空气在管道中流动的基本规律
第二节 空气的物理性质
第二节 空气的物理性质、气体状态方程及流动规律一、空气的组成成份及空气的物理性质1.空气的组成成份大气中的空气主要是由氮、氧、氩、二氧化碳,水蒸气以及其它一些气体等若干种气体混合组成的。
含有水蒸气的空气为湿空气。
大气中的空气基本上都是湿空气。
而把不含有水蒸气的空气称为干空气。
在距地面20 km 以内,空气组成几乎相同。
在基准状态(0℃,绝对压力为101325 Pa ,相对湿度为0)下地面附近的干空气的组成见表11-1。
空气中氮气所占比例最大,由于氮气的化学性质不活泼,具有稳定性,不会自燃,所以空气作为工作介质可以用在易燃、易爆场所。
2.空气的密度单位体积空气的质量,称为空气的密度ρ(kg/m 3),其公式为ρ =m / V (11-1)式中 ρ — 空气密度;m — 空气的质量(kg );V — 空气的体积(m 3)。
气体密度与气体压力和温度有关,压力增加,密度增加,而温度上升,密度减少。
在基准状态下,干空气的密度为 1.293 kg/m 3,在温度 t (℃)、压力(MPa )下的干空气的密度可用下式计算(11-2) 式中 ρ0 — 基准状态下的干空气密度;p — 绝对压力(MPa );ρ — 干空气的密度;t — 温度(℃),其中(273+t )为绝对温度(K )。
对于湿空气的密度可用下式计算(11-3)式中 ρ' — 湿空气的密度;p — 湿空气的全压力(MPa );φ — 空气的相对湿度(%);p b — 温度为t ℃时饱和空气中水蒸气的分压力(MPa )。
3.空气的粘性空气在流动过程中产生的内摩擦阻力的性质叫做空气的粘性,用粘度表示其大小。
空气的粘度受压力的影响很小,一般可忽略不计。
随温度的升高,空气分子热运动加剧,因此,空气的粘度随温度的升高而略有增加。
粘度随温度的变化关系见表11-2。
气体与液体和固体相比具有明显的压缩性和膨胀性。
空气的体积较易随压力和温度的变化而变化。
例如,对于大气压下的气体等温压缩,压力增大0.1 MPa ,体积减小一半。
流体的基本规律
空速管原理
总压管 + 静压管
山鹰高教机空速管特写
Mig-21空速管特写
高速流体流动的基本规律
• 高速飞行中,空气密度的变化很大, 必须考虑空气压缩性的影响。
不论是低速或高速飞行,空气流过飞机各处的 速度和压力发生改变
不同流动速度时,机翼前缘驻点空气密度增加的百分比
气流速度(km/h) 空气密度增加的 百分比(Δρ/ρ) 200 1.3% 400 5.3% 600 12.2% 800 22.3% 1000 45.8% 1200 56.5%
§2-2 流体的基本规律
• 相对运动原理 • 流体和连续性介质假设
• 流动流体的物理量和参数
相对运动原理
大气静止--飞机运动
等价于
飞机静止--空气运动
限定条件:
水平等速直线运动
流体和连续介质假设
将空气看作连续介质
地面
气体分子自由行程约6*10-8 m 着海拔高度 40km高度以下 的增加,空气 可以认为稠密大气、连续 密度变小,空 气分子的自由 120~150km 行程越来越大。 气体分子自由行程与飞行器相当 200km以上 气体分子自由行程有几公里
音波在流体中传播速度。
水中:1440 m/s; 海平面标准大气状态下空气中:340 m/s; 12km高空标准大气状态下空气中:295 m/s。
流体的可压缩性越大,音速越小; 而流体的可压缩性越小,音速越大; 音速a可以作为压缩性的指标。
音速(声速)
理论上推知,在绝热过程中,大气中的音速为
a 20 T
流体运动现象的观察和描述
空气在管道中流动的基本规律
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈥ 压强
A点的压强高于当地大气压 B点的压强低于当地大气压
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈦ 比容
单位重量的流体占有的容积,与重度的关系为: Υ·υ=1
气体的比容随温度和压力变化。
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈥ 压强
压强的大小可用垂直作用于管管壁单位面积上的压力来表示,即:
P=F/A
式中: P——压强[牛顿]; F——垂直作用于管壁的合力[牛顿]; A——管壁的总面积[米}。
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈥ 压强 压强的单位通常有三种表示方法。 第一种,用单位面积的压力表示。 1帕=1/9.81[千克/米2] 第二种,用液柱高度表示。
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
㈣ 粘滞性 流体在流动过程中,流体内部有相互约束的性质——流体的粘滞性 试验证明流体粘滞性的存在:
实验证明: 内摩擦力T的大小与流体种类有关;与流体的接触面积有关;与垂直 于板的速度梯度成正比,
第一节 空气在管道中流动的基本规律
一、 流体及其空气的物理性质
1个物理大气压=10336[千克/米2]。
1个工程大气压=10000[千克/米2]。
标准空气的密度ρ=1.2千克/米3 三种方法换算关系为:
1物理大气压=10336[千克/米2]=10336[毫米水柱]=760[毫米汞柱] 1工程大气压=10000[千克/米2]=10000[毫米水柱]
=736 [毫米汞柱]
空气在管道中流动的基本规律
第一章空气在管道中流动的基本规律工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些规律应用到有关实际工程中去。
涉及流体的工程技术很多,如水力电力,船舶航运,流体输送,粮食通风除尘与气力输送等,这些部门不仅流体种类各异,而且外界条件也有差异。
通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空气的流动将粉尘或粒状物料输送到指定地点。
由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计算通风除尘与气力输送系统的理论基础。
本章中心内容是工程流体力学基本知识,主要是空气的基本特性及运动时的基本规律。
1.1空气的基本特性及流动的基本概念流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。
而我们在通风除尘与气力输送中所接触到的流体(主要是空气)可视为连续体,即所谓连续性的假设。
这意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。
研究证明,按连续质点的概念所得出的结论与试验结果是很符合的。
因此在工程应用上,用连续函数来进行流体及运动的研究,并使问题大为简化。
1.1.1空气的基本特性1.密度和重度单位体积空气所具有的空气质量称为空气密度,用符号ρ表示。
其表达式为:????????????? ??????????? ???????????????? ???????????????? ?????????(1-1)式中:ρ——空气的密度(kg/m3);???????????m ——空气的质量(kg);V——空气的体积(m3)。
单位体积空气所具有的空气重量称为空气重度,用符号表示。
其表达式为:????????????? ???????????? ???????????????? ???????????????? ??????????(1-2)式中:——空气的重度(N/m3);?????????——空气的重量(N);——空气的体积(m3)。
空气动力学基础知识
O
X
描述飞机的姿态运动
Xa 速度V
3.速度坐标系(气流轴系)S-oxayaza
Za
原点o —飞机质心
oxa — 飞机速度V的方向 oza —飞机对称平面,垂直于oxa,指向机腹 oya —垂直于oxaza平面,向右
描述飞机的速度(轨迹)运动,
气流方向—力的方向(如吹风数据)
坐标系间可以相互转换,转换矩阵
成激波,受扰区限于扰源下游的马赫锥内
六、激波
气流以超音速流经物体时,流场中的受扰区情况与物体的形 状有关,超音速—强扰动,产生激波
激波实际上就是气流各参数的不连续分界面 在激波之前,气流不受扰动,气流速度的大小和方向不变, 各状态参数也是常数; 气流通过激波,其流速突然变小,温度、压强、密度等也突 然升高
它是在流体力学的基础上,随着航空工业和喷气推 进技术的发展而成长起来的一个学科。还涉及飞行 器性能、稳定性和操纵性等问题。
包括外流、内流。
遵循基本规律:质量守恒、牛顿第二定律,能量守恒、热
力学第一、第二定律等。
发展简史:
18世纪流体力学开始创建:伯努利公式、欧拉方程 等。
19世纪流体力学全面发展;形成粘性流体动力学、 空气-气体动力学:NS方程、雷诺方程等。
钝头物体的激波是脱体波(正激波),产生大波阻 楔形物体的激波是倾斜的(附体波 ),波阻较小,用于超音
速飞机的机头
七 膨胀波
伯努利静态公式
p1V2 C(常数)
2
不适用于高速流动情况 ,由
于空气高速流动时密度不是常数
由导伯努利方程动态过程,得出考虑到空气的可压缩性的 能量守恒方程:
(M2 1)dV dA VA
鸭式导弹 鸭翼,不受气流下洗的影响,改变气动特性
喷管中气体流动特性分析_郑玉
第22卷 第7期2006年7月甘肃科技Gansu S cience and Technolo gyVol.22 N o.7J uly. 2006喷管中气体流动特性分析郑 玉1,张永恒2(1兰州交通大学数理与软件工程学院,甘肃兰州730030;2.兰州交通大学机电工程学院,甘肃兰州730070)摘 要:分析各种工况下气流流经渐缩喷管和缩放喷管各个截面压力和流量的变化规律,比较两种喷管的基本特性,确定工作条件对喷管中气体流动的影响。
并介绍了实际气流曲线偏离理想气流曲线的因素。
关键词:喷管;压力;流量中图分类号:TQ 0281 引言喷管是利用气体的压力降低使气流加速的特殊管道。
它广泛应用于汽轮机等动力设备中,也应用于通风、空调等热力设备中。
例如在燃气轮机和汽轮机里都需要装设喷管,利用气体流经喷管获得高速气流推动叶轮叶片而作功。
喷管是使流体增速的变截面流道,气流在管道中流动时的状态变化情况和管道截面积的变化情况有密切关系。
由于喷管的长度较短,流速较高,气流从进入喷管到流出喷管的时间很短,因此可以认为喷管中气体流动是可逆的绝热流动过程。
喷管一般分为渐缩喷管和缩放喷管。
