的自然情况与班级整体情况; 了解学生个体的自然情况与班级整体情况 学生个体自然情况:姓名、年龄、视力、听力、 学生个体自然情况:姓名、年龄、视力、听力、身体 状况与同学和老师的关系,家庭教育环境等。 状况与同学和老师的关系,家庭教育环境等。 班级的整体情况:班级的构成、特点、风气、 班级的整体情况:班级的构成、特点、风气、学习情 况、学习兴趣,对老师教学的态度等。 学习兴趣,对老师教学的态度等。 2.了解学生的学习基础; 2.了解学生的学习基础; 了解学生的学习基础 (ⅰ)认知水平分析 (ⅱ)学生学习数学的心理特点

第五讲 数与数列

第五讲  数与数列

第五讲数与数列(1)1 一个成年人平均每分钟呼吸16次,每次吸入500立方厘米空气.问:他在一昼夜里吸人()方米空气?解: 11.52立方米2填空题(本题3分)自1至97.5的全体自然数中,数字1共出现了()次。

解:20次。

3填空题(本题3分)用1,2,2,3能组成不同的四位数有( )个.解:124填空题(本题3分)有面值为1分,2分,5分的硬币各4枚,用它们去支付2角3分。

问:有()种不同的支付方法?解: 5种5填空题(本题5分)用数字0、1、2、3、4、5可以组成()个不同的没有重复数字四位偶数。

解:0在个位上的有5×4×3=60(个),2或4在个位上的都有4×4×3=48(个)。

60+48×2=156(个)。

6填空题(本题5分)电视台要播放一部30集电视连续剧。

如果要求每天安排播出的集数互不相等,该电视连续剧最多可以播()天。

解:1+2+3+4+5+6+7=28,而1+2+3+4+5+6+7+8=36,可以看出30集电视连续剧每天安排播出的集数互不相等,则最多播7天。

7填空题(本题5分)将4枚棋子摆放到右图的方格中,要求每行、每列最多摆一个棋子,共有( )种不同的摆法。

解:按照第1、第4、第3、第2列的顺序摆棋子,分别有3、2、2、3种放法,因此共有3×2×2×3=36(种)。

8填空题(本题5分)数一数下图中有()个三角形。

解:48个。

三角形的一边为第1根线时,有三角形2个;三角形的一边为第2根线时,有三角形6个;三角形的一边为第3根线时,有三角形11个;三角形的一边为第4根线时,有三角形14个;三角形的一边为第5根线时,有三角形15个;合计48个三角形9填空题(本题5分)有3个箱子,如果两箱两箱地称它们的重量,分别是83公斤、85公斤和86公斤。

问其中最轻的箱子重( )公斤.解:三个箱子的重量为(83+85+86)/2=127。

四年级上册奥数试题-第五讲:数列求和(无答案)

四年级上册奥数试题-第五讲:数列求和(无答案)

第五讲数列求和专题解析:0,1,2,3......像这样的按一定顺序排列的数叫做数列,数列不一定从小到大,也不一定从大到小,但是每个位置的数都是确定的,数列会帮助我们理解位置与位置上所对应的数之间一一对应的关系,就像学校中每个座位所对应坐的小朋友一样。

本章我们就要来学习等差数列,以及等差数列的和知识回顾之数列求和:重点知识理解:等差数列的概念,等差数列与植树问题的相似之处,如何利用植树问题所学的知识求等差数列的某一项等【经典例题】【例题1】有四个数列如下:●1,2,4,8,16,32,64●1,1,2,3,5,8,13,21●2,4,6,8,10,12,14,16,18●21,18,15,12,9,6,3●1,5,1,5,1,5,1,5,1,5请问以上哪个数列是等差数列,不是等差数列的你能找找其中的规律吗?思维点拨:等差数列之要求相邻两项的差一样,但一定要按顺序作差随堂演练:(1)请任意说出三个有五项的等差数列(2)若公差为5,第一项是3,数列是逐渐增大的,请写出数列的前十项【例题2】求等差数列1,6,11,16......的第二十项是多少,第35项是多少?251是这个数列的第几项?思维点拨:每一个数可以代表一棵树,而数的大小可以代表树与0的距离,第几项可表示第几棵数随堂演练:1.已知数列2,5,8,11,14......,请问47是其中的第几项2.已知数列96,91,86,81......,请问第10项是多少,第16项呢?3.如果一个数列的第一项是3,最后一项是219,公差是4,请问这个数列一共有多少项?如果一等差数列的第4项为21,第6项为33,求它的第8项思维点拨:间距不变,公差也不变随堂演练:1.已知等差数列的公差为4,末项为280,数列共25项,这个数列的首项是多少?这个数列的第16项是多少?2.小剧场共有40排座位,每一排都比前一排多两个座位,最后一排有120个座位,那第一排有多少个座位?第25排有多少个座位?【例题4】数列的求和推论有自然数列1,2,3,4,5,6......99,100,求数列1+2+3+......+99+100的和。

等差数列

等差数列

第5讲等差数列(1)1,2,3,4,5,6,7,8,…(2)2,4,6,8,10,12,14,16,…(3)1,4,9,16,25,36,49,…上面三组数都是数列。

数列中的数称为项,第一个数叫第一项,又叫首项,第二个数叫第二项,……以此类推,最后一个数叫做这个数列的末项。

项的个数叫做项数。

一个数列中,如果从第二项起,每一项与它前面一项的差都相等,这样的数列叫做等差数列。

后项与前项的差叫做这个等差数列的公差。

如等差数列:4,7,10,13,16,19,22,25,28。

首项是4,末项是28,公差是3。

这一讲我们学习有关等差数列的知识。

例题与方法:例1.在等差数列1,5,9,13,17,…,401中,401是第几项?思路点拨:丁丁:我从1,5,9,13,17,…一直数到401共101项。

机灵猴:你这样数太烦了,应从这个数列的规律入手。

求401是第几次,就是求这个等差数列的项数。

观察下图:第一项第二项第三项第四项第五项第六项第七项小麦斯:对!求401是第几项,就是求项数。

将401看作末项,1看作首项,这个数列的公差是4,即求项数的方法是:项数=(末项-首项)÷公差+1 解:(401-1)÷4+1=101答:401是第101项。

小麦斯:求项数的方法是:项数=(末项-首项)÷公差+1例2:有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层,最下面一层有多少根?思路点拨:丁丁:将每层圆木根数写出来是:5,6,7,8,9,10,…,可以看出是一组等差数列。

小麦斯:能将这一梯形堆放的圆木每层的根数抽象出等差数列是解题的关键,在这组等差数列中,已知首项是5,公差是1,项数是28,求最下面的一层有多少根就是求这个等差数列的第28项,即末项。

