浙江省建德市李家镇初级中学2013年七年级(下)期末数学试题(一)及答案(1)

合集下载

2013七年级下学期期末试卷数学

2013七年级下学期期末试卷数学

.12013七年级下学期期末试卷数学一、选择题(每题 分,共 分) 1、下列运算正确的是( )。

A 、1055a a a=+ B 、2446a a a =⨯ C 、a a a =÷-10 D 、044a a a =-2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( ) A 、1个 B 、2个 C 、3个 D 、4个3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 1524、1纳米相当于1根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米 5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40A 、1个 B 、2个 C 、3个 D 、4个二、填空题(每空3分,共27分)7、单项式313xy -的次数是 .8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 . 12、若229a ka ++是一个完全平方式,则k 等于 .13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .15、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。

【浙教版】初一数学下期末试卷含答案(1)

【浙教版】初一数学下期末试卷含答案(1)

一、选择题1.下列事件发生的概率为0的是( ) A .射击运动员只射击1次,就命中靶心 B .任取一个实数x ,都有|x|≥0C .画一个三角形,使其三边的长分别为8cm ,6cm ,2cmD .抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 2.下列说法正确的是( )A .扔100次硬币,都是国徽面向上,是不可能事件B .小芳在扔图钉游戏中,扔10次,有6次都是钉尖朝下,所以钉尖朝下的可能性大C .王明同学一直是级部第一名,他能考上重点高中是必然事件D .投掷一枚均匀的骰子,投出的点数是10,是一个确定事件 3.下列事件:(1)打开电视机,正在播放新闻; (2)下个星期天会下雨;(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1; (4)一个有理数的平方一定是非负数; (5)若a ,b 异号,则0a b +<; 属于确定事件的有( )个. A .1B .2C .3D .44.下列图形中不是轴对称图形的是( ) A .B .C .D .5.如图,四边形ABCD 中,90A ∠=︒,110C ∠=︒,点E ,F 分别在AB ,BC 上,将BEF ∆沿EF 翻折,得GEF △,若//GF CD ,//GE AD ,则D ∠的度数为( )A .69︒B .70°C .80︒D .90°6.如图,将长方形纸片进行折叠,ED ,EF 为折痕,A 与A '、B 与B '、C 与C '重合,若25AED ∠=︒,则CFE ∠的度数为( )A .130°B .115°C .65°D .50°7.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒8.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠ B .1A D ∠=∠+∠C .2D ∠>∠D .C D ∠=∠9.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .410.如图1,在等边三角形ABC 中,AB =2,G 是BC 边上一个动点且不与点B 、C 重合,H是AC 边上一点,且°.设BG=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的( )A .线段CGB .线段AGC .线段AHD .线段CH11.将一直角三角板与等宽的纸条如图放置,顶点C 在纸条边FG 上,且DE//FG ,当132∠=︒时,∠2的度数是( )A .48°B .32°C .58°D .64°12.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ± B .-1或4814x C .29x - D .6x ±或1-或29x -或4814x 二、填空题13.小明掷一枚硬币10次,有9次正面向上,当他掷第10次时,正面向上的概率是_____.14.从一副扑克牌中级抽取一张,①抽到王牌;②抽到Q ;③抽到梅花.上述事件,概率最大的是_____.15.如图,在正方形网格中有两个小正方形被涂黑,再涂黑一个图中其余的小正方形,使得整个被涂黑的图案构成一个轴对称图形,那么涂法共有_____种.16.如图,ABC ∆中,∠BAC 75=︒,7BC =,ABC ∆的面积为14,D 为BC 边上一动点(不与B ,C 重合),将ABD ∆和ACD ∆分别沿直线AB ,AC 翻折得到ABE ∆和ACF ∆,那么△AEF 的面积的最小值为____.17.已知:如图,△ABC 中,点D ,E 分别在AB ,AC 上,CF ∥AB 交DE 的延长线于点F ,DE =EF ,DB =2,CF =5,则AB =_____.18.函数y=3x +中自变量x 的取值范围是________. 19.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.20.计算:()322()ab ab ÷-=________.三、解答题21.小明和小颖用一副扑克牌做摸牌游戏(去掉大小王):小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J ,Q ,K ,A ,且牌面的大小与花色无关).然后两人把摸到的牌都放回,重新开始游戏.(1)现小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少?(2)若小明已经摸到的牌面为2,情况又如何?如果若小明已经摸到的牌面为A 呢? 22.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4), (1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1,并写出点B 1的坐标; (2)在x 轴上求作一点P ,使△PAB 的周长最小,并直接写出点P 的坐标.23.如图,在平面内有三个点、、A B C(1)根据下列语句画图: ①连接AB ; ②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ; (2)比较,,AB BD AB BC CD AD +++的大小关系.24.李明为了了解自家用电量的多少,在六月初连续几天同一时刻记录了电表显示的读数,记录如下: 日期1 2 3 4 5 6 7 8 电表读数/千瓦时117120124129135138142145请估计李明家六月份的总用电量是多少.25.已知:如图,BD 平分ABC ∠,BE 将ABC ∠分为2:3两部分,12DBE ∠=︒,求ABC ∠的度数和ABE ∠的补角的度数.26.综合与实践读下列材料,完成文后任务.小明在数学课外书上看到了这样一道题:如果x 满足(6)(2)3x x --=.求 22(6)(2)x x -+-的值,怎么解决呢?小英给出了如下两种方法:方法1:设6-=x m ,2x n -=,则(6)(2)3x x mn --==, 624m n x x +=-+-=,222222(6)(2)+=()242316610x x m n m n mn ∴-+-=+-=-⨯=-=方法2:(6)(2)3x x --=, 261223x x x ∴-+-=,2815x x ∴-=-,222222(6)(2)361244216402840x xxx x xx xx x2(15)40304010=⨯-+=-+=.用到的乘法公式是 (填(2)请你用材料中两种方法中的一种解答问题:若22(11)(9)10x x -+-=,求(11)(9)x x --的值.(3)如图,在长方形ABCD 中,10AB =,6BC =,E ,F 是BC , CD 上的点,且BE DF x ==,分别以FC ,CE 为边在长方形ABCD 外侧作正方形CFGH 和 CEMN ,若长方形CEPF 的面积为40,求图中阴影部分的面积和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【详解】A. 射击运动员只射击1次,就命中靶心是随机事件,故此选项错误;B. 任取一个实数x ,都有|x|≥0,是必然事件,故此选项错误;C. 画一个三角形,使其三边的长分别为8cm,6cm,2cm,是不可能事件,故此选项正确;D. 抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6是随机事件,故此选项错误.故选C.2.D解析:D【分析】利用概率的意义、随机事件的定义及可能性的大小的知识分别判断后即可确定正确的选项.【详解】解:A、扔100次硬币,都是国徽面向上,是随机事件,故错误;B、扔10次,有6次都是钉尖朝下,不能说明钉尖朝下的可能性大,故错误;C、王明同学一直是级部第一名,他能考上重点高中是随机事件,故错误;D、投掷一枚均匀的骰子,投出的点数是10,是一个确定事件,正确,故选D.【点睛】考查了可能性的大小及随机事件的知识,解题的关键是了解概率的意义、随机事件的定义及可能性的大小的知识,难度不大.3.B解析:B【分析】根据事件发生的可能性大小逐一判断相应事件的类型,即可得答案.【详解】(1)打开电视机,正在播放新闻是随机事件,(2)下个星期天会下雨是随机事件,(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1是不可能事件,是确定事件,(4)一个有理数的平方一定是非负数是确定事件,(5)若a、b异号,则a+b<0是随机事件.综上所述:属于确定事件的有(3)(4),共2个,故选:B.【点睛】本题考查的是必然条件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握基础知识是解题的关键.4.D解析:D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项符合题意; 故选:D . 【点睛】此题考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.C解析:C 【分析】由平行线的性质得90BEG ∠=︒,110BFG ∠=︒,由折叠的性质和三角形的内角和得到∠B 的度数,然后求出D ∠的度数. 【详解】解:∵//GF CD ,//GE AD ,∴90BEG A ∠=∠=︒,110BFG C ∠=∠=︒, ∵将BEF ∆沿EF 翻折得GEF △, ∴45BEF ∠=︒,55BFE ∠=︒, ∴=180455580B ∠︒-︒-︒=︒, ∴360908011080D ∠=︒-︒-︒-︒=︒; 故选:C. 【点睛】本题考查了平行线的性质,用到的知识点是两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.6.B解析:B 【分析】根据折叠的性质和平角的定义,即可得到结论. 【详解】解:根据翻折的性质可知,∠AED=∠A′ED ,∠BEF=∠FEB′, 又∵∠AED+∠A′ED+∠BFE+∠FEB′=180°, ∴∠AED+∠BEF=90°, 又∠AED=25°, ∴∠BEF=65°.∴=18065=115CFE ∠︒-︒︒. 故选:B. 【点睛】此题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE ,∠DBC=∠DBC′是解题的关键.7.D解析:D 【分析】根据三角形全等的性质与路程、速度、时间的关系式求解. 【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CPBD CQ=⎧⎨=⎩, 即3634t tvt=-⎧⎨=⎩,解之得:14t v =⎧⎨=⎩,∴点Q 的运动速度为4厘米/秒, 故选D . 【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.8.D解析:D 【分析】利用三角形的外角性质,对顶角相等逐一判断即可. 【详解】∵∠1=∠2,∠A=∠C ,∠1=∠A+∠D ,∠2=∠B+∠C , ∴∠B=∠D , ∴选项A 、B 正确; ∵∠2=∠A+∠D , ∴2D ∠>∠, ∴选项C 正确; 没有条件说明C D ∠=∠ 故选:D. 【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.9.B解析:B 【分析】根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案. 【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意; ①和④不构成三角形全等的条件,故错误; 故选:B . 【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.10.D解析:D 【解析】若CG 的长为y ,则y =2-x ,故A 选项不符合;若AG 的长为y ,随着x 的增大,y 是先减小后增大的,故B 选项不符合; 随着BG 的逐渐增大,AH 是先减小再增大,故C 选项不符合; 线段CH 随着BG 的逐渐增大是先增大后逐渐减小的,故D 符合; 故选D11.C解析:C 【分析】先根据平行线的性质,求得∠3的度数,再根据平角的定义,求得∠2的度数. 【详解】 解:如图,∵DE ∥FG ,∠1=32°, ∴∠3=32°,∴∠2=180°-90°-32°=58°.故选:C .【点睛】本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等. 12.D解析:D【分析】根据完全平方公式计算解答.【详解】解:添加的方法有5种,分别是:添加6x ,得9x 2+1+6x=(3x+1)2;添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2;添加﹣9x 2,得9x 2+1﹣9x 2=12;添加﹣1,得9x 2+1﹣1=(3x )2, 添加4814x ,得242819+91142x x x ⎛⎫+=+ ⎪⎝⎭, 故选:D .【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键. 二、填空题13.【分析】根据概率的性质和概率公式即可求出当他掷第10次时正面向上的概率【详解】解:∵掷一枚质地均匀的硬币有两种结果:正面朝上反面朝上每种结果等可能出现∴她第10次掷这枚硬币时正面向上的概率是:故答案 解析:12. 【分析】 根据概率的性质和概率公式即可求出,当他掷第10次时,正面向上的概率.【详解】解:∵掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴她第10次掷这枚硬币时,正面向上的概率是:12. 故答案为:12. 【点睛】本题考查了概率统计的问题,根据概率公式求解即可. 14.③抽到梅花【解析】【分析】根据概率公式先求出各自的概率再进行比较即可得出答案【详解】∵一副扑克牌有54张王牌有2张抽到王牌的可能性是;Q牌有4张抽到Q牌的可能性是;梅花有13张抽到梅花牌的可能性是;解析:③抽到梅花.【解析】【分析】根据概率公式先求出各自的概率,再进行比较,即可得出答案.【详解】∵一副扑克牌有54张,王牌有2张,抽到王牌的可能性是21=5427;Q牌有4张,抽到Q牌的可能性是42= 5427;梅花有13张,抽到梅花牌的可能性是13 54;∴概率最大的是抽到梅花;故答案为:③抽到梅花.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15.5【分析】直接利用轴对称图形的性质得出符合题意的答案【详解】解:如图所示:所标数字处都可以使得整个被涂黑的图案构成一个轴对称图形共5种涂法故答案为:5【点睛】本题主要考查了利用轴对称设计图案正确掌握解析:5【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:所标数字处都可以使得整个被涂黑的图案构成一个轴对称图形,共5种涂法.故答案为:5.【点睛】本题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.16.【分析】过E作EG⊥AF交FA的延长线于G由折叠可得∠EAG=30°而当AD⊥BC时AD最短依据BC=7△ABC的面积为14即可得到当AD⊥BC时AD=4=AE=AF进而得到△AEF的面积最小值为:解析:【分析】过E作EG⊥AF,交FA的延长线于G,由折叠可得∠EAG=30°,而当AD⊥BC时,AD最短,依据BC=7,△ABC的面积为14,即可得到当AD⊥BC时,AD=4=AE=AF,进而得到△AEF 的面积最小值为:12AF×EG =12×4×2=4. 【详解】 解:如图,过E 作EG ⊥AF ,交FA 的延长线于G ,由折叠可得,AF =AE =AD ,∠BAE =∠BAD ,∠DAC =∠FAC ,∵∠BAC =75°,∴∠EAF =150°,∴∠EAG =30°,∴EG =12AE =12AD , 当AD ⊥BC 时,AD 最短,∵BC =7,△ABC 的面积为14,∴当AD ⊥BC 时,1142BC AD ⋅=, 即:14274AD =⨯÷=AF AE ==, ∴114222EG AE ==⨯=. ∴△AEF 的面积最小值为: 12AF×EG =12×4×2=4, 故答案为:4.【点睛】本题主要考查了折叠问题,解题的关键是利用对应边和对应角相等.17.7【分析】先利用平行线的性质得到∠ADE =∠F 则利用ASA 可判定△ADE ≌△CFE 所以AD =CF =5所以计算AD +BD 即可【详解】∵AB ∥CF ∴∠ADE =∠F 在△ADE 和△CFE 中∵∠ADE =∠FD解析:7【分析】先利用平行线的性质得到∠ADE =∠F ,则利用“ASA”可判定△ADE ≌△CFE ,所以AD =CF =5,所以计算AD +BD 即可.【详解】∵AB ∥CF ,∴∠ADE =∠F ,在△ADE和△CFE中,∵∠ADE=∠F ,DE=EF ,∠DEA=∠CEF,∴△ADE≌△CFE,∴AD=CF=5,∴AB=AD+BD=5+2=7.故答案为7.【点睛】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.18.x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时应该是取让两个条件都满足的公共部分【详解】根据题意得到:x+3>0解得x>-3故答案为x>-3解析:x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【详解】根据题意得到:x+3>0,解得x>-3,故答案为x>-3.【点睛】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.19.30°180°-n°【分析】(1)根据对顶角相等可得答案;(2)根据角的和差可得答案【详解】解:(1)若∠ACF=30°则∠PCD=30°理由是对顶角相等(2)由角的和差得∠ACD+∠BCE=∠AC解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°,∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.20.【分析】先进行积的乘方然后进行整式除法运算即可【详解】原式故答案为:【点睛】本题考查了积的乘方单项式除单项式解答本题的关键是熟练掌握运算法则解析:4ab【分析】先进行积的乘方,然后进行整式除法运算即可.【详解】原式362232624--=÷==a b a b a b ab故答案为:4ab【点睛】本题考查了积的乘方,单项式除单项式,解答本题的关键是熟练掌握运算法则.三、解答题21.(1)851;4051.(2)若小明已经摸到的牌面为2,那么小明获胜的概率是0,小颖获胜的概率是4851;若小明已经摸到的牌面为A ,那么小明获胜的概率是4851,小颖获胜的概率是0.【解析】因为一副扑克去掉大小王后,共有4×13=52张牌,则:(1)因为小明已经摸到的牌面是4,如果小明获胜的话,小颖只可能摸到的牌面是2或者3,所以,小明获胜的概率是248=5151⨯;如果小颖要获胜,摸到的牌面只能是5,6,7,8,9,10,J ,Q ,K ,A ,所以,小颖获胜的概率是;41040=5151⨯. (2)若小明已经摸到的牌面为2,那么小明获胜的概率是0,小颖获胜的概率是41248=5151⨯;若小明已经摸到的牌面为A ,那么小明获胜的概率是41248=5151⨯,小颖获胜的概率是0.22.(1)详见解析,B 1的坐标为(﹣4,2);(2)(2,0).【分析】(1)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可得;(2)作点A 关于x 轴的对称点,再连接A ′B ,与x 轴的交点即为所求.【详解】(1)如图所示,△A 1B 1C 1即为所求,其中点B 1的坐标为(﹣4,2).(2)如图所示,点P即为所求,其坐标为(2,0).【点睛】本题考查了坐标轴画图的问题,掌握坐标轴的性质以及关于y轴对称的点的性质是解题的关键.++>+>23.(1)见解析;(2)AB BC CD AB BD AD【分析】(1)①按要求作图;②按要求作图;③按要求作出射线AC,然后以点C为圆心,BC为半径画弧,交射线AC于点D,连接BD;(2)结合图形,根据三角形两边之和大于第三边进行分析比较.【详解】解:(1)①如图,线段AB即为所求;②如图,直线BC即为所求;③如图,射线AC,点D,线段BD即为所求(2)如图,在△BCD中,BC+CD>BD++>+∴AB BC CD AB BD在△ABD中,AB+BD>AD++>+>∴AB BC CD AB BD AD【点睛】本题考查基本作图及三角形三边关系,正确理解几何语言并掌握三角形三边关系是解题关键.24.120千瓦时【解析】试题分析:根据样本估计总体的统计思想,可先求出7天中用电量的平均数,作为6月份用电量的平均数,则一个月的用电总量即可求得.试题145117 301207-⨯=(千瓦时), 所以李明家6月份的总用电量是120千瓦时.点睛:本题主要考查了用样本估计总体的知识,解决本题的关键是要求得样本的平均数. 25.ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【分析】由角平分线的定义,则∠CBD=∠DBA ,根据BE 分∠ABC 分2:3两部分这一关系列出方程求解.【详解】解:∵BD 平分ABC ∠∴∠CBD=∠DBA由题意,设∠ABE=2x ︒,则∠CBE=3x ︒,∴∠ABC=5x ︒,∠CBD=∠DBA=52x ︒ ∵12DBE ∠=︒ ∴12ABD ABE ∠-∠=︒,52122x x -=,解得:24x = ∴∠ABE=2×24=48︒;∠ABC=5×24=120︒∴ABE ∠的补角的度数为18048132︒-︒=︒ 答:ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【点睛】本题考查一元一次方程的应用及角的运算和补角的定义,正确理解题意,运用方程思想解题是关键.26.(1)完全平方公式;(2)3-;(3)96.【分析】(1)根据方法1中用到的方法,可以知道方法1中用到的乘法公式是完全平方公式; (2)使用方法1,设11x m ,9x n ,则可得222211910x x m n ,1192m n x x ,根据完全平方公式化简可得3=-mn ,即有1193x x (3)根据10AB =,6BC =,BE DF x ==,得到10FC x ,6EC x =-,即有:10640x x ,10x m ,6x n ,可得4m n -=,40mn,利用完全平方公式化简计算即可得到结果.【详解】解:(1)根据方法1中用到的方法,可以知道方法1中用到的乘法公式是完全平方公式; (2)使用方法1,设11x m ,9x n ,则222211910x x m n , 1192m n x x, ∴2222222210m n m n mn mn m n mn , ∴2210mnm n , ∴2210210322m n mn 即:1193x x(3)∵10AB =,6BC =,BE DF x ==, ∴10FC AB DF x ,6ECBC BE x , ∵长方形CEPF 的面积为40, 即有:10640x x, 设10xm ,6x n , 则1064m nx x ,40mn ∴222216m nm mn n , ∴221621624096m n mn ,∵四边形CFGH 和CEMN 均是正方形, ∴图中阴影部分的面积和是:222210696xx m n 【点睛】本题考查整体代入的解题方法和完全平方公式的应用,解题的关键是明确题意,可以根据材料中的例子对所求的式子进行整体代入求解.。

【浙教版】七年级数学下期末试题(带答案)(1)

【浙教版】七年级数学下期末试题(带答案)(1)

