第 2 章化学反应的基本原理与大气污染
大学普通化学第六版第2章精品课件
反应实例ΔH ΔS ΔG = Δ HT Δ S正反应的自 发性
① H2(g) + Cl2(g) = 2HCl(g) — +
—
自发(任何温 度)
②2CO(g) = 2C (s) + O2(g) + ③CaCO3(s)=CaO(s)+CO2(s) + ④N2(g) + 3H2(g) =2NH3(g) —
-635.09
Sm (298.15 K)/(J. mol-1 . K-1) 92.9
39.75
r Hm (298.15 K) = B f Hm,B (298.15 K)
-393.509 213.74
B
={(-635.09)+(-393.509)-(-1206.92)} kJ.mol-1
= 178.32 kJ.mol-1
首页
上一页
下一页
末页
20
2. ΔrGm与r Gm ө的关系
热力学等温方程式:
rG m (T r)G m (T R)lT n
B
(pB )B p
R=8.314J.K-1.mol-1; pθ=100 kPa
首页
上一页
下一页
末页
21
任一反应: aA(g)+ bB(g) = gG(g) +dD
大家好
1
第2章
化学反应的基本原理与大气污染
首页
上一页
下一页
末页
2
本章主要内容
一. 化学反应的方向 二. 化学平衡 三. 化学反应速率 *四. 大气污染及其控制
首页
上一页
下一页
末页
3
2.1 化学反应的方向
普通化学第二章 化学反应的基本原理
12
熵的性质
熵是状态函数,具有加和性。
根据上述讨论并比较物质的标准熵值,可以得出下面 一些规律:
(1) 对于同一种物质:
Sg > Sl > Ss
(2) 同一物质在相同的聚集状态时,其熵值随温度
的升高而增大。
例因如素。1.NH4Cl(s) → NH4+(aq) + Cl-(aq)
rHm = 14.7 kJ·mol-1
2.Ag2O(s) →
2Ag(s) +
1 2
O2(g)
rHm=31.05 kJ·mol-1
2. 混乱度、熵和微观态数
(1) 混乱度 许多自发过程有混乱度增加的趋势。
盐在水中溶解 气体的扩散 系统有趋向于最大混乱度的倾向,
ΔrSm (298.15 K) = 167.6 J.mol-1·K-1
根据分压定律可求得空气中CO2的分压
p(CO 2 ) p (CO 2 ) 101.325 kPa 0.030% 30 Pa
根据公式,在110℃ 即383 K时
rGm(383 K)= rGm(383 K) + RT ln{p(CO2)/pθ } = [82.24 383×0.1676] kJ.mol-1
S高温>S低温
(3) 对于不同种物质:
S复杂分子 > S简单分子
(4) 对于混合物和纯净物: S混合物 > S纯物质
13
2.1 化学反应的方向和吉布斯函数
利用这些简单规律,可得出一条定性判 断过程熵变的有用规律:
对于物理或化学变化而论,几乎没有例 外,一个导致气体分子数增加的过程或
大学化学 03 化学反应基本原理
)
3. 道尔顿Dalton分压定律
Dalton分压定律可以帮助解决 系统中混合气体的各气体组份之间的压力关系
(1)p = ∑pi 混合气体的总压力等于各组分气体 分压力之和 (2)pi = p∙xi 混合气体中某组分气体分压等于混 合气体的总压力与该组分气体的摩 尔分数之乘积 (3)φi = pi / p 混合气体中个组分气体的体积分数 在数值上等于分压比
John Dalton 1766-1844,英国
)2.1.3 反应的标准摩尔吉布斯函数变的计算及应用
1. 298.15K时反应的标准摩尔吉布斯函数变的计算
(1)利用物质的ΔfGmθ(298.15K) 的数据求算 物质的标准摩尔生成吉布斯函数: 定义:在标准状态下由指定单质生成单位物质的量的纯 物质时反应的吉布斯函数变,称为该物质的标准摩尔生 成吉布斯函数 符号:ΔfGmθ(B,S,T) 单位: kJ· mol-1 规定:a. 指定单质的标准摩尔生成吉布斯函数为零 b. 水合氢离子标准摩尔生成吉布斯函数为零 在标准状态,反应的标准摩尔吉布斯函数变:
B
pB n B ( ) p
纯固态和纯液态物质不必写入反应商式中
r Gm (T ) r Gm (T ) RT ln Q
)
对于一般化学反应式
aA(g) bB(g) gG(g) dD( g )
热力学等温方程式可表示为: Δr Gm(T) = Δr Gm (T ) RT ln
4 4
△ rHm = 9.76kJ· mol-1
吸热,自发
显然,化学反应的焓变仅是影响反应方 向的一个因素,但不能作为判据使用。
还需引入其他的函数
) 1. 反应的熵变(entropy changes)
大学普通化学(第七版)课后答案