机灵猴:因为第2项比第1项多1根,也就是多一个公差“1”,求第28项,就是求比第一项(首项)多27个公差就可以了。

2020版高考数学第五章数列第2节等差数列及其前n项和讲义理(含解析)新人教A版

2020版高考数学第五章数列第2节等差数列及其前n项和讲义理(含解析)新人教A版

第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.体会等差数列与一次函数的关系.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.[微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数. (4)若公差d =0,则前n 项和不是二次函数. 答案 (1)√ (2)√ (3)× (4)×2.(必修5P46A2改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A.31B.32C.33D.34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32.答案 B3.(必修5P68A8改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( ) A.-3B.-52C.-2D.-4解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎪⎨⎪⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4. 答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中, ∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0,∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5. 答案 S 5考点一 等差数列基本量的运算【例1】 (1)(一题多解)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8(2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( ) A.9B.10C.11D.15解析 (1)法一 设等差数列{a n }的公差为d , 依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4. 法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7, ∴a m =a 1+(m -1)d =7m -40=30,∴m =10. 答案 (1)C (2)B规律方法 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于( ) A.3 B.4 C.log 318 D.log 324(2)(一题多解)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2, 解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318, ∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d , 由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎪⎨⎪⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎪⎨⎪⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎪⎨⎪⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30.答案 (1)A (2)30考点二 等差数列的判定与证明 典例迁移【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列. 【迁移探究2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n . 规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. 2.判定一个数列是等差数列还常用到结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23.=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列. 考点三 等差数列的性质及应用 多维探究角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6B.12C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120, 由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48. 答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45, 所以a 7+a 8+a 9=45. 答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则 (1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1); (2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( ) A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3, ∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质, ∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8. ∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A 考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立. (1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0, 因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2). 所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2nλ. (2)当a 1>0,λ=100时,由(1)知,a n =2n100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n=2-n lg 2,所以数列{b n }是单调递减的等差数列,公差为-lg 2, 所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大.规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值. ①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( )A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎪⎨⎪⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S nn=na 1+n (n -1)2dn=-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110[思维升华]1.证明等差数列可利用定义或等差中项的性质,另外还常用前n 项和S n =An 2+Bn 及通项a n =pn +q 来判断一个数列是否为等差数列. 2.等差数列基本量思想(1)在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解. (2)若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d .若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.(3)灵活使用等差数列的性质,可以大大减少运算量. [易错防范]1.用定义法证明等差数列应注意“从第2项起”,如证明了a n +1-a n =d (n ≥2)时,应注意验证a 2-a 1是否等于d ,若a 2-a 1≠d ,则数列{a n }不为等差数列.2.利用二次函数性质求等差数列前n 项和最值时,一定要注意自变量n 是正整数.基础巩固题组 (建议用时:40分钟)一、选择题1.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100B.99C.98D.97解析 设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧9a 1+36d =27,a 1+9d =8,所以⎩⎪⎨⎪⎧a 1=-1,d =1, 所以a 100=a 1+99d =-1+99=98. 答案 C2.(2019·淄博调研)设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( )A.1B.-1C.2D.12 解析 由于S 11S 9=11a 69a 5=119×911=1. 答案 A 3.(2019·中原名校联考)若数列{a n }满足1a n +1-1a n =d (n ∈N *,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( )A.10B.20C.30D.40解析 依题意,11x n +1-11x n=x n +1-x n =d , ∴{x n }是等差数列.又x 1+x 2+…+x 20=20(x 1+x 20)2=200. ∴x 1+x 20=20,从而x 5+x 16=x 1+x 20=20.答案 B4.(2019·北京海淀区质检)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( )A.174斤B.184斤C.191斤D.201斤解析 用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数,由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996,∴8a 1+8×72×17=996,解之得a 1=65. ∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤.答案 B5.已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则S n 取最大值时的n 为( ) A.4 B.5 C.6 D.4或5 解析 由{a n }为等差数列,得S 99-S 55=a 5-a 3=2d =-4, 即d =-2,由于a 1=9,所以a n =-2n +11,令a n =-2n +11<0,得n >112, 所以S n 取最大值时的n 为5.答案 B二、填空题6.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为________.解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n 解得n =5,故这个数列的项数为10.答案 107.已知数列{a n }满足a 1=1,a n -a n +1=2a n a n +1,则a 6=________. 解析 将a n -a n +1=2a n a n +1两边同时除以a n a n +1,1a n +1-1a n =2. 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,2为公差的等差数列, 所以1a 6=1+5×2=11,即a 6=111. 答案 1118.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析 依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200. 答案 200三、解答题9.等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2≤2n +35<3,b n =2; 当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4≤2n +35<5,b n =4. 所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n ,证明:数列{b n }是等差数列,并求其前n 项和T n .(1)解 设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k , 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)证明 由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2.能力提升题组(建议用时:20分钟)11.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269. 答案 B12.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( ) A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1),所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A13.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 13014.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81,∴⎩⎪⎨⎪⎧2a 7=26,9a 5=81,解得⎩⎪⎨⎪⎧a 7=13,a 5=9, ∴d =a 7-a 57-5=13-92=2,∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.新高考创新预测15.(多填题)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=________,公差d =________.解析 由{a n }为等差数列,得数列⎩⎨⎧⎭⎬⎫S n n 是首项为a 1,公差为d 2的等差数列,∵S 55-S 44=2,∴d 2=2⇒d =4,又S 2=S 6⇒2a 1+4=6a 1+6×52×4⇒a 1=-14. 答案 -14 4。