一、选择题1.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有|x|≥0C.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 2.下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是不可能事件B.“两直线被第三条直线所截,同位角相等”是必然事件C.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D.“篮球队员在罚球线上投篮一次,投中”为随机事件3.下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾 B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒 D.在一个仅装有白球和黑球的袋中摸球,摸出红球4.在下列四个图案的设计中,没有运用轴对称知识的是()A.B.C.D.5.下列说法错误的是()A.所有的等边三角形都是全等三角形B.全等三角形面积相等C.三条边分别相等的两个三角形全等D.成轴对称的两个三角形全等6.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.=,点D,E在BC上,连接AD,AE,若只添加一7.如图,在ABC中,AB AC∠=∠,则添加的条件不能为()个条件使DAB EACA .BD CE =B .AD AE =C .BE CD = D .DA DE = 8.已知如图,AB=AE ,只需再加一个条件就能证明△ABC ≌△AED ,下列选项是所加条件,请判断哪一个不能判断△ABC ≌△AED ( )A .∠B=∠EB .AC=ADC .∠ADE=∠ACBD .BC=DE 9.已知三角形的三边长分别是3,8,x ,则x 的值可以是( )A .6B .5C .4D .3 10.在三角形面积公式S =ah ,a =2cm 中,下列说法正确的是( ) A .S ,a 是变量,h 是常量 B .S ,h 是变量,是常量 C .S ,h 是变量,a 是常量 D .S ,h ,a 是变量,是常量 11.如图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( )A .110°B .115°C .125°D .130° 12.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .32二、填空题13.三张背面完全相同的卡片,它们的正面分别标有数字﹣1,0,1,将他们背面朝上,洗匀后随机抽取一张,把正面的数字作为b ,接着再抽取一张,把正面的数字作为c ,则满足关于x 的一元二次方程x 2+bx +c =0有实数根的概率是_____.14.事件A 发生的概率为,大量重复做这种试验,事件A 平均每100次发生的次数是_____.15.如图,是4×4正方形网格,其中已有三个小方格涂成黑色,在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形的涂法有_____种16.如图,三角形ABC 的面积为1,将三角形ABC 沿着过AB 的中点D 的直线折叠,使点A 落在BC 边上的1A 处,折痕为DE ,若此时点E 是AC 的中点,则图中阴影部分的面积为______________.17.如图,CE 是△ABC 外角的平分线,且AB ∥CE ,若∠ACB =36°,则∠A 等于_____度.18.夏季高山上的温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y (℃)与上升高度x (米)之间的关系式为_____________.19.如图,直线AB 、CD 相交于点O ,OM AB ⊥于点O ,若42MOD ∠=,则COB ∠=__________度.20.己知()()26M x x =--,()()53N x x =--,则M 与N 的大小关系是____.三、解答题21.为了解某校八年级全体女生“仰卧起坐”项目的成绩,随机抽取了部分女生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制成如下不完整的统计图、表.根据以上信息解答下列问题:(1)a= ,b= ,表示A 等级扇形的圆心角的度数为 度;(2)A 等级中有八年级(5)班两名学生,如果要从A 等级学生中随机选取一名介绍“仰卧起坐”锻炼经验,求抽到八年级(5)班学生的可能性大小.22.如图,在平面直角坐标系中,ABC 的顶点(1,1),(4,2),(2,4)A B C 均在正方形网格的格点上.(1)画出ABC 关于y 轴对称的图形111A B C △并写出顶点111,,A B C 的坐标; (2)在y 轴上画出点P ,使PB PC +最小(保留作图痕迹).23.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.24.已知函数y =y 1+y 2,其中y 1与x 成反比例,y 2与x ﹣2成正比例,函数的自变量x 的取值范围是x ≥12,且当x =1或x =4时,y 的值均为32. 请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为: . (2)函数图象探究:①根据解析式,补全下表:x 121 32 2 5234 6 8 … y 134 32 1312 2120 76 32 73 …②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题:①当x =34,214,8时,函数值分别为y 1,y 2,y 3,则y 1,y 2,y 3的大小关系为: ;(用“<”或“=”表示) ②若直线y =k 与该函数图象有两个交点,则k 的取值范围是 ,此时,x 的取值范围是 .25.如图,点P 是AOB ∠内部一点,//PM OA 交OB 于点C .请你画出射线PN ,并且PN //OB ,PN 或PN 的反向延长线交OA 于点D .(1)补全图形;(2)判断AOB ∠与MPN ∠的数量关系,并证明.26.计算(1)()()16231417-+--+-(2)2212924355⎛⎫⎛⎫-⨯-⨯-÷+- ⎪ ⎪⎝⎭⎝⎭(3)()()222232352xy x x xy x xy -+----⎡⎤⎣⎦ (4)()()()2221a a a -++【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【详解】A. 射击运动员只射击1次,就命中靶心是随机事件,故此选项错误;B. 任取一个实数x ,都有|x|≥0,是必然事件,故此选项错误;C. 画一个三角形,使其三边的长分别为8cm ,6cm ,2cm ,是不可能事件,故此选项正确;D. 抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6是随机事件,故此选项错误.故选C .2.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及概率定义分别进行分析,即可得出答案.【详解】A 、打开电视机,正在播放《新闻联播》,这个事件可能发生,也可能不发生,是不确定事件,故本选项错误;B 、两直线被第三条直线所截,同位角相等是不确定事件,故本选项错误;C 、天气预报说“明天的降水概率为40%只是反映了事件发生的机会的大小,不是发生的时长,故本项错误;D 、“篮球队员在罚球线上投篮一次,投中”为随机事件,故本选项正确.故选D .【点睛】本题考查了随机事件、全面调查与抽样调查、概率定义,解题关键是根据事件包括必然事件和不可能事件以及概率定义进行分析.3.B解析:B【解析】【分析】根据事件的类型特点及性质进行判断.【详解】A、是必然事件,选项错误;B、是随机事件,选项错误;C、是不可能事件,选项错误;D、是不可能事件,选项错误.故选B.【点睛】本题考查的是随机事件的特性,熟练掌握随机事件的特性是本题的解题关键. 4.C解析:C【分析】直接利用轴对称图形的定义得出符合题意的答案.【详解】解:A、,是轴对称图形,故此选项错误;B、,是轴对称图形,故此选项错误;C、,不是轴对称图形,故此选项正确;D、,是轴对称图形,故此选项错误;故选:C.【点睛】本题考查了轴对称图形,正确把握轴对称图形的定义是解题的关键.5.A解析:A【分析】根据全等三角形的判定和性质、成轴对称图形的概念对各选项分析判断即可解答.【详解】A.所有的等边三角形有大有小,不一定全对,故此选项错误,符合题意;B.全等三角形的面积相等,故此选项正确,不符合题意;C.三条边分别相等的三角形全等,此选项正确,不符合题意;D.成轴对称的两个三角形全等,此选项正确,不符合题意,故选:A.【点睛】本题考查全等三角形的判定与性质、成轴对称图形的概念,熟练掌握全等三角形的判定与性质是解答的关键.6.A解析:A【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.7.D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项不符合题意;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项不符合题意;C、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠BAE=∠CAD,可得∠DAB=∠EAC,故本选项不符合题意;D、添加DA=DE无法求出∠DAB=∠EAC,故本选项符合题意.故选:D.【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.8.D解析:D【分析】根据全等三角形的判定条件结合AE=AB、∠A=∠A逐项判定即可.【详解】解:∵AE=AB、∠A=∠A∴A、补充∠B=∠E,根据ASA可证明△ABC≌△AED,不符合题意;B、补充AC=AD,根据SAS可证明△ABC≌△AED,不符合题意;C、补充∠ADE=∠ACB,根据AAS可证明△ABC≌△AED,不符合题意;D、补充BC=DE,为SSA不能证明△ABC≌△AED,符合题意.故答案为D.【点睛】本题考查了三角形全等的证明,掌握AAA、SSA不能判定普通三角形全等是解答本题的关键.9.A解析:A【分析】根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围.【详解】解:∵三角形的三边长分别为3,8,x,∴8-3<x<8+3,即5<x<11,故选:A.【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.10.C解析:C【解析】试题分析:根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.解:在三角形面积公式S=,a=2cm中,a是常数,h和S是变量.故选C.点评:函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.11.C解析:C【分析】先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE ,DF 平分∠CDE ,根据角平分线的性质,即可求得∠ABF+∠CDF 的度数,又由两直线平行,内错角相等,即可求得∠BFD 的度数.【详解】解:如图,过点E 作EM ∥AB ,过点F 作FN ∥AB ,∵AB ∥CD ,∴EM ∥AB ∥CD ∥FN ,∴∠ABE+∠BEM =180°,∠CDE+∠DEM =180°,∴∠ABE+∠BED+∠CDE =360°,∵∠BED =110°,∴∠ABE+∠CDE =250°∵BF 平分∠ABE ,DF 平分∠CDE ,∴∠ABF =12∠ABE ,∠CDF =12∠CDE , ∴∠ABF+∠CDF =12(∠ABE+∠CDE )=125°, ∵∠DFN =∠CDF ,∠BFN =∠ABF ,∴∠BFD =∠BFN+∠DFN =∠ABF+∠CDF =125°.故选:C .【点睛】 此题考查了平行线的性质与角平分线的定义,解题的关键是注意数形结合思想的应用,注意辅助线的作法.12.D解析:D【分析】利用积的乘方的逆运算解答.【详解】()()202020213232 -⨯=20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D .【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.二、填空题13.【解析】【分析】首先根据列出可能情况然后由所有等可能的结果以及满足关于x的一元二次方程x2+bx+c=0有实数根的情况数再利用概率公式即可求得答案【详解】则共有6种等可能的结果(−11)(−10)(解析:2 3【解析】【分析】首先根据列出可能情况,然后由所有等可能的结果以及满足关于x的一元二次方程x2+bx+c=0有实数根的情况数,再利用概率公式即可求得答案.【详解】则共有6种等可能的结果(−1,1),(−1,0),(0,−1),(0,1),(1,−1),(1,0);关于x的一元二次方程x2+bx+c=0有实数根,即△=b2−4c≥0,由树状图可得:满足△=b2−4c≥0的有4种情况:即(−1,0),(0,−1),(1,−1),(1,0),所以满足关于x的一元二次方程x2+bx+c=0有实数根的概率为:2 3 .故答案为2 3 .【点睛】本题考查的是概率,熟练掌握根的判别式是解题的关键.14.50【解析】试题分析:大量反复试验时某事件发生的频率会稳定在某个常数的附近这个常数就叫做事件概率的估计值而不是一种必然的结果可得答案解:事件A发生的概率为大量重复做这种试验事件A平均每100次发生的解析:50【解析】试题分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.解:事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是50,故答案为50.考点:概率的意义.15.【分析】根据轴对称的概念求解可得【详解】解:如图所示:在剩下的13个白色小方格中随意选一个涂成黑色使得黑色小方格组成的图形为轴对称图形的涂法有3种故答案为:3【点睛】本题主要考查利用轴对称设计图案利解析:【分析】根据轴对称的概念求解可得.【详解】解:如图所示:在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形的涂法有3种,故答案为:3.【点睛】本题主要考查利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.16.【解析】【分析】作DF ⊥BC 于点F 又DE 分别是ABAC 的中点DE 是三角形的中位线从而DE ∥BCDE=BC 进而可求S △A1BD+S △A1CE=2S △A1DE 由折叠得:△ADE ≌△A1DE 从而可求得结论 解析:12【解析】【分析】作DF ⊥BC 于点F. 又D 、E 分别是AB 、AC 的中点,DE 是三角形的中位线,从而DE ∥BC ,DE=12BC ,进而可求S △A1BD +S △A1CE =2 S △A1DE ,由折叠得:△ADE ≌△A 1DE ,从而可求得结论.【详解】作DF ⊥BC 于点F.∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线, ∴DE ∥BC ,DE=12BC , ∵S △A1BD +S △A1CE =111122A B DF AC DF ⋅+⋅ =12BC DF ⋅, =DE DF ⋅,∴ S △A1BD +S △A1CE =2 S △A1DE ,由折叠得:△ADE ≌△A 1DE ,∴S △ADE +S △A1DE =12S △ABC , ∴S 阴影═12S △ABC =11122⨯=, 故答案为:12.【点睛】本题考查了三角形中位线定理,折叠的性质以及三角形的面积等知识,熟练掌握三角形中位线的性质是解答本题的关键.17.【分析】根据平行线的性质和角平分线的定义解答即可【详解】解:∵∠ACB =36°∴∠ACD =180°﹣∠ACB =180°﹣36°=144°∵CE 是△ABC 外角的平分线∴∠ACE =∵AB//CE ∴∠A =解析:【分析】根据平行线的性质和角平分线的定义解答即可.【详解】解:∵∠ACB =36°,∴∠ACD =180°﹣∠ACB =180°﹣36°=144°,∵CE 是△ABC 外角的平分线,∴∠ACE =111447222ACD ∠=⨯︒=︒, ∵AB//CE ,∴∠A =∠ACE =72°,故答案为:72.【点睛】 此题考查三角形外角性质,关键是根据三角形外角性质得出∠ACD 的度数解答. 18.y=23-0007x 【解析】【分析】每升高l00m 降低07℃则每上升1m 降低0007℃则上升的高度xm 下降0007x ℃据此即可求得函数解析式【详解】每升高l00m 降低07℃则每上升1m 降低0007℃解析:【解析】【分析】每升高l00m 降低0.7℃,则每上升1m ,降低0.007℃,则上升的高度xm ,下降0.007x ℃,据此即可求得函数解析式.【详解】每升高l00m 降低0.7℃,则每上升1m ,降低0.007℃,则关系式为:y=23-0.007x ;故答案为:y=23-0.007x .【点睛】本题考查了列函数解析式,理解每升高l00m 降低0.7℃,则每上升1m ,降低0.007℃是关键.19.132【分析】先根据垂直定义得到∠AOM=90°求出∠AOD 的度数然后根据对顶角的性质求解即可【详解】∵∴∠AOM=90°∵∴∠AOD=90+42=132°∴∠AOD=132°故答案为:132【点睛 解析:132【分析】先根据垂直定义得到∠AOM=90°,求出∠AOD 的度数,然后根据对顶角的性质求解即可.【详解】∵OM AB ⊥,∴∠AOM=90°,∵42MOD ∠=,∴∠AOD=90+42=132°,∴COB ∠=∠AOD=132°.故答案为:132.【点睛】本题考查了垂直的定义,对顶角的性质,熟练掌握对顶角相等是解答本题的关键. 20.【分析】利用作差法再根据整式的混合运算法则运算即可作出判断【详解】∵=﹣==﹣3﹤0∴故答案为:【点睛】本题考查整式的混合运算熟练掌握整式的混合运算法则运用作差法比较大小是解答的关键解析:M N <【分析】利用作差法,再根据整式的混合运算法则运算即可作出判断.【详解】∵M N -=()()26x x --﹣()()53x x --=2226123515x x x x x x --+-++-=﹣3﹤0,∴M N <,故答案为:M N <.【点睛】本题考查整式的混合运算,熟练掌握整式的混合运算法则,运用作差法比较大小是解答的关键.三、解答题21.(1)10,40,90;(2)15 【分析】(1)根据C 等级的人数和所占比例可知随机抽女生人数:4÷10%=40(名),即b=40;A 等级人数:40-24-4-2=10(名),即a=10;扇形图中表示A 的圆心角的度数360°×1040=90°; (2)根据概率公式求解即可.【详解】解:(1)随机抽女生人数:4÷10%=40(名),即b=40;A 等级人数:40-24-4-2=10(名),即a=10;扇形图中表示A 的圆心角的度数360°×1040=90° 故答案为:10,40,90;(2)抽到八年级(5)班学生的可能性大小为:21.105= 【点睛】本题考查了统计图与概率,要熟练掌握概率公式:概率=所求情况数与总情况数之比. 22.(1)见解析;111(1,1),(4,2),(2,4)A B C ---;(2)见解析【分析】(1)过点A 、B 、C 作y 轴垂线,交y 轴于G 、F 、E ,在线段AG ,BF ,CE 的延长线上截取C 1E=CE ,B 1F=BF ,A 1G=AG ,顺次连结A 1B 1、B 1C 1、C 1A 1即可得到要作的图形,由(1,1),(4,2),(2,4)A B C ,关于y 轴对称,点的横坐标互为相反数,纵坐标不变,可求111A B C △顶点坐标为:111(1,1),(4,2),(2,4)A B C ---;(2)如图,连结BC 1交y 轴于点P ,根据轴对称性质CP=C 1P ,可得CP+BP=C 1P+BP=C 1B ,由两点之间,线段最短,则点P 即为所求.【详解】解:(1)过点A 、B 、C 作y 轴垂线,交y 轴于G 、F 、E ,在线段AG ,BF ,CE 的延长线上截取C 1E=CE ,B 1F=BF ,A 1G=AG ,顺次连结A 1B 1、B 1C 1、C 1A 1,则111A B C △为所求,如图所示.∵(1,1),(4,2),(2,4)A B C ,由关于y 轴对称,点的横坐标互为相反数,纵坐标不变,∴111A B C △顶点坐标为:111(1,1),(4,2),(2,4)A B C ---.(2)如图,连结BC 1交y 轴于点P ,则CP=C 1P ,CP+BP=C 1P+BP=C 1B ,由两点之间,线段最短,则点P 即为所求.【点睛】本题考查轴对称作图和线段和最短问题,掌握轴对称作图的方法与步骤,利用轴对称性质,与两点之间线段最短构造线段BC 1是解题关键.23.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.24.(1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k ≤134,12≤x ≤8. 【解析】【分析】(1)根据题意设11k y x=,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答 (3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答②观察图象得:x ≥12 ,图象最低点为(2,1),再代入即可 【详解】(1)设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- , 由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- , 故答案为2112y x x =+-, (2)①根据解析式,补全下表:x 121322523468…y 13432131212120763273134…(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y随x增大而减小;在该点右侧y随x增大而增大,∴y2<y1<y3,故答案为y2<y1<y3,②观察图象得:x≥12,图象最低点为(2,1),∴当直线y=k与该图象有两个交点时,1<k≤134,此时x的范围是:12≤x≤8.故答案为1<k≤134,12≤x≤8.【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键25.(1)见解析;(2)∠AOB与∠MPN相等或互补;证明见解析.【分析】(1)根据几何语言画出对应的几何图形;(2)如图1,根据平行线的性质得到∠AOB=∠PCB,∠MPN=∠PCB,则∠AOB=∠MPN;如图2,利用平行线的性质得到∠AOB=∠PCB,∠MPN+∠PCB=180°,从而得到∠AOB+∠MPN=180°.【详解】解:(1)(2)∠AOB 与∠MPN 相等或互补.证明:如图1,∵PM ∥OA ,∴∠AOB =∠PCB ,∵PN ∥OB ,∴∠MPN =∠PCB ,∴∠AOB =∠MPN ;如图2,∵PM ∥OA ,∴∠AOB =∠PCB ,∵PN ∥OB ,∴∠MPN+∠PCB =180°,∴∠AOB+∠MPN =180°.综上所述,∠AOB 与∠MPN 相等或互补.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质. 26.(1)4;(2)1;(3)2-610x xy +;(4)32284a a a +--.【分析】(1)先写成省略括号和的形式,再同号相加计算,最后异号相加计算即可; (2)先算乘方,乘方同时除变乘,去绝对值,再算乘法,最后加减法计算即可; (3)先去小括号,再去中括号,合并同类项即可;(4)先利用平方差公式计算,再利用多项式乘以多项式法则乘开即可.【详解】(1)()()16231417-+--+-,=1623+1417-+-,=()23+1417+16-,=3733-,=4;(2)2212924355⎛⎫⎛⎫-⨯-⨯-÷+- ⎪ ⎪⎝⎭⎝⎭,=4259+4952-⨯⨯+, =4+14-+,=1; (3)()()222232352xy x x xy x xy -+----⎡⎤⎣⎦,=222622156xy x x xy x xy -+--+-⎡⎤⎣⎦, =222622156xy x x xy x xy -+-+-+,=2-610x xy +;(4)()()()2221a a a -++,=()()2421a a -+, =32284a a a +--.【点睛】本题考查有理数的混合运算与整式的加减乘混合远算,掌握有理数的混合运算法则,整式加减乘的运算法则,以及乘法公式是解题关键.。

【浙教版】七年级数学下期末试卷(附答案)(1)

【浙教版】七年级数学下期末试卷(附答案)(1)

一、选择题1.下列事件属于不可能事件的是( )A .从装满白球的袋子里随机摸出一个球是白球B .随时打开电视机,正在播新闻C .通常情况下,自来水在10℃结冰D .掷一枚质地均匀的骰子,朝上的一面点数是22.下列说法正确的是( )A .抛掷一枚硬币10次,正面朝上必有5次;B .掷一颗骰子,点数一定不大于6;C .为了解某种灯光的使用寿命,宜采用普查的方法;D .“明天的降水概率为90%”,表示明天会有90%的地方下雨.3.下列事件是必然事件的是( ).A .购买一张彩票中奖B .通常加热到100℃时,水沸腾C .明天一定是晴天D .任意一个三角形,其内角和是360° 4.如图,ABC ,点D ,E 在BC 边上,点F 在AC 边上.将ABC 沿AD 折叠,恰好与AED 重合,将CEF △沿EF 折叠,恰好与AEF ∆重合.下列结论:①60B ︒∠=②AB EC =③AD AF =④DE EF =⑤2B C ∠=∠正确的个数有( )A .2个B .3个C .4个D .5个5.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm 6.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是( ) A . B .C .D .7.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠;②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个 8.已知三角形的一边长为8,则它的另两边长分别可以是( )A .2,9B .17,29C .3,12D .4,4 9.如图,ABC ADE ≅,BC 的延长线交DA 于F ,交DE 于G ,∠D =25°,∠E =105°,∠DAC =16°,则∠DGB 的度数为( )A .66°B .56°C .50°D .45°10.甲、乙两同学从A 地出发,骑自行车在同一条公路上行驶到距A 地60千米的B 地,他们距出发地的距离s(千米)和行驶时间t(小时)之间的关系如图所示,根据图中提供的信息,符合图象描述的说法是( )A .乙在行驶过程中休息了一会儿B .甲在行驶过程中没有追上乙C .甲比乙先出发1小时D .甲行驶的速度比乙行驶的速度快 11.如图,直线a ,b 被直线c 所截,//a b ,若140∠=︒,则( )A .250∠=︒B .350∠=︒C .4160∠=︒D .540∠=︒12.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a cb d=ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ). A .2 B .3 C .4 D .6二、填空题13.九年级某班有50名同学,在一次数学测试中有35名同学达到优秀,课上老师随机抽取一名同学回答问题,则抽到在此次测试中数学成绩达到优秀的概率是_____. 14.如图,一个圆形飞镖板被等分为四个圆心角相等的扇形.假设飞镖投中游戏板上的每一个点都是等可能的(若投中圆的边界、图中的分割线或没有投中,则重投1次),则任意投掷一次,飞镖投中阴影部分的概率是_______.15.如图,是4×4正方形网格,其中已有三个小方格涂成黑色,在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形的涂法有_____种16.如图,在△ABC 中,AB =AC =10cm ,BC =8cm ,AB 的垂直平分线交AB 于点M ,交AC 于点N ,在直线MN 上存在一点P ,使P 、B 、C 三点构成的△PBC 的周长最小,则△PBC 的周长最小值为______ .17.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.18.如图①,在直角梯形ABCD 中,动点P 从点B 出发,沿BC 、CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y .若y 关于x 的函数图象如图②所示,则△BCD 的面积是__.19.在数学拓展课程《玩转学具》课堂中,老师把我们常用的一副三角板带进了课堂.(1)嘉嘉将一副三角板按如图1所示的方式放置,使点A 落在DE 上,且//BC DE ,则ACE ∠的度数为__________.(2)如图2,淇淇将等腰直角三角板放在一组平行的直线与之间,并使直角顶点A 在直线a 上,顶点C 在直线b 上,现测得130∠=,则2∠的度数为__________.20.若23x =,25y =,则22x y +=____________.三、解答题21.某演艺大厅有2个入口和3个出口,其示意图如下,参观者从任意一个入口进入,参观结束后从任意一个出口离开(1)用树状图表示,小明从进入到离开,对于入口和出口的选掉有多少种不同的结果? (2)小明从入口A 进入并从出口1离开的概率是多少?22.如图,正方形网格中每个小正方形的边长为1,网格中有一个△AB C .(1)请直接写出△ABC 的面积为__________;(2)利用方格找出点A 、B 、C 关于直线MN 的对称点D 、E 、F ,并顺次连接D 、E 、F 三点;(3)若点P 是直线MN 上的一个动点,则PC +PA 的最小值为_________.23.已知:如图,//,75,135AB EF ABC CDF ︒︒∠=∠=,求∠BCD 的度数.24.已知某函数图象如图所示,请回答下列问题:(1)自变量x 的取值范围是(2)函数值y 的取值范围是 ;(3)当x=0时,y 的对应值是 ;(4)当x 为 时,函数值最大;(5)当y 随x 增大而增大时,x 的取值范围是 ;(6)当y 随x 的增大而减少时,x 的取值范围是 .25.直线AB ,CD 相交于点O ,OE 平分AOD ∠,70FOC ∠=︒,36FOB ∠=︒,求AOE ∠的度数.解:∵70FOC ∠=︒,36FOB ∠=︒∴BOC FOC ∠=∠+∠_____=______°.∵直线AB ,CD 相交于点O∴AOD ∠与∠_____是对顶角∴AOD ∠=∠_____=______ °.∵OE 是AOD ∠的平分线 ∴12AOE ∠=∠_____=______°. 26.先化简,再求值:2()(2)(2)()x y x y y x y ⎡⎤---+÷-⎣⎦,其中1x =-,2y =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】把一个在一定的条件下,不可能发生的事,称为不可能事件,根据定义判断.【详解】A、从装满白球的袋子里随机摸出一个球是白球是必然事件;B、随时打开电视机,正在播新闻是随机事件;C、通常情况下,自来水在10℃结冰是不可能事件;D、掷一枚质地均匀的骰子,朝上的一面点数是2是随机事件;故选:C.【点睛】此题考查不可能事件的定义,熟记定义,掌握必然事件,随机事件,不可能事件的发生可能性大小是解题的关键.2.B解析:B【解析】【分析】利用概率的意义、普查和抽样调查的特点即可作出判断.【详解】A. 抛掷一枚硬币10次,可能出现正面朝上有5次是随机的,故选项错误;B. 正确;C. 调查灯泡的使用寿命具有破坏性,因而适合抽查,故选项错误;D. “明天的降水概率为90%”,表示明天下雨的可能性是90%,故选项错误。