渐缩喷管如图1所示,缩放喷管如图2所示。
渐缩喷管沿流动方向截面积是逐渐减小的,气流作亚音速流动。
缩放喷管中气流在渐缩部分作亚音速流动,在渐放部分作超音速流动,在最小截面,即喉部是亚音速流动向超音速流动的转折点,这时流速等于当地音速。
本文通过分析空气流经渐缩喷管和缩放喷管各个截面压力变化和流量变化的规律,气流在喷管内完全膨胀,膨胀过度和膨胀不足等现象,分析研究两种喷管的特性以及工作条件的改变对喷管中气体流动的影响。
2 实验方法实验中必须测量四个变量,测压孔在喷管内不同截面位置X ,气流在该截面上的压力P ,背压P b ,(喷管出口外介质的压力),流量m 。
这些量分别用位移指针位置,可移动真空表,背压真空表以及U 型管压差计来显示。
实验是在一喷管实验台上进行,采用真空泵为动力,大气为气源。
民航概论教案
【复习提问】解释以下名词术语:飞行器、航空器、飞机、航程、宽体客机、窄体客机、干线客机、支线客机、大型客机、小型客机【导入新课】飞机的重量从几十公斤到几百吨不等,如此庞然大物能在空中自由翱翔而不掉下来,就是因为飞机在飞行中产生了足够的升力“托举”着飞机的缘故。
下面,我们就从气流的特性入手,来探讨飞机为什么能飞。
【讲授新课】项目一服务准备任务4 飞机升力的产生能力目标:能解释飞机升力产生原理。
知识目标:1.基本理解伯努利方程和升力公式;2.了解影响飞机升力的因素有哪些。
素质目标:培养学生认真、踏实的工作作风。
一、大^层1.大气层的结构大气层分为对流层(变温层)、平流层(同温层)、中间层、电离层(热层、暖层)和散逸层。
(1)对流层(变温层)——高度:从地球表面向上大约11Km——特点:高度增加,温度下降;风向风速经常变化;空气上下对流剧烈;气象多——对飞机飞行的影响:①温度变化对飞行的影响:飞机结冰,影响气动外形、对机载设备和人体也有危害;②风速、风向的变化及空气对流:使飞机颠簸等;③云、雨、雾、雪等影响能见度。
(2)平流层(同温层)——高度:对流层以上距地面35~40Km——特点:恒温,受地面影响小;水蒸气少,因此没有云、雨、雾、雪等气象;密度小,风向稳定,没有对流,空气水平流动。
中间层、电离层和散逸层与飞机飞行无关,我们不讲。
2.大气的物理性质(1)大气压力P——概念:空气的压强,物体单位面积上所承受的空气的垂直作用力。
——产生原因:一方面单位面积上方直到大气层顶部的空气柱的重量,另一方面是空气分子在做无规则热运动产生的撞击力量。
——方向及大小:方向,各个方向;大小,大气压二物体单位面积上所承受的大气气柱的重量。
⑵大气温度T——概念:空气的温度指空气的冷热程度;气体的温度越高,空气分子不规则运动的越快。
——单位:摄氏温度规定国际标准大气的意义:制定统一的标准3.标准大气规定的前提:以北半球中纬度地区的大气物理性质的平均值作为基础,符合理想气体方程——规定:海平面的高度为零,在海平面,空气的标准状态是:大气温度15 ℃,大气压为760毫米汞柱,密度为1.225千克/ 立方米,音速为340.29米/秒。
空气动力学期末复习题1
第一章一:绪论;1.1大气的重要物理参数 1、最早的飞行器是什么?——风筝2、绝对温度、摄氏温度和华氏温度之间的关系。
——95)32(⨯-T =T F C15.273+T =T C K6、摄氏温度、华氏温度和绝对温度的单位分别是什么?——C ο F ο K ο 二:1.1大气的重要物理参数1、海平面温度为15C ο时的大气压力为多少?——29.92inHg 、760mmHg 、1013.25hPa 。
3、下列不是影响空气粘性的因素是(A)A 、空气的流动位置B 、气流的流速C 、空气的粘性系数D 、与空气的接触面积4、假设其他条件不变,空气湿度大(B)A 、空气密度大,起飞滑跑距离长B 、空气密度小,起飞滑跑距离长C 、空气密度大,起飞滑跑距离短D 、空气密度小,起飞滑跑距离短 5、对于音速.如下说法正确的是: (C)A 、只要空气密度大,音速就大B 、只要空气压力大,音速就大C 、只要空气温度高.音速就大D 、只要空气密度小.音速就大6、大气相对湿度达到(100%)时的温度称为露点温度。
三:1.2 大气层的构造;1.3 国际标准大气1、大气层由内向外依次分为哪几层?——对流层、平流层、中间层、电离层和散逸层。
2、对流层的高度.在地球中纬度地区约为(D)A 、8公里。
B 、16公里。
C 、10公里。
D 、11公里3、现代民航客机一般巡航的大气层是(对流层顶层和平流层底层)。
4、云、雨、雪、霜等天气现象集中出现于(对流层)。
5、国际标准大气指定的依据是什么?——国际民航组织以北半球中纬度地区大气物理性质的平均值修正建立的。
6、国际标准大气规定海平面的大气参数是(B)A 、P=1013 psi T=15℃ ρ=1、225kg /m3B 、P=1013 hPA 、T=15℃ ρ=1、225 kg /m3C、P=1013 psi T=25℃ρ=1、225 kg/m3D、P=1013 hPA、T=25℃ρ=0、6601 kg/m37. 马赫数-飞机飞行速度与当地音速之比。
第一章3气体流动的基本方程
Q cd A
2
p
式中:cd— 流量系数, cd =α cv
α — 断面收缩系数, α =0.62~0.64
cv— 速度系数, cv =0.97 A— 小孔面积。