高考数学二轮专题讲座五 递推数列及数列的应用

高考数学二轮专题讲座五 递推数列及数列的应用

教考网特约名师高考数学二轮专题讲座五递推数列及数列的应用●考点透视阅读与数列相关的实际问题,并能够从中归纳、提炼出数列问题模型.能灵活运用等差数列、等比数列基础知识,求出数列问题的解.能用切合实际意义的语言表述问题的解.增强用数学的意识,体会数学就在我们身边.有关递推数列及数列的应用高考命题情况,我们首先观察一下2003年、2004年及2005年的全国卷及各省单独命题. 递推数列及数列的应用一道选择题或填空题,一道解答题,试题分数为15分至18分.有三分之一的省市放在压轴题.●名师串讲○重点讲解用数学不仅是用数学的知识,也包括用数学的方法、数学的思想.解数列应用题与解其他应用题一样,首先要认真阅读领悟,学会翻译(数学化).其次再考虑用熟悉的知识建立数学模型,求出问题的解.最后,常常还需验证求得的解是否符合实际.○技巧方法纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度.●考题解析【例1】(2004年某某文史卷)已知数列{}n a 的前n 项和为).)(1(31,*∈-=N n a S S n n n (Ⅰ)求21,a a ;(Ⅱ)求证数列{}n a 是等比数列. 【思路串讲】本题主要考查递推数列、等比数列的概念,考查灵活运用数学知识分析问题和解决问题的能力. 解题突破口:利用a n 、S n 的关系式a n+1=S n+1-S n (n=1,2,3,…)可求得1-n n a a 为常 数. 【标准答案】(Ⅰ)由)1(3111-=a S ,得)1(3111-=a a ∴=1a 21-又)1(3122-=a S ,即)1(31221-=+a a a ,得412=a . (Ⅱ)当n>1时,),1(31)1(3111---=-=--n n n n n a a S S a 得,211-=-n n a a 所以{}n a 是首项21-,公比为21-的等比数列. 【例2】(2004年全国卷理Ⅱ)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n n 2+S n (n =1,2,3,…).证明:(1)数列{nS n }是等比数列;(2)S n +1=4a n . 【思路串讲】本题主要考查递推数列、等比数列的概念,考查灵活运用数学知识分析问题和解决问题的能力. 解题突破口:利用a n 、S n 的关系式a n+1=S n+1-S n (n=1,2,3,…)来解决此类问题.【标准答案】(1): 由a 1=1,a n+1=n n 2+S n (n=1,2,3,…),知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S ,又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nS n }是首项为1,公比为2的等比数列. (2)由数列{n S n }是首项为1,公比为2的等比数列,则nS n =2n -1,∴S n+1=(n+1)2n (n ≥1)而a n+1=n n 2+S n (n=1,2,3,…),则a n =11-+n n S n -1=11-+n n ·(n -1)2n -2=(n+1)2n -2(n=2,3,…), ∴S n+1=4a n . 又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .【例3】(2004年某某文史类卷)设),2,1(,3235,35,11221 =-===++n a a a a a n n n (1)令1,(1,2......)n n n b a a n +=-=求数列{}n b 的通项公式;(2)求数列{}n na 的前n 项和n S .【思路串讲】本题主要考查递推数列、数列的求和,考查灵活运用数学知识分析问题和解决 问题的能力. 解题突破口:利用已知条件找n b 与1+n b 的关系,再利用等差数列与等比数列之积的错位相差法来解决此类问题.【标准答案】(I )因121+++-=n n n a a b n n n n n n b a a a a a 32)(323235111=-=--=+++ 故{b n }是公比为32的等比数列,且故,32121=-=a a b ),2,1()32( ==n b nn (II )由得n n n n a a b )32(1=-=+ )()()(121111a a a a a a a a n n n n n -++-+-=--++])32(1[232)32()32()32(21n n n -=++++=- 注意到,11=a 可得),2,1(3231 =-=-n a n n n 记数列}32{11--n n n 的前n 项和为T n ,则 1832)3()1(232)21(3232)3(9)32(3])32(1[9,)32(])32(1[3)32()32()32(32131)2()32()32(23232),1()32(3221112111221-+++=-+++=+++=+-=--=--=-++++=⋅++⋅+=⋅++⋅+=-+---n n n n n n n n n n n n n n n n n n n n n n T n na a a S n n T n n T n T n T 从而故两式相减得 【例4】某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(今年为第一年)的利润为500(1+n 21)万元(n 为正整数). (Ⅰ)设从今年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(须扣除技术改造资金),求A n 、B n 的表达式;(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?【思路串讲】本题涉及的知识主要是等差数列、等比数列、函数性质等,这些都是高中数学的主干知识.所提出的两个问题,逐步推进,抓住数列、函数、不等式的知识网络交汇点,综合自然,独具匠心,合情合理,有较高的区分度.解题突破口:对于不进行技术改造,题目给出了纯利润的等差数列规律;而对于进行技术改造,题目给出了利润的通项公式.第(l)小题提出了在这两种情况下,分别求累计纯利润A n ,B n 的表达式.显然,求A n 用等差数列的求和公式;求B n 用特殊数列的求和方法,这里需拆项转化为常数数列和等比数列求和.对于A n 和B n 大小的比较,一般采用作差比较法.这里,关键是作差、变形后,如何判断A n -B n 的符号,需要考生具有观察分析能力和函数的思想,运用函数性质分析估算,最终要进行严密推理. 解:(Ⅰ)依题设,A n =(500-20)+(500-40)+…+(500-20n)=490n -10n 2;B n =500[(1+21)+(1+221)+…+(1+n 21)]-600=500n -n 250-100. (Ⅱ)B n -A n =(500n -n 2500-100) -(490n -10n 2) =10n 2+10n -n 250-100=10[n(n+1) -n 250-10]. 因为函数y=x (x +1) -x 250-10在(0,+∞)上为增函数, 当1≤n ≤3时,n(n+1) -n 250-10≤12-850-10<0; 当n ≥4时,n(n+1) -n 250-10≥20-1650-10>0. ∴仅当n ≥4时,B n >A n .答:至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润.【例5】(2004年某某理科卷) ΔOBC 的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 1为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n的坐标为(x n,y n ),.2121++++=n n n n y y y a (Ⅰ)求321,,a a a 及n a ; (Ⅱ)证明;,414*+∈-=N n y y n n (Ⅲ)若记,,444*+∈-=N n y y b n n n 证明{}n b 是等比数列.【思路串讲】本题主要考查数列的递推关系、等比数列等基础知识,考查灵活运用数学知识分析问题和解决问题的创新能力. 解题突破口:利用图形及递推关系即可解决此类问题. 解答本题的主要错误为:(1)缺少严格的推理.如第(1)小题,由 a 1=a 2=a 3=2得a n =2.这仅仅是特殊到一般的猜想,要实现猜想,还必须进行严格证明.但是,甚至包括第(2)或(3)小题,不少考生也是由特殊到一般完成的所谓“证明”.(2)思维层次的薄弱.不能够充分利用“P n +3为线段P n P n +1的中点”这个重要的解题信息,进行理性化的分析和变换.(3)心理素质欠缺.本题字符较多,有点列{P n },同时还有三个数列{a n },{y n },{ b n },再加之该题是压轴题,因而考生会惧怕,而如果没有良好的心理素质,或足够的信心,就很难破题深入.即使有的考生写了一些解题过程,但往往有两方面的问题:一个是漫无目的,乱写乱画;另一个是字符欠当,丢三落四.最终因心理素质的欠缺而无法拿到全分.【标准答案】 (Ⅰ)因为43,21,153421=====y y y y y , 所以2321===a a a ,又由题意可知213+-+=n n n y y y ∴321121++++++=n n n n y y y a =221121++++++n n n n y y y y =,2121n n n n a y y y =++++ ∴{}n a 为常数列.∴.,21*∈==N n a a n(Ⅱ)将等式22121=++++n n n y y y 两边除以2,得,124121=++++n n n y y y 又∵2214++++=n n n y y y , ∴.414n n y y -=+ (Ⅲ)∵)41()41(44444341n n n n n y y y y b ---=-=+++- =)(41444n n y y --+ =,41n b - 又∵,041431≠-=-=y y b ∴{}n b 是公比为41-的等比数列. 【例6】(2004年全国卷理Ⅰ) 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式.【思路串讲】本题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力. 解题突破口:利用数列求和知识及分奇偶性讨论求通项公式.【标准答案】(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k = a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k =2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为:当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=n n n a 【例7】(2004年某某理工卷)已知0>a ,数列}{n a 满足,1,11nn a a a a a +==+n=1,2,…. (Ⅰ)已知数列}{n a 极限存在且大于零,求A=n n a ∞→lim (将A 用a 表示); (Ⅱ)设,2,1,=-=n A a b n n …,证明:)(1A b A b b n n n +-=+; (Ⅲ)若nn b 21||≤对,2,1=n …,都成立,求a 的取值X 围. 【思路串讲】 递推数列,也是一个高中数学的难点,常规的题型是应用特例验算得出数列的前几项,然后利用不完全归纳、猜想等,得出数列的一般规律,最后辅之以数学归纳法等的证明,这也就是“特例一一归纳一一猜想一一证明一一结论”的似真推理模式.本题中则是回避了这些常规问题,利用极限的运算法则求出数列的极限,并利用变量代换思想,得出另一个递推数列,并最终研究新递推数列的有关结论解题突破口:对于(l)显然想通过求出数列的通项公式再行求极限的办法是困难的,那就不妨使用极限的四则运算法则来求极限.对于(2)更多的应运用目标意识,将变量代换后,首先消去a n ,而得出b n 的关系,再行证明b n 与b n +l 间的关系.对于(3)应首先使用特例法,不妨先取n=l ,2,3,求出a 的取值X 围,然后从中发现规律,进而发现求a 的过程是有规律的,相似的,于是可用数学归纳法给出问题的统一处理.【标准答案】(Ⅰ)由 n n a ∞→lim 存在,且A=n n a ∞→lim (A >0),对nn a a a 11+=+两边取极限得,A=Aa 1+,解得A=242+±a a ,又A >0, ∴A=242++a a . (Ⅱ)由1;1n n n n ab A a a a =++=+得111n n b A a b A +++=++. ∴1111()n n n n n b b a A b A A b A A b A +=-+=-+=-+++.即1()n n n b b A b A +=-+对n=1,2,…都成立.(Ⅱ)邻21||1≤b ,得11|(|22a a -≤.∴21|)4(21|2≤-+a a . ∴142≤-+a a ,解得23≥a .现证明当23≥a 时,21||≤n b ,对2,1=n ,…都成立. ①当1=n 时结论成立(已验证).②假设当)1(≥=k k n 时结论成立,既kk b 21||≤,那么 k k k k k A b A A b A b b 21||1|(|||||1⨯+≤+=+.故只须证明21||1≤+A b A k ,既证2||≥+A b A k 对23≥a 成立.由于23≥a 时,142≤-+a a ∴A ≥2. ∴1212||||≥-≥-≥+k k k b A A b 即2||≥+A b A k 故当23≥a 时, 1212121|1|+=⨯≤+k k k b .即1+=k n 时结论成立.根据①和②,可知结论对一切正整数都有成立.故n n b 21||≤对,2,1=n …都成立的a 的取值X 围为⎪⎭⎫⎢⎣⎡+∞,23. ●误区诊断【例11】 (2000年全国高考题)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41. (1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入? 误点:(1)问a n 、b n 实际上是两个数列的前n 项和,易与“通项”混淆;(2)问是既解一元二次不等式又解指数不等式,易出现偏差.辨析:本题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力,本题 属于应用题型,正是近几年高考的热点和重点题型,本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点.正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.答案:(1) a n = 4000×[1-(54)n ]b n =1600×[(45)n -1](2) 至少经过5年,旅游业的总收入才能超过总投入.自主感悟:●真题演练1. (2001年某某春季卷) 若数列}{n a 前8项的值各异,且n 8n a a =+对任意的N n ∈都成立,则下列数列中可取遍}{n a 前8项值的数列为 ( )A.}{12+k aB.}{13+k aC.}{14+k aD.}{16+k a 【答案】B2.(2005年某某卷) 已知数121211{},(),3,4,.lim 2,22n n n n n n x x x x x x n x x --→∞==+===满足若则() A .23 B .3 C .4 D .5【答案】B3.(2000年高考某某、某某卷)设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a na na a n (n =1,2,3,…),则它的通项公式是n a =________.【答案】n1 4.(2003年全国高考题)已知数列).2(3,1}{111≥+==--n a a a a n n n n 满足(Ⅰ)求;,32a a (Ⅱ)证明.213-=n n a 【答案】(Ⅰ)a 2=4, a 3=13 .5. (2001某某春季高考)某公司全年的利润为b 元,其中一部分作为奖金发给n 位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n 排序,第1位职工得奖金nb 元,然后再将余额除以n 发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.(1)设a k (1≤k ≤n )为第k 位职工所得奖金金额,试求a 2,a 3,并用k 、n 和b 表示a k (不必证明);(2)证明a k >a k +1(k =1,2,…,n -1),并解释此不等式关于分配原则的实际意义;(3)发展基金与n 和b 有关,记为P n (b ),对常数b ,当n 变化时,求lim ∞→n P n (b ).【答案】(1) a 2=n 1(1-n 1)b , a 3=n 1(1-n 1)2b ,…, a k =n 1 (1-n 1)k -1b ; (2)a k -a k +1=21n (1-n 1)k -1b >0,此奖金分配方案体现了“按劳分配”或“不吃大锅饭”的原则.(3) eb b P n n =∞→)(lim .6.(2002年全国高考题)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n(I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式;(II )当31≥a 时,证明对所的1≥n ,有(i )2+≥n a n (ii )1231111111112n a a a a ++++≤++++【答案】(I )1+=n a n (1≥n )7. (2005年某某市春季卷) 某市2004年底有住房面积1200万平方米,计划从2005年起,每年拆除20万平方米的旧住房. 假定该市每年新建住房面积是上年年底住房面积的5%.(1)分别求2005年底和2006年底的住房面积 ;(2)求2024年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)【答案】(1) 2005年底的住房面积为1240万平方米,2006年底的住房面积约为1282万平方米. (2)2024年底的住房面积约为2522.64万平方米.●名师押题预测1:对于任意函数f (x )定义域为D ,如图构造一个数列发生器,其工作原理如下:①输入初始数据D x ∈0,输出)(01x f x =②若D x ∉1,则机器自动停止;若D x ∈1,则数据x 1反馈回输入端,再输出)(12x f x =,依次继续下去.设),0[,3)(2+∞∈--=x x x x f .问(1)若输入一个初始数据x 0,使得机器运行一步后即停止工作,求x 0的取值X 围;(2)若输入一个初始数据x 0,使得机器能产生一个无穷的常数数列,求x 0的值;(3)若输入一个初始数据x 0,使得机器能产生一个无穷的递增数列,求x 0取值X 围. 思考∶认真读懂题意是解决问题的关键.答案∶(1)02310≥>+x (2)30=x (3)x 0>3 预测2:已知数列n a 的首项a a =1(a 是常数),24221+-+=-n n a a n n (2,≥∈n N n ).(Ⅰ){}n a 是否可能是等差数列.若可能,求出{}n a 的通项公式;若不可能,说明理由;(Ⅱ)设b b =1,2n a b n n +=(2,≥∈n N n ),n S 为数列{}n b 的前n 项和,且{}n S 是等比数列,某某数a 、b 满足的条件.思考∶利用等差数列的定义判断{}n a 是否是等差数列.答案∶(Ⅰ)}{n a 不可能是等差数列 (Ⅱ) ⎩⎨⎧≠-=⎩⎨⎧+=-≠01221b a a b a 或 预测3:已知二次函数y =f (x )在x =22+t 处取得最小值-42t (t >0),f (1)=0. (1)求y =f (x )的表达式;(2)若任意实数x 都满足等式f (x )·g (x )+a n x +b n =x n +1 , [g (x )]为多项式,n ∈N *),试用t 表示a n 和b n ;(3)设圆的方程为(x -a n )2+(y -b n )2=r n 2,圆与+1外切(n =1,2,3,…);{r n }是各项都是正数的等比数列,记S n 为前n 个圆的面积之和,求r n 、S n .思考∶利用二次函数h k x a x f +-=2)()(求)(x f .再用待定系数法求a n 和b n . 答案∶(1)f (x )=x 2-(t +2)x +t +1.(2)a n =t1[(t +1)n +1-1],b n =t t 1+[1-(t +1]n ) (3)r n =2)1(21+++t t n ,S n =432(1)(2)t t t π++[(t +1)2n -1] 预测4:设二次函数)(,*)](1,[,)(2x f N n n n x x x x f 时当∈+∈+=的所有整数值的个数为g(n).word11 / 11 (1)求g(n)的表达式.(2)设.,)1(*),()(321432123n n n n n S a a a a a S N n n g n n a 求--++-+-=∈+= (3)设l Z l l T b b b T n g b n n n nn 求若),(.,2)(21∈<+++== 的最小值. 思考∶由)(x f 的值域可求)(n g .讨论n 的奇偶性求n S . 答案∶(1) *).(32)(N n n n g ∈+=(2).2)1()1(1+-=-n n S n n (3)l 的最小值是7.。