浙江省建德市李家镇初级中学七年级数学下学期期末考试

浙江省建德市李家镇初级中学七年级数学下学期期末考试

浙江省建德市李家镇初级中学2012-2013学年八年级下学期期末考试数学试题 浙教版一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.已知某种植物花粉的直径约为0.00035米,用科学记数法表示是(▲) A .4105.3⨯-米 B .3105.3-⨯米 C .4105.3-⨯米 D .5105.3-⨯米 2.下列数组中,是二元一次方程7=+y x 的解的是(▲)A .⎩⎨⎧=-=52y xB .⎩⎨⎧==43y xC .⎩⎨⎧=-=71y xD .⎩⎨⎧-=-=52y x3.如图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是(▲)A .AD∥BCB .∠B=∠CC .∠2+∠B=180ºD .AB∥CD4.在等式)(b a --( )=22b a -中,括号里应填的多项式是(▲)A .b a -B .b a +C .b a --D .a b -5.某市有7500名学生参加中考,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有以下说法: ①1000名考生是总体的一个样本;②1000名考生的平均成绩可估计总体平均成绩; ③7500名考生是总体; ④样本容量是1000. 其中正确的说法有(▲) A .1种 B .2种 C .3种 D .4种 6.一副三角板按如图摆放,且∠1的度数比∠2的度数大50º,若设∠1=x º,∠2=y º,则可得到的方程组为(▲)A .⎩⎨⎧=++=9050y x y xB .⎩⎨⎧=++=18050y x y xC .⎩⎨⎧=+-=9050y x y xD . ⎩⎨=+-=18050y x y x7.如果⎩⎨⎧==1,2y x 是方程组⎩⎨⎧=+=+5,7cy bx by ax 的解,那么a 与c 的关系是(▲)A .94=+c aB .92=+c aC .94=-c aD .92=-c a七年级数学期末综合试题卷二(第1页,共4页)8.下列各式中,能用完全平方公式分解因式的是(▲) ①442++x x ;②1662++x x ;③1412+-x x ;④2224y xy x ++ A B D C121 2A .①②B .①③C .②③D .①③④9.下列计算正确的是(▲)A .2532)(q p q p =-B .ab ab c b a 2)6()12(232=÷C .223)13(3m m m m -=-÷ D .4)4(12-=--x x x x10.若关于x 的方程3131+=-+x mxx 无解,则m 的值为(▲) A .31-B .-1C .31-或-1 D .无法确定二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.已知,方程143=-y x ,用含x 的代数式表示y ,就是y = ▲ .12.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠1=40º,则∠2的度数为 ▲ . 13.多项式23x x +,122++x x ,12-x 的公因式是 ▲ . 14.多项式k x x +-2有一个因式为2-x ,则k = ▲ .15.当m 为 ▲ 时,关于x 的方程93312-=--x xm x x 会产生增根. 第12题图 16.在多项式142+x 中,添加一个单项式,使其成为一个完全平方式,则添加的单项式可以是 ▲ .三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(每小题4分,共12分)计算: (1)022013)14.3()31()1(---+--π;(2)[]x y x y x y x y x 4)25)(2()23)(23(÷-+--+(3)332---a a a .▲七年级数学期末综合试题卷二(第2页,共4页)18.(每小题4分,共8分)解方程(组): (1)⎩⎨⎧=-+=-11)(32,3y x y y x(2)xx x +=+-111219.(每小题4分,共8分)分解因式: (1)822-x (2) )1(43--a a a20.(每小题6分,共12分)(1)先化简12)11(22-⋅-a a a ,然后从0,-1,1,2,-2中选取一个合适的数作为a 的值代入求值.(2)已知22)(2=+b a ,14)(2=-b a ,求22b a +的值和ab 的值.21.(本题8分)小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.有关评分规则如下:①演讲答辩得分按“去掉一个最高分和一个最低分,计算平均分”的方法确定; ②民主测评得分“优秀”票数×2+“良好”票数×1+“一般” 票数×0; ③综合得分=演讲答辩得分×0.4+民主测评得分×0.6.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.(1)求小明民主测评为“良好”票数的扇形圆心角度数; (2)求小明的综合得分是多少?(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分等于小明的综合得分,他优秀70% 良好 一般 10%1号 2号 3号 4号 5号 6号 7号 评委 9585 90 100 80 分数 98 95 94 88 92 90 94 演讲答辩评委评分统计图 民主测评票数统计图的演讲答辩得多少分?七年级数学期末综合试题卷二(第3页,共4页)22.(本题8分)如图,已知AB∥CD,BD平分∠ABC交AC于点O,CE平分∠DCG.若∠ACE=90º,请判断BD与AC的位置关系,并说明理由.A DEO▲B C G23.(本题10分)我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图1所示,(单位:cm)(裁法一)(裁法二)图甲(1)列出方程(组),求出图甲中a与b的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒.①两种裁法共产生A型板材▲张,B型板材▲张;②已知①中的A型板材和B型板材恰好做成竖式有盖..礼品盒x个,横式无盖..礼品盒的y个,求x、y的值.▲七年级数学期末综合试题卷二(第4页,共4页)图乙七年级数学期末综合答题卷(二) 题 号一二三总 分1~1011~1617~23得 分题 号12345678910答 案二、认真填一填(本题有6个小题,每小题4分,共24分) 11. 12. 13. 14.15. 16. 三、全面答一答(本题有7个小题,共66分) 17.(每小题4分,共12分)计算: (1)022013)14.3()31()1(---+--π;(2)[]x y x y x y x y x 4)25)(2()23)(23(÷-+--+七年级数学期末综合答题卷二(第1页,共4页)(3)332---a a a18.(每小题4分,共8分)解方程(组):(1)⎩⎨⎧=-+=-11)(32,3y x y y x(2)xx x +=+-111219.(每小题4分,共8分)分解因式: (1)822-x(2) )1(43--a a a七年级数学期末综合答题卷二(第2页,共4页)20. (每小题6分,共12分)21.(本题8分)七年级数学期末综合答题卷二(第3页,共4页)22.(本题8分)23.(本题10分)七年级数学期末综合答题卷二(第4页,共4页)B C G A DEO卷二三、全面答一答(本题有7个小题,共66分)20.(1)原式=12+-a a ,由题意得a 只能取2和-2,如果把代人得34-,如果把-2代人得-4.(2)2,1822==+ab b a .21.(1)72°;(2)85.2;(3)90.23.(1)a=60,b=40; (2)①64,38; ②x=7,y=12.。

2013学年第二学期期末试题卷(七下数学) (1)

2013学年第二学期期末试题卷(七下数学) (1)

2013学年第二学期期末试题卷《七下数学》(时间:90分钟 满分:100)(请将答案写出在答题卷上) 一.选择题(每小题3分,共30分) 1.如图,能判定EB//AC 的条件是( ▲ ) A .∠A=∠EBD B .∠A=∠ABE C .∠C=∠ABC D .∠C=∠ABE2.将一直角三角板与两边平行的纸条如图所示放置,有下列结论: ①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180° 其中正确的有( ▲ )A .1个B .2个C .3个D .4个3.方程组⎩⎨⎧=+=-42,2y x y x 的解是( ▲ )A .⎩⎨⎧==2,1y xB .⎩⎨⎧==1,3y x C .⎩⎨⎧-==2,0y x D .⎩⎨⎧==0,2y x4.已知⎩⎨⎧-==1,1y x 是方程32=-ay x 的一个解,那么a 的值是( ▲ )A .1B .3C .-3D .-1 5.下列运算中,正确的是( ▲ )A .()532a a = B .633a a a =⋅ C .532523a a a =+ D .326a a a =÷6.把多项式a a 42-因式分解,正确的是( ▲ )A .()4-a aB .()()22-+a aC .()4+a aD .()422--a7.分式方程xx x -=--23252的解是( ▲ ) A .x =-2 B .x =2 C .x =1 D .x =1或x =2 8.计算a a a -+-111的结果为( ▲ ) A .11-+a a B .a -1 C .-1 D .1EAB CD543219.某校测量了七年级(1)班学生的身高(精确到1cm ),按10cm 为一段进行分组,得到如图所示频数分布直方图,则下列说法正确的是( ▲ ) A .该班人数最多的身高段的人数为7人 B .该班身高低于150.5cm 的人数为15人 C .该班身高最高段的人数为20人 D .该班身高最高段的人数为7人10.下列四个多项式,是3522-+x x 的因式的只能是( ▲ )A .12-xB .32-xC .1-xD .3-x 二.填空题(每小题3分,共30分)11.如图,已知AB//CD ,BC 平分∠ABE ,∠C=34°,则∠BED= ▲ 度.12.写一个二元一次方程,使它有一个解为⎩⎨⎧==1,2y x : ▲ .13.计算:()3232a a -∙= ▲ .14.空气的单位体积质量是0.001239克/cm 3,用科学记数法表示:0.001239≈ ▲ . 15.计算:()1212-⎪⎭⎫ ⎝⎛--= ▲ .16.当x = ▲ 时,分式12+-x x 的值为零. 17.若5,2=+=-n m n m ,则22n m -的值等于 ▲ . 18.给出三个整式:ab b a 2,2,2,任选两个或三个相加或相减,并进行因式分解:▲ .19.下列任务,你认为适合采用抽样..调查方式去完成的是(填序号): ▲ . ①了解你所在班级学生的视力;②检测一批灯泡的使用寿命; ③了解全市七年级学生的体重,以掌握学生发育情况;④某地区发现了一种传染病,为防止传播与扩散,对该地区的调查. 20.若,11,11,1123121a a a a m a -=-=-=…,则2014a 的值为 ▲ (用含m 的代数式表示) E ABCD)三.解答题(第21~24题各6分,第25、26题各8分,共40分)21.如图,已知CD ⊥AB ,FG ⊥AB ,∠1=∠2,请判断BC 和DE 的位置关系,并说明理由.22.解下列方程(组):(1)⎩⎨⎧=-=+14,22y x y x (2)x x x x 1211+=++23.分解因式:(1)a ax ax 442+- (2)m m -524.计算: (1)化简:xy yx x y y x -÷-⎪⎭⎫ ⎝⎛. (2)已知ab =-1,a +b =2,求b a a b +.21GF E AB C D25.某班13位同学参加每周一次的卫生大扫除,需要完成总面积为80m 2的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如图所示:(1)由统计图可知:擦玻璃的面积是 ▲ m 2;擦课桌椅的面积是 ▲ m 2;x 人每分钟擦玻璃的面积为 ▲ m 2(2)他们一起完成扫地和拖地的任务后,把这13人分成现两组,一组去擦玻璃,一组去擦课桌椅,如果你是卫生委员,该如何分配两组的人数,才能最快完成任务?26.已知三个实数x ,y ,z 满足43,43,2-=+=+-=+x z zx z y yz y x xy ,求zxzy xy xyz++的值.各项目面积比例统计图擦玻璃 20%擦课桌椅25%扫地拖地55%拖地桌椅1214。

【浙教版】七年级数学下期末试题(附答案)(1)

【浙教版】七年级数学下期末试题(附答案)(1)

一、选择题1.从-5,-1,0,83,π这五个数中随机抽取一个数,恰好为负整数的概率为( )A .15B .25C .35D .452.某校开设了文艺、体育、科技和学术四类社团,要求每位学生从中任选一类社团参加.现统计出八年级(1)班40名学生参加社团的情况,如下图:如果从该班随机选出一名学生,那么该生是体育类社团成员的可能性大小是( )A .15B .25C .14D .3203.以下事件为必然事件的是( )A .掷一枚质地均匀的骰子,向上一面的点数小于6B .多边形的内角和是360︒C .二次函数的图象不过原点D .半径为2的圆的周长是4π4.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm5.下列图形是轴对称图形的是( )A .B .C .D .6.如图,已知ABC 为等腰三角形, , 90AB AC BAC =∠<︒,将ABC 沿AC 翻折至,ADC E 为BC 的中点,F 为AD 的中点,线段EF 交AC 于点G ,若()1FCD GECS m m S=≠,则AGGC=( )A .mB .11m m +- C .1m +D .1m -7.已知三角形的两边长分别为3和8,且周长恰好是5的倍数,那么第三边的长为( ) A .4B .9C .14D .4或98.如图,12AB =,CA AB ⊥于A ,DB AB ⊥于B ,且4AC cm =,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P ,Q 两点同时出发,运动______分钟后CAP 与PQB △全等( )A .4或6B .4C .6D .59.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒10.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)∥,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果11.如图,直线a b∠=︒,那么2160∠等于()40C.50︒D.60︒A.30B.︒12.如图,两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为()A.21 B.22 C.23 D.24二、填空题13.在一个不透明的袋子中共装有红球、黄球和蓝球320个,这些球除颜色外都相同.小明每次从中任意摸出一个球,记下颜色后将球放回并搅匀,通过多次重复试验,算得摸到红球的频率是25 %,则估计这只袋子中有红球________.14.一只不透明的袋子中装有若干个蓝球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,若摸到蓝球的概率是0.8,则袋子中有________个蓝球.15.将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=_______.16.如图,已知△ABC的周长是15,点F,G分别是AC,BC上的点,将△CFG沿着直线FG折叠,点C落在点C′处,且点C′在三角形的外部,则阴影部分图形的周长是_____.17.有两根小棒分别长2厘米和4厘米.要围成一个等腰三角形,第三根小棒的长度应该是____厘米.18.某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为__方. 月用水量 不超过12方部分 超过12方不超过18吨部分 超过18方部分 收费标准(元/方)22.5319.如图,直线AB 、CD 相交于点O ,OMAB ⊥于点O ,若42MOD ∠=,则COB ∠=__________度.20.若221231ax bx x x ++-+与的积不含x 的一次项和二次项,则a+b=______________.三、解答题21.遵义市举行中学生“汉字听写大赛”,某校100名学生参加学校选拔赛根据成绩按A 、B 、C 、D 四个等级进行统计,绘制了如下不完整的频数分布表和扇形图根据图表中的信息,解答下列问题: 成绩等级频数分布表 成绩等级频数(人数) 频率A5Bm0.6C nD合计1001(1)频数分布表中m=______,n=______;(2)在扇形图中,求成绩等级“C”所对应的圆心角度数;(3)已知成绩等级“A”的5名同学中有3名男同学和2名女同学,现从中挑选2名同学进行答辩培训,请用树状图或列表法列举所有可能,并求挑选出的2名同学恰好是“1男1女”的概率.22.如图,正方形网格中每个小正方形的边长为1,网格中有一个△AB C.(1)请直接写出△ABC的面积为__________;(2)利用方格找出点A、B、C关于直线MN的对称点D、E、F,并顺次连接D、E、F三点;(3)若点P是直线MN上的一个动点,则PC+PA的最小值为_________.23.如图1,已知AB=AC,AB⊥AC.直线m经过点A,过点B作BD⊥m于D, CE⊥m于E.我们把这种常见图形称为“K”字图.(1)悟空同学对图1进行一番探究后,得出结论:DE=BD+CE,现请你替悟空同学完成证明过程.(2)悟空同学进一步对类似图形进行探究,在图2中,若AB=AC,∠BAC=∠BDA=∠AEC,则结论DE=BD+CE,还成立吗?如果成立,请证明之.24.温度的变化是人们在生活中经常谈论的话题,请你根据下图回答下列问题: (1)上午9时的温度是多少?这一天的最高温度是多少?(2)这一天的温差是多少?从最低温度到最高温度经过了多长时间? (3)在什么时间范围内温度在下降?图中的A 点表示的是什么?25.如图,A ,O ,B 三点在同一条直线上,90DOE ∠=︒. (1)写出图中AOD ∠的补角是______,DOC ∠的余角是______; (2)如果OE 平分BOC ∠,36DOC ∠=︒,求AOE ∠的度数.26.计算(1)()()()7332233532x x x x x -++⋅(2)()()()()22223x y x y x x y x y ++--++【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】【分析】五个数中有两个负整数,根据概率公式求解可得. 【详解】解:∵在-5,-1,0,83,π这五个数中,负整数有-5和-1这2个, ∴恰好为负整数的概率为25, 故选:B . 【点睛】本题考查概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.2.B解析:B 【解析】 【分析】根据条形统计图可得,选体育的学生总人数的比值,从而可以解答本题. 【详解】由条形统计图可得, 选体育的学生的可能性是:162=8+16+10+65,故选B . 【点睛】本题考查可能性大小,解题的关键是明确题意,找出所求问题需要的条件.3.D解析:D 【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可. 【详解】掷一枚质地均匀的骰子,每一面朝上的概率为16,而小于6的情况有5种,因此概率为56,不是必然事件,所以A 选项错误; 多边形内角和公式为()2180n -︒,不是一个定值,而是随着多边形的边数n 的变化而变化,所以B 选项错误;二次函数解析式的一般形式为2y ax bx c =++()0a ≠,而当c=0时,二次函数图象经过原点,因此不是必然事件,所以C 选项错误;圆周长公式为2C r π=,当r=2时,圆的周长为4π,所以D 选项正确. 故选D . 【点睛】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为0<P<1,不可能事件发生的概率为0.4.B解析:B【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在Rt△DEB中利用勾股定理解决.【详解】解:在Rt△ABC中,∵AC=6,BC=8,∴AB=10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB−AE=10−6=4,设CD=DE=x,在Rt△DEB中,∵222+=,DE EB DB∴()222+=-,x x48∴x=3,∴CD=3.故答案为:B.【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.5.B解析:B【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D 、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误. 故选B .6.D解析:D 【分析】连接AE ,由三角形的中线将三角形面积分成相等的两部分,用m 表示出△AEG 的面积,再由等高三角形面积比等于底边之比求解即可. 【详解】解:如图,连接AE ,设1CEGS=,则FCDS m =,∵F 为AD 的中点,2ACD ACBS Sm ∴==,1AEGSm ∴=-∴1AEG CEGSAG m CG S==-故选:D. 【点睛】本题主要考查了与三角形中线有关的面积问题,掌握三角形的中线将三角形面积分成相等的两部分是解题的关键.7.B解析:B 【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,可得第三边的范围,再找出是5倍数的数即可. 【详解】∵三角形的两边长分别为3和8 ∴5<第三边长<11 ∴11<周长<22∵周长恰好是5的倍数∴周长是15或20∴第三边长是4或9∵3,4,8不能组成三角形∴第三边是9故选B.【点睛】本题考查知识点是三角形三边关系,记住三边关系式解题关键.8.B解析:B【分析】分当△CPA≌△PQB时和当△CPA≌△PQB时,两种情况进行讨论,求得BQ和BP的长,分别求得P和Q运动的时间,若时间相同即可,满足全等,若不等,则不能成立.【详解】解:当△CPA≌△PQB时,BP=AC=4(米),则BQ=AP=AB-BP=12-4=8(米),A的运动时间是:4÷1=4(分钟),Q的运动时间是:8÷2=4(分钟),则当t=4分钟时,两个三角形全等;当△CPA≌△QPB时,BQ=AC=4(米),AP=BP=12AB=6(米),则P运动的时间是:6÷1=6(分钟),Q运动的时间是:4÷2=2(分钟),故不能成立.总之,运动4分钟后,△CPA与△PQB全等,故选B.【点睛】本题考查了全等三角形的判定,注意分△CPA≌△PQB和△CPA≌△QPB两种情况讨论是关键.9.C解析:C【分析】先判定△ABE≌△ACD,再根据全等三角形的性质,得出∠B=∠C=35 ,由三角形外角的性质即可得到答案.【详解】在△ABE和△ACD中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.10.B解析:B【解析】由实际问题抽象出函数关系式关键是找出等量关系,本题等量关系为“用篱笆围成的另外三边总长应恰好为24米”,结合BC 边的长为x 米,AB 边的长为y 米,可得BC +2AB=24,即x +2y=24,即y=-x +12.因为菜园的一边是足够长的墙,所以0<x<24.故选B .11.A解析:A【分析】先由直线a ∥b ,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a ∥b ,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A .【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.12.C解析:C【分析】表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.【详解】解:如图,大正方形的边长是a,三角形①的两条直角边长都为a,三角形②的一条直角边为a-b,另一条直角边为b,因此S大正方形=a2,S△②=12(a﹣b)b=12ab﹣12b2,S△①=12a2,∴S阴影部分=S大正方形﹣S△①﹣S△②,=12a2﹣12ab+12b2,=12[(a+b)2﹣3ab],=12(100﹣54)=23,故选:C.【点睛】考查完全平方公式的意义,适当的变形是解决问题的关键.二、填空题13.80【解析】【分析】用频率乘以总数=个数【详解】因为摸到红球的频率是25所以估计这只袋子中有红球:320×25=80(个)故答案为:80【点睛】理解频率的意义用频率表示概率解析:80【解析】【分析】用频率乘以总数=个数.【详解】因为摸到红球的频率是25 %,所以,估计这只袋子中有红球:320×25 %=80(个)故答案为:80【点睛】理解频率的意义,用频率表示概率.14.8【解析】【分析】此题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比【详解】解:设袋子里有x 个蓝球则=08解得x=8即有8个蓝球【点睛】本题考查概率能够根据公式列出式子是解答本题 解析:8【解析】【分析】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.【详解】解:设袋子里有x 个蓝球, 则2x x =0.8, 解得x=8. 即有8个蓝球.【点睛】本题考查概率,能够根据公式列出式子是解答本题的关键.15.58°【分析】由折叠可得∠2=∠CAB 依据∠1=64°即可得到∠2=(180°-64°)=58°【详解】由折叠可得∠2=∠CAB 又∵∠1=64°∴∠2=(180°-62°)=58°故答案为58°【点解析:58°.【分析】由折叠可得,∠2=∠CAB ,依据∠1=64°,即可得到∠2=12 (180°-64°)=58°. 【详解】由折叠可得,∠2=∠CAB ,又∵∠1=64°,∴∠2=12(180°-62°)=58°, 故答案为58°.【点睛】本题考查了折叠性质,平行线性质的应用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.15【分析】根据翻折的性质得到CF=CFCG=CG分别表示出阴影的周长进行代换转化为AB+BC+AC问题得解【详解】解:∵将△CFG沿着直线FG折叠点C落在点C′处∴CF=CFCG=CG则阴影部分图解析:15【分析】根据翻折的性质得到CF=C'F,CG=C'G,分别表示出阴影的周长进行代换,转化为AB+BC+AC,问题得解.【详解】解:∵将△CFG沿着直线FG折叠,点C落在点C′处,∴CF=C'F,CG=C'G,则阴影部分图形的周长=AB+AF+BG+C′F+C′G=AB+AF+BG+CF+CG=AB+BC+AC=△ABC的周长=15;故答案为:15.【点睛】本题考查了翻折的性质,熟练掌握翻折的性质,进行线段代换是解题的关键.17.4【分析】根据三角形三边关系:三角形的任意两边之和大于第三边任意两边之差小于第三边即可得出结果【详解】解:∵要围成一个等腰三角形∴有两种可能:224和2442+2=4所以224舍掉∴第三根小棒的长度解析:4【分析】根据三角形三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边即可得出结果.【详解】解:∵要围成一个等腰三角形,∴有两种可能:2、2、4和2、4、4,2+2=4,所以2、2、4舍掉,∴第三根小棒的长度为4,故答案为:4【点睛】本题主要考查的三角形三边关系,掌握三角形的三边关系是解题的关键.18.20【分析】先判断出该用户用的水与18方的关系再设用水x方水费为y元继而求得关系式为y=39+3(x﹣18);将y=45时代入上式即可求得所用水的方数【详解】解:∵45>12×2+6×25=39∴用解析:20【分析】先判断出该用户用的水与18方的关系,再设用水x 方,水费为y 元,继而求得关系式为y=39+3(x ﹣18);将y=45时,代入上式即可求得所用水的方数.【详解】解:∵45>12×2+6×2.5=39,∴用户5月份交水费45元可知5月用水超过了18方,设用水x 方,水费为y 元,则关系式为y=39+3(x ﹣18).当y=45时,x=20,即用水20方.故答案为:2019.132【分析】先根据垂直定义得到∠AOM=90°求出∠AOD 的度数然后根据对顶角的性质求解即可【详解】∵∴∠AOM=90°∵∴∠AOD=90+42=132°∴∠AOD=132°故答案为:132【点睛 解析:132【分析】先根据垂直定义得到∠AOM=90°,求出∠AOD 的度数,然后根据对顶角的性质求解即可.【详解】∵OM AB ⊥,∴∠AOM=90°,∵42MOD ∠=,∴∠AOD=90+42=132°,∴COB ∠=∠AOD=132°.故答案为:132.【点睛】本题考查了垂直的定义,对顶角的性质,熟练掌握对顶角相等是解答本题的关键. 20.10【分析】根据多项式乘多项式的法则展开在根据题意列出关于ab 的方程进而即可求解【详解】=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1∵和的积不含x 的一次项和二次项∴a-3解析:10【分析】根据多项式乘多项式的法则展开,在根据题意,列出关于a ,b 的方程,进而即可求解.【详解】22(1)(231)ax bx x x ++⋅-+=2ax 4-3ax 3+ax 2+2bx 3-3bx 2+bx+2x 2-3x+1∵21ax bx ++和2231x x -+的积不含x 的一次项和二次项,∴a-3b+2=0且b-3=0,∴a=7且b=3,∴a+b=10,故答案是:10.【点睛】本题主要考查多项式乘多项式的法则,根据多项式不含x 的一次项和二次项,列出方程,是解题的关键.三、解答题21.(1)60m =;20n =;(2)72;(3)挑选出的2名同学恰好是“1男1女”的概率35. 【分析】(1)根据总人数为100人,B 组频数为0.6,即可求出B 组人数;再利用扇形统计图求出D 组人数,进而求出C 组人数;(2)根据(1)中所求信息,利用360°乘以对应的比例即可求解;(3)画树状图,列出所有可能,再表示出题干要求事件发生的概率即可.【详解】(1)由题意,总人数为100人,B 组频数为0.6,1000.660m =⨯=(人)由扇形统计图可知:D 组所占百分比为15%,所以D 组频数为:0.15,D 组人数为:10015%15⨯=(人)C 组人数=1005601520---=(人),所以20n =故答案是:60m =;20n =(2)扇形统计图中“C 组”所对应的圆心角的度数是:2036072100︒⨯=︒ 故答案是:72°(3)树状图:由图可得共有20种等可能结果,挑选出的2名同学恰好是“1男1女”的有12种,即挑选出的2名同学恰好是“1男1女”的概率35. 【点睛】本题为统计与概率综合题,考查了频数(率)分布表、扇形统计图以及树状图求概率等知识点.22.(1)4;(2)见解析;(3)6.【分析】(1)直接利用直角三角形面积求法进而得出答案;(2)直接利用关于直线对称点的性质得出对应点位置进而得出答案;(3)利用轴对称求最短路线的方法得出答案.【详解】解:(1)△ABC的面积为:12×2×4=4; 故答案为:4; (2)如图所示:△EDF 即为所求;(3)PC+PA 的最小值为:PA+PC=DC=6.故答案为:6.【点睛】此题主要考查了应用设计与作图,正确得出对应点位置是解题关键.23.(1)见解析;(2)成立,见解析【分析】(1)先证∠ABD=∠EAC ,再证△ABD ≌ △CAE (AAS )即可;(2)先证出∠ABD = ∠EAC ,再证△ABD ≌ △CAE (AAS )即可.【详解】证明:(1)∵AB ⊥AC,BD ⊥DE,CE ⊥DE,∴∠BDA=∠AEC=∠BAC=90°,∴∠DAB+∠ABD=∠EAC+∠DAB=90°,∴∠ABD=∠EAC,在△ABD 和 △CAE 中,ABD EAC BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ △ABD ≌ △CAE (AAS ),∴ BD = AE ,AD = CE ,∴ DE = AE + DA ;(2)成立,理由如下:∵ ∠BAC + ∠BAD + ∠EAC = 180° ,∠ADB + ∠BAD + ∠ABD = 180°,∠BAC = ∠BDA ,∴∠ABD = ∠EAC ,在△ABD 和 △CAE 中,ABD EAC BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ △ABD ≌ △CAE (AAS ),∴ BD = AE ,AD = CE ,∴ DE = AE + DA = BD + CE .【点睛】本题考查三角形全等的判定与性质,掌握三角形全等的判定与性质是解题关键. 24.(1)27℃,37℃;(2)14℃,12小时;(3)0时至3时及15时至24时, A 点表示21点时的气温.【解析】【分析】(1)观察函数图象找出时间9时的温度和这一天的最高温度;(2)找出函数图象的最高点(最高温度)和最低点(最低温度),然后再找最高点和最低点分别对应的时间;用最高温度减去最低温度得到这天的温差,最低温度到最高温度经过的时间等于最高点和最低点对应的时间的差;(3)观察图象0时到3时和15时到24时温度在下降.【详解】解:(1)利用图象得出上午9时的温度是27℃,这一天的最高温度是37℃.(2)这一天的温差是37-23=14(℃),从最低温度到最高温度经过了15-3=12(小时).(3)温度下降的时间范围为0时至3时及15时至24时,图中的A 点表示的是21点时的气温.故答案为:(1)27℃,37℃;(2)14℃,12小时;(3)0时至3时及15时至24时, A 点表示21点时的气温.【点睛】本题考查了函数图象,利用函数图象反映两变量之间的变化规律,通过该规律解决有关的实际问题.25.(1)BOD ∠,COE ∠;(2)126︒【分析】(1)根据补角和余角的定义得出结果;(2)利用90DOE ∠=︒,36DOC ∠=︒,求出COE ∠的度数,再根据角平分线的性质得BOE COE ∠=∠,再由AOE AOB BOE ∠=∠-∠即可求出结果.【详解】解:(1)∵180AOD BOD ∠+∠=︒,∴AOD ∠的补角是BOD ∠,∵90DOC COE DOE ∠+∠=∠=︒,∴DOC ∠的余角是COE ∠,故答案是:BOD ∠,COE ∠;(2)∵90DOE ∠=︒,36DOC ∠=︒,∴903654COE DOE DOC ∠=∠-∠=︒-︒=︒,∵OE 平分COB ∠,∴54BOE COE ∠=∠=︒,∵A ,O ,B 三点在一条直线上,∴18054126AOE AOB BOE ∠=∠-∠=︒-︒=︒.【点睛】本题考查角度的求解,解题的关键是掌握余角和补角的定义,角平分线的性质. 26.(1)96322x x x -++(2)234y xy --【分析】(1)先计算积的乘方、同底数幂的乘法,再合并同类项即可得;(2)根据整式的混合运算顺序和运算法则计算可得.【详解】解:(1)()()()7332233532x x x x x -++⋅ 7963225272=x x x x x -⋅++96392272=5x x x x -++96322=x x x -++(2)()()()()22223x y x y x x y x y ++--++ ()()222224262=x y x xy x xy y -++-++222224262=x y x xy x xy y -++--+234=y xy --【点睛】本题主要考查整式的运算,解题的关键是熟练掌握整式混合运算顺序和运算法则.。

