超声波桩基检测图文

合集下载

基桩超声波法检测教材

基桩超声波法检测教材

介质质点的振动方向与波的传播方向垂直的波称为横波,又称为S波。 是依靠使介质产生剪切变形引起的剪切力变化而传播的,它和介质的剪 切弹性相关。由于液体、气体无一定形状,不具备切变弹性,不能承受
剪切应力,所以横波只能在固体介质中传播。
固体介质表面受到交替变化的表面张力作用,介质表面质点发 生相应的纵向振动和横向振动,结果使质点做这两种振动的合成运 动,即绕其平衡位置作椭圆运动,该质点的运动又波及相邻质点, 而在介质表面传播,这种波称为表面波,又称R波。表面波传播时, 质点振动的振幅随深度的增加迅速减少,当深度超过2倍的波长时, 振幅已很小了。表面波也只能在固体中传播。
检测前的准备工作
按照《JGJ 106 —2003规范》要求,安排检测工 作程序。调查、收集待检工程及受检桩的相关技术 资料和施工记录。 将伸出桩顶的声测管切割到同一标高,测量管口 标高,作为计算各测点高程的基准。 向管内注入清水,封口待检。 在放置换能器前,先用直径与换能器略同的圆 钢作吊绳。检查声测管的通畅情况。 用钢卷尺测量桩顶面各声测管之间外壁净距。
零声时问题
电延迟时间:从声波仪电路原理可知,发出触发 电脉冲并开始计时的瞬间到电脉冲开始作用到压电体 的时刻,电路中有些触发、转换过程。这些电路转换 过程有短暂延迟的响应。 电声转换时间:在电脉冲加到压电体瞬间到产生 振动发出声波瞬间有电声转换的延迟。接收换能器也 类似。 声延迟:换能器中压电体辐射出的声波并不是直 接进入被测体,而是先通过换能器壳体或夹心式换能 器的辐射体,再通过耦合介质层,然后才进入被测体。 这三部分延迟构成了仪器测读时间t1与声波在被测体 中传播时间t的差异。声波在被测物体中的传播时间t = t1 - t0
几种声学参数的比较
声速的测试值较为稳定,结果的重复性较好,受非缺陷因素的影响小,在同一桩的 不同剖面以及同一工程的不同桩之间可以比较,是判定混凝土质量的主要参数,但声 速对缺陷的敏感性不及波幅。 接收波波幅(首波幅值)对混凝土缺陷很敏感,它是判定混凝土质量的另一个重 要参数。但波幅的测试值受仪器系统性能、换能器耦合状况、测距等诸多非缺陷因素 的影响,它的测试值没有声速稳定,目前只能用于相对比较,在同一桩的不同剖面或 不同桩之间往往无可比性。 接收波主频的变化虽然能反映声波在混凝土中的衰减状况,从而间接反映混凝土 质量的好坏,但声波主频的变化也受测距、仪器设备状态等非缺陷因素的影响,因此 在不同剖面以及不同桩之间的可比性不强,只用于同一剖面内各测点的相对比较,其 测试值也没有声速稳定。因此,目前主频漂移指标仅作为声速、波幅的辅助判据。 接收波形也是反映混凝土质量的一个重要方面,它对混凝土内部的缺陷也较敏感 ,在现场检测时,除逐点读取首波的声时、波幅外,还应注意观察整个接收波形态的 变化,作为声波透射法对混凝土质量进行综合判定时的一个重要的参考,因为接收波 形是透过两声测管间混凝土的声波能量的一个总体反映,它反映了发、收换能器之间 声波在混凝土各种声传播路径上的总体能量,其影响区域大于直达波(首波)。

超声波桩基检测仪

超声波桩基检测仪

超声波桩基检测仪钻孔灌注桩超声波检测,超声波检测仪产生重复的电脉冲激励发射探头(发射换能器),发射探头将电脉冲能量转化为机械振动能量,接收探头将机械振动能量转化为电振动能量。