二升三奥数第五讲认识简单数列

二升三奥数第五讲认识简单数列

第五讲认识简单数列我们把按一定规律排列起来的一列数叫数列.在这一讲里,我们要认识一些重要的简单数列,还要学习找出数列的生成规律;学会把数列中缺少的数写出来,最后还要学习解答一些生活中涉及数列知识的实际问题.例1 找出下面各数列的规律,并填空.(1)1,2,3,4,5,□,□,8,9,10.(2)1,3,5,7,9,□,□,15,17,19.(3)2,4,6,8,10,□,□,16,18,20.(4)1,4,7,10,□,□,19,22,25.(5) 5,10,15,20,□,□,35,40,45.例2 找出下面的数列的规律并填空.1,1,2,3,5,8,13,□,□,55,89.解:这叫斐波那契数列.例3 找出下面数列的生成规律并填空.1,2,4,8,16,□,□,128,256.解:它叫等比数列。

例4 找出下面数列的规律,并填空.1,2,4,7,11,□,□,29,37.例5找出下面数列的规律,并填空:1,3,7,15,31,□,□,255,511.例6找出下面数列的生成规律,并填空.1,4,9,16,25,□,□,64,81,100.解:这是自然数平方数列。

例7一辆公共汽车有78个座位,空车出发.第一站上1位乘客,第二站上2位,第三站上3位,依此下去,多少站以后,车上坐满乘客?例8 如果第一个数是3,以后每隔6个数写出一个数,得到一列数:3,10,17,……,73.这里3叫第一项,10叫第二项,17叫第三项,试求73是第几项?例9一天,爸爸给小明买了一包糖,数一数刚好100块.爸爸灵机一动,又拿来了10个纸盒,接着说:“小明,现在你把糖往盒子里放,我要求你在第一个盒子里放2块,第二个盒子里放4块,第三个盒子里放8块,第四个盒子里放16块,……照这样一直放下去.要放满这10个盒,你说这100块糖够不够?”小朋友,请你帮小明想一想?作业5:1.从1开始,每隔两个数写出一个自然数,共写出十个数来.2.从1开始,每隔六个数写出一个自然数,共写出十个数来.3.在习题一和习题二中,按题目要求写出的两个数列中,除1以外出现的最小的相同的数是几?4.自2开始,隔两个数写一个数:2,5,8,……,101.可以看出,2是这列数的第一项,5是第二项,8是第三项,等等.问101是第几个数?5.如图1所示,“阶梯形”的最高处是4个正方形叠起来的高度,而且整个图形包括了10个小正方形.如果这个“阶梯形”的高度变为12个小正方形叠起来那样高,那么,整个图形应包括多少个小正方形?6. 开学的第一个星期,小明准备发起成立一个趣味数学小组,这时只有他一个人.他决定第二个星期吸收两名新组员,而每个新组员要在进入小组后的下一个星期再吸收两名新组员,求开学4个星期后,这个小组共有多少组员?7. 细胞的增长方式:一个分裂为两个,再次分裂变为4个,第三次分裂为8个,……照这样下去,问经过10次分裂,一个细胞变成几个?8. 如图所示是一串“黑”、“白”两色的珠子,其中有一些珠子在盒子里,问(1)盒子里有多少珠子?(2)这串珠子共有多少个?。