浙教版七年级下册数学期末试卷及参考答案(1)

浙教版七年级下册数学期末试卷及参考答案(1)

浙教版七年级下册数学期末试卷及参考答案(1) 题号一二三四五总分得分(温馨提示:请学生认真答题,注意卷面整洁,本张试卷满分100分)一、填空题。

(每空2分,共34分。

) 1、三角形任何两边的和_____________第三边。

2、用抽签的方法,从A、B、C、D四个人中任选一人去打扫公共场所,选中A的概率是_____________。

3、二元一次方程3x+2y=10,用关于x的代数式表示y,则y=_____________;用关于y的代数式表示x,则x=_____________。

4、原子的直径一般是0.0000001厘米。

用科学记数法表示这个数是_____________厘米。

5、方程(3x?2)2?(1?5x)2的解是:_______________。

6、如图,AD是△ABC的一条中线,若△ABC的面积是8cm2。

则△ABD的面积是_____________cm2。

7、要使分式x?12x?1有意义,x的取值满足______________;若分式x?12x?1的值为0,则x的值是_________________。

8、如图,在△ABC中,高BD、CE相交于点H,若∠BHE=600,则∠A=__________。

9、当a??2,b?2时,分式2a?3bb?a的值是_________________。

10、因式分解:xy2?9x?_____________。

11、举出一个现实生活中应用三角形稳定性的例子:____________________________。

12、当x?_______时,分式61?2xx?2无意义;当x________时,分式1?2x有意义;当x?______ 时,分式x?3x?3的值为零。

13、在代数式:① y12y?115x;② 3a?b;③ b;④ 1s?3中,属于分式的有_____________。

(只需填?7x?2y?19写21、下列各组数中,是二元一次方程组?的解是()。

【浙教版】初一数学下期末试卷带答案(1)

【浙教版】初一数学下期末试卷带答案(1)

一、选择题1.下列说法正确的是()A.一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差为2s甲,乙组数据的方差为2s乙,则乙组数据比甲组数据稳定2.下列事件中,不可能事件是()A.今年的除夕夜会下雪B.在只装有红球的袋子里摸出一个黑球C.射击运动员射击一次,命中10环D.任意掷一枚硬币,正面朝上3.用一枚质地均匀的硬币做抛掷试验,前10次掷的结果都是正面向上,如果下一次掷得的正面向上的概率为P(A),则( )A.P(A)=1 B.P(A)=12C.P(A)>12D.P(A)<124.有下列说法:①轴对称的两个三角形形状相同;②面积相等的两个三角形是轴对称图形;③轴对称的两个三角形的周长相等;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的.其中正确的有()A.4个B.3个C.2个D.1个5.如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为()A.1个B.2个C.3个D.4个6.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.7.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD,现添加以下条件,不能判定ABC ABD△≌△的是()A .ACB ADB ∠=∠B .AB BD =C .AC AD = D .CAB DAB ∠=∠8.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80°9.如图,ABD △与AEC 都是等边三角形,AB AC ≠.下列结论中,①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠.其中正确的有( ).A .0个B .1个C .2个D .3个10.某工厂去年底积压产品a 件(a >0),今年预计每月销售产品2b 件(b >0),同时每月可生产出产品b 件,则产品积压量y (件)与今年开工时间t (月)的关系的图象应是( )A .B .C .D . 11.如图,AD BC ⊥,ED AB ⊥,表示点D 到直线AB 距离的是线段( )的长度A .DBB .DEC .DAD .AE 12.将多项式241x +加上一个单项式后,使它能成为一个完全平方式,下列添加单项式错误的是( )A .2xB .4xC .4x -D .44x二、填空题13.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别.从袋子中随机摸出一个小球,则摸出的小球是绿球的概率是_____________. 14.2020年11月24日中国探月工程嫦娥五号在我国文昌航天发射场发射成功,目前已完成两次轨道修正,两次近月制动,11月30日完成轨返组合体与着上组合体受控分离, 12月1日择机实施动力下降,软着陆于月球正面预选区域.关于嫦娥奔月,中国古代有很多流传至今的美丽神话,相传很久很久以前,嫦娥在月宫养了5只兔子,她们分别叫大白,二白,三白,小白和小黑,由于一次疫情影响,其中一只兔子生病了,嫦娥让她的好友章离子带去看医生,章离子去领兔子时恰好嫦娥不在月宫,章离子就随机带了一只兔子去看医生,请问章离子所带的兔子恰好是生病的兔子的概率是______.15.如图,Rt △AFC 和Rt △AEB 关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC ≌△AMB ;③CD =DN .其中正确的结论是_____.(填序号)16.如图,//AB CD ,点M 为CD 上一点,MF 平分∠CME .若∠1=57°,则∠EMD 的大小为_____度.17.如图,已知△ABC的周长是15,点F,G分别是AC,BC上的点,将△CFG沿着直线FG折叠,点C落在点C′处,且点C′在三角形的外部,则阴影部分图形的周长是_____.18.如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8点从同一地点出发,请你根据图中给出的信息,算出乌龟在___点追上兔子.19.若∠A的余角与∠A的补角的度数和比平角的13多110︒,则∠A=____________.20.观察下列各式:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4………这些等式反映出多项式乘法的某种运算规律.当n为正整数,且n≥2时,请你猜想:(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n﹣2+b n﹣1)=______________.三、解答题21.在一个不透明的袋中装有3个绿球,5个红球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(1)若袋内有4个白球,从中任意摸出一个球,是绿球的概率为,是红球的概率为,是白球的概率为.(2)如果任意摸出一个球是绿球的概率是15,求袋中有几个白球? 22.如图,在平面直角坐标系中,ABC 的三个顶点都在格点上,点A 的坐标为()2,2请解答下列问题:(1)画出ABC 关于x 轴对称的111A B C △;(2)画出△111A B C △关于y 轴对称的222A B C △;(3)求四边形1221B B C C 的面积.23.如图:已知AD CB =,CE BD ⊥,AF BD ⊥,垂足分别为点E 、F ,若DE BF =,求证://AD BC .24.如图,淇淇的爸爸去参加一个聚会,淇淇坐在汽车上用所学知识绘制了一张反映汽车速度与时间的关系图,第二天,淇淇拿着这张图给同学看,并向同学提出如下问题,你能回答吗?(1)在上述变化过程中,自变量是什么?因变量是什么?(2)汽车从出发到最后停止共经过了多长时间?它的最高时速是多少?(3)汽车在哪段时间保持匀速行驶?速度是多少?(4)用语言大致描述这辆汽车的行驶情况.25.如图,将长方形纸片的一角折叠,使顶点A 落在A '处,EF 为折痕,点F 在线段AD 上,且点F 不与点D 重合,点E 在线段AB 上,此时∠AFE 和∠AEF 互为余角,若EA '恰好平分∠FEB ,回答下列问题.(1)求∠AEF 的度数;(2)∠A FD '= 度.26.化简:2(3)3(2)m n m m n +-+.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据调查方式,可判断A ,根据概率的意义一,可判断B 根据中位数、众数,可判断c ,根据方差的性质,可判断D .【详解】A 、 一个游戏中奖的概率是1100 ,做100次这样的游戏有可能中奖,而不是一定中奖,故A 错误;B 、为了了解全国中学生的心理健康状况,应采用抽查方式,故B 错误;C 、一组数据0,1,2,1,1的众数和中位数都是1,故C 正确;D. 若甲组数据的方差为2s 甲,乙组数据的方差为2s 乙,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D 错误.故选:C .【点睛】本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键.2.B解析:B【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、今年的除夕夜会下雪是随机事件,故A错误;B、在只装有红球的袋子里摸出一个黑球是不可能事件,故B正确;C、射击运动员射击一次,命中10环是随机事件,故C错误;D、任意掷一枚硬币,正面朝上是随机事件,故D错误;故选B.【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.B解析:B【解析】【分析】根据概率的基本性质进行作答.【详解】下一次掷得的正面向上的概率与前10次掷的结果都是正面向上无关,一直是12,所以,选B.【点睛】本题考查了概率的基本性质,熟练掌握概率的基本性质是本题解题关键. 4.B解析:B【分析】根据平移、翻折或旋转的性质逐项判断可求解.【详解】解:①轴对称的两个三角形形状相同,故正确;②面积相等的两个三角形形状不一定相同,故不是轴对称图形,故错误;③轴对称的两个三角形的周长相等,故正确;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的,故正确.故选:B.【点睛】本题考查了图形的变换,掌握平移、翻折或旋转的性质是解题的关键.5.C解析:C【详解】(1)∵△ABM≌△CDM,△ABM、△CDM都是等边三角形,∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM=DM,又∵MA⊥MD,∴∠AMD=90°,∴∠BMC=360°−60°−60−90°=150°,又∵BM=CM,∴∠MBC=∠MCB=15°;(2)∵AM⊥DM,∴∠AMD=90°,又∵AM=DM,∴∠MDA=∠MAD=45°,∴∠ADC=45°+60°=105°,∠ABC=60°+15°=75°,∴∠ADC+∠ABC=180°;(3)延长BM交CD于N,∵∠NMC是△MBC的外角,∴∠NMC=15°+15°=30°,∴BM所在的直线是△CDM的角平分线,又∵CM=DM,∴BM所在的直线垂直平分CD;(4)根据(2)同理可求∠DAB=105°,∠BCD=75°,∴∠DAB+∠ABC=180°,∴AD∥BC,又∵AB=CD,∴四边形ABCD是等腰梯形,∴四边形ABCD是轴对称图形.故(2)(3)(4)正确.故选C.6.D解析:D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.B解析:B【分析】根据已知条件可得∠ABC=∠ABD=90°,AB=AB ,结合全等三角形的判定定理依次对各个选项判断.【详解】解:∵AB CD ⊥,∴∠ABC=∠ABD=90°,∵AB=AB ,∴若添加ACB ADB ∠=∠,可借助AAS 证明ABC ABD △≌△,A 选项不符合题意; 若添加AB BD =,无法证明ABC ABD △≌△,B 选项符合题意;若添加AC AD =,可借助HL 证明ABC ABD △≌△,C 选项不符合题意;若添加CAB DAB ∠=∠,可借助ASA 证明ABC ABD △≌△,D 选项不符合题意; 故选:B .【点睛】本题考查全等三角形的判定.熟练掌握全等三角形的判定定理,并能结合题上已知条件选取合适的定理是解题关键.8.A解析:A【分析】根据题意可证明ABE ACD ≅,即得到B C ∠=∠.再利用三角形外角的性质,可求出DME ∠,继而求出BMD ∠.【详解】根据题意ABE ACD ≅(SAS ),∴30B C ∠=∠=︒∵DME B BDC ∠=∠+∠,BDC C A ∠=∠+∠∴307030130DME B A C ∠=∠+∠+∠=︒+︒+︒=︒∴180********BMD DME ∠=︒-∠=︒-︒=︒故选A .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质.利用三角形外角的性质求出DME B A C ∠=∠+∠+∠是解答本题的关键.9.C解析:C【分析】利用SAS 证明△DAC ≌△BAE ,利用三角形内角和定理计算∠BOD 的大小即可.【详解】∵ABD △与AEC 都是等边三角形,∴AD=AB ,AC=AE ,∠DAB=∠EAC=60°,∴∠DAB+∠CAB =∠EAC+∠CAB ,∴∠DAC =∠BAE ,∴△DAC ≌△BAE ,∴BE=CD ,∴结论①正确;∵△DAC ≌△BAE ,∴∠ADC =∠ABE ,∴∠BOD=180°-(∠BDO+∠DBO),∵∠BDO+∠DBO=60°-∠ADC +60°+∠ABE=120°,∴∠BOD=180°-120°=60°,∴结论②正确;无法证明BDO CEO ∠=∠,∴结论③错误;故选C.【点睛】本题考查了等边三角形的性质,全等三角形的证明和性质,三角形内角和定理, 熟练运用等边三角形的性质证明三角形的全等是解题的关键.10.C解析:C【解析】【分析】开始生产时产品积压a件,即t=0时,y=a,后来由于销售产品的速度大于生产产品的速度,则产品积压量y随今年开工时间t的增大而减小,且y是t的一次函数,据此进行判断.【详解】∵开始生产时产品积压a件,即t=0时,y=a,∴B错误;∵今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,∴销售产品的速度大于生产产品的速度,∴产品积压量y随开工时间t的增大而减小,∴A错误;∵产品积压量每月减少b件,即减小量是均匀的,∴y是t的一次函数,∴D错误.故选C.【点睛】本题考查的是实际生活中函数的图形变化,属于基础题.解决本题的主要方法是先根据题意判断函数图形的大致走势,再下结论,本题无需计算,通过观察看图,做法比较新颖.11.B解析:B【分析】根据从直线外一点到这直线的垂线段的长度叫做点到直线的距离解答.【详解】解:∵ED⊥AB,∴点D到直线AB距离的是线段DE的长度.故选:B.【点睛】本题考查了点到直线的距离的定义,是基础题,熟记概念并准确识图是解题的关键.12.A解析:A【分析】根据完全平方公式即可求出答案.【详解】解:A.4x2+2x+1,不是完全平方式,故此选项符合题意;B.4x2+4x+1=(2x+1)2,是完全平方式,故此选项不符合题意;C.4x2-4x+1=(2x-1)2,是完全平方式,故此选项不符合题意;D.4x4+4x2+1=(2x2+1)2,是完全平方式,故此选项不符合题意;故选:A.【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.二、填空题13.【分析】用绿球的个数除以总球数即可【详解】解:摸出的小球是绿球的概率是故答案为:【点睛】本题考查了概率的求法解题关键是理解等可能事件概率的求法解析:1 3【分析】用绿球的个数除以总球数即可.【详解】解:摸出的小球是绿球的概率是31 93 ,故答案为:13.【点睛】本题考查了概率的求法,解题关键是理解等可能事件概率的求法.14.【分析】根据等可能事件概率的性质计算即可得到答案【详解】∵嫦娥在月宫养了5只兔子她们分别叫大白二白三白小白和小黑又∵其中一只兔子生病了∴随机带了一只兔子恰好是生病的兔子的概率是故答案为:【点睛】本题解析:1 5【分析】根据等可能事件概率的性质计算,即可得到答案.【详解】∵嫦娥在月宫养了5只兔子,她们分别叫大白,二白,三白,小白和小黑又∵其中一只兔子生病了∴随机带了一只兔子,恰好是生病的兔子的概率是1 5故答案为:15.【点睛】本题考查了概率的知识;解题的关键是熟练掌握等可能事件概率的性质,从而完成求解.15.①②【分析】首先利用轴对称的性质分别判断正误即可【详解】①∵Rt△AFC和Rt△AEB关于虚线成轴对称∴∠MAD=∠NAD∠EAD=∠FAD∴∠EAD﹣∠MAD=∠FAD﹣∠NAD即:∠1=∠2故正解析:①②【分析】首先利用轴对称的性质分别判断正误即可.【详解】①∵Rt △AFC 和Rt △AEB 关于虚线成轴对称,∴∠MAD =∠NAD ,∠EAD =∠FAD ,∴∠EAD ﹣∠MAD =∠FAD ﹣∠NAD ,即:∠1=∠2,故正确;②∵Rt △AFC 和Rt △AEB 关于虚线成轴对称,∴∠B =∠C ,AC =AB ,在△ANC 与△AMB 中,MAN NAM AC ABB C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ANC ≌△AMB ,故正确;③易得:CD =BD ,但在三角形DNB 中,DN 不一定等于BD ,故错误.故答案为:①②.【点睛】本题考查轴对称的性质,熟练掌握性质是解题的关键.16.【分析】根据AB ∥CD 求得∠CMF=∠1=57°利用MF 平分∠CME 求得∠CME=2∠CMF =114°根据∠EMD=180°-∠CME 求出结果【详解】∵AB ∥CD ∴∠CMF=∠1=57°∵MF 平分∠解析:66【分析】根据AB ∥CD ,求得∠CMF=∠1=57°,利用MF 平分∠CME ,求得∠CME=2∠CMF =114°,根据∠EMD=180°-∠CME 求出结果.【详解】∵AB ∥CD ,∴∠CMF=∠1=57°,∵MF 平分∠CME ,∴∠CME=2∠CMF =114°,∴∠EMD=180°-∠CME =66°,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.17.15【分析】根据翻折的性质得到CF =CFCG =CG 分别表示出阴影的周长进行代换转化为AB+BC+AC 问题得解【详解】解:∵将△CFG 沿着直线FG 折叠点C 落在点C′处∴CF =CFCG =CG 则阴影部分图解析:15【分析】根据翻折的性质得到CF=C'F,CG=C'G,分别表示出阴影的周长进行代换,转化为AB+BC+AC,问题得解.【详解】解:∵将△CFG沿着直线FG折叠,点C落在点C′处,∴CF=C'F,CG=C'G,则阴影部分图形的周长=AB+AF+BG+C′F+C′G=AB+AF+BG+CF+CG=AB+BC+AC=△ABC的周长=15;故答案为:15.【点睛】本题考查了翻折的性质,熟练掌握翻折的性质,进行线段代换是解题的关键.18.18【解析】两个函数图形的交点的横坐标是10说明10小时后乌龟追上兔子此时的时间为:8+10=18时故答案为18解析:18【解析】两个函数图形的交点的横坐标是10,说明10小时后,乌龟追上兔子,此时的时间为:8+10=18时.故答案为18.19.50°【分析】设∠A=x根据余角补角及平角的定义列方程求出x的值即可得答案【详解】设∠A=x∴∠A的余角为90°-x补角为180°-x∵∠的余角与∠的补角的度数和比平角的多∴(90°-x)+(180解析:50°【分析】设∠A=x,根据余角、补角及平角的定义列方程求出x的值即可得答案.【详解】设∠A=x,∴∠A的余角为90°-x,补角为180°-x,∵∠A的余角与∠A的补角的度数和比平角的1多110 ,3∴(90°-x)+(180°-x)=1×180°+110°,3解得:x=50°,故答案为:50°【点睛】本题考查余角与补角,解答此类题一般根据一个角的余角和补角列出代数式和方程(组)求解.熟记互为余角的两个角的和为90°,互为补角的两个角的和为180°是解题关键.20.an﹣bn【分析】根据所给信息可知各个等式的左边两因式中一项为(a-b)另一项每一项的次数均为n-1而且按照字母a的降幂排列故可得答案【详解】解:由题意当n=1时有(a﹣b)(a+b)=a2﹣b2;解析:a n﹣b n【分析】根据所给信息,可知各个等式的左边两因式中,一项为(a-b),另一项每一项的次数均为n-1,而且按照字母a的降幂排列,故可得答案.【详解】解:由题意,当n=1时,有(a﹣b)(a+b)=a2﹣b2;当n=2时,有(a﹣b)(a2+ab+b2)=a3﹣b3;当n=3时,有(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;所以得到(a ﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n﹣2+b n﹣1)=a n﹣b n.故答案为:a n﹣b n.【点睛】本题的考点是归纳推理,主要考查信息的处理,关键是根据所给信息,可知两因式中,一项为(a-b),另一项每一项的次数均为n-1,而且按照字母a的降幂排列.三、解答题21.(1)14,512,13;(2)袋中有7个白球.【解析】【分析】(1)依据有5个红球,3个绿球和4个白球,即可得到任意摸出一个球是绿球的概率,红球的概率,白球的概率;(2)设袋子内有n个白球,依据概率公式列出方程,即可得到白球的数量.【详解】(1)一共有3+5+4=12个球,任意摸出一个球是绿球的概率是312=14,任意摸出一个球是红球的概率是5 12,任意摸出一个球是白球的概率是412=13;故答案为:14,512,13;(2)设袋中有n个白球,则3 35n ++=15,解得:n=7,经检验n=7是分式方程的解,所以,袋中内有7个白球.【点睛】本题考查概率的求法与运用,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 22.(1)见解析;(2)见解析;(3)14.【分析】 (1)分别作出各点关于x 轴的对称点,再顺次连接即可;(2)作出△A 1B 1C 1各点关于y 轴的对称点,再顺次连接即可;(3)利用1212112221E EB C FB C F S SS S =--B B 四边形B B C C 即可求解.【详解】(1)分别作出ABC 各点关于x 轴的对称点,再顺次连接,如图所示: ;(2)分别作出△A 1B 1C 1各点关于y 轴的对称点,再顺次连接,如图所示:(3)如图,1222112121112812121422E EB CF C F B S S S S =--=⨯-⨯⨯-⨯⨯=B B 四边形B B C C .【点睛】本题考查的是作图-轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键. 23.见解析【分析】利用已知条件证明△ADF ≌△CBE ,由全等三角形的性质即可得到∠B=∠D ,进而得出结论.【详解】证明:∵DE=BF ,∴DE+EF=BF+EF ;∴DF=BE ;在Rt △ADF 和Rt △BCE 中DF BE AD CB =⎧⎨=⎩, ∴Rt △ADF ≌Rt △CBE (HL ),∴∠B=∠D ,∴//AD BC .【点睛】本题考查了直角三角形全等的判定及性质;由DE=BF 通过等量加等量和相等得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.24.(1)自变量是时间,因变量是速度(2)汽车从出发到最后停止共经过了60分钟时间,最高时速是85千米/时(3)汽车在出发后35分钟到50分钟之间保持匀速,速度是85千米/时(4)汽车先加速行驶至第10分钟,然后减速行驶至第25分钟,接着停下5分钟,再加速行驶至第35分钟,然后匀速行驶至第50分钟,再减速行驶直至第60分钟停止【解析】分析:(1)主动变化的量是自变量,被动变化的量是因变量;(2)观察横轴上速度最后为0时的时间,速度是最大值即是函数图象最高时的函数值;(3)函数图象平行于横轴时汽车在匀速行驶;(4)根据函数图象,从0开始到60分钟结束.详解:(1)自变量是时间,因变量是速度;(2)根据速度与时间图象的横坐标可知:汽车从出发到最后停止共经过了60分钟时间,最高时速是85千米/时;(3)汽车在出发后35分钟到50分钟之间保持匀速,速度是85千米/时.(4)汽车先加速行驶至第10分钟,然后减速行驶至第25分钟,接着停下5分钟,再加速行驶至第35分钟,然后匀速行驶至第50分钟,再减速行驶直至第60分钟停止.点睛:观察图象问题要对图象及其数量关系进行一定分析,要抓住图象中的转折点及拐点,这些拐点处往往是运动状态发生改变或者相互的数量关系发生改变的地方,同时要结合横纵坐标的含义来进一步加工产生新的信息.25.(1)60°;(2)120【分析】(1)根据折叠的性质以及角平分线的定义可知∠AEF =∠A'EF =∠A'EB ,再根据平角的定义求解即可;(2)根据折叠的性质、互余的定义以及(1)的结论可得∠AFA'的度数,进而得出∠A'FD 的度数.【详解】解:(1)根据折叠的性质可得∠AEF =∠A'EF ,∵EA'恰好平分∠FEB ,∴∠AEF =∠A'EF =∠A'EB ,∵∠AEF+A'EF+∠A'EB =180°,所以∠AEF =60°;(2)∵∠AFE 和∠AEF 互为余角,∴∠AFE =90°﹣∠AEF =30°,根据折叠的性质可得∠AFA'=2∠AFE =60°,∴∠A'FD =180°﹣∠AFA'=120°.故答案为:120.【点睛】本题主要考查了角的计算问题,掌握折叠的性质并理清相关角的关系是解答本题的关键. 26.226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可.【详解】解:2(3)3(2)m n m m n +-+ 2229636m mn n m mn =++--226m n =+.【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.。