根据规范与桩直径要求,在钻孔灌注桩中预埋若干根互相平行的超声波检测导管,检测前先将导管注满清水,再将发射探头和接收探头分别放入两根导管底端,发射探头和接收探头在同一高度。

超声波检测仪产生重复的电脉冲激励发射探头(发射换能器),发射探头将电脉冲能量转化为机械振动能量,接收探头将机械振动能量转化为电振动能量。

发射探头发出的超声波经耦合而进入混凝土,在混凝土中传播后为接收探头接收并转换成电信号传送至接收仪,经过放大后显示在波屏上,可以测读传播声时和首波波幅。

将两探头以某等量的移动步距同时向上逐步提升直至桩顶,并测读声时和首波波幅。

根据两根导管的距离可计算出混凝土的声速,进而得到声速及波幅与桩身深度的关系曲线,通过曲线可判断桩身混凝土均匀性,缺陷部位及缺陷性质。

4.1检测前仪器的准备检测仪器连同换能器必须每年送有关法定计量单位进行率定,率定合格后方可使用。

率定后在具体工程检测前,必须确定仪器的零声时。

确定方法有两种:一是按规范进行公式计算;二是进行现场率定。

可取现场切割下来的两根声测管,注满清水紧靠在一起置于水池中,按正常检测程序测量声时,测3个数据取其平均值作为零声时,这种方法的好处是将仪器本身的误差(厂家给定)包括在内。

如笔者所用仪器,经确定为32Lm,直接输入仪器即可,一个工程标段如声测管是同一型号的则不用更改。

在检测前要求施工单位配合将声测管管口焊割齐平,两管管口基本等高,大约在破除好的桩顶之上10cm,管口焊渣清理干净,灌满清水,现场应备有220V电源。

声波检测仪可使用内置电源(应充电),也可以使用交流电源,但要保证交流电稳定以免仪器受损。

4.2现场检测工作现场工作由两部分组成,一是检测数据的采集,二是换能器的升降(俗称拉绳)。

超声波基桩检测_第三章灌注桩超声波检测

超声波基桩检测_第三章灌注桩超声波检测

第三章灌注桩超声波检测第一节检测方法第二节检测参数与混凝土质量第三章灌注桩超声波检测第三章灌注桩超声波检测检测方法第一节检测方法(1)设置声测管(2)检测前的准备(3)检测要求(4)桩内跨孔透射法检测(5)桩内单孔法检测第三章灌注桩超声波检测检测方法(1)设置声测管(1)——建筑桩径D≤800mm时,埋设两根声测管800mm<桩径D ≤2000mm时,埋设三根声测管桩径D>2000mm时,埋设四根声测管第三章灌注桩超声波检测检测方法(1)设置声测管(1)——交通桩径不大于1500mm时,埋设三根声测管大于1500mm时,埋设四根声测管第三章灌注桩超声波检测检测方法(1)设置声测管(2)——声测管尺寸目前常用频率为30-60kHz 的圆管型径向辐射换能器,其直径一般30mm 左右或更小。

规范规定声测管内径比换能器直径宜大10-20mm,因此,一般选用40 号钢管(外径48mm,内径42mm)或50 号钢管(外径60mm,内径54mm)。

由于钢管均是6m一段,需要将一段段钢管联接起来。

第三章灌注桩超声波检测检测方法(1)设置声测管(2)——连接方式连接方式主要有套筒连接、螺纹连接、对接焊连接三种方式,最常用的方式是套筒连接,效果比较好。

要求:有足够的强度,保证声测管不致受力弯曲脱开;连接部位应当密实不渗漏,保证在浇灌混凝土时不渗漏水泥沙浆。

第三章灌注桩超声波检测检测方法(1)设置声测管(2)——套筒连接选一段长80mm 左右的钢套筒,套筒内径略大于声测管外径,将两根声测管套起来,用电焊将套筒与声测管上下两端焊结起来。