四年级奥数第五讲-等差数列(二)-教师版

四年级奥数第五讲-等差数列(二)-教师版

第五讲等差数列(二)解题方法某些问题以转化为求若干个数的和解决这些问题时先要判断这些数是否成为等差数列,如果是等差数列才可以运用它的一些公式。

在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。

例题1小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。

这本书共有多少页?提示根据条件“以后每天比前一天多看2页”可以知道他每天看的页数都是按照一定规律排列的数,即20、22、24、…、76、78。

要求这本书共有多少页也就是求出这列数的和。

解:由题意可知,这列数是一个等差数列,首项=20,末项=78,项数=30,所以这本书共有(20+78)×30÷2=1470(页)答:这本书共有1470页。

引申1、文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。

文丽在这些天中共学会了多少个英语单词?解:文丽每天学会的单词个数是一个等差数列,即3、4、5、6、…、21。

首项=3,末项=21,项数=(21-3)÷2+1=10。

所以,文丽在这些天中共学会了(3+21)×10÷2=120(个)答:文丽在这些天中共学会了120个英语单词。

2、李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。

这批零件共有多少个?答: (25+63)×20÷2=880(个)3、小李读一本短篇小说,她第一天读了20页这个等差数列共有多少项?答:这个等差数列共有29项。

例题2 建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。

提示:根据图可以知道,这是一个以3为首项,以1为公差的等差数列,求钢管一共有多少根其实是求这列数的和。

解:求钢管一共有多少根,其实就是求3+4+5+…+9+10的和。

项数=(10-3)÷1+1=8,根据公式求和为:3+4+5+…+9+10=(3+10)×8÷2=13×8÷2=52(根)。

2021届新课标数学一轮复习讲义_第五章_第5讲_数列的综合应用

2021届新课标数学一轮复习讲义_第五章_第5讲_数列的综合应用

第5讲 数列的综合应用考点一__等差数列与等比数列的综合问题______已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.[解] (1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3,所以a n =a 1+(n -1)d =3n (n =1,2,…).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…). (2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1-2n 1-2=2n -1.所以,数列{b n }的前n 项和为32n (n +1)+2n -1.[规律方法] 解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开弄清两个数列各自的特征,再进行求解.1.已知等差数列{a n }的公差不为零,a 1=25 ,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d ,由题意得a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2.故a n =-2n +27. (2)令S n =a 1+a 4+a 7+…+a 3n -2. 由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .考点二__数列的实际应用问题__________________某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设S n 表示数列{a n }的前n 项和,求S n (n ≥7).[解] (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ; 当n ≥6时,数列{a n }是以a 6为首项,34为公比的等比数列.又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×⎝⎛⎭⎫34n -6,n ≥7. (2)由等差及等比数列的求和公式得 当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6 =780-210×⎝⎛⎭⎫34n -6.[规律方法] 解答数列实际应用问题的步骤:(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单的递推数列模型.基本特征见下表:数列模型 基本特征 等差数列 均匀增加或者减少等比数列 指数增长,常见的是增产率问题、存款复利问题 简单递推数列指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a (常数)作为下年度的开销,即数列{a n }满足a n +1=1.2a n -a(2)或者不等式(组)等,在解模时要注意运算准确;(3)给出问题的答案:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.2.现有流量均为300 m 3s 的两条河A ,B 汇合于某处后,不断混合,它们的含沙量分别为2 kgm 3和0.2 kgm 3,假设从汇合处开始,沿岸设有若干观测点,两股水流在流经相邻两个观测点的过程中,其混合效果相当于两股水流在1 s 内交换100 m 3的水量,即从A 股流入B 股100 m 3水,经混合后,又从B 股流入A 股100 m 3水并混合,问从第几个观测点开始,两股河水的含沙量之差小于0.01 kgm 3(不考虑沙沉淀). 解:设第n 个观测点处A 股水流含沙量为a n kg m 3,B 股水流含沙量为b n kgm 3,则a 1=2,b 1=0.2,b n =1400(300b n -1+100a n -1)=14(3b n -1+a n -1),a n =1400(300a n -1+100b n -1)=14(3a n -1+b n -1),a n -b n =12(a n -1-b n -1),∴{a n -b n }是以(a 1-b 1)为首项,12为公比的等比数列.∴a n -b n =95×⎝⎛⎭⎫12n -1.解不等式95×⎝⎛⎭⎫12n -1<10-2,得2n -1>180,∴n ≥9.因此,从第9个观测点开始,两股水流的含沙量之差小于0.01 kg m 3.考点三__数列与不等式的综合问题(高频考点)__数列与不等式的综合问题是每年高考的难点,多为解答题,难度偏大. 高考对数列与不等式的综合问题的考查常有以下两个命题角度: (1)以数列为载体,考查不等式的恒成立问题; (2)考查与数列问题有关的不等式的证明问题.等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,若不等式S n >ka n -2对一切n ∈N *恒成立,求实数k 的取值范围. [解] (1)设等比数列{a n }的公比为q , ∵a n +1+a n =9·2n -1,n ∈N *, ∴a 2+a 1=9,a 3+a 2=18, ∴q =a 3+a 2a 2+a 1=189=2.∴2a 1+a 1=9,∴a 1=3. ∴a n =3·2n -1,n ∈N *.(2)由(1)知S n =a 1(1-q n )1-q =3(1-2n )1-2=3(2n -1),∴3(2n -1)>k ·3·2n -1-2,∴k <2-13·2n -1对一切n ∈N *恒成立. 令f (n )=2-13·2n -1,则f (n )随n 的增大而增大,∴f (n )min =f (1)=2-13=53,∴k <53.∴实数k 的取值范围为⎝⎛⎭⎫-∞,53. [规律方法] 数列与不等式的综合问题的解题策略(1)数列与不等式的恒成立问题.此类问题常构造函数,通过函数的单调性、最值等解决问题;(2)与数列有关的不等式证明问题.解决此类问题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.3.(1)已知函数f (x )满足f (x +y )=f (x )·f (y )且f (1)=12.①当n ∈N *时,求f (n )的表达式;②设a n =n ·f (n ),n ∈N *,求证:a 1+a 2+a 3+…+a n <2; (2)已知数列{a n }的前n 项和为S n ,且S n =2-⎝⎛⎭⎫2n +1a n (n ∈N *).①求证:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列;②设数列{2n a n }的前n 项和为T n ,A n =1T 1+1T 2+1T 3+…+1T n ,试比较A n 与2na n 的大小.解:(1)①令x =n ,y =1,得f (n +1)=f (n )·f (1)=12f (n ),∴{f (n )}是首项为12,公比为12的等比数列,∴f (n )=⎝⎛⎭⎫12n .②证明:设T n 为{a n }的前n 项和,∵a n =n ·f (n )=n ·⎝⎛⎭⎫12n, ∴T n =12+2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+…+n ×⎝⎛⎭⎫12n ,12T n =⎝⎛⎭⎫122+2×⎝⎛⎭⎫123+3×⎝⎛⎭⎫124+…+(n -1)×⎝⎛⎭⎫12n +n ×⎝⎛⎭⎫12n +1, 两式相减得12T n =12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -n ×⎝⎛⎭⎫12n +1,∴T n =2-⎝⎛⎭⎫12n -1-n ×⎝⎛⎭⎫12n <2.(2)①证明:由a 1=S 1=2-3a 1,得a 1=12,当n ≥2时,由a n =S n -S n -1,得a n n =12×a n -1n -1,所以⎩⎨⎧⎭⎬⎫a n n 是首项和公比均为12的等比数列.②由①得a n n =12n ,于是2n a n =n ,所以T n =1+2+3+…+n =n (n +1)2,则1T n =2⎝⎛⎭⎫1n -1n +1,于是A n =2⎝⎛⎭⎫1-1n +1=2nn +1,而2na n =2n +1n 2,所以问题转化为比较2n n 2与n n +1的大小. 设f (n )=2n n 2,g (n )=n n +1,当n ≥4时,f (n )≥f (4)=1,而g (n )<1,所以f (n )>g (n ). 经验证当n =1,2,3时,仍有f (n )>g (n ). 因此对任意的正整数n ,都有f (n )>g (n ).即A n <2na n.交汇创新——数列与函数的交汇设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n . [解] (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2.解得d =a 8-a 7=2.所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1,从而a n =n ,b n =2n . 所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1.因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以T n =2n +1-n -22n.[名师点评] 数列与函数的交汇创新主要有以下两类:(1)如本例,已知函数关系转化为数列问题,再利用数列的有关知识求解;(2)已知数列,在求解中利用函数的性质、思想方法解答.[提醒] 解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常见解法有助于该类问题的解决,同时要注意n 的范围.已知数列{a n }的前n 项和为S n ,a 1=1且3a n +1+2S n =3(n 为正整数).(1)求{a n }的通项公式;(2)若∀n ∈N *,32k ≤S n 恒成立,求实数k 的最大值.解:(1)当n =1时,a 1=1,3a n +1+2S n =3⇒a 2=13;当n ≥2时,3a n +1+2S n =3⇒3a n +2S n -1=3,得3(a n +1-a n )+2(S n -S n -1)=0,因此3a n +1-a n =0,即a n +1a n =13,因为a 2a 1=13,所以数列{a n }是首项a 1=1,公比q =13的等比数列,所以a n =⎝⎛⎭⎫13n -1.(2)因为∀n ∈N *,32k ≤S n 恒成立,S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫13n ,即32k ≤32⎣⎡⎦⎤1-⎝⎛⎭⎫13n ,所以k ≤1-⎝⎛⎭⎫13n .令f (n )=1-⎝⎛⎭⎫13n,n ∈N *,所以f (n )单调递增,k 只需小于等于f (n )的最小值即可, 当n =1时,f (n )取得最小值,所以k ≤f (1)=1-13=23,实数k 的最大值为23.1.设等差数列{a n }和等比数列{b n }首项都是1,公差与公比都是2,则a b 1+a b 2+a b 3+a b 4+a b 5=( )A .54B .56C .58D .57解析:选D.由题意,a n =1+2(n -1)=2n -1,b n =1×2n -1=2n -1, ∴ab 1+…+ab 5=a 1+a 2+a 4+a 8+a 16=1+3+7+15+31=57.2.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时.若a 6=1,则m 所有可能的取值为( )A .{4,5}B .{4,32}C .{4,5,32}D .{5,32}解析:选C.a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时,注意递推的条件是a n (而不是n )为偶数或奇数.由a 6=1一直往前面推导可得a 1=4或5或32.3.设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( )A .d <0B .d >0C .a 1d <0D .a 1d >0解析:选C.设b n =2a 1a n ,则b n +1=2a 1a n +1,由于{2a 1a n }是递减数列,则b n >b n +1,即2a 1a n >2a 1a n +1.∵y =2x 是单调增函数,∴a 1a n >a 1a n +1,∴a 1a n -a 1(a n +d )>0,∴a 1(a n -a n -d )>0,即a 1(-d )>0,∴a 1d <0. 4.在数列{a n }中,若a 1=-2,a n +1=a n +n ·2n ,则a n =( ) A .(n -2)·2n B .1-12n C.23⎝⎛⎭⎫1-14n D.23⎝⎛⎭⎫1-12n 解析:选A.因为a n +1=a n +n ·2n ,所以a n +1-a n =n ·2n ,所以a n -a 1=(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)=(n -1)×2n -1+(n -2)×2n -2+…+2×22+1×21(n ≥2).设T n =(n -1)×2n -1+(n -2)×2n -2+…+2×22+1×21(n ≥2),则2T n =(n -1)×2n +(n -2)×2n -1+(n -3)×2n-2+…+2×23+1×22,两式相减得T n =(n -2)·2n +2(n ≥2),所以a n =(n -2)·2n +2+a 1=(n -2)·2n (n ≥2).又n=1时,上式成立,所以选A.5.在等比数列{a n }中,0<a 1<a 4=1,则能使不等式⎝⎛⎭⎫a 1-1a 1+⎝⎛⎭⎫a 2-1a 2+…+⎝⎛⎭⎫a n -1a n ≤0成立的最大正整数n 是( )A .5B .6C .7D .8解析:选C.设等比数列{a n }的公比为q ,则⎩⎨⎧⎭⎬⎫1a n 为等比数列,其公比为1q ,因为0<a 1<a 4=1,所以q >1且a 1=1q 3.又因为⎝⎛⎭⎫a 1-1a 1+⎝⎛⎭⎫a 2-1a 2+…+⎝⎛⎭⎫a n -1a n ≤0,所以a 1+a 2+…+a n ≤1a 1+1a 2+…+1a n , 即a 1(1-q n)1-q≤1a 1⎝⎛⎭⎫1-1q n 1-1q,把a 1=1q 3代入,整理得q n ≤q 7,因为q >1,所以n ≤7,故选C.6.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析:每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102.由于26=64,27=128.则n +1≥7,即n ≥6.答案:67.在等比数列{a n }中,若a n >0,且a 1·a 2·…·a 7·a 8=16,则a 4+a 5的最小值为________. 解析:由等比数列性质得,a 1a 2…a 7a 8=(a 4a 5)4=16,又a n >0,∴a 4a 5=2. 再由基本不等式,得a 4+a 5≥2a 4a 5=2 2.∴a 4+a 5的最小值为2 2. 答案:2 28.设S n 是数列{a n }的前n 项和,若S 2nS n(n ∈N *)是非零常数,则称数列{a n }为“和等比数列”.若数列{2b n }是首项为2,公比为4的等比数列,则数列{b n }__________(填“是”或“不是”)“和等比数列”.解析:数列{2b n }是首项为2,公比为4的等比数列,所以2b n =2·4n -1=22n -1,b n =2n -1.设数列{b n }的前n项和为T n ,则T n =n 2,T 2n =4n 2,所以T 2nT n=4,因此数列{b n }是“和等比数列”.答案:是9.在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0,设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求证:数列{b n }是等差数列;(2)求{b n }的前n 项和S n 及{a n }的通项公式a n . 解:(1)证明:∵b n =log 2a n , ∴b n +1-b n =log 2a n +1a n =log 2q 为常数,∴数列{b n }为等差数列且公差d =log 2q .(2)设数列{b n }的公差为d ,∵b 1+b 3+b 5=6,∴b 3=2. ∵a 1>1,∴b 1=log 2a 1>0. ∵b 1b 3b 5=0,∴b 5=0.∴⎩⎪⎨⎪⎧b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1. ∴S n =4n +n (n -1)2×(-1)=9n -n 22.∵⎩⎪⎨⎪⎧log 2q =-1,log 2a 1=4,∴⎩⎪⎨⎪⎧q =12,a 1=16.∴a n =25-n (n ∈N *).10.已知数列{a n }和{b n }满足a 1a 2a 3…·a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n -1b n (n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n .解:(1)由题意知a 1a 2a 3…a n =(2)b n ,b 3-b 2=6,知a 3=(2)b 3-b2=8.又由a 1=2,得公比q =2(q =-2舍去), 所以数列{a n }的通项公式为a n =2n (n ∈N *), 所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n+1).故数列{b n }的通项公式为b n =n (n +1)(n ∈N *).(2)①由(1)知c n =1a n -1b n =12n -⎝⎛⎭⎫1n -1n +1(n ∈N *),所以S n =1n +1-12n (n ∈N *).②因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,c n =1n (n +1)⎣⎡⎦⎤n (n +1)2n -1, 而n (n +1)2n-(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n (n +1)2n ≤5×(5+1)25<1, 所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4.1.已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0. (1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *), 所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1. (2)由b n =3n-1知a n =c n b n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1, 3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n ,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n , 所以S n =(n -1)3n +1.2.为了加强环保建设,提高社会效益和经济效益,北京市计划用若干时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数S (n ); (2)若该市计划7年内完成全部更换,求a 的最小值.解:(1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量.依题意,得{a n }是首项为128,公比为1+50%=32的等比数列,{b n }是首项为400,公差为a 的等差数列.所以{a n }的前n 项和S n =128×⎣⎡⎦⎤1-⎝⎛⎭⎫32n1-32=256⎣⎡⎦⎤⎝⎛⎭⎫32n-1,{b n }的前n 项和T n =400n +n (n -1)2a . 所以经过n 年,该市被更换的公交车总数为S (n )=S n +T n =256⎣⎡⎦⎤⎝⎛⎭⎫32n-1+400n +n (n -1)2a .(2)若计划7年内完成全部更换,则S (7)≥10 000,所以256⎣⎡⎦⎤⎝⎛⎭⎫327-1+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥1461621.又a ∈N *,所以a 的最小值为147.3.已知点⎝⎛⎭⎫1,13是函数f (x )=a x (a >0且a ≠1)的图象上一点,等比数列{a n }的前n 项和为f (n )-c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n -S n -1=S n +S n -1(n ≥2,n ∈N *).(1)求数列{a n }和{b n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为T n .问T n >1 0002 015的最小正整数n 是多少?解:(1)∵f (1)=a =13,∴f (x )=⎝⎛⎭⎫13x,a 1=f (1)-c =13-c , a 2=[f (2)-c ]-[f (1)-c ]=-29,当一个人先从自己的内心开始奋斗,他就是个有价值的人。