普通化学第五版第一章 习题答案 1. 答案(1-)(2-)(3+)(4-) 2. 答案(1c )(2d )(3a )(4d )(5abd )(6ad )(7d )(8d )3. 答案(1)燃烧前后系统的温度(2)水的质量和比热(3)弹式量热计热容4..答案:根据已知条件列式K C g K g J g mol g mol J b )35.29659.298](120918.4[5.0122100032261111-+⨯⋅⋅-=⨯⋅⋅⨯-----Cb=849J.mol-15.答案:获得的肌肉活动的能量=kJ mol kJ mol g g8.17%3028201808.311=⨯⋅⨯⋅--6. 答案:设计一个循环 3× )(2)(32s Fe s O Fe →×3→)(243s O Fe )(3s FeO ×2(-58.6)+2(38.1)+6pq =3(-27.6)17.166)1.38(2)6.58()6.27(3-⋅-=----=mol kJ q p7.答案:由已知可知 ΔH=39.2 kJ.mol-1 ΔH=ΔU+Δ(PV )=ΔU+P ΔVw ‘=-P ΔV= -1×R ×T = -8.314×351J = -2.9kJ ΔU=ΔH-P ΔV=39.2-2.9=36.3kJ8.下列以应(或过程)的qp 与qv 有区别吗? 简单说明。
(1)2.00mol NH4HS 的分解NH4HS(s) NH3(g)+H2S(g)(2)生成1.00mol 的HCl H2(g)+Cl2(g) 2HCl(g) (3)5.00 mol CO2(s)(干冰)的升华 CO2(s) CO2(g) (4)沉淀出2.00mol AgCl(s)AgNO3(aq)+NaCl(aq) AgCl(s)+NaNO3(aq)9.答案:ΔU-ΔH= -Δ(PV )=-ΔngRT (Δng 为反应发生变化时气体物质的量的变化) (1)ΔU-ΔH=-2×(2-0)×8.314×298.15/1000= - 9.9kJ (2)ΔU-ΔH=-2×(2-2)×R ×T= 0(3)ΔU-ΔH=-5×(1-0)×8.314×(273.15-78)/1000= -8.11kJ (4)ΔU-ΔH=-2×(0-0)×R ×T= 010.(1)4NH3(g)+3O2(g) = 2N2(g) +6H2O(l) 答案 -1530.5kJ.mol-1 (2)C2H2(g) + H2(g) = C2H4(g) 答案 -174.47kJ.mol-1 (3)NH3(g) +稀盐酸 答案 -86.32kJ.mol-1 写出离子反应式。
第2章化学反应的基本原理知识点
第2章化学反应的基本原理知识点第1章热化学与能量1.几个基本概念1)系统:作为研究对象的那一部分物质和空间a.开放系统:有物质和能量交换 b.封闭系统:只有能量交换 c.隔离系统:无物质和能量交换2)环境:系统之外,与系统密切联系的其它物质和空间3)相:系统中任何物理和化学性质完全相同的、均匀部分——单相(均匀),多相(不均匀)注意:一个气态(固体)一个相;液体,若相溶,一个相,若不相溶,几种液体,几个相同一物质不同状态就是不同相;碳元素同素异形体不同相4)状态:用来描述系统;状态函数:描述系统状态(如pV=nRT)5)状态函数的性质:状态函数是状态的单值函数;当系统的状态发生变化时,状态函数的变化量只与系统的始、末态有关,而与变化的实际途径无关6)状态函数的分类:广度性质:其量值具有加和性,如体积、质量,热容,焓,熵等强度性质:其量值不具有加和性,如温度、压力,密度,摩尔体积等两个广度性质的物理量的商是一个强度性质的物理量7)过程:系统状态发生任何的变化VS 途径:实现一个过程的具体步骤8)化学计量数其中nB 称为B的化学计量数(根据具体的反应式子系数)反应物:nB为负;产物:nB为正9)反应进度ξ:反应进度只与化学反应方程式的书写有关2.反应热:化学反应过程中系统放出或吸收的热量;热化学规定:系统放热为负,系统吸热为正注意:摩尔反应热指当反应进度为1mol时系统放出或吸收的热量3.热效应:等容热效应(弹式量热计);等压热效应(火焰热量计)qV =ΔU qp = ΔU + p(V2–V1)反应热:(两种液体时比热容不同需分开,注意比热单位)摩尔反应热:4.热化学方程式:表示化学反应与热效应关系的方程式注意:先写出反应方程,再写出相应反应热,两者之间用分号或逗号隔开若不注明T, p, 皆指在T=298.15 K,p=100kPa下标明反应温度、压力及反应物、生成物的量和状态5.热力学第一定律封闭系统,不做非体积功时,若系统从环境吸收热q,从环境得功w,则系统热力学能的增加ΔU(U2–U1)为:ΔU=q + w(热力学能从前称为热能)6.内能的特征:状态函数(状态确定,其值确定;殊途同归;周而复始)、无绝对数值、广度性质7.热:系统吸热为正,放热为负热量q不是状态函数8.功:系统对外功为负,外部对系统作功为正功w不是状态函数9.体积功w体的计算w体=–p外(V2 –V1)=–p外ΔV10.焓(状态函数)(kJ/mol)ΔrHm:反应的摩尔焓H =U + pV qp =H2–H1=ΔH(ΔH<0放热;ΔH>0吸热)注意:qV=ΔU(定容)VS qP=ΔH(定压) qp – qV = n2(g)RT – n1(g)RT = Δn(g)RT对于没有气态物质参与的反应或Δn(g)=0的反应,q V »qp对于有气态物质参与的反应,且Δn(g)¹0的反应,qV ¹qp11.盖斯定律:化学反应的恒压或恒容反应热只与物质的始态或终态有关而与变化的途径无关标准压力p=100kPa12.标准摩尔生成焓:标准状态时由指定单质生成单位物质的量的纯物质B时反应的焓变称为标准摩尔生成焓,记作注意:标准态指定单质的标准生成焓为0。