浙江省建德市李家镇初级中学七年级数学下学期期末考试试题(一)及答案

浙江省建德市李家镇初级中学七年级数学下学期期末考试试题(一)及答案

浙江省建德市李家镇初级中学2012-2013学年七年级下学期期末考试数学试题(一)及答案一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. 1.如图,已知AB ∥CD ,∠AEC =80º,则∠DCF 的度数为(▲)A .120ºB .110ºC .100ºD .80º2.小明在下面的计算中只做对了一道题,他做对的题目是(▲) A .1367a a a =+ B .4267a a a =⋅ C .4267)(aa = D .6767=÷a a 3.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,所以第六组的频率是(▲)A .0.1B .0.2C .0.3D .0.4 4.数学课堂练习小明同学做了如下4道因式分解题,你认为他做得不够完整....的一题是(▲) A .22)12(144-=+-x x xB .)1(23-=-x x x xC .)(22y x xy xy y x -=-D .))((22y x y x y x -+=-5.若代数式29x mx ++是完全平方式,那么m =(▲) A .6B .-6C .±6D .36.由方程组⎩⎨⎧=-=+my m x 34,可得出x 与y 的关系是(▲)A .1=+y xB .1-=+y xC . 7=+y xD . 7-=+y x 7.某班有x 人,分为y 组活动,若每组7人,则余下3人;若每组8人,则还缺5人.求全班人数,列出的方程组正确的是(▲) A .⎩⎨⎧+=-=5837x y x y B .⎩⎨⎧-=+=5837x y x y C .⎩⎨⎧-=+=5837y x y x D .⎩⎨⎧+=-=5837y x y x8.如果把分式yx xy32+中的x ,y 都扩大到原来的5倍,那么分式的值(▲)A .扩大到原来的5倍B .缩小到原来的51 A E BC DFC .不变D .扩大到原来的10倍七年级数学期末综合试题卷一(第1页,共4页)9.已知6112=++a a a ,则1242++a a a 的值为(▲)A .361B .61C .121D .241 10.已知122-+ax x 能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是(▲)A .3个B .4个C .6个D .8个 二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.人体中,红细胞的平均半径是0.0000036米,则用科学记数法可表示为 ▲ 米. 12.计算=⨯--203)31( ▲ .13.已知21=-x x ,则221xx += ▲ . 14.如图,将三角形ABC 沿BC 方向平移得到三角形DEF .如果AB =6cm ,BC =8cm ,BE =2cm ,DH =1.5cm ,那么图中阴影部分的面积为 ▲ . 15.已知054222=+--+y x y x ,分式yxx y -的值为 ▲ . 16.已知1)3(2=-+a a ,则整数a 的值可以是 ▲ .三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(每小题4分,共8分)计算: (1)6822a a a ÷-(2))1)(4()2)(2(x x x x -+-+-▲18.(每小题4分,共16分) 解下列方程(组)(1)⎩⎨⎧=+=522y x y x(2)⎩⎨⎧=--=+894132t s t s(3)xx x --=-3231 (4)1221222-=--+x x x x x▲七年级数学期末综合试题卷一(第2页,共4页)19.(每小题4分,共8分)因式分解: (1)2232x y xy y -+ (2)22(2)x y y +-▲20.(本题8分)某地区七年级学生的用眼习惯所作的调查结果如表1所示.表中空缺的部分反映在表2的扇形图和表3的条形图中.请把三个表中的空缺部分补充完整.编号 项 目 人 数 比 例 1 经常近距离写字 360 37.50% 2 经常长时间看书 3 长时间使用电脑 52 4 近距离地看电视 11.25% 5不及时检查视力24025.00%表(1)21.(本题6分)如图所示,已知∠OEB =130º,∠FOD =25º,OF 平分∠EOD ,试说明AB ∥CD .▲25.00%编号5 11.25%编号4 5.42%编号3 050100150 200 250 300 350400 编号1 编号2 编号3 编号4 编号5 学生用眼习惯调查 扇形统计图学生用眼习惯调查条形统计图七年级数学期末综合试题卷一(第3页,共4页)22.(本题8分)某服装店的老板,在广州看到一种夏季衬衫,就用8000元购进若干件,以每件58元的价格出售,很快售完,又用17600元购进同种衬衫,数量是第一次的2倍,但这次每件进价比第一次多4元,服装店仍按每件58元出售,全部售完,问:该服装店这两笔生意是否盈利?若盈利,那么盈利多少元?▲23.(每小题6分,共12分) (1)阅读以下内容:K1)1)(1(1)1)(1(1)1)(1(423322-=+++--=++--=+-x x x x x x x x x x x x①根据以上规律,可得(x -1)(x n+x n-1+x n-2+…+x +1)= ▲ (n 为正整数);②根据这一规律,计算:1+2+22+23+24+…22011+22012+22013= ▲ . (2)阅读下列材料,回答问题: 关于x 的方程:aa x x 11+=+的解是a x =1,a x 12=;aa x x 22+=+的解是a x =1,a x 22=;a a x x 33+=+的解是a x =1,a x 32=;…①请观察上述方程与解的特征,猜想关于x 的方程)0(≠+=+m ama x m x 的解; ②请你写出关于x 的方程3232-+=-+m m x x 的解.▲七年级数学期末综合试题卷一(第4页,共4页)七年级数学期末综合答题卷(一) 题 号一二三总 分1~1011~1617~23得 分一、仔细选一选(本题有10个小题,每小题3分,共30分) 题 号12345678910答 案二、认真填一填(本题有6个小题,每小题4分,共24分) 11. 12. 13. 14.15. 16. 三、全面答一答(本题有7个小题,共66分) 17.(每小题4分,共8分)计算: (1)6822a a a ÷-(2))1)(4()2)(2(x x x x -+-+-七年级数学期末综合答题卷一(第1页,共4页)18.(每小题4分,共16分) 解下列方程(组)(1)⎩⎨⎧=+=522y x y x(2)⎩⎨⎧=--=+894132t s t s(3)xx x --=-3231 (4)1221222-=--+x x x x x19.(每小题4分,共8分)因式分解: (1)2232x y xy y -+(2)22(2)x y y +-七年级数学期末综合答题卷一(第2页,共4页)20. (本题8 编号 项 目 人 数 比 例 1 经常近距离写字 360 37.50% 2 经常长时间看书 3 长时间使用电脑 52 4 近距离地看电视 11.25% 5不及时检查视力24025.00%21.(本题6分)25.00% 编号5 11.25% 编号45.42% 编号350 100 150 200 250 300 350 400 编号1 编号2 编号3 编号4 编号5学生用眼习惯调查扇形统计图学生用眼习惯调查条形统计图七年级数学期末综合答题卷一(第3页,共4页)22.(本题8分)23. (每小题6分,共12分)(1)①②(2)七年级数学期末综合答题卷一(第4页,共4页)七年级数学期末综合卷参考答案卷一三、全面答一答(本题有7个小题,共66分)17.(1)a 2; (2)3x.20.编号项目人数 比例 1 经常近距离写字 360 37.50% 2 经常长时间看书 200 20.83% 3 长时间使用电脑 52 5.42% 4 近距离地看电视 108 11.25% 5不及时检查视力24025.00%(表1)21.略 22.CDAB OEB FOD EOD EOD OF ∥平分∴︒=∠︒=∠=∠∴∠130502ΘΘ。

浙江省建德市李家镇初级中学2012-2013学年七年级数学5月单元综合检测试题 浙教版

浙江省建德市李家镇初级中学2012-2013学年七年级数学5月单元综合检测试题 浙教版

某某省建德市李家镇初级中学2012-2013学年七年级5月单元检测数学试题浙教版(本卷满分120分,2013.5)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.在12x ,2m ,5a b +-,12x y -,221a a +中,分式的个数有( ▲ ) A .1个B .2个C .3个D .4个2.下列从左到右的变形,属于因式分解的是( ▲ )A .6)2)(3(2-+=-+x x x x B .1)(1--=--y x a ay axC .2323623a b a b =⋅D .2244(2)x x x -+=- 3.若2,1x y =⎧⎨=-⎩是下列某二元一次方程组的解,则这个方程组为( ▲ )A .35,1x y x y +=⎧⎨+=⎩B .3,25x y y x =-⎧⎨+=⎩C .2,31x y x y =⎧⎨=+⎩D .25,1x y x y -=⎧⎨+=⎩ 4.下列说法中,是平行线的性质的是( ▲ )①两条直线平行,同旁内角互补②同位角相等,两直线平行③内错角相等,两直线平行④同一平面内,垂直于同一直线的两直线平行A .①B .②和③C .④D .①和④5.下列各式中,能用平方差公式分解因式的是( ▲ )A .224y x +B .224x y +-C .224y x --D .24y x -6.计算111a a a+--的结果是( ▲ ) A .1B .1-C .11a a +-D .1-a 7.下列计算中,正确的有( ▲ )①mn n m aa a =⋅;②n m n m a a ++=22)(; ③211331)61()2(++--=-⋅n n n n b a ab b a ;④632a a a ÷=. A .0个B .1个C .2个D .3个8.若1y x -=-,2xy =,则代数式32231122x y x y xy -+-的值是( ▲ ) A .2B .-2C .1D . -1 9.为预防禽流感,学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( ▲ )A .205.0420420=--x x B .204205.0420=--x x C .5.020420420=--x x D .5.042020420=--xx 10.已知1x ,2x ,2013x 均为正数,且满足122012232013()()M x x x x x x =++++++,122013232012()()N x x x x x x =++++++,则M 与N 之间的关系是( ▲ )A .M >NB .M =NC .M <ND .无法确定二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.2368a b ab c -分解因式时应该提取公因式是▲. 12.若分式2362x x x--的值为0,则x 的值为▲. 13.已知22960m mn n -+=,则分式323m n n m +-的值是▲. 14.如果实数a 满足2(1)1a a +-=,则a 的值是▲.15.若m 为常数,当m 为▲时,方程323-=--x m x x 有解. 16.已知:111122=-⨯,1112323=-⨯,1113434=-⨯,…… (1)根据你发现的规律写出第n (n 为正整数)个式子是▲;(2)利用这个规律可得方程1111(1)(1)(2)(2012)(2013)2013x x x x x x x ++=++++++的解是▲.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本题6分)先化简,再求值:22()(2)(2)(2)(3)a b a b a b a b b a +--++--,其中21=a ,2b =-. ▲18.(本题8分) 给出三个多项式:①4422-+x x ; ②41222++x x ; ③x x 422-.请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.▲19.(每小题4分,共8分)(1)已知2121632x x --=,求代数式4x 的值;(2)解方程:2123111y y y y =-+--. ▲20.(本题10分)一家公司加工一批农产品,有粗加工和精加工两种方式.如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购了农产品150吨,并用14天加工完这批农产品.根据题意,甲、乙两名同学分别列出的方程组(部分)如下:甲:155x y x y +=⎧⎨+=⎩乙:155x y x y +=⎧⎪⎨+=⎪⎩(1)根据甲、乙两名同学所列的方程组,请你在方框中补全甲、乙两名同学所列的方程组;(2)求粗加工和精加工这批农产品各多少吨?▲21.(本题10分)下面是小明对多项式22(42)(46)4x x x x -+-++进行因式分解的过程.解:设24x x y -=.原式=(2)(6)4y y +++(第一步)=2816y y ++(第二步)=2(4)y +(第三步)=22(44)x x -+(第四步)回答下列问题:(1)小明从第二步到第三步运用了因式分解的▲.A .提取公因式B .平方差公式C .两数和的完全平方公式D . 两数差的完全平方公式(2)小明因式分解的结果是否彻底?答:▲(填“彻底”或“不彻底”);若不彻底,请直接写出因式分解的最后结果▲.(3)请你模仿以上方法尝试对多项式22(2)(22)1a a a a --++进行因式分解.▲22.(本题12分)已知如图,AB ∥CD ∥EF ,点M 、N 、P 分别在AB 、CD 、EF 上,NQ 平分∠MNP .(1)若∠AMN=50º,∠EPN=70º,分别求∠MNP,∠DNQ的度数;(2)若∠AMN=x度,∠EPN=y度,请直接写出∠DNQ的度数(用含x,y的代数式表示);(3)试探究:∠DNQ与∠AMN,∠EPN之间的数量关系,并说明理由.▲23.(本题12分)解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“长方形的长和宽的长分别是3和4,求长方形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若长方形的周长为14,且一边长为3,求另一边的长”;也可以是“若长方形的周长为14,求长方形面积的最大值”,等等.(1)设322x xAx x=--+,24xBx-=,求A与B的积;(2)提出(1)的一个“逆向”问题,并解答这个问题.▲2012学年第二学期第二次单元练习七年级数学参考答案21. (本题10分)(1)C ……2分;(2)不彻底,4(2)x -……6分;(3)设22y a a =-.原式=(2)1y y ++=2(1)y +=22(21)a a -+=4(1)a -……10分22. (本题12分)(1)∠MNP=∠MND+∠PND=∠AMN+∠EPN=50°+70°=120°∠DNQ=10°……4分 (2)∠DNQ=1()2y x -度 ……6分 (3)1()2DNQ EPN AMN ∠=∠-∠或2()DNQ EPN AMN ∠=∠-∠. 理由略…10分23. (本题12分)。

【浙教版】七年级数学下期末一模试卷带答案(1)

【浙教版】七年级数学下期末一模试卷带答案(1)