既要保证焊结不渗漏,又不要将声测管焊通,阻塞换能器的上下移动。

第三章灌注桩超声波检测检测方法(1)设置声测管(2)——交通•宜采用金属管•内径比换能器外径大15mm•管底应密封,管口应加盖•管的连接宜采用螺纹连接•且不漏水路线前进方向为起始点,顺时针编号,两个编号为一组第三章灌注桩超声波检测检测方法(1)设置声测管(3)声测管预先固定在钢筋笼内。

基桩超声波法检测解读

基桩超声波法检测解读

根据实测声时计算某一剖面各测点的PSD判据,绘制“判据值~ 深度”曲线,然后根据PSD值在某深度处的突变,结合波幅变化情况 ,进行异常点判定。采用PSD法突出了声时的变化,对缺陷较敏感, 同时,也减小了因声测管不平行或混凝土不均匀等非缺陷因素造成的 测试误差对数据分析判断的影响 。
波幅判据
在《规范》中采用下列方法确定波幅临界值判据:
声速低限值法
v i< vL
vi——第i测点的声速;
件的抗压强度与声速对比试验结果,结合本地区 实际经验确定。
vL—— 声速低限值,由预留同条件混凝土试
PSD法判据
(t ci t ci 1 ) 2 Ki z i z i 1
t tci tci1
Ki——第i测点的PSD判据; tci、tci-1——分别为第i测点和第i-1测点声时; zi、zi-1——分别为第i测点和第i-1测点深度。
介质质点的振动方向与波的传播方向垂直的波称为横波,又称为S波。 是依靠使介质产生剪切变形引起的剪切力变化而传播的,它和介质的剪 切弹性相关。由于液体、气体无一定形状,不具备切变弹性,不能承受
剪切应力,所以横波只能在固体介质中传播。
固体介质表面受到交替变化的表面张力作用,介质表面质点发 生相应的纵向振动和横向振动,结果使质点做这两种振动的合成运 动,即绕其平衡位置作椭圆运动,该质点的运动又波及相邻质点, 而在介质表面传播,这种波称为表面波,又称R波。表面波传播时, 质点振动的振幅随深度的增加迅速减少,当深度超过2倍的波长时, 振幅已很小了。表面波也只能在固体中传播。
对可疑测点,先进行加密平测(换能器提升 步长为10~20cm),核实可疑点的异常情况,并 确定异常部位的纵向范围。 再用斜测法对异常点缺陷的严重情况进行进 一步的探测.斜测。就是让发、收换能器保持一定 的高程差,在声测管内以相同步长同步升降进行 测试,而不是象平测那样让发、收换能器在检测 过程中始终保持相同的高程。 由于径向换能器在铅垂面上存在指向性,因此, 斜测时,发、收换能器中心连线与水平面的夹角 不能太大,一般可取30°~40°。

基桩超声波法检测技术培训课件(144页)

基桩超声波法检测技术培训课件(144页)

3、波的产生与传播
在弹性介质中,任何一个质点机械振动时,因 为这个质点与其邻近的质点间有相互作用的弹性力 联系着,所以它的振动将传递给与之相邻近的质点, 使邻近的质点也同样地发生振动,然后振动又传给 下一个质点,依次类推。这样,振动就由近及远向 各个方向以一定速度传播出去,从而形成了机械波。 从上述可知,机械波的产生,首先要有做机械振动 的波(声)源,其次要有传播这种机械振动的介质。 例如,把石子投入平静的水中,在水面上可以看到 一圈圈向外扩展的水波。
再举二个实例 弹性横波:手握绳子一端上下振动,可以看到如图
1-3的波向前传播的过程,这就是弹性横 波。 弹性纵波:用手迅速而有节奏地推拉弹簧的一端, 可以看到如图1-4弹簧上有部分密集,部 分稀疏,部份疏密相间,且这种疏密相间 的状态沿着弹簧向前传播,这就是弹性纵 波。
图3.1-3 绳子上的横波
分四个部分讲解:
声学理论 检测技术 测试方法 工程实例
第一部分 声学理论
声学基础 声波在介质中的传播速度 声波在介质界面上的反射与透射 声波在传播过程中的衰减 混凝土中的声波特性
一、声学基础
1、波动
波动是物质的一种运动形式,波动 可分为两大类:一类是机械波,它由于 机械振动在弹性介质中引起的波动过程 ,例如;水波、声波、超声波等;另一 类是电磁波,它是由于电磁振荡所产生 的变化电场和变化磁场在空间的转播过 程,例如无线电波、红外线、紫外线、 可见光、雷达波等。
基桩检测的常用方法之一
超声波法
公路工程基桩检测的规定:
(JTJ/T F81-01-2004)
1、公路工程基桩应进行100%的完整性检测, 各种方法的选定应具有代表性和满足工程检测 的特定要求;
2、重要工程的钻孔灌注桩应埋设声测管,检 测的桩数不应少于50%;