普通化学习题与解答(第二章)
第二章 化学反应的基本原理和大气污染1、是非题(对的在括号内填“+”号,错的填“-”号)(1)r S ∆ 为正值的反应均是自发反应。
(-) (2)某一给定反应达到平衡后,若平衡条件不变,分离除去某生成物,待达到新的平衡,则各反应物和生成物的分压或浓度分别保持原有定值。
(-)(3)对反应系统122()()()(),(298.15)131.3r m C s H O g CO g H g H K kJ mol θ-+=+∆= 。
由于化学方程式两边物质的化学计量数(绝对值)的总和相等,所以增加总压力对平衡无影响。
(-) (4)上述(3)中反应达到平衡后,若升高温度,则正反应速率v (正)增加,逆反应速率v (逆)减小,结果平衡向右移动。
(-)(5)反应的级数取决于反应方程式中反应物的化学计量数(绝对值)。
(-) (6)催化剂能改变反应历程,降低反应的活化能,但不能改变反应的rmG θ∆。
(+)(7)在常温常压下,空气中的N 2 和O 2 能长期存在而不化合生成NO 。
且热力学计算表明22()()2()N g O g NO g +=的(298.15)0r m G K θ∆ ,则N 2 和O 2混合气必定也是动力学稳定系统。
(+)(8)已知4CCl 不会与2H O 反应,但422()2()()4()CCl l H O l CO g HCl aq +=+的1(298.15)379.93r m G K kJ mol θ-∆=- ,则必定是热力学不稳定而动力学稳定的系统。
(+)2、选择题(将所有正确答案的标号填入空格内)(1)真实气体行为接近理想气体性质的外部条件是 (b )(a )低温高压 (b )高温低压 (c )低温低压 (d )高温高压 (2)某温度时,反应22()()2()H g Br g HBr g +=的标准平衡常数2410K θ-=⨯,则反应2211()()()22HBr g H g Br g =+的标准平衡常数K θ等于 (b )(a )21410-⨯ (b (c )2410-⨯ (3)升高温度可以增加反应速率,最主要是因为 (b )(a )增加了分子总数(b )增加了活化分子的百分数 (c )降低了反应的活化能 (d )促使平衡向吸热方向移动(4)已知汽车尾气无害化反应221()()()()2NO g CO g N g CO g +=+的(298.15)0r m H K θ∆≤,要有利于取得有毒气体NO 和CO 的最大转化率,可采取的措施是 ( c) (a )低温低压 (b )高温高压 (c )低温高压 (d )高温低压(5)温度升高而一定增大的量是 (bc )(a ) r m G θ∆ (b )吸热反应的平衡常数K θ(c )液体的饱和蒸气压 (d )反应的速率常数k(6)一个化学反应达到平衡时,下列说法中正确的是 ( a) (a )各物质的浓度或分压不随时间而变化(b )r m G θ∆=0(c )正、逆反应的速率常数相等(d )如果寻找到该反应的高效催化剂,可提高其平衡转化率3、填空题(1)对于反应: 1223()3()2();(298)92.2r m N g H g NH g H K kJ mol θ-+=∆=-若升高温度(约升高100 K),则下列各项将如何变化(填写:不变,基本不变,增大或减小。
(完整版)普通化学第六版知识点整理
普通化学知识点整理第1章热化学与能量1.几个基本概念1)系统:作为研究对象的那一部分物质和空间a.开放系统:有物质和能量交换 b.封闭系统:只有能量交换 c.隔离系统:无物质和能量交换2)环境:系统之外,与系统密切联系的其它物质和空间3)相:系统中任何物理和化学性质完全相同的、均匀部分——单相(均匀),多相(不均匀)注意:一个气态(固体)一个相;液体,若相溶,一个相,若不相溶,几种液体,几个相同一物质不同状态就是不同相;碳元素同素异形体不同相4)状态:用来描述系统;状态函数:描述系统状态(如pV=nRT)5)状态函数的性质:状态函数是状态的单值函数;当系统的状态发生变化时,状态函数的变化量只与系统的始、末态有关,而与变化的实际途径无关6)状态函数的分类:广度性质:其量值具有加和性,如体积、质量,热容,焓,熵等强度性质:其量值不具有加和性,如温度、压力,密度,摩尔体积等两个广度性质的物理量的商是一个强度性质的物理量7)过程:系统状态发生任何的变化VS 途径:实现一个过程的具体步骤8)化学计量数其中νB 称为B的化学计量数(根据具体的反应式子系数)反应物:νB为负;产物:νB为正9)反应进度ξ:反应进度只与化学反应方程式的书写有关2.