三、可压缩气体通过节流小孔的流量
如图所示,容器内的压力、 密度、温度分别为 p1 、ρ1 、T1 , 当气体以声速或近似声速通过节流 孔时,出口处的压力、密度、温度 分别为 p2 、ρ2 、T2 ,只要节流孔 前后压差 p1 –p2 足够大,气体的流 速就能达到声速,此时由于流速较 大, ρ ≠const ,所以应按绝热流 动处理。 ①阀门关闭, p1 = p2 ,v2 = 0, p2/p1 =1 ②打开阀门, ③使 p2 p2 v2 Qm = Qmmax v2 p2/ p1 < 1 Qm= ρ2 A v2
§1—4 气体流动的基本方程
一、质量守恒定律—连续性方程
• 流体在管道中作稳定流动时,同一时间内流过 管道任一截面的质量流量应相等,即:
ρ1v1A1 =ρ2v2A2 = Qm =const(注意ρ1≠ρ2)
在低速流动时,气体可认为是不可压缩的( ρ =常数), 则有:
v1A1 =v2A2 = Q =const
二、气体在管道中的流动特性
由流体力学知识可知,对于不可压缩流体(如液压油), 其速度的变化规律符合流量连续性方程或能量方程,断面增 加,流速减小,压力增大,但对于可压缩气体来说,流动情 况并非如此。当流速较低时,符合上述规律,当流速达到一 定值时,将会出现截然相反的变化规律,现分析如下:
对流量连续性方程和流管伯努利方程微分,并忽略高度 影响,最后整理得出面积与速度之间的关系式为:
273 T1 273 T1
L / min L / min
空气在管道中流动的基本规律
空气在管道中流动的基本规律Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT第一章空气在管道中流动的基本规律工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些规律应用到有关实际工程中去。
涉及流体的工程技术很多,如水力电力,船舶航运,流体输送,粮食通风除尘与气力输送等,这些部门不仅流体种类各异,而且外界条件也有差异。
通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空气的流动将粉尘或粒状物料输送到指定地点。
由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计算通风除尘与气力输送系统的理论基础。
本章中心内容是工程流体力学基本知识,主要是空气的基本特性及运动时的基本规律。
空气的基本特性及流动的基本概念流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。
而我们在通风除尘与气力输送中所接触到的流体(主要是空气)可视为连续体,即所谓连续性的假设。
这意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。
研究证明,按连续质点的概念所得出的结论与试验结果是很符合的。
因此在工程应用上,用连续函数来进行流体及运动的研究,并使问题大为简化。
1.1.1空气的基本特性1.密度和重度单位体积空气所具有的空气质量称为空气密度,用符号ρ表示。
其表达式为:(1-1)式中:ρ——空气的密度(kg/m3);m——空气的质量(kg);V——空气的体积(m3)。
单位体积空气所具有的空气重量称为空气重度,用符号表示。
其表达式为:(1-2)式中:——空气的重度(N/m3);——空气的重量(N);——空气的体积(m3)。
对于液体而言,重度随温度改变而变化。
而对于气体而言,气体的重度取决于温度和压强的改变。
由公式(1-2)两边除以,可以得出空气的密度与重度存在如下关系;(1-3)式中:——当地重力加速度,通常取(m/s2)。
雨水内排水系统中的水气流动规律
4.2 雨水内排水系统中的水、气流动规律
4.2.1 单斗雨水排水系统
4.排出管的水气流动状态 立管中的雨水进入横向的排出管时,水流速度的大小和
方向都剧烈变化,动能转变为势能,流速降低而水深增加, 在转弯处发生壅水,形成水跃,水流波动剧烈。
泄流量降低,是使立管下半部产生正压的主要原因,不 利于雨水的顺利排放。
碍,发生壅水现象。水流速度迅速减小的同时,水中的气体 逐渐从水中分离出来,聚集在管道断面的上部,形成气室, 气室逐渐增大,对管道中的水流液面形成一定的压力
此时水力坡度不仅是管道坡度一项,还有液面压力产生 的水力坡度,则水流为气水两相的有压非满流,有助于提高 埋地管的排水能力。
4.2 雨水内排水系统中的水、气流动规律
4.2.1 单斗雨水排水系统
敞开式排水系统中,排出管与埋地管的连接处设置检查井。 水流状态与检查井中的水流接入方式有关。
直冲型接入:进、出检查井的管道轴线在一条直线上。
水力现象: 高速水流以直冲型接入检查井时,速度骤减,其动能一
部分消耗于克服水头损失,另一部分在检查井中转变为位能, 使检查井水位升高。
排出管一般采用与立管同样的管径,也有的设计在首层 检查口下放大一号管径,以增大过流面积,使水流趋于平稳, 以缓解上述现象,避免检查井冒水。
4.2 雨水内排水系统中的水、气流动规律
4.2.1 单斗雨水排水系统
5.埋地管水气流动状态 密闭式排水系统中,埋地管上设置检查口,检查口放在