2015届高考数学总复习 基础知识名师讲义 第五章 第一节数列的概念与简单表示法 理

2015届高考数学总复习 基础知识名师讲义 第五章 第一节数列的概念与简单表示法 理

【金版学案】2015届高考数学总复习 基础知识名师讲义 第五章 第一节数列的概念与简单表示法年份 题号 分值所考查的知识点 11 5等差数列的前n 项和及项数问题及数列的综合应用.1.在复习数列的概念时,应注意:(1)数列是以正整数为自变量的一类特殊函数;(2)并不是所有的数列都能用通项公式表示,有的数列的通项公式不是唯一的;(3)运用递推关系求数列通项公式时,可用特殊到一般的方法找出规律,也可将数列转化为等差或等比数列求解;(4)在an =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2中,要特别注意n =1的情况.2.在复习等差数列、等比数列时,应注意:(1)等差、等比数列的定义在解题中的应用;(2)等差、等比数列的中项公式、通项公式和求和公式的使用方法;(3)灵活处理数列与不等式、函数相结合的综合问题.这些是广东高考要考查的重点和热点.预计2014年高考对该部分内容的考查,会以两种形式出现,一种以小题考查通项公式、递推关系、数列求和等问题,属中等题;一种是在大题中将数列问题与函数、不等式结合在一起进行综合考查,属难题.第五章数列根据上述分析、预测,复习中应注意:1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决,如通项公式、前n 项和公式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1,d (或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等.4.等价转化是数学复习中常常运用的,数列也不例外.如an与S n的转化,将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.切实抓好两个“特殊数列”的通项公式和前n项和公式的推导过程及方法.6.解题要善于总结基本数学方法.如迭代法、逐差(积)求和(商)法、裂项相消法、观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法等,养成良好的学习习惯,定能达到事半功倍的效果.第一节数列的概念与简单表示法1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.一、数列的定义按照一定顺序排列着的一列数称为数列,数列中的每个数叫做这个数列的项.项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列.二、通项公式如果数列{an}的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,即an=f(n).数列的实质是定义域为正整数集N*(或N*的有限子集{1,2,3,…,n})的函数.通项公式an=f(n)即为函数的解析式.其中项数n相当于自变量,项an相当于函数值.三、递推公式如果已知数列{an}的第一项(或前几项),且任何一项an与它的前一项an-1(或前几项)间的关系可以用一个式子来表示,即an=f(an-1)或an=f(an-1,an-2,…),那么这个式子就叫做数列{an}的递推公式.如数列{an}中,a1=1,an=1+2an-1,其中式子an=1+2an-1就是数列{an}的递推公式.四、数列的表示1.列举法:如1,3,5,7,9,…2.图解法:由(n,an)点构成.3.解析法:用通项公式an=f(n)表示,如an=2n+1.4.递推法:用前n项的值与它相邻的项之间的关系表示各项,如a1=1,an=1+2an -1.五、数列分类有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.六、数列{an }的前n 项和S n S n =a 1+a 2+…+an .注:前n 项和S n =a 1+a 2+a 3+…+an -1+an =g (n )也为n 的函数. 七、数列{an }的前n 项和S n 与通项an 的关系an =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.注:如果求出的a 1也满足n ≥2时的an ,则可统一写成同一个关系式,否则分段书写. 八、数列中最大、最小项的求法若an 最大,则⎩⎪⎨⎪⎧ an ≥an +1,an ≥an -1;若an 最小,则⎩⎪⎨⎪⎧an ≤an +1,an ≤an -1,考虑数列的单调性.1.(2012·江门市一模)已知数列{}an 的前n 项和S n =n 2-3n ,若它的第k 项满足2<ak <5,则k =( )A .2B .3C .4D .5解析:ak =S k -S k -1=k 2-3k -[(k -1)2-3(k -1)]=2k -4,依题意有2<2k -4<5,得k =4.故选C.答案:C2.(2012·天津一中月考)已知数列a 1=1,a 2=5,an +2=an +1-an (n ∈N *),则a 2 014=( )A .1B .-4C .4D .-1解析:逐项计算可知,{an }是周期为6的周期数列,前6项分别是1,5,4,-1,-5,-4,所以a 2 014=a 2 010+4=a 4=-1.故选D.答案:D3.(2012·温州中学月考)已知数列{}an 中,a 1=4,an =4n -1an -1(n >1,n ∈N ),则通项公式为________.解析:由an =4n -1an -1可得a 2=4a 1,a 3=42a 2,a 4=43a 3,…,an =4n -1an -1,上述n -1个等式相乘,得an =41+2+…+(n -1)a 1=2n 2-n +2. 答案:2n 2-n +24.(2012·浙江高考参考样卷)设S n 是数列{an }的前n 项和,已知a 1=1,a n =-S n S n -1(n ≥2),则S n =________.解析:由an =S n -S n -1(n ≥2),得S n -S n -1=-S n S n -1,即1S n -1S n -1=1,又∵1S 1=1a 1=1,∴⎩⎨⎧⎭⎬⎫1S 是以1S 1=1为首项,公差d =1的等差数列.∴1S n =1S 1+(n -1)×1=n .∴S n =1n .答案:1n►品味高考1.(2012·浙江卷)设公比为q (q >0)的等比数列{an }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.解析:将S 4=3a 4+2,S 2=3a 2+2两个相减,得a 4+a 3=3a 4-3a 2,即2a 4-a 3-3a 2=0,根据等比数列的通项公式化简得,2q 2-q -3=0,解之得:q =32(舍去q =-1).答案:322.(2011·浙江卷)若数列⎩⎨⎧⎭⎬⎫n (n +4)⎝⎛⎭⎫23n 中的最大项是第k 项,则k =________.解析:最大项为第k 项,则有⎩⎨⎧k (k +4)⎝⎛⎭⎫23k≥(k +1)(k +5)⎝⎛⎭⎫23k +1,k (k +4)⎝⎛⎭⎫23k≥(k -1)(k +3)⎝⎛⎭⎫23k -1,∴⎩⎪⎨⎪⎧k 2≥10,k 2-2k -9≤0.∴⎩⎨⎧k 2≥10,1-10≤k ≤1+10.又∵k ∈N *,∴k =4. 答案:4►高考预测1.(2012·济南市月考) 已知数列{an }满足a 1=36,an +1=an +2n, 则ann的最小值为( )A .10B .11C .12D .13解析:∵ an +1-an =2n ,∴an =(an -an -1)+(an -1-an -2)+…+(a 2-a 1)+a 1=2(n -1)+2(n -2)+…+2+36=n (n -1)+36,∴an n =n 2-n +36n =n +36n -1≥2n ·36n -1=11.故选B. 答案:B2.(2012·粤西北九校联考改编)在数列{an }中,a 1=13,S n 为数列{an }的前n 项和且S n=n (2n -1)an ,则an =________.解析:∵S n =n (2n -1)an ,S n -1=(n -1)(2n -3)an -1(n ≥2),两式相减得(2n +1)an =(2n-3)an -1(n ≥2),由累乘方可得an =14n 2-1,而a 1=13也满足上式.答案:14n 2-1。