基桩检测培训课件(声波透射法)

基桩检测培训课件(声波透射法)
建筑工程地基基础测试技术
(超声波检测)
第二章 声波透射法检测
2.1 概述
一、超声波检测概况 超声波(简称声波)透射法检测是弹性波测试方
法的一种,其理论基础建立在固体介质弹性波的传 播理论上,以人工激振的方法向介质(岩石、岩 体、混凝土构筑物)发射声波,在一定的空间距离 上接收介质传播后的声波,通过观测和分析声波在 不同介质中的传播速度、振幅、频率等声学参数, 解决有关岩土工程中问题。
如从水中向混凝土中入射时
入射波速小于透射波速时的临界现象
V p1
V p1
Vs1
V p2
Vs2
sin(ip) sin( p) sin( s) sin( p) sin( s)
• 第一临界角(无透射纵波)
p 90
• 第二临界角(无透射波)
s 90
i1 sin 1( Vp1 ) Vp2
i2 sin 1( Vp1 ) Vs2
—介质的密度(kg/m3);
E —介质的弹性模量(MPa);
G —介质的剪切模量(Mpa);
Vp —介质的纵波速度(m/s); Vs —介质的横波速度(m/s); VR —介质的瑞利波速度(m/s)。
结论:纵波波速 > 横波波速 > 面波(瑞利波)波速;
2.声速与材料的结构特性 • 材料的尺寸 • 材料中各种成分的组成 • 空隙率 • 缺陷
1Bel=10dB L 10log I 单位为分贝(dB)
I0
如炮声声强 1瓦/米2 ,声强级120分贝。 有的地方规定户外声音不得大于100分贝。
圆盘形换能器的指向性(轴线)
N 近场D区长2 度:
4 4
换能器的指向性
sin (1.221 ) 0

5、超声波桩基检测技术培训131页PPT

5、超声波桩基检测技术培训131页PPT

1、垂直入射
(1)单一的平面界面
当平面波垂直入射到一个光滑平面界面时, 将产生一个与入射波方向相反的反射波和一个与 入射波方向相同的透射波(图1-10)。这是波入 射到界面上时最简单的情况。
先讨论入射波、反射波和透射波声压之间的关系。
在界面上,用反射波声压pr与入射波声压p0的比值表示
声压反射率R,即:
声波法透射法的基本原理
声波:是在介质中传播的机械波,依据波动频率 的不同分为:
次声波:0~2×101Hz 可闻声波:2×101Hz~2×104Hz 超声波:2×104Hz~1010Hz 特超声波:>1010Hz 用于混凝土声波透射法检测的声波频率一般为: 2×104Hz~2.5×1010Hz
同样依据质点振动方向与波的传播方向的可分为: 纵波、横波及表面波。
鉴于目前高重建筑、公路桥梁工程大量使用大 直径桩和超长桩,该方法将越来越多的使用在基桩 的检测中。
分四个部分讲解:
声学理论 检测技术 测试方法 工程实例
第一部分 基本原理
波动与声波的概念 声波在介质中的传播速度 声波在介质界面上的反射与透射 声波在传播过程中的衰减 混凝土中的声波特性
2019年地基基础检测培训班
声波透射法检测桩身完整性
声波透射法(超声波法):
在桩身预埋一定数量的声测管,通过水的耦合 ,超声波从一根声测管中发射,在另一根声测管中 接收,或单孔中发射,可以测出被测混凝土介质的 参数。由于超声波在混凝土中遇到缺陷时会波产生 绕射、反射和折射,因而达到接收换能器时,根据 声时、波幅及主频等特征参数的变化来判别桩身的 完整性。
所以入射角等于反射角(i=β )。
折射定律:入射角(i)的正弦与折射角(θ )
的正弦之比等于入射波与折射波速度之比,即:

基桩完整性检测(声波透射法)

基桩完整性检测(声波透射法)

1.3 超声波的特点
4、超声波的能量比声波大得多。
5、超声波在固体中的传输损失很小,探测 深度大,由于超声波在异质界面上会发生反 射、折射、衍射等现象,尤其是不能通过气 体固体界面。如果介质中有气孔、裂纹等缺 陷(缺陷中有气体)或夹层,超声波的传播 路径会发生改变,对应的声时、声速、声幅 值等参数发生不同程度的变化,由此来判断 缺陷类型与程度。
谢谢大家!
6、现场拉升换能器的人员需要佩戴防滑手 套,拉升过程中要保持缓慢匀速状态;
7、提升过程中,如发现换能器卡在声测管 内,不要用力拉拽;
8、检测结束后,及时清理深度计数轮及从 动轮中的泥土。
第四章 数据分析与判断
4.1 波速、波幅及频率计算
4.1 波速、波幅及频率计算
4.1 波速、波幅及频率计算
1、原始数据通过分析软件打开后,对于可疑数据首先 确认该测点首波是否搜索准确;
2、对于疑似存在缺陷的基桩,应及时采用加密测点、 斜侧、线型扫射等方法进行复测;
3、对于类型判定存在争议的基桩,可采用取芯、开挖 等方式进行扩大验证;
4、结果判定前应区分该基桩为钳岩桩还是摩擦桩; 5、准确解读检测依据中的判定标准。
超声波检测技术
第1章 超声波法的基本知识 第2章 超声波法的基本原理 第3章 现场测试技术 第4章 数据分析与判断 第5章 工程实例
第一章 超声波法的基本知识
检测示意图
1.1 检测依据
《公路工程基桩动测技术规程》JTG/T F81-01-2004 (适用于低应变法、超声波法、高应变法)
1.2 名词解释
检测原理
超声脉冲信号在混凝土的传播过程中因发生衍 射、折射、多次反射及不同的吸收衰减,使接 收信号在混凝土中传播的时间、振动幅度、波 形及主频等发生变化,这样接收信号就携带了 有关传播介质(即被测桩身混凝土)的密实缺 陷情况、完整程度等信息。由仪器的数据处理 与判断分析软件对接收信号的各种声参量进行 综合分析,即可对桩身混凝土的完整性进行检 测,判断桩基缺陷的程度并确定其位置。