一、选择题1.下列事件中,是随机事件的是( )A .从一只装有红球的袋子里摸出黄球B .抛出的蓝球会下落C .抛掷一枚质地均匀的骰子,向上一面点数是2D .抛掷一枚质地均匀的骰子,向上一面点数是102.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到正确算式的概率是( )A .14B .12C .34D .13.九年级一班在参加学校4×100米接力赛时,安排了甲,乙,丙,丁四位选手,他们比赛的顺序由抽签随机决定,则丙跑第一棒的概率为( )A .14B .18C .112D .1164.等腰三角形的两边a ,b 满足7260a b -+-=,则它的周长是( )A .17B .13或17C .13D .195.如图,点D 在△ABC 的边BC 上,BD CD >.将△ABD 沿AD 翻折,使B 落在点E 处.且DE 与AC 交于点F .设△AEF 的面积为1S ,△CDF 的面积为2S ,则1S 与2S 的大小关系为( )A .12S S >B .12S SC .12S S <D .不确定 6.下列说法正确的是( )A .若两个三角形全等,则它们必关于某条直线成轴对称B .直角三角形是关于斜边上的中线成轴对称C .如果两个三角形关于某条直线成轴对称的图形,那么它们是全等三角形D .线段是关于经过该线段中点的直线成轴对称的图形7.已知三角形两边的长分别是3和5,则此三角形第三边的长不可能是( ). A .3 B .5 C .7 D .118.如图,ABC 中,D 、E 分别是BC 、AD 的中点,若ABC 的面积是10,则ABE △的面积是( )A .54B .52C .5D .109.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒10.根据图示的程序计算变量y 的对应值,若输入变量x 的值为-1,则输出的结果为( )A .-2B .2C .-1D .011.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=50°,则∠AED 为( )A .130°B .115°C .125°D .120°12.下列运算正确的是( ) A .()326a a --= B .22326a a a ⋅= C .422a a ÷=D .()2211a a +=+ 二、填空题13.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于12018,则密码的位数至少需要__位. 14.如图,A 、B 是边长1的小正方形组成的网格上的两个格点,在格点上任意放置点C (除去A 、B 两点),以A 、B 、C 三点为顶点能画出三角形的概率是_____.15.已知,在ABC ∆中,6AB =,CD 是边AB 上的高,将ACD ∆沿CD 折叠,点A 落在直线AB 上的点A ',2A B '=,那么BD 的长是______.16.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =2,ON =6,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_____.17.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.18.若一个函数图象的对称轴是y 轴,则该函数称为偶函数.那么在下列四个函数: ①y=2x ;②y=6x;③y=x 2;④y=(x ﹣1)2+2中,属于偶函数的是______(只填序号). 19.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,O 为垂足,∠EOD=26°,则∠AOC=____,∠COB=___.20.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.三、解答题21.将表示下列事件发生的概率的字母标在下图中:P;(1)投掷一枚骰子,掷出7点的概率1(2)在数学测验中做一道四个选项的选择题(单选题),由于不知道那个是正确选项,现P;任选一个,做对的概率2P;(3)袋子中有两个红球,一个黄球,从袋子中任取一球是红球的概率3P;(4)太阳每天东升西落4P.(5)在1---100之间,随机抽出一个整数是偶数的概率522.如图,平面直角坐标系中,△ABC的顶点坐标分别为A(4,1),B(3,4),C(1,2).(1)画出△ABC关于y轴对称的△A1B1C1,并写出顶点C1的坐标;(2)若点P在x轴上,且满足PA+PC1最小,求点P的坐标及PA+PC1的最小值.23.如图,将两块含45°角的大小不同的直角三角板△COD和△AOB如图①摆放,连结AC,BD.(1)如图①,猜想线段AC 与BD 存在怎样的数量关系和位置关系,请写出结论并证明; (2)将图①中的△COD 绕点O 顺时针旋转一定的角度(如图②),连结AC ,BD ,其他条件不变,线段AC 与BD 还存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD 绕点O 逆时针旋转一定的角度(如图③),连结AC ,BD ,其他条件不变,线段AC 与BD 存在怎样的关系?请直接写出结论.24.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月利润(利润=收入费用-支出费用)y (元)的变化关系如下表所示(每位乘客的公交票价是固定不变的);(1)在这个变化过程中, 是自变量, 是因变量;(填中文)(2)观察表中数据可知,每月乘客量达到 人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为 元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达 人.25.如图,在ABC 中,30A ∠=︒,80ACB ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.26.先化简,再求值.()()()()22522334b a b a b a b a b +--+---,其中a ,b 满足()2210a b -+-=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据随机事件,必然事件,不可能事件的概念对各项判断即可.【详解】A.从一只装有红球的袋子里摸出黄球,是不可能事件,故选项错误;B.抛出的篮球会下落,是必然事件,故选项错误;C.抛一枚质地均匀的骰子,向上一面点数是2,是随机事件,故选项正确;D.抛一枚质地均匀的骰子,向上一面点数是10,是不可能事件,故选项错误;故选:C.【点睛】本题考查了随机事件,解题关键是正确理解随机事件,必然事件,不可能事件的概念.2.A解析:A【解析】【分析】直接利用整式的乘除运算法则分别计算,再利用概率公式求出答案.【详解】解:(x+2)(x-3)=x2-x-6,故原式计算错误;(x-1)2=x2-2x+1,故原式计算错误;(x+2)(x-2)=x2-4,故原式计算正确;(6ab+2b)÷2b=3a+1,故原式计算错误;则从中随机抽取一张,则抽到正确算式的概率是:14.故选:A.【点睛】此题主要考查了概率公式以及整式的混合运算,正确掌握整式的混合运算法则是解题关键.3.A解析:A【解析】【分析】根据概率公式直接进行解答即可.【详解】解:∵有甲,乙,丙,丁四位选手,∴丙跑第一棒的概率为14; 故选:A .【点睛】 本题考查概率公式.随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.4.A解析:A【分析】根据绝对值和二次根式的性质求出a ,b ,再根据等腰三角形的性质判断即可;【详解】∵70a -=,∴70260a b -=⎧⎨-=⎩, 解得73a b =⎧⎨=⎩, ∵a ,b 是等腰三角形的两边,∴当7a =为腰时,三边分别为7,7,3,符合三角形三边关系,此时三角形的周长77317++=;当3b =为腰时,三边为3,3,7,由于33+<7,故不符合三角形的三边关系; ∴三角形的周长为17.故答案选A .【点睛】本题主要考查了等腰三角形的性质、绝对值性质和二次根式的性质,准确计算是解题的关键.5.A解析:A【分析】依据点D 在△ABC 的边BC 上,BD >CD ,即可得到S △ABD >S △ACD ,再根据折叠的性质,即可得到S 1>S 2.【详解】解:∵点D 在△ABC 的边BC 上,BD >CD ,∴S △ABD >S △ACD ,由折叠可得,S △ABD =S △AED ,∴S △AED >S △ACD ,∴S △AED −S △ADF >S △ACD −S △ADF ,即S 1>S 2,故选:A .【点睛】本题主要考查了折叠的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.C解析:C【分析】A、因为关于某条直线成轴对称的三角形对折后能重合,所以两个三角形全等不能达到这一要求,所以此选项不正确;B、等腰直角三角形有一条对称轴,斜边上的中线是它的对称轴,故错误;C、这是成轴对称图形的性质:如果两个三角形关于某条直线成轴对称,那么它们是全等三角形;D、线段是成轴对称的图形,它的对称轴是这条线段的中垂线.【详解】A、如果两个三角形全等,则它们不一定是关于某条直线成轴对称的图形,所以选项A不正确;B、三角形的中线是线段,而对称轴是直线,应该说等腰直角三角形是关于斜边上的中线所在直线成轴对称的图形,所以选项B不正确;C、如果两个三角形关于某条直线成轴对称,那么它们是全等三角形,所以选项C正确;D、一条线段是关于经过该线段中垂线成轴对称的图形,所以选项D不正确;故选:C.【点睛】此题考查轴对称和轴对称图形的性质,解题关键在于熟练掌握:①如果两个图形成轴对称,那么这两个图形全等;②如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;③线段、等腰三角形、等边三角形等都是轴对称图形.7.D解析:D【分析】根据三角形的三边关系解答.【详解】设三角形的第三边为x,则5-3<x<5+3,2<x<8,故选:D.【点睛】此题考查三角形三边关系:三角形任意两边的和都大于第三边,熟记关系是解题的关键.8.B解析:B【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可求出△ABE的面积.【详解】∵AD 是BC 上的中线,∴ S △ABD =S △ACD =12S △ABC , ∵BE 是△ABD 中AD 边上的中线, ∴ S △ABE =S △BED =12S △ABD , ∴ S △ABE =14S ΔABC , ∵△ABC 的面积是10, ∴ S △ABE =14×10=52. 故选:B.【点睛】本题考查的是三角形的中线的性质,三角形一边上的中线把原三角形分成的两个三角形的面积相等.9.C解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.10.B解析:B【解析】当x=−1时,y=x 2+1=(−1)2+1=1+1=2,故选B.11.B解析:B【分析】根据平行线的性质和角平分线的性质计算即可;【详解】∵AB ∥CD ,∴180C CAB ∠+∠=︒,∵∠C=50°,∴130CAB ∠=︒,∵AE 平分∠CAB ,∴65CAE BAE ∠=∠=︒,又∵180BAE AED ∠+∠=︒,∴18065115AED ∠=︒-︒=︒;故选:B .【点睛】本题主要考查了平行线的性质,结合角平分线的性质求解是解题的关键.12.A解析:A【分析】根据整式的幂的乘方计算法则、乘法计算法则、除法计算法则、完全平方公式依次计算判断即可.【详解】A 、()326a a --=,故此选项正确;B 、23326a a a ⋅=,故此选项不正确;C 、422a a a ÷=,故此选项不正确;D 、()22211a a a ++=+,故此选项不正确;故选:A.【点睛】此题考查整式的计算能力,正确掌握整式的幂的乘方计算法则、乘法计算法则、除法计算法则、完全平方公式计算法则是解题的关键. 二、填空题13.4【解析】【分析】先根据概率公式得到密码为三位数时一次就拨对密码的概率密码为4位数时一次就拨对密码的概率于是得到要使不知道密码的人一次就拨对密码的概率小于则密码的位数至少需要4位【详解】∵每个数位上解析:4 【解析】 【分析】先根据概率公式得到密码为三位数时,一次就拨对密码的概率11000=, 密码为4位数时,一次就拨对密码的概率110000=,于是得到要使不知道密码的人一次就拨对密码的概率小于12018,则密码的位数至少需要4位. 【详解】∵每个数位上的数都是从0到9的自然数, ∴密码为三位数时,一次就拨对密码的概率111010101000==⨯⨯,密码为四位数时,一次就拨对密码的概率111010101010000==⨯⨯⨯,∴要使不知道密码的人一次就拨对密码的概率小于12018,则密码的位数至少需要4位. 故答案为:4. 【点睛】考查了概率公式,掌握概率的计算方法是解题的关键.14.3134【解析】【分析】在5×5的网格中共有36个格点除去AB 两点有34个格点再找到以ABC 三点为顶点画出三角形的格点数即可利用概率公式求解【详解】在5×5的网格中共有36个格点除去AB 两点有34个 解析:【解析】 【分析】在5×5的网格中共有36个格点,除去A 、B 两点有34个格点,再找到以A 、B 、C 三点为顶点画出三角形的格点数,即可利用概率公式求解. 【详解】在5×5的网格中共有36个格点,除去A. B 两点有34个格点, 而以A. B. C 三点为顶点画出三角形的格点有31个, 故以A. B. C 三点为顶点能画出三角形的概率是31÷34=.故答案为:.【点睛】本题考查的知识点是概率公式,解题的关键是熟练的掌握概率公式.15.2或4【分析】根据题意画出图形分点落在线段AB 的延长线上和落在线段AB 上两种情况解答【详解】如图若点落在线段AB 的延长线上∵∴∴∴BD=如图若点落在线段AB 上∵∴∴∴BD=所以BD 的长为2或4故答案解析:2或4 【分析】根据题意画出图形,分点A '落在线段AB 的延长线上和落在线段AB 上两种情况解答. 【详解】如图,若点A '落在线段AB 的延长线上,∵6AB =,2A B '= ∴8A A '=∴4A D AD '== ∴BD=2A D A B ''-= 如图,若点A '落在线段AB 上,∵6AB =,2A B '= ∴4A A '= ∴2A D AD '== ∴BD=4A B A D ''+= 所以BD 的长为2或4. 故答案为:2或4 【点睛】本题考查的是翻折变换及线段的加减,注意分类讨论是解答本题的关键.16.2【解析】【分析】作M 关于OB 的对称点M′作N 关于OA 的对称点N′连接M′N′即为MP+PQ+QN 的最小值;证出△ONN′为等边三角形△OMM′为等边三角形得出∠N′OM′=90°由勾股定理求出M′解析:10 【解析】 【分析】作M 关于OB 的对称点M′,作N 关于OA 的对称点N′,连接M′N′,即为MP+PQ+QN 的最小值;证出△ONN′为等边三角形,△OMM′为等边三角形,得出∠N′OM′=90°,由勾股定理求出M′N′即可. 【详解】作M 关于OB 的对称点M′,作N 关于OA 的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN 的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°, ∴△ONN′为等边三角形,△OMM′为等边三角形, ∴∠N′OM′=90°, ∴在Rt △M′ON′中, 22062=21+ 故答案为:10. 【点睛】本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.17.【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ∠A1CD=∠A1+∠A1BC 根据角平分线的定义可得∠A1BC=∠ABC ∠A1CD=∠ACD 整理得到∠A1=∠A 同理可得∠A2=∠A1从而判断解析:4θ 2n θ 【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案. 【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角, ∴∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC , ∵ABC ∠的平分线与ACD ∠的平分线交于点1A , ∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,∴∠A 1=12∠A , 同理可得∠A 2=12∠A 1=14∠A , ∵∠A=θ, ∴∠A 2=4θ, 同理:∠A 3=12∠A 2=382θθ=, ∠A 4=12∠A 3=4162θθ= …… ∴∠A n =2nθ.故答案为:4θ,2nθ【点睛】本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键. 18.③【解析】①y=2x 是正比例函数函数图象的对称轴不是y 轴错误;②y=是反比例函数函数图象的对称轴不是y 轴错误;③y=x2是抛物线对称轴是y 轴是偶函数正确;④y=(x ﹣1)2+2对称轴是x=1错误故答解析:③ 【解析】①y=2x ,是正比例函数,函数图象的对称轴不是y 轴,错误;②y=6x是反比例函数,函数图象的对称轴不是y 轴,错误; ③y=x 2是抛物线,对称轴是y 轴,是偶函数,正确; ④y=(x ﹣1)2+2对称轴是x=1,错误. 故答案为③.19.64°116°【分析】根据垂线的定义进行作答【详解】由OE ⊥AB 得到∠AOE=90°所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°∠COB=180°-∠BOD=116°【点解析:64° 116°. 【分析】根据垂线的定义进行作答. 【详解】由OE ⊥AB ,得到∠AOE=90°,所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°,∠COB=180°-∠BOD= 116°. 【点睛】本题考查了垂线的定义,熟练掌握垂线的定义是本题解题关键.20.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++ 【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可. 【详解】由题意得:(a+b )(2a+b )=2223a ab b ++, 故答案为:(a+b )(2a+b )=2223a ab b ++. 【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键.三、解答题21.【解析】试题分析:(1)根据骰子没有7点,所以这种情况不可能发生,可知概率为0; (2)选择题的答案是4选1,因此其概率为14; (3)袋子中摸到红球的概率为23; (4)太阳的东升西落是必然事件,因此其概率为1;(5)由1---100之间有50个偶数可知随机抽取一个数为偶数的概率为5011002=. 试题考点:概率22.(1)图见解析,C 1(-1,2);(2)P (73,034 【分析】(1)根据轴对称的定义,将关于y 轴的对应点分别画出,顺次连接即可;(2)作点A 关于x 轴的对称点A ',与C 1连接,此时与x 轴的交点即为点P ,求出直线1C A '的解析式,令y=0,求出x ,即可求出点P 的坐标,1C A '为最小值,利用勾股定理即可求出长度.【详解】解:(1)△ABC 关于y 轴对称的△A 1B 1C 1如图所示:点C 1的坐标(-1,2)(2)作点A 关于x 轴的对称点A ',与C 1连接,此时与x 轴的交点即为点P ,1C A '为最小值∵C1(-1,2),A '(4,-1)设1C A '的解析式为y=kx+b ,将点C 1和A '代入,得:214k b k b =-+⎧⎨-=+⎩,求得3575k b ⎧=-⎪⎪⎨⎪=⎪⎩∴1C A '的解析式为3755y x =-+ 令y=0,x=73,即点P (73,0) 利用勾股定理,1C A '223534+ 【点睛】本题考查了轴对称图形以及最短路径,熟练各作图方法是解决本题的关键.23.(1)AC=BD ,AC ⊥BD ,证明见解析;(2)存在,AC=BD ,AC ⊥BD ,证明见解析;(3)AC=BD ,AC ⊥BD 【分析】(1)延长BD 交AC 于点E .易证△AOC ≌△BOD (SAS ),可得AC=BD ,∠OAC=∠OBD ,由∠ADE=∠BDO ,可证∠AED=∠BOD=90º即可;(2)延长BD 交AC 于点F ,交AO 于点G .易证△AOC ≌△BOD (SAS ),可得AC=BD ,∠OAC=∠OBD ,由∠AGF=∠BGO ,可得∠AFG=∠BOG=90º即可;(3)BD 交AC 于点H ,AO 于M ,可证△AOC ≌△BOD (SAS ),可得AC=BD ,∠OAC=∠OBD ,由∠AMH=∠BMO ,可得∠AHM=∠BOH=90º即可. 【详解】(1)AC=BD,AC⊥BD,证明:延长BD交AC于点E.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠COA=∠BOD=90º,∴△AOC≌△BOD(SAS),∴AC=BD,∴∠OAC=∠OBD,∵∠ADE=∠BDO,∴∠AED=∠BOD=90º,∴AC⊥BD;(2)存在,证明:延长BD交AC于点F,交AO于点G.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC-∠DOA,∠BOD=∠BOA-∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AGF=∠BGO,∴∠AFG=∠BOG=90º,∴AC⊥BD;(3)AC=BD,AC⊥BD.证明:BD交AC于点H,AO于M,∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC+∠DOA,∠BOD=∠BOA+∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AMH=∠BMO,∴∠AHM=∠BOH=90º,∴AC⊥BD.【点睛】本题考查三角形旋转变换中对应相等的位置与数量关系,掌握三角形全等的证明方法,及其角度计算是解题关键.24.(1)每月的乘车人数,每月利润;(2)2000;(3)3000;(4)4500.【解析】【分析】(1)直接利用常量与变量的定义分析得出答案; (2)直接利用表中数据分析得出答案;(3)利用由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,进而得出答案;(4)由(3)得出当利润为5000元时乘客人数,即可得出答案. 【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量; (2) ∵观察表中数据可知,当每月乘客量达到2000人以上时,每月利润为0, ∴每月乘客量达到2000人以上时,该公交车才不会亏损; (3) ∵每月乘客量增加500人时,每月利润增加1000元, ∴当每月乘车人数为3500人时,每月利润为3000元; (4) ∵每月乘客量增加500人时,每月利润增加1000元, ∴若5月份想获得利润5000元,5月份的乘客量需达4500人. 【点睛】本题主要考查了常量与变量以及函数的表示方法,正确把握函数的定义是解题关键. 25.(1)55CBE ∠=︒;(2)25F ∠=︒. 【分析】(1)利用三角形的外角性质和角的平分线性质求解即可; (2)根据三角形外角的性质和两直线平行,同位角相等求解. 【详解】 (1)在ABC 中,30A ∠=︒,80ACB ∠=︒,3080110CBD A ACB ∴∠=∠+∠=︒+︒=︒,BE 是CBD ∠的平分线,111105522CBE CBD ∴∠=∠=⨯︒=︒;(2)80ACB ∠=︒,55CBE ∠=︒,805525CEB ACB CBE ∴∠=∠--︒∠=︒=︒, //DF BE ,25F CEB ∴∠=∠=︒.【点睛】本题考查了运用三角形外角性质,角平分线性质,平行线的性质求角的度数,熟练并灵活运用这些性质是解题的关键. 26.22315a b +; 27. 【分析】根据非负数及整式的运算法则即可求解. 【详解】解:∵()2210a b -+-=, ∴a-2=0,1-b=0, ∴a=2,b=1,∴原式=()2222251062334ab b a ab ab b b a+--+++--=222225054631ab b a a ab b b +--+++ =22315a b +∴当a=2,b=1时,原式=23215121527⨯+=+=. 【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.。

【浙教版】七年级数学下期末第一次模拟试卷带答案(1)

【浙教版】七年级数学下期末第一次模拟试卷带答案(1)

一、选择题1.下列事件中,是随机事件的是( ) A .从一只装有红球的袋子里摸出黄球 B .抛出的蓝球会下落C .抛掷一枚质地均匀的骰子,向上一面点数是2D .抛掷一枚质地均匀的骰子,向上一面点数是10 2.下列事件中,为必然事件的是( ) A .明天早晨,大家能看到太阳从东方冉冉升起 B .成绩一直优秀的小华后天的测试成绩也一定优秀C .从能被2整除的数中,随机抽取一个数能被8整除D .从10本图书中随机抽取一本是小说3.以下事件为必然事件的是( )A .掷一枚质地均匀的骰子,向上一面的点数小于6B .多边形的内角和是360︒C .二次函数的图象不过原点D .半径为2的圆的周长是4π4.下列图形中是轴对称图形的是( )A .B .C .D .5.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是( ) A .B .C .D .6.如图,已知ABC 为等腰三角形, , 90AB AC BAC =∠<︒,将ABC 沿AC 翻折至,ADC E 为BC 的中点,F 为AD 的中点,线段EF 交AC 于点G ,若()1FCD GECSm m S=≠,则AGGC=( )A .mB .11m m +- C .1m + D .1m -7.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA8.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( ) A .①②B .①②③C .①②④D .①②③④9.下列四个图形中,线段BE 表示△ABC 的高的是( )A .B .C .D .10.在关于圆的面积的表达式S=πr 2中,变量有( ) A .4个B .3个C .2个D .1个11.如图,在墙面上安装某一管道需经两次拐弯,拐弯后的管道与拐弯前的管道平行.若第一个弯道处142B ∠=︒,则第二个弯道处∠C 的度数为( )A .38°B .142°C .152°D .162° 12.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷=二、填空题13.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是________.14.八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).15.如图a 是长方形纸带,∠DEF =15°,将纸带沿EF 折叠成图b ,则∠AEG 的度数_____度,再沿BF 折叠成图c .则图中的∠CFE 的度数是_____度.16.如图,在Rt ABC ∆中,沿ED 折叠,点C 落在点B 处,已知ABE ∆的周长是15,6BD =,则ABC ∆的周长为__________.17.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.18.由于地球引力和月球引力的不同,因此,同一物体在地球上的重量和在月球上的重量是不相等的.同一物体在月球上的重量y (千克)与同一物体在地球上的重量x (千克)之间的关系式为y=16x,则在地球上重量为120千克的物体,在月球上重量减少了_______千克. 19.在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.20.已知x 满足()()22201820208x x -+-=,则()22019x -的值是___________.三、解答题21.遵义市举行中学生“汉字听写大赛”,某校100名学生参加学校选拔赛根据成绩按A 、B 、C 、D 四个等级进行统计,绘制了如下不完整的频数分布表和扇形图根据图表中的信息,解答下列问题: 成绩等级频数分布表 成绩等级频数(人数) 频率A5Bm0.6CnD合计1001(1)频数分布表中m =______,n =______;(2)在扇形图中,求成绩等级“C ”所对应的圆心角度数;(3)已知成绩等级“A ”的5名同学中有3名男同学和2名女同学,现从中挑选2名同学进行答辩培训,请用树状图或列表法列举所有可能,并求挑选出的2名同学恰好是“1男1女”的概率.22.如图,ABC 的顶点分别为()4,5A -,()3,2B -,()4,1C -. (1)作出ABC 关于x 轴对称的图形111A B C △; (2)写出1A 、1B 、1C 的坐标;(3)若10AC =,求ABC 的AC 边上的高.23.如图,AC 与BD 相交于点O ,且OA OC =,OB OD =. (1)求证://AB CD ;(2)直线EF 过点O ,分别交AB ,CD 于点E ,F ,试判断OE 与OF 是否相等,并说明理由.24.中国联通在某地的某套餐的月租金为59元,超出套餐部分国内拨打0.36元/分钟(不足1分钟按1分钟时间收费).下表是超出套餐部分国内拨打的收费标准: 时间/分 1 2 3 4 5 … 电话费/元0.360.721.081.441.8…(2)如果用x 表示超出套餐部分的拨打时间,y 表示超出套餐部分的电话费,那么y 与x 的关系式是什么?(3)由于业务多,小明的爸爸上个月拨打电话的时间超出套餐部分25分钟,他需付多少电话费?(4)某用户某月国内拨打电话的费用超出套餐部分的是54元,那么他该月拨打电话的时间超出套餐部分几分钟?25.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.26.如图①是一个长为2a ,宽为2b 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)图②中阴影部分的正方形的边长是__________; (2)用两种不同的方法表示②中阴影部分的面积:方法1:____________________;方法2:____________________(3)观察图②,请你写出式子()2a b +、()2a b -、ab 之间的等量关系:__________; (4)根据(3)中的等量关系解决如下问题:若7m n -=-,5mn =,则()2m n +的值为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据随机事件,必然事件,不可能事件的概念对各项判断即可. 【详解】A .从一只装有红球的袋子里摸出黄球,是不可能事件,故选项错误;B .抛出的篮球会下落,是必然事件,故选项错误;C .抛一枚质地均匀的骰子,向上一面点数是2,是随机事件,故选项正确;D .抛一枚质地均匀的骰子,向上一面点数是10,是不可能事件,故选项错误; 故选:C . 【点睛】本题考查了随机事件,解题关键是正确理解随机事件,必然事件,不可能事件的概念.2.A解析:A 【分析】必然发生的事件是必然事件,根据定义解答A . 【详解】A 、明天早晨,大家能看到太阳从东方冉冉升起是必然事件;B 、成绩一直优秀的小华后天的测试成绩也一定优秀是随机事件;C 、从能被2整除的数中,随机抽取一个数能被8整除是随机事件;D 、从10本图书中随机抽取一本是小说是随机事件; 故选:A . 【点睛】此题考查必然事件定义,熟记定义、理解必然事件与随机事件发生的可能性的大小是解题的关键.3.D解析:D 【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可. 【详解】掷一枚质地均匀的骰子,每一面朝上的概率为16,而小于6的情况有5种,因此概率为56,不是必然事件,所以A 选项错误; 多边形内角和公式为()2180n -︒,不是一个定值,而是随着多边形的边数n 的变化而变化,所以B 选项错误;二次函数解析式的一般形式为2y ax bx c =++()0a ≠,而当c=0时,二次函数图象经过原点,因此不是必然事件,所以C 选项错误;圆周长公式为2C r π=,当r=2时,圆的周长为4π,所以D 选项正确. 故选D . 【点睛】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为0<P<1,不可能事件发生的概率为0.4.C解析:C 【解析】 【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.【详解】A、不是轴对称图形,故A错误;B、不是轴对称图形,故B错误;C、是轴对称图形,故C正确;D、不是轴对称图形,故D错误.故选:C.【点睛】本题考查了轴对称图形的判断问题,掌握轴对称图形的定义以及性质是解题的关键.5.C解析:C【解析】【分析】根据轴对称的概念对各选项分析判断即可得答案.【详解】A.不是轴对称图形,故该选项不符合题意,B.不是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项符合题意,D.不是轴对称图形,故该选项不符合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.D解析:D【分析】连接AE,由三角形的中线将三角形面积分成相等的两部分,用m表示出△AEG的面积,再由等高三角形面积比等于底边之比求解即可.【详解】解:如图,连接AE,设1CEGS=,则FCDS m =,∵F 为AD 的中点,2ACD ACBS Sm ∴==,1AEGSm ∴=-∴1AEG CEGSAG m CG S==-故选:D. 【点睛】本题主要考查了与三角形中线有关的面积问题,掌握三角形的中线将三角形面积分成相等的两部分是解题的关键.7.C解析:C 【分析】根据三角形全等的判定方法结合全等的判定方法逐一进行来判断. 【详解】解:A.添加AE=CE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B ,根据AAS 可证明△ADE ≌△CBE ,故此选项符合题意;D.添加∠A=∠C ,根据AAS 可证明△ADE ≌△CBE ,故此选项不符合题意; 故选:C 【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA .关键在于应根据所给的条件判断应证明哪两个三角形全等.8.C解析:C 【分析】直接利用当A ,B ,C 在一条直线上,以及当A ,B ,C 不在一条直线上,分别分析得出答案.【详解】解:∵线段AB=8cm,AC=6cm,∴如图1,A,B,C在一条直线上,∴BC=AB−AC=8−6=2(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=8+6=14(cm),故②正确;如图3,当A,B,C不在一条直线上,8−6<BC<8+6,故线段BC可能为5或9,故③错误,④正确.故选:C.【点睛】此题主要考查了三角形三边关系,正确分类讨论是解题关键.9.C解析:C【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【详解】解:线段BE是△ABC的高的图是选项C.故选:C.【点睛】本题考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.10.C解析:C【解析】在圆的面积公式S=πr2中,属于常量的是π,属于变量的是S和r,有2个.故选C. 11.B解析:B【分析】由AB∥CD得∠B=∠C,根据∠B=142°得∠C=142°.【详解】如图,∵拐弯后的管道与拐弯前的管道平行,∴AB∥CD,∴∠B=∠C,又∵∠B=142°,∴∠C=142°,故选:B.【点睛】本题考查了平行线的性质的应用和等量代换相关知识,重点掌握平行线的性质,难点是从生活实际中抽象出平行线和相交线.12.D解析:D【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可.【详解】解:A、a2∙a4=a6,故选项A不合题意;B、(a2)3=a6,故选项不B符合题意;C、(ab2)3=a3b6,故选项C不符合题意;D、a6÷a2=a4,故选项D符合题意.故选:D.【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.二、填空题13.【分析】根据概率的计算公式解答【详解】∵共有16个小正方形其中有4个涂上阴影∴小虫落到阴影部分的概率是故答案为:【点睛】此题考查简单事件的概率计算掌握事件发生的所有可能性及该事件可能发生的次数是解题解析:1 4【分析】根据概率的计算公式解答.【详解】∵共有16个小正方形,其中有4个涂上阴影,∴小虫落到阴影部分的概率是41164,故答案为:14.【点睛】此题考查简单事件的概率计算,掌握事件发生的所有可能性及该事件可能发生的次数是解题的关键.14.随机【解析】【分析】根据必然事件不可能事件随机事件的概念必然事件指在一定条件下一定发生的事件可能事件是指在一定条件下一定不发生的事件不确定事件即随机事件是指在一定条件下可能发生也可能不发生的事件即可解析:随机【解析】【分析】根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答【详解】从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件【点睛】此题考查随机事件,难度不大15.135【分析】根据长方形纸条的对边平行利用平行线的性质和翻折不变性求出∠2=∠EFG继而求出图b中∠GFC的度数再减掉∠GFE即可得图c中∠CFE 的度数【详解】解:如图延长AE到H由于纸条是长方形∴解析:135【分析】根据长方形纸条的对边平行,利用平行线的性质和翻折不变性求出∠2=∠EFG,继而求出图b中∠GFC的度数,再减掉∠GFE即可得图c中∠CFE的度数.【详解】解:如图,延长AE到H,由于纸条是长方形,∴EH∥GF,∴∠1=∠EFG,根据翻折不变性得∠1=∠2=15°,∴∠2=∠EFG,∠AEG=180°﹣2×15°=150°,又∵∠DEF=15°,∴∠2=∠EFG=15°,∠FGD=15°+15°=30°.在梯形FCDG中,∠GFC=180°﹣30°=150°,根据翻折不变性,∠CFE=∠GFC﹣∠GFE=150°﹣15°=135°.故答案为:150;135.【点睛】此题主要考查了平行线的性质和图形的折叠,关键是掌握两直线平行,同旁内角互补,折叠前后角的度数不变.16.【分析】由折叠可得依据的周长是可得进而得到的周长【详解】由折叠可得的周长是的周长故答案为:27【点睛】本题主要考查了折叠问题折叠是一种对称变换它属于轴对称折叠前后图形的形状和大小不变位置变化对应边和 解析:27【分析】由折叠可得,BE CE =,6BD CD ==,依据ABE △的周长是15,可得+15AB AE BE AB AE CE +=++=,进而得到ABC △的周长AB AE CE BD CD =++++.【详解】由折叠可得,BE CE =,6BD CD ==,ABE △的周长是15,∴+15AB AE BE AB AE CE +=++=,∴ABC △的周长151227AB AE CE BD CD =++++=+=.故答案为:27..【点睛】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.18.100【解析】当x=120时y=x==20120-20=100即在月求上重量减少了100千克故答案为:100解析:100【解析】当x=120时,y=16x=11206⨯=20, 120-20=100,即在月求上重量减少了100千克,故答案为:100.19.50或130【分析】由∠A 与∠B 的两边分别平行可得∠A=∠B 或∠A+∠B=180°继而求得答案【详解】解:∵∠A 与∠B 的两边分别平行∴∠A=∠B 或∠A+∠B=180°∵∠A=50°∴∠B=50°或∠解析:50或130【分析】由∠A 与∠B 的两边分别平行,可得∠A=∠B 或∠A+∠B=180°,继而求得答案.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A=∠B 或∠A+∠B=180°,∵∠A=50°,∴∠B=50°,或∠B=180°-∠A=180°-50°=130°.故答案为:50或130.【点睛】此题考查了平行线的性质.此题难度适中,注意由∠A 与∠B 的两边分别平行,可得∠A 与∠B 相等或互补.20.3【分析】题目求(x-2019)2把方程中的x-2018x-2020转化为含有(x-2019)利用换元法求解即可【详解】解:方程可变形为:(x-2019)+12+(x-2019-1)2=8设x-20解析:3【分析】题目求(x-2019)2,把方程中的x-2018、x-2020转化为含有(x-2019),利用换元法求解即可.【详解】解:方程()()22201820208x x -+-=可变形为:[(x-2019)+1]2+[(x-2019-1)]2=8设x-2019=y则原方程可转化为:(y+1)2+(y-1)2=8∴y 2+2y+1+y 2-2y+1=8即2y 2=6∴y 2=3即(x-2019)2=3.故答案为:3.【点睛】本题考查了完全平方公式,把x-2018、x-2020转化为(x-2019+1)、(x-2019-1)是解决本题的关键.三、解答题21.(1)60m =;20n =;(2)72;(3)挑选出的2名同学恰好是“1男1女”的概率35. 【分析】(1)根据总人数为100人,B 组频数为0.6,即可求出B 组人数;再利用扇形统计图求出D 组人数,进而求出C 组人数;(2)根据(1)中所求信息,利用360°乘以对应的比例即可求解;(3)画树状图,列出所有可能,再表示出题干要求事件发生的概率即可.【详解】(1)由题意,总人数为100人,B 组频数为0.6,1000.660m =⨯=(人)由扇形统计图可知:D 组所占百分比为15%,所以D 组频数为:0.15,D 组人数为:10015%15⨯=(人)C 组人数=1005601520---=(人),所以20n =故答案是:60m =;20n =(2)扇形统计图中“C 组”所对应的圆心角的度数是:2036072100︒⨯=︒ 故答案是:72°(3)树状图:由图可得共有20种等可能结果,挑选出的2名同学恰好是“1男1女”的有12种,即挑选出的2名同学恰好是“1男1女”的概率35. 【点睛】本题为统计与概率综合题,考查了频数(率)分布表、扇形统计图以及树状图求概率等知识点.22.(1)作图见解析;(2)()14,5A --,()13,2B --,()14,1C ;(3)95【分析】(1)分别作出各点关于x 轴的对称点,在顺此连接即可;(2)根据各点在坐标系中的位置写出坐标即可;(3)利用三角形的面积计算即可;【详解】(1)如图,111A B C △即为所求;(2)由图可知:()14,5A --,()13,2B --,()14,1C ;(3)∵10AC =,∴ABC 的AC 边上的高:1112866831731322210⎛⎫⨯⨯-⨯⨯-⨯⨯-⨯⨯-⨯ ⎪⎝⎭=, =95; 【点睛】本题主要考查了轴对称变换,准确分析计算是解题的关键.23.(1)证明见解析;(2)OE=OF ,证明见解析.【分析】(1)利用SAS 证明△AOB ≌△COD ,根据全等三角形对应角相等可得∠B=∠D ,再根据平行线的判定定理可证得结论;(2)利用ASA 证明AOE COF ∆∆≌,根据全等三角形对应边相等可证得结论.【详解】解:(1)由题可知,在△AOB 与△COD 中,AO OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,()AOB COD SAS ∆∆≌,B D ∴∠=∠,//AB CD ∴;(2)OE=OF ,理由如下:由(1)可知:AOB COD ∆≅∆,∴∠A=∠C ,在△AOE 于△COF 中,A C AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩()AOE COF ASA ∴∆∆≌,OE OF ∴=.【点睛】本题考查全等三角形的性质和判定.掌握全等三角形的判定定理,并能灵活运用是解题关键.24.(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量;(2)y=0.36x ;(3)195元;(4)150分钟.【分析】(1)根据图表可以知道:电话费随时间的变化而变化,因而打电话时间是自变量、电话费是因变量;(2)费用=单价×时间,即可写出解析式;(3)把x=25代入解析式即可求得;(4)在解析式中令y=54即可求得x 的值.【详解】解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量; (2)由题意可得:y=0.36x ;(3)当x=25时,y=0.36×25=9(元),即如果打电话超出25分钟,需付186+9=195(元)的电话费;(4)当y=54时,x=540.36=150(分钟). 答:小明的爸爸打电话超出150分钟.【点睛】 本题考查了列函数解析式以及求函数值.列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.25.(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键26.(1)-a b ;(2)()2a b -;()24a b ab +-;(3)22()()4a b a b ab -=+-;(4)69【分析】(1)根据图形可知,阴影正方形的边长为小长方形的长与宽的差,写出即可;(2)①从整体考虑,用大正方形的面积减去四个小矩形的面积就是阴影部分的面积; ②从局部考虑,根据正方形的面积公式,小正方形的边长的平方就是阴影部分的面积; (3)把已知条件代入进行计算即可求解.(4) 利用第 (3) 问得出的式子进行计算即可.【详解】解:(1)阴影部分的正方形的边长是:a ﹣b ;(2)方法1:大正方形的面积减去四个小矩形的面积:(a+b )2﹣4ab ,方法2:阴影小正方形的面积:(a ﹣b )2;(3)(a+b )2﹣4ab=(a ﹣b )2;(4)根据(3)的关系式,(m+n )2=(m ﹣n )2+4mn ,∵m ﹣n=﹣7,mn=5,∴(m+n )2=(﹣7)2+4×5=49+20=69.【点睛】本题考查了完全平方公式的几何背景,以及两个公式之间的关系,从整体与局部两种情况分析并写出面积的表达式是解题的关键.。