【冀教版】四年级奥数上册讲义-第五讲 数列数表规律

【冀教版】四年级奥数上册讲义-第五讲 数列数表规律

第五讲数列数表规律◆温故知新:1. 找规律填空:8、15、22、29、36、、、572.找规律填空:1、2、4、8、、32、643.一个等差数列共有13项,每一项都比它的前一项大2,首项为23,末项是。

4.一个等差数列共有13项,每一项都比它的前一项小7,末项为125,首项是。

5.等差数列通项公式:末项=首项+(项数-1)×公差;项数公式:项数=(末项-首项)÷公差+1求和公式:和=(首项+末项)×项数÷26.寻找数列、数表中的数排列的规律,利用周期性计算。

7.在数列中需要关注所求的是第几个数,在数表中则要考虑所求的数在第几行、第几列◆练一练1. 一个等差数列的首项是为11,第10项为200,这个等差数列的公差等于多少?第19项等于多少?305是第几项?2.计算:(1)3+6+9+12+15+18+21+24+27+30(2)41+37+33+29+25+21+17+13+9+5+13.有9个连续的自然数的和是126,其中最小的数是多少?4.已知一个等差数列的前13项之和为533,前15项之和为690.请问:这个等差数列的首项是多少?◆例题展示例题1观察数列的规律1、1、4、2、7、3、10、1、13、2、16、3、19、1、22、2、25、3、…、100。

这个数列一共有多少项?练习1观察数列的规律3、1、6、2、9、3、12、1、15、2、18、3、21、1、24、2、27、3、…、102。

这个数列一共有多少项?例题21、100、2、98、3、96、2、94、1、92、2、90、3、88、2、86、1、84、 0请观察上面数列的规律,请问:(1)这个数列有多少项是2?(2)这个数列所有项的总和是多少?练习210、2、10、4、10、6、10、8、10、10、10、12、 (100)观察数列的规律并回答以下问题:(1)这个数列中有多少项是10?(2)这个数列所有项的总和是多少?例题31、2、3、4、4、5、6、7、7、8、9、10、……、97、98、99、100请观察数列的规律并回答以下问题:(1)这个数列一共有多少个数?(2)50在数列中是第几个数?练习3 1、2、3、2、3、4、3、4、5、……9、10、11请观察数列的规律并回答以下问题:(1)这个数列中一共有多少个数?(2)数字8出现了几次?例题4观察数组(1、2、3)、(3、4、5)、(5、6、7)、(7、8、9)……的规律,求:(1)第20组中三个数的和;(2)前20组中所有数的和。

联考数学要点7讲

联考数学要点7讲

联考数学要点7讲摘要:一、联考数学概述二、第一讲:函数与导数1.函数的基本概念及其性质2.函数的图像与解析式3.导数的定义与计算4.导数的应用三、第二讲:三角函数1.三角函数的定义与性质2.三角函数的图像3.三角函数的恒等变换4.三角函数的应用四、第三讲:解析几何1.解析几何的基本概念2.直线与圆的方程3.几何量的最值问题4.解析几何的应用五、第四讲:概率与统计1.概率的基本概念2.条件概率与独立事件3.离散型随机变量4.统计的基本概念与应用六、第五讲:数列1.等差数列与等比数列2.数列的求和公式3.数列的极限4.数列的应用七、第六讲:不等式1.不等式的基本性质2.解不等式的方法3.绝对值不等式4.柯西不等式八、第七讲:实战演练与应试技巧1.解题策略与技巧2.考试重点与难点3.考试时间的分配4.提高解题速度的方法正文:一、联考数学概述联考数学作为高中阶段的重要学科,其考试大纲要求掌握的知识点较多。

为了帮助同学们更好地应对联考数学考试,本文将为大家梳理联考数学的七个重点讲解内容,以提高同学们的学习效率和应试能力。

二、第一讲:函数与导数1.函数的基本概念及其性质函数是数学中描述变量之间关系的重要工具。

掌握函数的基本概念,了解函数的性质,如单调性、奇偶性等,有助于解决相关问题。

2.函数的图像与解析式学会如何画出函数的图像,掌握函数解析式的求法,能快速判断函数的性质。

3.导数的定义与计算导数是函数在某一点变化率的衡量标准。

了解导数的定义,熟练掌握导数的计算方法,有助于解决实际问题。

4.导数的应用导数在实际问题中的应用广泛,如求极值、最值问题、曲率等。

学会利用导数解决实际问题,提高解题能力。

三、第二讲:三角函数1.三角函数的定义与性质掌握三角函数的定义,了解三角函数的性质,如周期性、奇偶性等,有助于解决相关问题。

2.三角函数的图像学会画出三角函数的图像,了解三角函数的图像特征,有助于解决实际问题。

3.三角函数的恒等变换熟练掌握三角函数的恒等变换,如和差化积、积化和差等,能简化运算过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五讲 数列一、数列简史自学教材P125~130,思考以下问题: ⒈我国关于数列的早期认识; ⒉国外关于数学的早期认识;⒊北宋时期沈括创立的高阶等差数列求和计算方法——隙积术; ⒋南宋末期杨辉提出的垛积术; ⒌元朝数学家朱士杰的三角垛系统; ⒍斐波那契数列。

二、中学数学里的数列及其求和中学里的数列教学内容,主要是建立数列的概念,学习简单的级数求和方法,特别是仔细研究等差数列和等比数列的各种性质。

⒈数列的定义及其表示定义在正整数集上的函数构成数列; 《全日制普通高级中学教科书(必修)·数学》第一册(上)中数列的定义为:按一定次序排成的一列数。

关于数列概念应该注意: ①数列具有严格的顺序性; ②集合与数列不完全是一回事;③数列不等于序列,序列是比数列更广泛的概念。

⒉有限数列的通项和拉格朗日插值公式拉格朗日插值公式:设)0(n i a i ≤≤为任意给定的相异位置,)0(n i b i ≤≤为任意给定的数值(不必相异),则存在唯一的次数不高于n 的多项式()x f ,使得())0(n i b a f i i ≤≤=。