桩基超声波透射法完整性检测

桩基超声波透射法完整性检测

桩基超声波透射法完整性检测引言近几十年,我国工程建设蓬勃发展,桩基础在高层建筑、大型厂房、桥梁码头、海上钻井平台及核电站等重要工程中被广泛应用;由于桩基属于地下隐蔽工程,桩基施工过程中受到所处地质条件、施工技术工艺等多种因素的影响,成桩难免存在各种不足,影响成桩的质量和使用效果,比如缩径、扩径、离析、蜂窝、混凝土强度偏低或夹泥,甚至断桩等不利缺陷;如何快速、准确的评价桩身质量,是桩基检测工程一直所关注的话题;桩基无损检测方法有低应变反射波法和超声波透射法,其中低应变反射波法因其操作简单、经济合理,能较准确地发现缺陷被广泛采用;但是该方法受到桩长桩径的限制,并且不能检测出桩基顶部缺陷和多个缺陷,而超声波透射检测方法作为无损检测方法中重要的一种方法,且超声波透射法能较好地反映桩身的完整性,完全可以满足检测要求和工程需要;技术原理超声波透射法是通过对声测管之间混凝土的缺陷情况的检测来进行桩身完整性评价;其基本原理:在混凝土桩基内事先预埋检测管作为超声波的检测通道,并在检测管内灌注足量的清水作为试验检测的耦合剂,然后将超声波检测设备的超声波发射探头与接收探头置于声测管的两侧,通过发射探头不断发射超声脉冲波,超声波脉冲经过混凝土桩基,由接收探头接收,仪器记录了超声脉冲在混凝土桩基传播过程中的波动情况,如混凝土桩基中存在连续性差或破损等缺陷,这些缺陷面就会成为波阻抗界面而产生透射和反射现象,导致超声波脉冲能量衰减情况严重,而出现蜂窝、孔洞、松散等严重缺陷时就会出现散射和绕射现象;通过研究分析波的初至到达时间即能量衰减特征、频谱变化和波形等特征,进而可以分析评价混凝土桩基的施工质量及其缺陷所在的位置,并对桩基混凝土的强度和均匀性做出评价;利用超声波透射法进行桩基检测的原理如图1所示;图1 超声波透射法桩基检测原理图按图2和图3的布置图预埋声测管;首先将发射换能器和接收换能器在安装扶正器后置于声测管之中,并确保能够在声测管内部顺利的升降;测点的间距应当在左右,如果在试验检测过程中发现异常情况,应该适当的对测点进行加密;发射以及接收换能器应该在同一标高或者是相差固定的高度进行检测,检测尽可能的从声测管的底部自下而上的开展,对超声波的行声时、波幅及接收波频率等参数进行测量,对于各种不正常的波形应当及时的记录;对于存在多根声测管的桩基,应该以两根声测管作为一组,分组进行桩基质量的试验检测;在对桩基的每组声测管试验检测结束后,应该对桩基进行随机的重复性的试验检测,抽检量应该控制在桩基试验检测量10%-20%,尽可能的控制声时相对标准差在5%范围内,波幅相对标准差在10%范围内,对于声时及波幅存在明显异常的情况应进行重复测试,以准确的反映试验桩基的检测质量;图2 圆形桩声测管布置图图3 矩形桩声测管布置图勘察内容:某工程的溶蚀风化深槽桩基检测装置说明:非金属超声波检测仪勘察目的:1查明桩基缺陷;2了解桩基强度,为工程设计和施工处理提供依据;勘察结果:本次共检测了2号,7号,14号,17号,20号,21号,27号,28号,30号,34号10根桩;共检测存在严重缺陷的桩有2根;7号桩:孔深为,纵波速度为3610~4010m/s;从图4中可以看出,7号桩深度在2m以下的桩体,曲线变化不大,波速值稳定在3800~4000m/s,表明桩体是完整的,没有缺陷,桩强度合格属于I类桩;24号桩:孔深为18m,桩体波速变化较大,在3200~4290m/s之间变化;1~2和1~3剖面12m~14m和16m~18m段桩体测不到波,可能存在离析或脱浆缺陷,2~3剖面16m~段平均波速为2760m/s,比桩体上部的波速还低,表明桩体存在严重缺陷,离析、脱浆现象严重,属于IV类桩;27号桩:孔深为12m,0~段桩体波速变化不大,较为稳定,为3540~3630m/s,~12m段桩体波速变化大,在2070m/s~3070m/s,表明桩体存在严重缺陷,离析、脱浆现象严重,属于IV类桩;经过处理后,桩体质量得到明显地改善,达到II类桩的标准;图4 7号桩声波测试波速曲线图图5 24号桩声波测试波速曲线图图6 27号桩声波测试波速曲线图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档