反应热:化学反应过程中系统放出或吸收的热量;热化学规定:系统放热为负,系统吸热为正注意:摩尔反应热指当反应进度为1mol时系统放出或吸收的热量3.热效应:等容热效应(弹式量热计);等压热效应(火焰热量计)q=ΔU q p= ΔU + p(V2–V1)V反应热:(两种液体时比热容不同需分开,注意比热单位)摩尔反应热:4.热化学方程式:表示化学反应与热效应关系的方程式注意:先写出反应方程,再写出相应反应热,两者之间用分号或逗号隔开若不注明T, p, 皆指在T=298.15 K,p=100kPa下标明反应温度、压力及反应物、生成物的量和状态5.热力学第一定律封闭系统,不做非体积功时,若系统从环境吸收热q,从环境得功w,则系统热力学能的增加ΔU(U2–U1)为:ΔU=q + w(热力学能从前称为热能)6.内能的特征:状态函数(状态确定,其值确定;殊途同归;周而复始)、无绝对数值、广度性质7.热:系统吸热为正,放热为负热量q不是状态函数8.功:系统对外功为负,外部对系统作功为正功w不是状态函数9.体积功w体的计算w=–p外(V2–V1)=–p外ΔV体10.焓(状态函数)(kJ/mol)Δr H m:反应的摩尔焓H =U + pV q p =H2–H1=ΔH(ΔH<0放热;ΔH>0吸热)注意:q V=ΔU(定容)VS q P=ΔH(定压) q p– q V = n2(g)RT – n1(g)RT = Δn(g)RT对于没有气态物质参与的反应或Δn (g)=0的反应,q V ≈ q p对于有气态物质参与的反应,且Δn (g)≠0的反应,q V ≠ q p 11.盖斯定律:化学反应的恒压或恒容反应热只与物质的始态或终态有关而与变化的途径无关标准压力p=100kPa12.标准摩尔生成焓:标准状态时由指定单质生成单位物质的量的纯物质B 时反应的焓变称为标准摩尔生成焓,记作注意:标准态指定单质的标准生成焓为0。
普通化学第二章-化学反应基本原理
ΔrGθm, 298K = ΔrHθm, 298K - TΔrSθm, 298K
= 178.32 – 298.15 ×160.59 ×10-3 =130.44 kJ·mol-1 注意:带入数据计算时单位要统一。
(2) ΔrGθm, 1273 的计算
ΔrGθm, 1273K = ΔrHθm, 298K - TΔrSθm, 298K
= 178.32 kJ·mol-1
ΔrSθm = [Sθm(CaO)+ Sθm(CO2)] -[Sθm(CaCO3)] = (39.75 + 213.64)- 92.9
= 160.59 J· mol-1 · K-1
从计算结果来看,反应的ΔrHθm (298.15K)为 正值,是吸热反应,不利于反应自发进行;但反应 的ΔrSθm (298.15K)为正值,表明反应过程中系 统的混乱度增大,熵值增大,这又有利于反应自发 进行。因此,该反应的自发性究竟如何?还需进一 步探讨。
( 2 ) 利用 ΔrHθm和 ΔrSθm计算
ΔrHθm = Σ{ΔfHθm (生成物)}
- Σ{ΔfHθm(反应物)}
ΔrSθm = Σ{Sθm(生成物)}
- Σ{Sθm(反应物)}
ΔrGθm = ΔrHθm - TΔrSθm
2、其它温度时反应的ΔrGθm的计算 热力学研究表明,ΔrGθm随温度而变,因 此,不能用298.15K时的ΔrGθm来作为其它温 度时的ΔrGθm ,但是: ΔrHθm ,T ≈ ΔrHθm , 298K ΔrSθm ,T ≈ ΔrSθm , 298K 所以,其它温度时的可由下式近似求得: ΔrGθm , T ≈ ΔrHθm , 298K - T ΔrHθm , 298K
2.1.2 反应自发性的判断
大学化学:第二章 化学反应的基本原理
§2-1 §2-2 §2-3 §2-4
熵与熵变 吉布斯函数变 反应限度与化学平衡 化学反应速率
§2-1 熵与熵变
一、过程的可逆与不可逆性一、过程的可逆与不可逆性 从自然界中观察到的过二程、(变熵化与)都熵是增不加可原逆理的。 ➢热由高温物体传给低温三物、体熵,值直及至熵温变差的为计零算; ➢气体从高压扩散到低压,直至压差为零; ➢正电荷从高电位迁移到低电位,直至电位差为零; ➢不同种组分的相互混合、扩散(推动力?);
▪ 对于化学反应,反应物质是可逆的,且变化在无 限接平衡状态下进行时,为热力学可逆过程。
▪ 可逆过程的逆过程发生后,体系及环境都得以复 原,不留下任何变化的痕迹(包括物质的和能量的)。
二、熵与熵增加原理
1、熵与熵变 对于简单、熟悉的过程,可用诸如ΔT、 Δ p、 ΔE
等作为自发过程方向与限度的判据(推动力); 对于复杂的物理化学过程,用什么函数来判断? 已知很多放热反应是自发的,那么放热则自发?