再者,()x f 的明确表达式就是:()∑==+++=ni i i n n x f b x f b x f b x f b x f 01100)()()()(其中()()∏∏==--=------=ni i ni in n a aa x a a a a a a a x a x a x x f 1102010210)()())(())(()(∏∏≠≠--=ji i jji ij a aa x x f )()()(⒊数列求和法⑴与通项n a 有关的问题例 已知数列{}n a 的通项公式为:nn n a )109)(2(+=,试问这个数列有数值最大的项吗? 解 由⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+≥⎪⎭⎫ ⎝⎛++-11109)3(109)2(109)1(109)2(k k k k k k k k 整理得⎪⎩⎪⎨⎧+≥++≥+109)3(21109)2(k k k k 解得87≤≤k ,所以,当7=n 或8时,n a 取得最大值78109。

⑵与前n 项和n S 有关的问题 ①分组求和法例 求数列 ,21,,813,412,211n n +的前n 项和 解 n n nk k nk nk k n n n n n k k S 2122211)211(212)1(21)21(2111-++=--++=+=+=∑∑∑===②裂项相消法例 求和:∑=+=nk n k kS 1)!1( 解 )!1(11])!1(1!1[)!1(11+-=+-=+=∑∑==n k k k k S nk nk n ③错项相消法例 求和:∑=-≠-=nk k n q qk S 11)1()12(解 因为∑∑==---+=-=nk nk k k n q k qk S 1211)12(1)12(所以∑∑∑=-=-=-+-=---=-=nk n k nnk n k kkn q x q k q n q k qk qS 21111)12()32()12()12()12(两式相减,得()n n nnk k n q n qq q q n qS q )12(1)1(21)12(211121----+=--+=--=-∑故 ])12(1)1(21[111n n n q n qq q q S ----+-=-课堂练习⒈证明数列⎭⎬⎫⎩⎨⎧∑=n k k 11无界。

证 对任何N n ∈,总有nm 2=,使得22222211)21121(81716151413121111211n k n n n n mk >++++>+++++⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++=--=∑又⎭⎬⎫⎩⎨⎧2n 无界,所以原数列无界。

⒉设n 是任意自然数,982881711个个n n n a =,求证n a 是完全平方数。

证 由于22111221122122)1108(31)110161064(919)110(10918102)110(10911079)101010(8102)101010(107⎥⎦⎤⎢⎣⎡+⋅=+⋅+⋅=+-⋅⋅+⋅+-⋅+⋅=+++++⋅+++++⋅=--+--+--n n n n n n n n n n n n n n n n a⒊设n m l k a a a a ,,,是数列{}n a 的项,且n m l k +=+,求证⑴当{}n a 是等差数列时,n m l k a a a a +=+; ⑵当{}n a 是等比数列时,n m l k a a a a =。

证⑴若{}n a 是等差数列,根据它的通项公式,设βαβα+=+=l a k a l k ,这就有βα2)(++=+l k a a l k ,同理βα2)(++=+n m a a n m , 再有n m l k +=+,得到n m l k a a a a +=+。

⑵若{}n a 是等比数列,公比为零时,显然结论成立,公比0≠q 时,设1111,--==l l k k q a a q a a ,这就有22-+=l k l k q a a a ;同理22-+=n m n m q a a a ,因此n m l k a a a a =。

第五讲数列 家庭作业一⒈已知{}n a 是等差数列,求证⎭⎬⎫⎩⎨⎧+++n a a a n 21也是等差数列。

证 根据等差数列前n 项和的公式,设n n a a a n μλ+=+++221 , 而μλ+=+++n n a a a n 21,因此,⎭⎬⎫⎩⎨⎧+++n a a a n 21是等差数列。

⒉在10与100之间插入50个数,构成等差数列,求插入的整数之和。

解 设公差为d ,则有1730)1(10,1730,1005110-+===+n a d d n ,欲使n a 为整数,则1-n 必为17的倍数,且5110≤-≤n ,即1-n 可取0,17,34,51,则n 可取1,18,35,52; 所以插入的整数为3518,a a 这两项,它们的和为:11051213518=+=+d a a a 。

⒊求和n n a n aa a S ++++=32321 解 当1=a 时,2)1(321+=++++=n n n S n 当1≠a 时,n n a naa a S ++++=32321;14323211+++++=n n a n a a a S a两式相减,得1211111+-+++=⎪⎭⎫⎝⎛-n n n a n a a a S a ,即2)1()1()1(----=a a a n a a S n n n三、数列的差分与高阶等差数列1.数列的差分定义 对于数列{}k a ,称{}k k a a -+1为{}k a 的一阶差数列。

并称),2,1(1 =-=∆+k a a a k k k 为{}k a 的一阶差分(简称差分);{}k a 的一阶差分()() ,2,12=∆∆=∆k a a k k 叫做{}k a 的二阶差分;一般地,设m 是任一正整数,则称()() ,2,11=∆∆=∆-k a a k m k m 为{}k a 的m 阶差分。

课堂练习求下列数列的差分①数列:1,1,1,1,1,1,… 一阶差分:0,0,0,0,0,… ②数列:1,2,3,4,5,6,… 一阶差分:1,1,1,1,1,… 二阶差分:0,0,0,0,…③数列: ,6,5,4,3,2,1222222即1,4,9,16,25,36,… 一阶差分:3,5,7,9,11,… 二阶差分:2,2,2,2,… 三阶差分:0,0,0,…④数列: ,2,2,2,2,2,15432即1,2,4,8,16,32,… 一阶差分:1,2,4,8,16,… 二阶差分:1,2,4,8,… 三阶差分:1,2,4,…定理 对于数列{}k a ,{}k b ,有 ⑴()k m k m a a ∆∆=∆-1⑵()k k k k b a b a ∆+∆=+∆μλμλ,这里μλ,为常数⑶()k k k k k k a b b a b a ∆+∆=∆+1或()k k k k k k a b b a b a ∆+∆=∆+1 ⑷∑∑=+++=∆--=∆nk k k n n nk kk a b b a b a ba 1111111证明:⑴、⑵、⑶直接应用差分定义验证即可;⑷由⑶,有()k k k k k k a b b a b a ∆-∆=∆+1, 于是()()()()∑∑∑∑∑=+++=+++=+==∆--=∆--++-+-=∆-∆=∆nk kk n n nk k k n n n n nk kk n k kk n k kka b b a b a a b b a b a b a b a b a b a a bb a b a 1111111111223311221111可以用差分的观点来看待数列的通项公式n a 与前n 项和n S 之间的关系。

由前述,111,--==n n n S S a S a ,从而求一个数列的前n 项和,实质是要找一个新数列,使得其差分为该数列。

例 求数列{})1(1≠-q aq k 的前n 项和n S解法一 等比数列的求和公式:qq a q q a S n n n --=--=1)1(1)1(1 解法二()1111111111111--=∆-----=⎪⎪⎭⎫ ⎝⎛-∆=∑∑∑==-=-q q a a q q q a q q a q q a aqn nk k n nk k nk k 解法三 因为⎪⎪⎭⎫⎝⎛-∆=--111k k q q a aq ,所以()1111111111111--=∆-----=⎪⎪⎭⎫ ⎝⎛-∆=∑∑∑==-=-q q a q aq q a q q a q q a aqn n k k n nk k nk k 例 求和∑=++nk k k k 1)2)(1(1解法一 因为])1(1)2)(1(1[21)2)(1(1+-++-=++k k k k k k k所以)2)(1(4)3(]211)2)(1(1[21])1(1)2)(1(1431541321431211321[21)2)(1(11+++=⋅-++-=+-++++⋅-⋅+⋅-⋅+⋅-⋅-=++∑=n n n n n n n n n n k k k nk 解法二 见课本P143 解法三 见课本P1442.高阶等差数列定义 对于数列{}n a ,若有正整数m ,使{}n m a ∆是非零常数列,则称{}n a 为m 阶等差数列。

当2≥m 时,m 阶等差数列统称为高阶等差数列。

常数列叫做零阶等差数列。

定理 若{}n a 是m 阶等差数列,它的前n 项的和为n S ,则{}n S 是1+m 阶等差数列,且111211a C a C a C S mm n n n n ∆++∆+=+例 求3阶等差数列{})2)(1(++k k k 前n 项的和为n S 解 设∑=++=++=nk kn k k k ak k k S 1)2)(1(),2)(1(则6,18,18,613121211=∆=∆=-=∆=a a a a a a 根据定理,)3)(2)(1(416181864321111211+++=+++=∆++∆+=+n n n n C C C C a C a C a C S n n n n m m n n n n第五讲数列 家庭作业二4.求和∑=nk k13解 设3k a k =,则6,12,7,113121211=∆=∆=-=∆=a a a a a a 根据定理,224321111211)1(4161271+=+++=∆++∆+=+n n C C C C a C a C a C S n n n n mm n n n n四、数列的综合应用与实际应用高考命题焦点 ● 命题热点⒈有关等差数列的应用题;⒉有关等比数列的应用题;⒊有关递推数列的应用题 ● 学科渗透⒈数列与函数相结合;⒉数列与不等式相结合;⒊数列与解析几何相结合;⒋数列与方程相结合高考题型⑴例1 某种汽车购买时的费用为10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,依次成等差数列递增,问这种汽车使用多少年后报废最合算?(即年平均费用最少?) 思路:建立汽车的年平均费用的目标函数式。

相关文档
最新文档