检查井内,称为检查口井。 高速水流挟带气体进入埋地横管后,受到下游水流的阻
掺气,管道内为满流。泄流量随天沟水位增大而增大,但水 位增大所提供的能量,不足以克服流量增大所造成的管内水
头损失,所以泄流量Qy基本不再增大,tB 点的水深为临界水 深hL1。
空气流动基本原理完整版PPT
p2= Ep01 + p1 = ρ12gZ12 + p1
此即空气静止时,位压与静压之间的关系。
4.位压的特点 (1)位压是相对某一基准面具有的能量,它随所选基准面 的变化而变化。 (2)位压是一种潜在的能量,不能像静压那样用仪表进行 直接测量。 (3)位压和静压可以相互转化,当空气由标高高的断面流 至标高低的断面时,位压转化为静压;反之,当空气由标高低 的断面流至标高高的断面时,静压转化为位压。
风流在风道中的流动可以看作是稳定流(流动参数不随时间变化的流动)。
由分子热运动产生的分子动能的一部分转化的能够对外做功的机械能叫静压能,用Ep表示(J/m3)。
g——取重力2加-速2度点,m为/s2;基准面(2-2断面的位能为零)。按下式计算1-1、
置换通风是利用空气密度差在室内形成的由下而上的通风气流。
,J/kg 此即单位质量可压缩空气在无其他动力源的风道中流动时的能 量方程。
同理,如有其他动力源并产生风压Lt,则单位质量可压缩空 气能量方程为:
,JL /R kgp 1 m p 2 v 2 1 2v 2 2 2 g (Z 1 Z 2)L t
设1m3空气流动过程中的能量损失为hR(Pa),则由体积和质
=
Pa
向性。 (3)尽量避免风流急转弯
=
Pa
则,孔口出流流量为
此式是位压的数学定义式。
vx——控制(点上2必)需的动气流压速度总即控大制风于速,零m/s。; 当作用面与流动方向有夹角时,其感
(4)风机吸入段的全压和静压均为负值,在风机入口处负压最大;
h式l 中= R, 受lQS2n到是垂的直于动射流压的空值间断将面面小积。于动压真值。故在测量动压时,应使感压孔
1
空气在管道中流动的基本规律
第一章空气在管道中流动的基本规律工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些规律应用到有关实际工程中去。
涉及流体的工程技术很多,如水力电力,船舶航运,流体输送,粮食通风除尘与气力输送等,这些部门不仅流体种类各异,而且外界条件也有差异。
通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空气的流动将粉尘或粒状物料输送到指定地点。
由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计算通风除尘与气力输送系统的理论基础。
本章中心内容是工程流体力学基本知识,主要是空气的基本特性及运动时的基本规律。
1.1 空气的基本特性及流动的基本概念流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。
而我们在通风除尘与气力输送中所接触到的流体(主要是空气)可视为连续体,即所谓连续性的假设。
这意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。
研究证明,按连续质点的概念所得出的结论与试验结果是很符合的。
因此在工程应用上,用连续函数来进行流体及运动的研究,并使问题大为简化。
1.1.1 空气的基本特性1.密度和重度单位体积空气所具有的空气质量称为空气密度,用符号ρ表示。
其表达式为:(1-1)式中:ρ——空气的密度(kg/m3);m——空气的质量(kg);V——空气的体积(m3)。
单位体积空气所具有的空气重量称为空气重度,用符号表示。
其表达式为:(1-2)式中:——空气的重度(N/m3);——空气的重量(N);——空气的体积(m3)。
对于液体而言,重度随温度改变而变化。
而对于气体而言,气体的重度取决于温度和压强的改变。
由公式(1-2)两边除以,可以得出空气的密度与重度存在如下关系;(1-3)式中:——当地重力加速度,通常取9.81(m/s2)。
2.温度温度是标志物体冷热程度的参数。
就空气而言,温度和空气分子热运动的平均动能有关。
工程热力学与传热学第7章气体的流动.
第七章 气体的流动(Gas Flow)第一节 气体在喷管和扩压管中的流动主题1:喷管和扩压管的断面变化规律一、稳定流动基本方程气体在喷管和扩压管中的流动过程作可逆绝热过程,气体流动过程所依据的基本方程式有:连续性方程式、能量方程式、及状态方程式。
1、连续性方程连续性方程反映了气体流动时质量守恒的规律。
定值=⋅=vf mg ω写成微分形式ggd v dv f df ωω-=7-1它给出了流速、截面面积和比容之间的关系。
连续性方程从质量守恒原理推得,所以普遍适用于稳定流动过程,即不论流体的性质如何(液体和气体),或过程是否可逆。
2、能量方程能量方程反映了气体流动时能量转换的规律。
由式(3-8),对于喷管和扩压管中的稳定绝热流动过程,212122)(21h h g g -=-ωω 写成微分形式dh d g -=221ω7-23、过程方程过程方程反映了气体流动时的状态变化规律。