浙江省建德市李家镇初级中学2012-2013学年七年级3月月考数学试题

浙江省建德市李家镇初级中学2012-2013学年七年级3月月考数学试题

七年级数学单元检测问卷 (本卷满分120分,2013.3)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. 1.如图,∠1和∠2是内错角的是(▲)A .B .C .D .2.下列是二元一次方程的是(▲) A .x x =-63 B .y x 23=C .132=+yx D .xy y x =-32 3.如图,已知∠1=∠2=∠3=55º,则∠4=(▲) A .135º B .125º C .110ºD .无法确定4.平移下图中的图案(1),可以得到下图中的哪一个图案?(▲)(1) A . B . C . D .5.如图,在下列给出的条件中,不能判定AB ∥DF 的是(▲) A .∠A +∠2=180º B .∠A =∠3 C .∠1=∠4 D .∠1=∠A 6.在解方程组278ax by cx y -=⎧⎨+=⎩时,一同学把c 看错而得到22x y =-⎧⎨=⎩,正确的解应是32x y =⎧⎨=⎩,那么a b c -+的值是(▲)初中诚信自我检测(一)A .不能确定B .-3C .-1D .1七年级数学问卷(第1页,共4页)7.如图,宽为50cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为(▲) A .400 cm 2B .500 cm 2C .600 cm 2D .4000 cm28.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4; ③∠2+∠4=90º;④∠4+∠5=180º.其中正确的个数有(▲) A .1 个 B .2个 C .3个 D .4个9且已知当输入的x 值为1时,输出值为1;当输入的x 值为-1时,输出值为-3.则当输入的x 值是212+时,输出值为(▲) A .2B .21+C .21-D .2210.设“●,■,▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么在右盘处应放“■”的个数为(▲)A .2个B .3个C .4个D .5个二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.如图,已知直线AB ∥CD ,∠1=110º,则∠2等于 ▲ .?12345输入 kx 输出 +b12.写出一个以⎩⎨⎧=-=21y x 为解的二元一次方程组 ▲ .第11题图 第13题图13.如图,直线a 、b 被直线c 所截,若要a ∥b ,需增加条件 ▲ (填一个即可). 14.若2(21)50a b a b -+++-=,则ab = ▲ .七年级数学问卷(第2页,共4页)15.若方程组⎩⎨⎧=-=+0262y x ky x 有正整数解,则整数k 的值是 ▲ .16.对下列问题,有三位同学提出了各自的想法:若方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧==43y x ,求方程组⎩⎨⎧=++-=++-2221114)3()1(34)3()1(3c y b x a c y b x a 的解.甲说:“这个题目的好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以4,通过换元替代的方法来解决” .参考他们的讨论,请你探索:若能求解,请求出它的解;若不能,请说明理由.答: ▲ . 三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本小题满分6分)如图,已知EF ∥AD ,∠1=∠2,∠BAC =65º.请将求∠AGD 的过程填写完整. 解:∵ EF ∥AD∴ ∠2= ▲ ( ▲ ) 又∵ ∠1=∠2 ∴ ∠1=∠3∴ AB ∥ ▲ ( ▲ ) ∴ ∠BAC + ▲ =180º. 又∵ ∠BAC =65º∴ ∠AGD = ▲ .18.(每小题4分,共8分)解方程组:(1)⎩⎨⎧=+-=623x y y x(2)()()⎪⎩⎪⎨⎧=-++=--+162443y x y x y x y x19.(本小题满分8分)如图,已知AB ∥CD ,DF 平分∠CDE ,交AB 于F , 且∠2=68º,求出∠1,∠3的度数. 20.(本小题满分10分)如图,已知DE 、BF 分别平分∠ADC 和∠ABC ,∠1=∠2,∠ADC =∠ABC ,由此可以推出图中哪些线段平行?请说明理由.21.(本小题满分10分)如图,分别按下列要求作出经平移所得的图形. (1)将三角形ABC 向上平移4个单位得三角形A 1B 1C 1;(2)把第(1)题中平移所得的图形向右平移5个单位得三角形A 2B 2C 2;(3)经(1)(2)两题两次平移后所得的图形,能通过将三角形ABC 经过一次平移得到吗?如果你认为可以,请简单描述这个平移过程.22.(本小题满分12分)如图,直线AC ∥BD ,连结AB ,直线AC 、BD 把之间的平面分成①、②两个部分,规定线上各点不属于任何部分.当动点P 落在某个部分时,连结PA 、PB 构成∠PAC 、∠APB 、∠PBD 三个角. (1)当动点P 落在第①部分时,试说明:∠APB =∠PAC +∠PBD ;(提示:过点P 作直线与AC 平行)(2)当动点P落在第②部分时,请画出相应的图形.试探究∠APB、∠PAC、∠PBD之间的数量关系,并说明理由.23.(本小题满分12分)某旅游景点的门票价格规定如下表所示:学校七年级(1)(2)两个班共104人去旅游,其中(1)班人数较少,不到50人,(2)班人数较多,有50多人,经估算,如果两个班都以班为单位分别购票,一共应付款1240元.(1)问两班各有学生多少名?(2)如果两个班联合起来,作为一个团体购票,可节省304元,试求a的值.(3)某学校七年级有12个班,每班45人,若该校七年级各班统一组织来到此景点春游,问:全年级作为一个团体购票比各班单独购票能节省多少费用?2012学年第二学期第一次单元练习七年级数学参考答案一、仔细选一选(每小题3分,共30分)二、认真填一填(每小题4分,共24分)11.70°12.略(答案不唯一)13.∠1=∠3等14.815.-3,-1,±2(答对2或3个得2分,对4个得4分)16.513 xy=⎧⎨=⎩三、全面答一答(本题有7小题,共66分)17.(满分6分)∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠AGD; 115°…每空1分18.(满分8分)(1)14xy=⎧⎨=⎩;(2)17151115xy⎧=⎪⎪⎨⎪=⎪⎩…每小题4分19.(满分8分)∵AB∥CD ∴23468∠=∠+∠=︒∵DF平分∠CDE ∴∠3 =∠4=34°…5分又∵AB∥CD ∴∠1 =∠4=34°…8分20.(满分10分)(1)∵∠1 =∠2 ∴DE∥BF …2分(2)∵112ABC∠=∠,132ADC∠=∠,ABC ADC∠=∠∴∠1 =∠3又∠1 =∠2∴∠2 =∠3 ∴AB∥CD …4分(3)∵AB ∥CD ∴180A ADC ∠+∠=︒又ABC ADC ∠=∠ ∴180A ABC ∠+∠=︒∴AD ∥BC…4分21.(满分10分) (1) 略 …4分 (2) 略 …8分(3)将三角形ABC 沿斜上方平移[使点B 落在(10,5)处] …10分 22.(本小题满分12分)(1) 作PQ ∥AC ,则 PQ ∥AC ∥BD.∴∠APQ ﹦∠CAP ,∠BPQ ﹦∠DPB∴∠APB ﹦∠APQ+ ∠BPQ ﹦∠PAC+ ∠PBD. …6分 (2) ∠APB+∠APC+ ∠PBD=360°理由:∵PQ ∥AC ∥BD∴∠APQ+∠PAC=180°,∠QPB+∠PBD=180° ∴∠APB+∠APC+ ∠PBD=360° …6分 23.(满分12分)(1)设七(1)班有x 人,七(2)班有y 人.则: 13111240104x y x y +=⎧⎨+=⎩解得4856x y =⎧⎨=⎩…4分;(2)1043041240a +=,解得9a = …8分 (3)2160元 …12分。

【浙教版】七年级数学下期末试卷(含答案)(1)

【浙教版】七年级数学下期末试卷(含答案)(1)

一、选择题1.下列事件是必然事件的是( )A .长度分别是3,5,6cm cm cm 的三根木条能组成一个三角形B .某彩票中奖率是1%,买100张一定会中奖C .2019年女足世界杯,德国队一定能夺得冠军D .打开电视机,正在播放动画片2.下列事件属于必然事件的是( )A .掷一枚均匀的硬币,正面朝上B .车辆行驶到下一路口,遇到绿灯。

C .若a 2=b 2,则a=bD .若|a|>|b|,则a 2>b 2 3.下列事件中,是必然事件的为( )A .3天内会下雨B .打开电视机,正在播放广告C .367人中至少有2人公历生日相同D .抛掷1个均匀的骰子,出现4点向上 4.下列世界博览会会徽图案中是轴对称图形的是( )A .B .C .D . 5.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是( )A .B .C .D . 6.下列图形是轴对称图形的是( )A .B .C .D . 7.如图,12AB =,CA AB ⊥于A ,DB AB ⊥于B ,且4AC cm =,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P ,Q 两点同时出发,运动______分钟后CAP 与PQB △全等( )A .4或6B .4C .6D .58.如图,90ACB ∠=︒,AC BC =,AE CE ⊥于点E ,BD CE ⊥于点D ,5AE cm =,2BD cm =,则DE 的长是( )A .8cmB .5cmC .3cmD .2cm 9.若a ,b ,c 为△ABC 的三边长,且满足|a ﹣5|+(b ﹣3)2=0,则c 的值可以为( )A .7B .8C .9D .10 10.甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地,两人行驶的路程y (km)与甲出发的时间x (h)之间的函数图象如图所示.根据图象得到如下结论,其中错误的是( )A .甲的速度是60km/hB .乙比甲早1小时到达C .乙出发3小时追上甲D .乙在AB 的中点处追上甲11.如图,若//AB CD ,EF CD ⊥,154∠=,则2∠=( )A .36B .46C .54D .12612.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a +=二、填空题13.一个不透明的袋子中装有除颜色外完全相同的三个黄球和两个红球,现从中随机摸出球,则摸出的球是红球的概率等于______.14.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为____.15.如图,∠AOB =30°,C 是BO 上的一点,CO =4,点P 为AO 上的一动点,点D 为CO 上的一动点,则PC +PD 的最小值为_____,当PC +PD 的值取最小值时,则△OPC 的面积为_____.16.如图,已知△ABC 的周长是15,点F ,G 分别是AC ,BC 上的点,将△CFG 沿着直线FG 折叠,点C 落在点C ′处,且点C ′在三角形的外部,则阴影部分图形的周长是_____.17.如图,ABC DEF △≌△,点B 、F 、C 、E 在同一条直线上,AC 、DF 交于点M ,30ACB ∠=︒,则AMF ∠的度数是______°.18.在全民健身环城越野赛中,甲、乙两名选手的行程y (千米)随时间x (时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).19.如图,//AB CD ,若1120∠=︒,285∠=︒,则3∠=______.20.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图,此表揭示了(a+b )n (n 为非负整数)展开式的各项系数的规律,例如:(a+b )0=1,它只有一项,系数为1;(a+b )1=a+b ,它有两项,系数分别为1,1;(a+b )2=a 2+2ab+b 2,它有三项,系数分别为1,2,1;(a+b )3=a 3+3a 2b+3ab 2+b 3,它有四项,系数分别为1,3,3,1;…;根据以上规律,(a+b )5展开式共有六项,系数分别为______,拓展应用:(a ﹣b )4=_______.三、解答题21.(1)如图,在△ABC 中,AB=AC ,AB 的垂直平分线交BC 的延长线于E ,交AC 于F , ∠A=50°,AB+BC=16cm ,则△BCF 的周长和∠EFC 分别为多少?(2)(生活应用题)某公司对一批某一品牌的衬衣的质量抽检结果如下表:①从这批衬衣中任抽1件是次品的概率约为多少?②如果销售这批衬衣600件,那么至少需要准备多少件正品衬衣供买到次品的顾客调换? 22.在棋盘中建立如图①所示的平面直角坐标系,二颗棋子A 、O 、B 的位置如图,它们的坐标分别为()1,1-、()0,0、()1,0.(1)如图②,添加棋子C ,使A 、O 、B 、C 为端点的四条首尾连接的线段围成的图形成为轴对称图形,请在图中画出该图形的对称轴;(2)在其它格点位置添加一颗棋子P ,使A 、O 、B 、P 为端点的首尾连接的四条线段构成一个轴对称图形,请直接写出点P 的坐标。

【浙教版】七年级数学下期末一模试卷(附答案)(1)

【浙教版】七年级数学下期末一模试卷(附答案)(1)