放热并非一定自发
二、熵与熵增加原理
1、熵与熵变
S qr 定温可逆过程: S qr
T
T
对定温的任意过程: S q 不可逆 (2-1-1)
T 可逆
封闭系统的定温过程中,系统的熵变不可能小于
过程的热温商。
即封闭系统的定温可逆过程中,熵变等值于过程 热温商,不可逆中,系统的熵变大于过的热温商;
S是一个状态函数(广度性质),但宏观抽象。
生的熵变。食物(蛋白质、淀粉等)的熵小于排泄 物的熵。
“新陈代谢的最基本内容是:有机体成功地使自 身放出他活着时不得不产生的全部熵。”
3
三、熵值及熵变的计算
1、物质的规定熵与标准摩尔熵 ➢由热三律指出:规定,纯物质完美晶体,S0K=0 ➢物质的标准摩尔熵:Sθm(B,T)为单位物质的量的纯 物质标准条件下的规定熵。单位“J·K-1·mol-1”。
无机及分析化学:2 第二章 化学反应的一般原理
体积功:W Fex l pex A l
pex V2 V1
pex V1
pex V
l
非体积功 (电功,表面功)功不是状态函数
2.1.6 热力学能与热力学第一定律
热力学能(U): 体系内所有微观粒子的全部能量之和,
U是状态函数,热力学能变化只与始态、 终态有关,与变化途径无关。至今尚无法
2.2.1化学反应热效应
化学反应时,如果 体系不做非体积功,当 反应终了的温度恢复到 反应前的温度时,体系 所吸收或放出的热量称 为该反应的反应热。
1 . 恒容反应热QV
§2.2 热化学
化学反应热效应 盖斯定律 反应焓变的计算
您可知道 您每天活动所需的热能哪里来?
过量的体脂肪的确可能增加心脏病、糖尿病和其他 疾病发作的危险。但脂肪是人体的主要能量贮存系统。
在人体运动过程中, 脂肪发生水解生成一组叫做脂 肪酸的化合物, 后者再通过一系列复杂反应转化为二氧 化碳和水, 肌肉运动正是由该过程释放的能量驱动的。
(7.0 10.0)mol 3
1.0mol
x1
n1NH 3 NH 3
(2.0 0)mol 2
1.0mol
x2 1.5mol
结论 1
对同一化学反应方程式,反应进度ξ
的值与选用反应式中何种物质的量的变 化进行计算无关。
Question 2
1 2
N2
g
3 2
H2
g
NH3
g
t 0 3.0 10.0
N2(g) + 3H2(g) = 2NH3(g)
x = nB / B = 1.0mol
1/2N2(g) + 3/2H2(g) = NH3(g)
(完整word版)能源化学教学大纲-能源科学与工程学院-中南大学
能源化学教学大纲一、课程说明课程编号:100107Z1课程名称(中/英文):能源化学Energy Chemistry课程类别:必修课学时/学分:32/2先修课程:无适用专业:能源动力类专业(包括:热能与动力工程,建筑环境与设备工程,新能源科学与工程)教材、教学参考书:《普通化学(第六版)》,浙江大学普通化学教研组编,高等教育出版社。
二、课程设置的目的意义能源化学是一门必修的专业基础课。
课程从物质的化学组成、化学结构和化学反应出发,密切联系能源工程技术中遇到的如化石燃料燃烧、化学电源、节能技术、新能源开发利用、环境的污染与保护等有关化学问题,深入浅出地介绍有现实应用价值和潜在应用价值的基础理论和基本知识,使学生在今后的实际工作中能有意识的运用化学观点去思考、认识和解决问题。
三、课程的基本要求按照本专业培养方案的要求,阐述本课程所承载的能力和素质培养的具体知识内容。
掌握各章节的重点、难点内容;对基本概念、基本定律理解透彻,运用恰当。
使学生在高中化学基础上,进一步学习和掌握本课程的基础知识和基本技能,具有运用能源化学重点内容的能力,能将能源领域中的化学问题和课程学习相结合,给出自己的分析和结论.五、实践教学内容和基本要求无。
六、考核方式及成绩评定根据课程类型、课程性质、课程内容及特点,确定适合的考核内容、考核方式及成绩评定。
考核内容重点考核学生获取知识的能力、应用所学知识分析问题和解决问题能力、实践动手能力和创新能力等;考核方式采用多种形式(笔试、口试、答辩、测验、论文等)、多个阶段(平时测试、作业测评、课外阅读、社会实践、期末考核等)、多种类型(作品、课堂实训、课堂讨论、社会调查、竞赛等)等全过程的考核;成绩评定加大过程考核及阶段性考核成绩比例(原则上≥40%),减少期末成绩的占分比例。
七、大纲主撰人:李海龙大纲审核人:。
大学化学:第二章 化学反应的基本原理
m
θ ∆r H θ (T ) � (T ) ≈ ∑ν B ∆ f H �
B
向、程度和速率)
§2-1 化学反应的方向和吉布斯函数 §2-2 化学反应进行的程度和化学平衡 §2-3 化学反应速率 §2-4 环境化学和绿色化学
2
2.1 化学反应的方向和吉布斯函数变
汤姆逊-贝洛特规则: 最低能量原理:自发的化学反 应趋向于使系统放出最多的能 量。即:反应总是向放热(或 焓减小)的方向进行。 汤姆逊
贝洛特
C(s) + O2(g) = CO2(g)
θ ∆r H m (298.15 K ) = −393.5kJ ⋅ mol −1