对于绝热过程,在每一截面上,气体基本热力学状态参数之间的关系:定值=k pv写成微分式0=+vdv k p dp 7-3二、音速和马赫数音速是决定于介质的性质及介质状态的一个参数,在理想气体中音速可表示为kRT kpv a ==7-4因为音速的大小与气体的状态有关,所以音速是指某一状态的音速,称为当地音速。
流速与声速的比值称为马赫数:M ag=ω 7-5利用马赫数可将气体流动分类为:m 2g v 222图7-1管道稳定流动示意图亚声速流动:1<M a g <ω超声速流动:1>M a g >ω 临界流动: 1=Ma g =ω三、促使气体流速变化的条件 1、力学条件由式(3-5),对于开口系统可逆稳定流动过程,能量方程⎰-∆=21vdp h q 或 vdp dh q -=δ,式中0=q δ所以 vdp dh = 7-6 联合(7-2)和(7-6)vdp d g g -=ωω7-7由式7-7可见,气体在流动中流速变化与压力变化的符号始终相反,表明气流在流动中因膨胀而压力下降时,流速增加;如气流被压缩而压力升高时,则流速必降低。
3气体流动的基本方程
p1
v12 2
gh1
p2
v22 2
gh2
ghw
如果忽略位置高度的影响,则有:
p1
v12
2
p2
v22
2
hw
总压力损失计算式:
hw hl h
l d
v2 2g
v2 2g
pw hw (
hl
h ) (
l v2
d 2g
v2 )
2g
l d
v2
2
v2
声速流动:当 M=1 时,dA/ds=0,此时速度v不变
▪当v ≤50m/s 时,不必考虑压缩性。 ▪当v ≈140m/s 时,应考虑压缩性。 ▪在气动装置中,气体流动速度较低,且经过压缩,可以认为
声速是一个很重要的量,是判断流体压缩性影响的一个
标准,在气体力学中,低于声速和高于声速的流动具有本质 的区别,因此常以马赫数的比较来划分流体流动的类型:
M <0.5 M>5
不可压缩流体 超高声速流动
流体的压缩性大则扰动波传播的慢,声速就小,15℃ 度空气中声速为340m/s,水中的声速1449m/s。
对流量连续性方程和流管伯努利方程微分,并忽略高度 影响,最后整理得出面积与速度之间的关系式为:
1 dA (M 2 1) 1 dv
A ds
v ds
式中:m = v/a 是马赫数
1 dA (M 2 1) 1 dv
A ds
v ds
由上式可求出:
亚声速流动: 当 M <1 时,M 2 -1 为负值
dA dv ds ds 当A增大时,dA为正,则 dv 必为负,即 v 降低;反之当A 减小时,dA为负,则 dv 必为正,即 v 增大。
垂直管中气液两相气泡流的流动规律
垂直管中气液两相气泡流的流动规律流体在管道中的流动状态可分为两种类型。
当流体在管中流动时,若其质点始终沿着与管轴平行的方向作直线运动,质点之间互不混合。
因此,充满整个管的流体就如一层一层的同心圆筒在平行地流动,这种流动状态称为层流(laminarflow)或滞流(viscousflow)。
当流体在管道中流动时,流体质点除了沿着管道向前流动外,各质点的运动速度在大小和方向上都有时发生变化,于是质点间彼此碰撞并互相混合,这种流动状态称为湍流(turbulentflow)或紊流。
流型又称流态,即流体流动的形式或结构,两相流中相间界面的形状和分布状况,就构成了不同的两相流流型。
两相间存在的随机可变的相界面致使两相流动形式多种多样,十分复杂。
流型是影响两相流压力损失和传热特性的重要因素。
对两相流各种参数准确测量也往往依赖于对流型的了解。
流型的研究已有数十年的历史,但流型的分类尚未统一,甚至同一名称的流型在定义上也不一致。
气液两相流的流型划分。
传统的流动结构判别方法主要有两类采用实验方法作出流型图,采用可视化方法、射线衰减法、接触式探针法等;根据对流型转变机理得到转变关系式,利用现场的流动参数来确定具体的流型。
正确预测判别多相流的流动结构是困难的:理论上一个多相流系统的流动结构有无穷多个影响多相流流动结构的因素多且复杂研究现状:已进行了大量的测量、观察和分析研究工作,至今只有在两相流领域中得出了一些应用范围有限的流动结构判别图及相应的流型判别式,可以粗略地判别管道中两相流体的流动结构。
无论是流型图还是流型判别式都需依靠实验确定出流型转变条件,而且这些转变条件都是针对一定的流道,在一定的介质参数下,进行直接观察实验,用目测或摄影(高速摄影、高速闪光摄像等)来区分流型。
目测与摄影都带有主观因素,缺乏客观判断,尤其是在流型转变区域,更难分辨。
流型研究主要采用技术:对于不透明管道,采用高速x射线CT法,中子射线照相法(NeutronRa—diography)、加速器产生的阳极射线法,NMR(NuclearMagneticResonance,核磁共振)法。
1-2 流体在管内的流动
知识点1-2 流体在管内的流动⒈ 学习目的通过学习掌握流体在管内流动的宏观规律——流体流动的守恒定律,其中包括质量守恒定律——连续性方程式及机械能守恒定律——柏努利方程式,并学会运用这两个基本定律解决流体流动的有关计算问题。
⒉本知识点的重点本知识点以连续方程及柏努利方程为重点,掌握这两个方程式推导思路、适用条件、用柏努利方程解题的要点及注意事项。
通过实例加深对这两个方程式的理解。
正确确定衡算范围(上、下游截面的选取)及基准水平面是解题的关键。
3.本知识点的难点本知识点无难点,但在应用柏努利方程式计算流体流动问题时要特别注意流动的连续性及上、下游截面选取的正确性。