一、选择题1.下列说法中不正确的是( )A .抛一枚质地均匀的硬币,正面朝上的概率与抛硬币的次数无关B .随机选择一户二孩家庭,头胎、二胎都是男孩的概率为14C .任意画一个三角形内角和为360°是随机事件D .连续投两次骰子,前后点数之和为偶数的概率是122.下列说法正确的是( )A .要了解我市居民的低碳生活状况,适宜采用抽样调查的方法B .一组数据2,2,3,6的众数和中位数都是2C .“掷一枚硬币正面朝上的概率是12”,表示每抛硬币2次就有1次正面朝上 D .随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S 甲2=5,S 乙2=10,说明乙的成绩较为稳定 3.下列说法中,正确的是( ) A .不可能事件发生的概率为0 B .随机事件发生的概率为12C .“明天要降雨的概率为12”,表示明天有半天时间都在降雨 D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.如图,ABC 与111A B C △关于直线MN 对称,点P 为MN 上任一点,下列结论中错误的是( )A .1AA P 是等腰三角形B .MN 垂直平分1AAC .ABC 与111A B C △面积相等D .直线AB ,11A B 的交点不一定在MN 上5.如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A .1个B .2个C .3个D .4个6.将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B′、D′,若∠B′A D′=16°,则∠EAF 的度数为( ).A .40°B .45°C .56°D .37°7.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或38.如图,CD AB ⊥,BE AC ⊥,垂足分别为点D ,点E ,BE 、CD 相交于点O ,12∠=∠,则图中全等三角形共有( )A .2对B .3对C .4对D .5对9.有下列长度的三条线段,能组成三角形的是( )A .2cm ,3cm ,4cmB .1cm ,4cm ,2cmC .1cm ,2cm ,3cmD .6cm ,2cm ,3cm10.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数据:支撑物高度h (cm ) 10 20 30 40 50 60 70 80小车下滑时间t (s )4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50下列说法错误的是( ) A .当h =50cm 时,t =1.89s B .随着h 逐渐升高,t 逐渐变小 C .h 每增加10cm ,t 减小1.23sD .随着h 逐渐升高,小车的速度逐渐加快11.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46°12.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .10二、填空题13.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下: 评价条数 等级 餐厅五星四星三星二星一星合计甲 538 210 96 129 27 1000 乙 460 187 154 169 30 1000 丙4863888113321000芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.14.如图:同学们在操场的一个圆形区域内玩投掷沙包的游戏,圆形区域由5个过同一点且半径不同的圆组成.经过多次实验,发现沙包如果都能落在区域内时,落在2、4两个阴影内的概率分别是0.36和0.21,设最大的圆的直径是5米,则1、3、5三个区域的面积和是_____.15.如图,直线AB ∥CD ,直线EF 分别与直线AB 和直线CD 交于点E 和F ,点P 是射线EA 上的一个动点(P 不与E 重合)把△EPF 沿PF 折叠,顶点E 落在点Q 处,若∠PEF=60°,且∠CFQ:∠QFP=2:5,则∠PFE 的度数是_______.16.如图,点D 、E 分别在ABC ∆的AB 、AC 边上,沿DE 将ADE ∆翻折,点A 的对应点为点A ',A EC α'∠=,A DB β∠'=,且αβ<,则A ∠等于______(用含α、β的式子表示).17.已知:AD 、AE 分别是ABC 的高,中线,6BE =,4CD =,则DE 的长为_________.18.地面温度为15 ºC ,如果高度每升高1千米,气温下降6 ºC ,则高度h(千米)与气温t(ºC)之间的关系式为___________19.如图,将三角板的直角顶点落在直尺的一边上,若134∠=︒,则2∠的度数为_______.20.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.三、解答题21.如图,现有一个均匀的转盘被平均分成6等份,分别标有数字2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字.求:(1)转动转盘,转出的数字大于3的概率是多少?(2)现有两张分别写有3和4的卡片,要随机转动转盘,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.这三条线段能构成三角形的概率是多少? 22.如图,在平面直角坐标系中,ABC ∆的顶点()0,1A ,()3,2B ,()1,4C 均在正方形网格的格点上.(1)画出ABC ∆关于x 轴对称的图形111A B C ∆;(2)已知222A B C ∆和111A B C ∆关于y 轴成轴对称,写出顶点2A ,2B ,2C 的坐标. 23.如图,AB CB ⊥,DC CB ⊥,点E 、F 在BC 上,BE CF =,再添加一个什么条件后可推出AF DE =,写出添加的条件并完成证明.24.如图①所示, 在△ABC 中,AD 是三角形的高,且AD =6 cm ,E 是一个动点,由B 向C 移动,其速度与时间的变化关系如图②所示,已知BC =8 cm. (1)求当E 点在运动过程中△ABE 的面积y 与运动时间x 之间的关系式; (2)当E 点停止后,求△ABE 的面积.25.如图所示,直线AB ,CD 相交于点O ,OE 平分AOD ∠,射线OF 在BOD ∠内部.(1)若56AOC ∠=︒,求∠BOE 的度数.(2)若OF 平分BOD ∠,请直接写出图中所有互余的角. (3)若::7:3:1EOD FOD FOB ∠∠∠=,求COE ∠的度数.26.先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(x+2y )﹣2x (2x ﹣y )]÷(-2x ),其中x=-3,y=﹣2020【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C根据抛硬币简单概率求法判断选项A,利用求概率的方法判断选项B,根据三角形的内角和是180°判断选项C,求出两次抛骰子的所有可能结果和点数和为偶数的结果数即可判断选项D,即可做出选择.【详解】A、抛一枚质地均匀的硬币,出现的情况有两种一正一反,正面朝上的概率是12,与抛硬币的次数无关,故原选项正确;B、随机选择一户二孩家庭,头胎、二胎的共有4种等可能的结果,其中,都是男孩的有1种,所以随机选择一户二孩家庭,头胎、二胎都是男孩的概率为14,此原选项正确,C、任意一个三角形的内角和为180°,所以任意画一个三角形内角和为360°是不可能事件,为确定性事件,不是随机事件,故原选项不正确,;D、连续投两次骰子,前后点数之和共有36种等可能的结果,其中点数之和是偶数的有18种结果,所以前后点数之和为偶数的概率是181362,故原选项正确,故选择:C.【点睛】本题考查求事件发生的概率,理解事件发生的概率的意义,会区分确定事件与随机事件,能根据所学概率知识对各个选项作出正确判断是解答的关键.2.A解析:A【解析】【分析】根据抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义逐一判断即可得.【详解】A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法,此选项正确;B.一组数据2,2,3,6的众数是2,中位数是2.5,此选项错误;C.“掷一枚硬币正面朝上的概率是”,表示每抛硬币2次可能有1次正面朝上,此选项错误;D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明甲的成绩较为稳定;故选A.【点睛】本题主要考查概率的意义,解题的关键是掌握抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义.3.A【解析】 【分析】直接利用概率的意义分别分析得出答案. 【详解】A 、不可能事件发生的概率为0,正确;B 、随机事件发生的概率为:0<P <1,故此选项错误;C 、“明天要降雨的概率为12”,表示明天有50%的可能降雨,故此选项错误; D 、掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次,错误. 故选A . 【点睛】此题主要考查了概率的意义,正确掌握概率的意义是解题关键.4.D解析:D 【分析】据对称轴的定义,△ABC 与111A B C △关于直线MN 对称,P 为MN 上任意一点,可以判断出图中各点或线段之间的关系. 【详解】解:∵△ABC 与111A B C △关于直线MN 对称,P 为MN 上任意一点,∴△A 1A P 是等腰三角形,MN 垂直平分A 1A ,C 1C ,这两个三角形的面积相等,故A 、B 、C 选项正确,直线AB ,11A B 关于直线MN 对称,因此交点一定在MN 上,故D 错误, 故选:D . 【点睛】本题考查了轴对称的性质与运用,掌握对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等是解题的关键.5.C解析:C 【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形. 【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意; 第三个图形找不到对称轴,则不是轴对称图形,不符合题意. 第四个图形有1条对称轴,是轴对称图形,符合题意; 轴对称图形共有3个.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.D解析:D 【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等. 【详解】解:由折叠可知∠DAF=∠D′AF ,∠B′AE=∠B′AD′,由题意可知:∠DAF+∠D′AF+∠BAE+∠B′AE -∠B′AD′=∠BAD , ∵∠B′A D′=16°∴可得:2×(∠B′FA +∠B′A D′)+2×(∠D′AE +∠B′A D′)-16°=90° 则∠B′FA+∠D′AE +∠B′A D′=∠EAF=37° 故选D. 【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.7.D解析:D 【分析】设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解. 【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点. ∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt , 又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆ ∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆ ∴8-2t=2t ,解得:t=2 将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等 故选:D 【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.8.C解析:C 【分析】共有四对.分别为ADO ≌AEO ,ADC ≌AEB ,ABO ≌ACO ,BOD ≌COE .做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.【详解】解:∵CD ⊥AB ,BE ⊥AC , ∴∠ADO =∠AEO =90°, 又∵∠1=∠2,AO =AO , ∴ADO ≌AEO ;(AAS )∴OD =OE ,AD =AE ,∵∠DOB =∠EOC ,∠ODB =∠OEC =90°,OD =OE , ∴BOD ≌COE ;(ASA )∴BD =CE ,OB =OC ,∠B =∠C ,∵AE =AD ,∠DAC =∠CAB ,∠ADC =∠AEB =90° ∴ADC ≌AEB ;(ASA )∵AD =AE ,BD =CE , ∴AB =AC ,∵OB =OC ,AO =AO , ∴ABO ≌ACO .(SSS )所以共有四对全等三角形. 故选:C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.A解析:A【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【详解】A、2+3>4,能围成三角形;B、1+2<4,所以不能围成三角形;C、1+2=3,不能围成三角形;D、2+3<6,所以不能围成三角形;故选:A.【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.C解析:C【解析】A.当h=50cm时,t=1.89s,故A正确;B.随着h逐渐升高,t逐渐变小,故B正确;C.h每增加10cm,t减小的值不一定,故C错;D.随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:C.11.D解析:D【分析】依据l1∥l2,即可得到∠1=∠3=44°,再根据l3⊥l4,可得∠2=90°-44°=46°.【详解】解:如图,∵l1∥l2,∴∠1=∠3=44°,又∵l3⊥l4,∴∠2=90°-44°=46°,故选:D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.12.A解析:A【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差,再由S2-S1=3b,AD=10,列出方程求得AB便可.【详解】解:S1=(AB-a)•a+(CD-b)(AD-a)=(AB-a)•a+(AB-b)(AD-a),S2=AB(AD-a)+(a-b)(AB-a),∴S2-S1=AB(AD-a)+(a-b)(AB-a)-(AB-a)•a-(AB-b)(AD-a)=(AD-a)(AB-AB+b)+(AB-a)(a-b-a)=b•AD-ab-b•AB+ab=b(AD-AB),∵S2-S1=3b,AD=10,∴b(10-AB)=3b,∴AB=7.故选:A.【点睛】本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.二、填空题13.丙【分析】不低于四星即四星与五星的和居多为符合题意的餐厅【详解】不低于四星即比较四星和五星的和丙最多故答案是:丙【点睛】考查了可能性的大小和统计表解题的关键是将问题转化为比较四星和五星的和的多少解析:丙【分析】不低于四星,即四星与五星的和居多为符合题意的餐厅.【详解】不低于四星,即比较四星和五星的和,丙最多.故答案是:丙.【点睛】考查了可能性的大小和统计表.解题的关键是将问题转化为比较四星和五星的和的多少.14.6875πm2【解析】【分析】根据题意可得大圆的面积再由几何概率的意义可得第24两个阴影的面积所占的比例进而可得135三个区域的面积和占的比例计算可得其面积之和【详解】根据题意得最大的圆的直径是5米解析:6875πm2.【解析】【分析】根据题意,可得大圆的面积,再由几何概率的意义,可得第2、4两个阴影的面积所占的比例,进而可得1、3、5三个区域的面积和占的比例,计算可得其面积之和.【详解】根据题意得,最大的圆的直径是5米,则大圆的面积为6.25πm2,又有落在2、4两个阴影内的概率分别是0.36和0.21,则第2、4部分的面积和占总面积的0.36+0.21=0.57,即57%,则1、3、5三个区域的面积占总面积的1-0.57=0.43,即43%,故1、3、5三个区域的面积和为6.25π×0.43=2.6875π m2.故答案是:2.6875π m2.【点睛】考查了利用概率解决问题,解题关键是利用:部分数目=总体数目乘以相应概率. 15.50°【分析】依据平行线的性质即可得到∠EFC的度数再求出∠CFQ即可求出∠PFE的度数【详解】∵AB∥CD∠PEF=60°∴∠PEF+∠EFC=180°∴∠EFC=180°﹣60°=120°∵将△解析:50°【分析】依据平行线的性质,即可得到∠EFC的度数,再求出∠CFQ,即可求出∠PFE的度数.【详解】∵AB∥CD,∠PEF=60°,∴∠PEF+∠EFC=180°,∴∠EFC=180°﹣60°=120°,∵将△EFP沿PF折叠,便顶点E落在点Q处,∴∠PFE=∠PFQ,∵∠CFQ:∠QFP=2:5∴∠CFQ =212∠EFC =212×120°=20°, ∴∠PFE =12∠EFQ =12(∠EFC ﹣∠CFQ )=12(120°﹣20°)=50°. 故答案为:50°.【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.16.【分析】根据翻折的性质得利用平角的定义求得①利用三角形外角的性质及三角形内角和定理求得②联立①②即可求得答案【详解】如图根据翻折的性质知∴∠1=∠2∠=∠∵∴①∵是的一个外角∴∠∵即∴②②-①得:故 解析:2βα-【分析】根据翻折的性质得ADE A DE ≅',利用平角的定义求得21180β∠+=︒①,利用三角形外角的性质及三角形内角和定理求得212180A α∠+∠+=︒②,联立①②即可求得答案.【详解】 如图,根据翻折的性质知,ADE A DE ≅',∴∠1=∠2,∠A =∠A ',∵12180β∠+∠+=︒, ∴21180β∠+=︒①,∵3∠是ADE 的一个外角,∴31∠=∠+∠A ,∵23180A α∠∠'+∠++=︒,即11180A A α∠+∠+∠++∠=︒,∴212180A α∠+∠+=︒②,②-①得:2A βα-∠=, 故答案为:2βα-.【点睛】本题考查了翻折的性质,平角的定义,三角形外角的性质,三角形内角和定理,利用角的等量关系列式计算是解题的关键.17.2或10【分析】由已知条件可推导出;再假设D 点所在的不同位置分别计算即可得到答案【详解】∵是的中线且∴假设点D 在CB 的延长线上如下图∵是的中线且∴∵∴和图形不符∴该假设不成立;假设点D 在点E 和点B 之 解析:2或10【分析】由已知条件,可推导出6EC BE ==;再假设D 点所在的不同位置,分别计算DE ,即可得到答案.【详解】∵AE 是ABC 的中线,且6BE =∴6EC BE ==假设点D 在CB 的延长线上,如下图∵AE 是ABC 的中线,且6BE =∴212BC BE ==∵4CD =∴CD BC <,和图形不符∴该假设不成立;假设点D 在点E 和点B 之间,如下图∵4CD =,6EC =∴CD EC <,和图形不符∴该假设不成立;假设点D 在点E 和点C 之间,如下图∴642DE EC CD =-=-=;假设点D 在点BC 延长线上,如下图∴6410DE EC CD =+=+=;故答案为:2或10.【点睛】本题考察了三角形中线和三角形高的知识;求解的关键是熟练掌握三角形中线和三角形高的性质,从而完成求解.18.h=15-t6【解析】【分析】升高h (千米)就可求得温度的下降值进而求得h 千米处的温度【详解】高度h (千米)与气温t (℃)之间的关系式为:h=15-t6【点睛】正确理解高度每升高1千米气温下降6℃的解析:h=.【解析】【分析】升高h (千米)就可求得温度的下降值,进而求得h 千米处的温度.【详解】高度h (千米)与气温t (℃)之间的关系式为:h=. 【点睛】正确理解高度每升高1千米,气温下降6℃,的含义是解题关键. 19.56°【分析】根据平行线的性质求解即可【详解】解:如下图由图可知∵∴故答案为:56°【点睛】本题考查的知识点是平行线的性质属于基础题目比较容易掌握解析:56°【分析】根据平行线的性质求解即可.【详解】解:如下图,由图可知,1390∠+∠=︒,23∠∠=,∵134∠=︒∴23903456∠=∠=︒-︒=︒故答案为:56°.【点睛】本题考查的知识点是平行线的性质,属于基础题目,比较容易掌握.20.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键.三、解答题21.(1)23;(2)56. 【解析】【分析】(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,由概率公式可得;(2)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,由概率公式可得;【详解】(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种等可能的结果,大于3的结果有4种,∴转出的数字大于3的概率是4263=. (2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能构成三角形的结果有5种,∴这三条线段能构成三角形的概率是56. 【点睛】此题考查概率公式,三角形三边关系,解题关键在于掌握公式的运算法则. 22.(1)图形见详解;(2)2A (0,-1),2B (-3,-2),2C (-1,-4). 【分析】(1)根据对称点到对称轴的距离相等,ABC ∆关于x 轴对称的图形111A B C ∆,分别找出对应的顶点1A 、1B 、1C ,连接各顶点;(2)平面直角坐标系中对称轴的性质求出1A 的坐标(0,-1),1B 的坐标(3,-2),1C 的坐标(1,-4),再由1A 、1B 、1C 的坐标求出2A ,2B ,2C 的坐标.【详解】(1)由ABC ∆关于x 轴对称的图形111A B C ∆,对称点到x 轴的距离相等,分别找出对应的顶点1A 、1B 、1C ,然后连接各顶点;(2)如图中ABC ∆与111A B C ∆关于x 轴对称,根据关于x 轴对称的点纵坐标互为相反数, 横坐标相等,可得1A 的坐标(0,-1),1B 的坐标(3,-2),1C 的坐标(1,-4);222A B C ∆和111A B C ∆关于y 轴成轴对称,由于关于y 轴对称的点横坐标互为相反数,纵坐标相等, 可知2A 的坐标(0,-1),2B 的坐标(-3,-2),2C 的坐标(-1,-4).【点睛】关于轴对称图形的理解,数形结合23.添加AB=CD ;证明见解析.【分析】根据线段的和差关系可得BF=CE ,故添加AB=CD 即可利用SAS 证明△ABF ≌△DCE ,根据全等三角形的性质即可得出AF=DE .【详解】可添加AB=CD ,理由如下:∵BE=CF ,∴BE+EF=CF+EF ,即BF=CE ,∵AB CB ⊥,DC CB ⊥,∴∠B=∠C=90°,在△ABF 和△DCE 中,AB CD B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DCE ,∴AF=DE .【点睛】本题考查全等三角形的判断与性质,全等三角形的判定方法有:SSS 、SAS 、AAS 、ASA 、HL 等;注意:AAA 、SSA 不能判定两个三角形全等,当利用SAS 判定两个三角形全等时,角必须是两边的夹角;熟练掌握并灵活运用适当判定方法是解题关键.24.(1)y=9x (0<x≤2);(2)△ABE 的面积是18cm 2.【分析】根据三角形的面积公式,可得答案.【详解】(1)由图2可知E 点的速度为3,∴y=12×3x×AD=9x ,即y=9x (0<x≤2); (2)当E 点停止后,BE=6,∴x=2时,y=9×2=18.∴△ABE 的面积是18cm 2.【点睛】本题考查了函数关系式,三角形的面积公式是解题关键.25.(1)118BOE ∠=︒;(2)AOE ∠与BOF ∠;AOE ∠与DOF ∠;DOE ∠与BOF ∠;DOE ∠与DOF ∠;(3)110COE ∠=︒【分析】(1)根据互为补角的性质得到∠AOD 的度数,再由角平分线的定义得到∠AOE ,∠DOE 的度数,再根据对顶角的定义得到∠DOB 的度数,即可求出∠BOE .(2)根据互补,互余的定义,以及角平分线的定义,即可求出图中互余的角;(3)设∠DOE=7x ,∠DOF=3x ,∠FOB=x ,根据角平分线的定义得到,∠AOE=∠DOE=7x ,根据平角的定义,可以列方程,求出x 的值,即可求出∠COE 的度数.【详解】(1)56AOC ∠=18056124AOD ∴∠=-=OE AOD ∠平分124262AOE DOE ∴∠=∠=÷=56BOD AOC ∠=∠=5662118BOE BOD DOE ∴∠=∠+∠=+=(2)OE AOD ∠平分,OF BOD ∠平分12AOE DOE AOD ∴∠=∠=∠,12BOF DOF BOD ∠=∠=∠ ()11190222AOD BOD AOD BOD ∠+∠=∠+∠= 90AOE BOF ∴∠+∠=,90AOE DOF ∠+∠=,90DOE BOF ∠+∠=,90DOE DOF ∠+∠=.(3)=7=3EOD x FOD x FOB x ∠∠∠=设,,,OE AOD ∠平分,7AOE DOE x ∴∠=∠=,180AOE DOE FOD FOB ∠+∠+∠+∠= 773180x x x x ∴+++=,10x ∴=,4AOC DOB FOD FOB x ∠=∠=∠+∠=,11110COE AOC AOE x ∴∠=∠+∠==,【点睛】本题考查了余角和补角,角平分线的性质,以及角度的计算,正确理解角平分线的定义是关键.26.x y +;-2023【分析】根据完全平方公式、平方差公式、单项式乘多项式、多项式除以单项式可化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:[(x ﹣2y)2+(x ﹣2y)(x+2y)﹣2x(2x ﹣y)]÷(-2x)=22222(44442)(2)x xy y x y x xy x -++--+÷-2(22)(2)x xy x =--÷-x y =+.当x=﹣3,y=﹣2020时,原式=320202023--=-.【点睛】本题考查了整式的混合运算—化简求值,解题的关键是熟练掌握整式的混合运算的法则.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、仔细选一选(本题有10个小题,每小题3分,共30分) 1.如图,已知AB ∥CD ,∠AEC =80º,则∠DCF 的度数为(▲) A .120º B .110º C .100º
D .80º
2.小明在下面的计算中只做对了一道题,他做对的题目是(▲)
A .1367a a a =+
B .4267a a a =⋅
C .42
67)(a a = D .6
76
7
=
÷a a 3.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,所以第六组的频率是(▲) A .0.1
B .0.2
C .0.3
D .0.4
4.数学课堂练习小明同学做了如下4道因式分解题,你认为他做得不够完整....的一题是(▲) A .2
2
)12(144-=+-x x x
B .)1(2
3-=-x x x x
C .)(2
2
y x xy xy y x -=- D .))((2
2
y x y x y x -+=- 5.若代数式2
9x mx ++是完全平方式,那么m =(▲) A .6
B .-6
C .±6
D .3
6.由方程组⎩
⎨⎧=-=+m y m x 34,可得出x 与y 的关系是(▲)
A .1=+y x
B .1-=+y x
C . 7=+y x
D . 7-=+y x 7.某班有x 人,分为y 组活动,若每组7人,则余下3人;若每组8人,则还缺5人.求全班人数,列出的方程组正确的是(▲) A .⎩⎨
⎧+=-=5837x y x y B .⎩⎨⎧-=+=5837x y x y C .⎩⎨⎧-=+=5837y x y x D .⎩⎨⎧+=-=5
83
7y x y x
8.如果把分式
y
x xy
32+中的x ,y 都扩大到原来的5倍,那么分式的值(▲)
A .扩大到原来的5倍
B .缩小到原来的
5
1 C .不变
D .扩大到原来的10倍
A E B
C D
F
9.已知6112=++a a a ,则1
242
++a a a 的值为(▲)
A .
36
1
B .
6
1 C .
12
1
D .
24
1 10.已知122
-+ax x 能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是(▲)A .3个
B .4个
C .6个
D .8个
二、认真填一填(本题有6个小题,每小题4分,共24分)
11.人体中,红细胞的平均半径是0.0000036米,则用科学记数法可表示为 ▲ 米.
12.计算=⨯--2
03
)3
1( ▲ .
13.已知21=-
x x ,则221
x
x +=▲ . 14.如图,将三角形ABC 沿BC 方向平移得到三角形DEF .如果AB =6cm ,BC =8cm ,BE =2cm ,DH =1.5cm ,那么图中阴影部分的面积为 ▲ . 15.已知05422
2
=+--+y x y x ,分式
y
x
x y -的值为 ▲ . 16.已知1)3(2
=-+a a ,则整数a 的值可以是 ▲ .
三、全面答一答(本题有7个小题,共66分)
解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(每小题4分,共8分)计算:
(1)6
8
2
2a a a ÷- (2))1)(4()2)(2(x x x x -+-+-
18.(每小题4分,共16分) 解下列方程(组)
(1)⎩
⎨⎧=+=522y x y x
(2)⎩⎨
⎧=--=+8941
32t s t s
(3)x
x x --=-3231 (4)
1
2
21222-=--+x x x x x
19.(每小题4分,共8分)因式分解:
(1)2
2
3
2x y xy y -+ (2)2
2
(2)x y y +-
20.(本题8分)
某地区七年级学生的用眼习惯所作的调查结果如表1所示.表中空缺的部分反映在表2的扇形图和表3的条形图中.请把三个表中的空缺部分补充完整.
编号 项 目 人 数 比 例 1 经常近距离写字 360 37.50%
2 经常长时间看书
3 长时间使用电脑 52
4 近距离地看电视
11.25% 5
不及时检查视力
240
25.00%
表(1)
21.(本题6分)
如图所示,已知∠OEB =130º,∠FOD =25º, OF 平分∠EOD ,试说明AB ∥CD .
25.00% 编号5 11.25% 编号4 5.42% 编号3
50 100 150 200 250 300 350 400
编号1 编号2 编号3 编号4 编号5
学生用眼习惯调查
扇形统计图
学生用眼习惯调查条形统计图
22.(本题8分)
某服装店的老板,在广州看到一种夏季衬衫,就用8000元购进若干件,以每件58元的价格出售,很快售完,又用17600元购进同种衬衫,数量是第一次的2倍,但这次每件进价比第一次多4元,服装店仍按每件58元出售,全部售完,问:该服装店这两笔生意是否盈利?若盈利,那么盈利多少元?
23.(每小题6分,共12分) (1)阅读以下内容:
1)1)(1(1)1)(1(1)1)(1(4
23322-=+++--=++--=+-x x x x x x x x x x x x
①根据以上规律,可得(x -1)(x n +x n -
1+x n -
2+…+x +1)= ▲ (n 为正整数);
②根据这一规律,计算:1+2+22+23+24+…22011+22012+22013= ▲ . (2)阅读下列材料,回答问题: 关于x 的方程:
a
a x x 11+=+
的解是a x =1,a x 1
2=;
a
a x x 22+=+的解是a x =1,a x 22=;
a a x x 33+=+的解是a x =1,a x 32=;

①请观察上述方程与解的特征,猜想关于x 的方程)0(≠+=+
m a
m
a x m x 的解; ②请你写出关于x 的方程3
2
32-+=-+
m m x x 的解.
七年级数学期末综合卷参考答案
卷一
三、全面答一答(本题有7个小题,共66分)
17.(1)a2; (2)3x.
20. 补全的三张表如下:
编号项目人数比例
1 经常近距离写字360 37.50%
2 经常长时间看书200 20.83%
3 长时间使用电脑52 5.42%
4 近距离地看电视108 11.25%
5 不及时检查视力240 25.00%
(表1)
21.略 22.
CD
AB OEB FOD EOD EOD
OF ∥平分∴︒=∠︒
=∠=∠∴∠130502。

相关文档
最新文档