θ (298.15 K ) = −55.84kJ ⋅ mol −1 H+(aq) + OH-(aq) = H2O(l) ∆ r H m
1. 自发过程(反应)
水的流向 热的传递
气体的混合
自然界的一切变化都具有方向性,化学反应也是有方向性的
3
1. 自发反应(过程)
Zn(s) + Cu2+ (aq) = Zn2+ (aq) + Cu(s)
铁在潮湿空气中生锈
置换反应
这种在给定条件下能自动进行(不需要外加功)的 反应(或过程)叫做自发反应(或自发过程)。
第二章化学反应的基本原理
第二章 化学反应的基本原理重要概念1.自发反应:在给定的条件下能自动进行的反应或过程叫做自发反应或自发过程。
自发过程都是热力学的不可逆过程。
2.系统倾向于取得最低的势能。
3.反应的焓变是判断一个反应能否自发进行的重要依据但是不是唯一的依据。
4.过程能自发地向着混乱程度增加的方向进行。
5.熵是系统内物质微观粒子的混乱度(或无序度)的量度。
Ω=kln S ,式中Ω为热力学概率或者称混乱度,k 为波尔兹曼常数。
6.熵的公式表明:熵是系统混乱度的量度,系统的微观状态数越多,热律学概率越大,系统越混流乱,熵就越大。
7.热力学第二定律:在隔离系统中发生的自发反应必伴随着熵的增加,或隔离系统的熵总是趋向于极大值,这就是自发过程热力学的准则,称为熵增加原理。
8.热力学第三定律:在绝对零度时,一切纯物质的完美晶体的熵值都等于零。
表达式为S (0K )=kln1=0;9.依此为基础,若知道某一物质从绝对零度到指定温度下的一些热力学数据如热容等,就可以求出此温度时的熵值,称为这一物质的规定熵。
10.单位物质的量的纯物质在标准状态下的规定熵叫做该物质的标准摩尔熵。
11.规定处于标准状态下水合氢离子的标准熵值为零。
12.(1)对于同一物质而言,气态时的熵大于液态时的,液态时的熵又大于固态时的熵。
(2)同一物质在相同的聚集态时,其熵值随温度的升高而增大;(3)在温度和聚集态相同时,分子或晶体结构较复杂的物质熵值大于分子或晶体结构较为简单的物质的熵值。
(4)混合物或溶液的熵值往往比相应的纯净物的熵值大。
13.对于物理或者化学变化而言,几乎没有例外,一个导致气体分子数增加的过程或反应总伴随着熵值的增大。
14.注意,虽然物质的标准熵随温度的升高而增大,但是只要是没有引起物质聚集状态的改变,其值通常相差不大,可以认为反应的熵变基本不随温度而变,这一点和焓变很类似。
15.自由能:把焓和熵并在一起的热力学函数。
16.吉布斯函数:m r m r m r S T H G TS H G ∆-∆=∆-=或者写成。
工程化学电子教案PPT课件
aA + bB = gG + dD
第十九页,共39页。
4. 反应自发进行方向的判断
(1) 反应自发进行方向的粗略判断
例2.2 定性判断下列反应自发进行的方向
(1) H 2(g) C 2(g l)2 H(g C ) l
ΔH < 0; ΔS > 0; ΔG < 0
第二十页,共39页。
第二十五页,共39页。
例2.3下列反应是工业上制氢和制取燃料的重要反应。
CH4(g) + H2O
CO(g) + 3H2(g)
试利用标准摩尔吉布斯函数变计算298.15K时的
标准平衡常数,并判断该反应的可行性。
解:查表,并将数据各物质下标出。
CH4(g) + H2O
CO(g) + 3H2(g)
-50.75 -22.86
第九页,共39页。
2.吉布斯函数
(1)吉布斯函数与自发过程 ΔG < 0 此过程自发进行 ΔG = 0 系统处于平衡态
ΔG > 0 非自发过程
第十页,共39页。
G是体系的状态函数。故G具有下列特征: (1)G的值只与体系的始态和终态有关,而
与过程所经历的途径无关。 (2)正、逆过程的吉布斯函数变数值相等而符
号相反,即。
(3)G具有加和性。若一个过程可分为几个 过程之和,则总过程的G等于各分过程的吉布斯
函数变之和。
第十一页,共39页。
G的物理意义为: (1)G是自发过程的推动力。在恒温、恒压,
只涉及体积功的条件下,自发过程是朝着体系的吉
布斯函数减小(G < 0)的方向进行。
第十二页,共39页。
第二章-化学反应的方向和吉布斯函数变要点
系统的微观状态数越多,热力学概率越大,系统越混乱,
熵值就越大。
有序
自发
无序
在隔离系统中发生的自发反应必伴随着熵的增加,或熵总是 趋向于最大值。(热力学第二定律,也即熵增加原理)
0 S隔离 0
自发过程 平衡状态
熵判据
2)在绝对零度时,任何纯净的完整晶态物质的熵等于零; (热力学第三定律)
3)熵是状态函数,有绝对值,称为规定熵。 单位物质的量的纯物质在标准条件下的规定熵叫做该物 质的标准摩尔熵,以Smθ表示,简称标准熵(Sθ)。 单位: J.K-1.mol-1。
ΔrGm(T)=ΔrGm(T)+RTlnПB(pB/p)νB
称为热力学等温方程式。式中pB为物质B在任意状态下的分 压力,pB/pθ为相对分压。
对于反应: aA(g)+bB(g)=gG(g)+dD(g)
p(G)
pθ
g
p(D)
pθ d
ПB(pB/p)νB =
p(A)
pθ
a
p(B)
pθ