4.应完成的习题1-5.列管换热器的管束由121根φ25×2.5mm的钢管组成。
空气以9m/s速度在列管内流动。
空气在管内的平均温度为50℃、压强为196×103Pa(表压),当地大气压为98.7×103Pa。
试求:(1)空气的质量流量;(2)操作条件下空气的体积流量;(3)将(2)的计算结果换算为标准状况下空气的体积流量。
[答:(1)1.09kg/s;(2)0.343m3/s;(3)0.84m3/s]1-6.高位槽内的水面高于地面8m,水从108×4mm的管道中流出,管路出口高于地面2m。
在本题特定条件下,水流经系统的能量损失可按Σh f=6.5u2计算,其中u为水在管内的流速,m/s。
试计算:(1)A-A’截面处水的流速;(2)水的流量,以m3/h计。
[答:(1)2.9m/s;(2)82m3/h]1-7.20℃的水以2.5m/s的流速流经φ的水平管,此管以锥形管与另一53×3mm的水平管相连。
如本题附图所示,在锥形管两侧A、B处各插一垂直玻璃管以面察两截面的压强。
若水流经A、B两截面间的能量损失为1.5J/kg求两玻璃管的水面差(以mm计),并在本题附图中画出两玻璃管中水面的相对位置。
矿井通风与安全课后习题答案
矿井通风与安全课后习题解答1-1 地面空气的主要成分是什么?矿井空气与地面空气有何区别?N2(78%) O2(20.96%) CO2(0.03%) Ar(1%) 其他稀有气体(0.01%)地面空气进入井下后,因发生物理和化学两种变化,使其成分种类增多,各种成分浓度改变1-2 氧气有哪些性质?造成矿井空气中氧浓度减少的主要原因有哪些?物理性质:氧是无色、无臭、无味、无毒和无害的气体,比重为1.105,是人和其他动物呼吸所必需的物质化学性质:氧是很活跃的元素,易使其他物质氧化,并能助燃主要原因:煤、岩、坑木等缓慢氧化耗氧,煤层自燃,人员呼吸,爆破1-3 矿井空气中常见的有害气体有哪些?《规程》对矿井空气中有害气体的最高容许浓度有哪些具体现定?有害气体:CH4、CO2、CO、NO2、SO2、H2S、NH3、H2、N2体积浓度:CH4 ≤ 0.5% CO2 ≤ 0.5% CO ≤ 0.0024% NO2 ≤ 0.00025% SO2 ≤ 0.0005% H2S ≤ 0.00066%NH3 ≤ 0.004%1-4 CO有哪些性质?试说明CO对人体的危害以及矿井空气中CO的主要来源。
CO是无色、无臭、无味的有毒有害气体,比重为0.967,比空气轻,不易溶于水,当浓度在13~75%时可发生爆炸CO比O2与血色素亲和力大250~300倍,它能够驱逐人体血液中的氧气使血液缺氧致命井下爆炸工作、火区氧化、机械润滑油高温分解等都能产生CO1-5 什么是矿井气候?简述井下空气温度的变化规律。
矿井气候指井内的温度、湿度、风速等条件在金进风路线上:冬季,冷空气进入井下,冷气温与地温进行热交换,风流吸热,地温散热,因地温随深度增加且风流下行受压缩,故沿线气温逐渐升高;夏季,与冬季情况相反,沿线气温逐渐降低在采掘工作面内:由于物质氧化程度大,机电设备多,人员多以及爆破工作等,致使产生较大热量,对风流起着加热的作用,气温逐渐上升,而且常年变化不大1-6 简述风速对矿内气候的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章空气在管道中流动的基本规律工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些规律应用到有关实际工程中去。
涉及流体的工程技术很多,如水力电力,船舶航运,流体输送,粮食通风除尘与气力输送等,这些部门不仅流体种类各异,而且外界条件也有差异。
通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空气的流动将粉尘或粒状物料输送到指定地点。
由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计算通风除尘与气力输送系统的理论基础。
本章中心内容是工程流体力学基本知识,主要是空气的基本特性及运动时的基本规律。
1.1 空气的基本特性及流动的基本概念流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。
而我们在通风除尘与气力输送中所接触到的流体(主要是空气)可视为连续体,即所谓连续性的假设。
这意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。
研究证明,按连续质点的概念所得出的结论与试验结果是很符合的。
因此在工程应用上,用连续函数来进行流体及运动的研究,并使问题大为简化。
1.1.1 空气的基本特性1.密度和重度单位体积空气所具有的空气质量称为空气密度,用符号ρ表示。
其表达式为:(1-1)式中:ρ——空气的密度(kg/m3);m——空气的质量(kg);V——空气的体积(m3)。
单位体积空气所具有的空气重量称为空气重度,用符号表示。
其表达式为:(1-2)式中:——空气的重度(N/m3);——空气的重量(N);——空气的体积(m3)。
对于液体而言,重度随温度改变而变化。
而对于气体而言,气体的重度取决于温度和压强的改变。