ΔrGm(T)=ΔrGm(T)+RTln
ቤተ መጻሕፍቲ ባይዱ
c(G)
cθ
g
c(D)
cθ
d
c(A)
cθ
a
c(B)
cθ
b
c为水合离子(或分子)的浓度,标准浓度cθ=1mol·dm-3。
对于气体,各组分的分压可用道尔顿分压定律计算。
道尔顿分压定律
温度和体积恒定时, p总 = p1 + p2 +
或 p = pB
pB
2. 反应的熵变
自发过程
最低的势能 最大的混乱度(无序度)
混乱度—组成物质的质点在一个指定空间区域内 排列和运动的无序程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉布斯:美国物理 学家、化学家 (1839~1903),1958 年入选美国名人纪 念馆。
首页
上一页
下一页
末页
26
2.1.2
反应自发性的判断(ΔG)
式(2.5)表明,对于恒温、恒压的可逆过程, TΔS = qr = ΔH 。 所以 TΔS 是相应于能量的一种转化形式,可以与 ΔH 相比较。
首页
上一页
下一页
末页
25
3
反应的吉布斯函数变
1875年,美国化学家吉布斯(Gibbs)首先提出一 个把焓和熵归并在一起的热力学函数—G (现称 吉布斯自由能或吉布斯函数),并定义:
1. 以ΔG为判断标准—最小自由能原理
ΔG < 0 ,自发过程,过程能向正方向进行
ΔG = 0 ,平衡状态 ΔG > 0 ,非自发过程,过程能向逆方向进行
(2.7)
首页
上一页
下一页
末页
27
表2.1 熵判据和吉布斯函数判据的比较
熵 判 据 系统 过程 自发变化的方向 平衡条件 判据法名称 孤立系统 任何过程 熵值增大, ΔS > 0 熵值最大, ΔS = 0 熵增加原理 吉布斯函数判据 封闭系统 恒温、恒压、不做非体积功 吉布斯函数值减小, ΔG < 0 吉布斯函数值最小, ΔG = 0 最小自由能原理
解: 在 101.325 kPa 大气压力下, 273.15 K(0º C) 为冰的正常
熔点, 所以此条件下冰熔化为水是恒温、恒压可逆相变过程, 根据式(2.5)得
qfus (H 2O) 6007J mol1 r Sm T 273.15 K 21.99 J mol1 K 1
B
B m
(2.4a) (2.4b)
r Sm = g Sm (G, s) + d Sm (D, g) – a Sm (A, l) - b Sm(B, aq)
应当指出,虽然物质的标准熵随温度的升高而增大,但只要温 度升高没有引起物质聚集状态的改变时,则可忽略温度的影响, 近似认为反应的熵变基本不随温度而变。即
第2章
化学反应的基本原理与大气污染
首页
上一页
下一页
末页
1
本章学习要求
(1) 了解熵变及吉布斯函数变的意义,掌握化学反应 rGm 的近似计算,能应用 rGm 判断反应进行的方向。 (2) 掌握 rGm 与K 的关系及有关计算,理解浓度、压力 和温度对化学平衡的影响。 (3) 了解浓度、温度与反应速率的定量关系。了解元反应和 反应级数的概念。能用阿仑尼乌斯公式进行初步计算。能用 活化能和活化分子的概念,说明浓度、温度、催化剂对化学 反应速率的影响。了解链反应与光化学反应的一般概念。
m m
首页
上一页
下一页
末页
熵是状态函数,反应或过程的熵变 r S,只跟始态和终态有关, 而与变化的途径无关。反应的标准摩尔熵变 rSm (或简写为 Sө) ,其计算及注意点与 r Hm 的相似,对应于反应式 (1.1a) 和 (1.1b) 分别为: r Sm =
S (B)
又规定
首页
Sm (H+, aq, 298.15 K) = 0
上一页 下一页 末页
12
熵的性质 熵是状态函数,具有加和性
根据上述讨论并比较物质的标准熵值,可以得出下 面一些规律:例子见P51页
(1) 对于同一种物质: Sg > Sl > Ss
(2) 同一物质在相同的聚集状态时,其熵值随温度的升高而 增大。 S高温>S低温 (3) 对于不同种物质: S复杂分子 > S简单分子
首页 上一页 下一页 末页
5.熵(S)是随体系温度的升高而加大的,但熵变
(△S)值却随温度的改变变化不大,一般也可不
考虑温度对反应熵变(△S)的影响。
6.熵(S)是随着体系压力的加大而减小的,这是 因为压力加大,体系的有序程度加大,熵就减小,
而一般反应的熵变(△S)值随压力的改变,变化
不大,所以可不考虑压力对反应熵变的影响。
k为玻尔兹曼常数,Ω为系统的微观状态的数目(热力学概率)。 思考:两种气体混合过程的熵变如何? 混合过程使系统的混乱度增加,因此熵增加。
混合后 混合前 图2.3 混合熵示意图
首页 上一页 下一页 末页
8
热力学第二定律的统计表达为:
在隔离系统中发生的自发进行反应必伴随着熵的增加,或 隔离系统的熵总是趋向于极大值。这就是自发过程的热力 学准则,称为熵增加原理。
上一页 下一页 末页
4
首页
它们的逆过程都不能自动进行。当借助外力,体系恢复原状 后,会给环境留下不可磨灭的影响。 反应能否自发进行,还与给定的条 件有关。 根据什么来判断化学反应的方向或 者说反应能否自发进行呢?
首页
上一页
下一页
末页
5
自然界中一些自发进行的物理过程中,如物体下落 等,都伴有能量的变化,系统的势能降低或损失了。 这表明一个系统的势能有自发变小的倾向,或者说 系统倾向于取得最低的势能。
ΔS隔离 ≥ 0 这就是隔离系统的熵判据。
自发过程 平衡状态
(2.2)
首页
上一页
下一页
末页
9
热力学第二定律的另外表述方式*
克劳修斯(Clausius,1850)表述:不能把热从低温 物体传到高温物体,而不产生其它影响。
开尔文(Kelvin,1851)表述:不可能从单一热源吸 取热量使之完全转变为功,而不引起其他变化。 奥斯特瓦德(Ostward)表述:不可能制成第二类永 动机。(第二类永动机:从单一热源吸热使之完全 变为功而不留下任何影响。)
(4) 对于混合物和纯净物: S混合物 > S纯物质
首页 上一页 下一页 末页
13
利用这些简单规律,可得出一条定性判断过程熵变的有用规 律: 对于物理或化学变化而论,几乎没有例外,一个导致气体 分子数增加的过程或反应总伴随着熵值增大。即: S > 0;如果气体分子数减少,S < 0。
首页
上一页
首页 上一页 下一页 末页
7.熵的特点,即不同于内能,焓
一是某状态熵值的绝对值可求,而且有明确的物
理意义,即是体系在此状态下混乱度大小的量度
二是熵不是个能量项,而内能、焓都具有能量的 量纲,因此熵的单位是J•K-1•mol-1,必须乘上绝对
温度才具有能量量纲,而数值上比其体系的内能和
焓值要少得多。
在25º C标准态条件下,上述二例都能自发进行。但它们的焓 变却不一样,前者为放热反应,而后者则为吸热过程。如果 用焓变作为反应能否自发进行的判据,则结论将彼此矛盾, 因此,用焓变作为判据行不通。见P48-49
首页
上一页
下一页
末页
7
2
反应的熵变
熵的定义: 熵是系统内物质微观粒子的混乱度(或无序度)的 量度。 S=k lnΩ
在化学反应中同样也伴有能量的变化,但情况要复杂的多。
为此要引进热力学状态函数熵S 和吉布斯函数G。这样,只有 通过热力学函数的有关计算而不必依靠实验,即可知反应能否 自发进行和反应进行的限度。
首页
上一页
下一页
末页
6
1
反应的焓变
2H2(g) + O2 (g) = 2H2O (l) (氢气燃烧) rHm = - 571.66 kJ. mol-1 H2O (s) = H2O (l) (冰的融化) rHm = 44.012 kJ. mol-1
首页
上一页
下一页
末页
23
熵的热力学定义*
可从热力学推出,在恒温可逆过程中系统所吸收或放出的热量 (以qr 表示)除以温度等于系统的熵变S:
qr S T
(2.5)
“熵”即由其定义“热温商”而得名。熵的变化可用可逆过程 的热(量)与温(度)之商来计算。
首页
上一页
下一页
末页
24
例2.2 计算在101.325 kPa 和 273.15 K下,冰融化过程的摩尔 熵变。已知冰的融化热 qfus(H2O) = 6007 J.mol-1
r Sm ( T ) ≈ r Sm ( 298.15 K )
首页 上一页 下一页 末页
21
例2.1 试计算石灰石热分解反应的熵变和焓变,并初步分析该反 应的自发性 解: CaCO3(s) CaO(s) + CO2(g) f Hm (298.15 K)/(kJ. mol-1) -1206.92 -635.09 -393.509 Sm (298.15 K)/(J. mol-1 . K-1) r Hm (298.15 K) =
(4) 了解大气的主要污染物,温室效应、臭氧层空洞、酸雨 及光化学烟雾等综合性大气污染及其控制。了解清洁生产和 绿色化学的概念。
2
首页
上一页
下一页末页Fra bibliotek 目 录2.1 化学反应的方向和吉布斯函数变
2.2 化学反应进行的程度和化学平衡
2.3 化学反应速率
2.4 大气污染及其控制
首页
上一页
下一页
末页
3
2.1 化学反应的方向和吉布斯函数变
2.1.1 影响反应方向的因素
在给定条件下能自动进行的反应或过程叫自发反 应或自发过程。 自发过程的共同特征:
(1) 具有不可逆性——单向性 (2) 有一定的限度 (3) 可有一定物理量判断变化的方向和限度——判据
例如: 气体向真空膨胀;
Δp 热量从高温物体传入低温物体 Δ T 浓度不等的溶液混合均匀 Δc 锌片与硫酸铜的臵换反应等 ΔG