由公式(1-2)两边除以,可以得出空气的密度与重度存在如下关系;(1-3)式中:——当地重力加速度,通常取9.81(m/s2)。
2.温度温度是标志物体冷热程度的参数。
就空气而言,温度和空气分子热运动的平均动能有关。
温度越高,空气分子热运动越强,空气分子热运动的平均动能也就越大。
空气的温度用测量温度的仪表测定。
为了标志温度的高低和保证温度测量的准确一致,就要规定一个衡量温度高低的标准尺子,称为温度标尺,简称温标。
目前国际上通用的温标主要有两种。
摄氏温标(t)——摄氏温标规定:在1标准大气压下,纯水开始结冰时的温度(冰点)定为0°C,纯水沸腾时的温度(沸点)定为1000C。
在0°C与此同时1000C之间划为100等分。
每一等分就是摄氏温度的1°C。
绝对温标(T)——绝对温标规定:把-273.15°C 作为零点,由此而测量出的温度就是绝对温度。
用绝对温标表示温度时,在度数的右边加上字母“K”。
绝对温标的每1K与摄氏温标每1°C在数值上完全相等。
1标准大气压下,纯水的冰点为273.15K(工程上取273K 已足够准确),沸点为373.15K。
摄氏温度和绝对温度之间的换算关系为:T=273+t°(K)3.压强气体或液体分子总是永远不停地作无规则的热运动。
在管道中这种无规则的热运动,使管道中的分子间不断地相互碰撞,这就形成了对管道的撞击力。
虽然每个分子对管道壁的碰撞是不连续的,致使撞击力也是不连续的,但是由于管道中有大量的分子,它们不停且非常密集地碰撞管壁,因此,从宏观上就产生了一个持续的有一定大小的压力。
正如雨点落到伞面上,虽然每个雨点对伞面的作用力并不是连续的,但是,大量密集的雨点落到伞面上,就能感觉到雨点对伞面形成了一个持续的压力。
对管壁而言,作用在管壁上压力的大小取决于单位时间内受到分子撞击的次数以及每次撞击力量的大小。
单位时间撞击次数越多,每次撞击的力量越大,作用于管壁的压力也越大。
压强的大小可用垂直作用于管壁单位面积上的压力来表示,即:(1-4)式中:P——压强(N/m2);F——垂直作用于管壁的合力(N);A——管壁的总面积(m2);。
压强的单位通常有三种表示方法。
第一种,用单位面积的压力表示。
在工程应用中,常以千克为力的单位,平方米作为面积的单位,于是压强的单位为kg/m2,有时也用kg/cm2作为压强的单位。
在国际单位制中压强单位采用[帕],即N/m2。
其换算关系为:1帕=1/9.81(kg/m2)第二种,用液柱高度表示。
在测定管道中空气的压强时,常采用里面装有水或水银的U型压力计为测量仪器,以液柱高度表示压强的大小。
如图1-1,液柱作用于管底的压力为液柱的重量,其大小为:(1-5)式中:——液体重度(kg/m3);——液柱高度(m);——受力面积(m2)。
压强为:(1-6)或:例如,水的重度为100(kg/m3),水银的重度为13600(kg/m3),试将P=1(kg/cm3)换算成相应的液柱高度。
用水银柱(汞柱)高度表示:=10000/13600=0.736(mHg)=736(mmHg)用水柱高度表示:=10000/100=1000(mmH2O)第三种,用大气压表示。
国际上,把海拔高度为零,空气温度为0°C,纬度为45°时测得的大气压强为1个标准大气压,它等于10336(kg/m2)。
工程上为简化起见,在不影响计算精度的前提下,取一个工程大气压为10000(kg/m2)。
工程中需要规定某一状态的空气为标准空气。
国际上把一个标准大气压,温度为0°C的空气状态规定为标准状态。
标准状态下的空气称为标准空气。
标准空气的密度为ρ=1.2(kg/m3)。
表示压强的三种方法换算关系为:1标准大气压=10336(kg/m2)=10336(mmH2O)=760(mmHg)1工程大气压=10000(kg/m2)=10000(mmH2O)=736(mmHg)为了满足工程上的需要,压强可按以下三种方法进行计算,如图1-2所示。
绝对压强——当计算压强以完全真空为基准算起,称为绝对压强,用P s 表示,其值恒为正。
相对压强——当计算压强以当地大气压(P a)为基准算起时,称为相对压强,用P r表示。
也称为表压(P b)。
真空度——当绝对压强低于大气压强时,其大于大气压的数值称为真空度。
需要说明的是,通风工程中所指的压力就是物理学中所指的压强。
由于通风工程中的压力(压强)相对较小,常用帕毫米水柱作单位,其换算关系为:1(mm/H2O)=1(kgf/m2)=9.81(P a)4.粘滞性流体流动时所表现出的内摩擦力(粘滞力)反映了流体抵抗外力使其产生变形的特性,这种特性称为粘滞性,简称粘性。
当我们把油和水倒在同一斜度的平面上,发现水的流动速度比油要快的多,这是因为油的粘滞性大于水的粘滞性。
流体的粘性大小用动力粘性系数(粘度)μ表示,单位为帕·秒(Pa·s)。
而动力粘性系数μ值越大,流体的粘性越大。
而动力粘性系数μ又随不同流体及温度和压力而变化。
通常粘性系数与压力的关系不大,在多数情况下可以忽略压力对液体粘性系数的影响。
流体的粘性系数与温度的关系已被大量的实验所证明。
即液体的粘性系数随温度的增加而下降,气体的粘性系数随温度而增加。
这种截然相反的结果可用液体的微观结构去阐明。
流体间摩擦的原因是分子间的内聚力、分子和壁面的附着力及分子不规则的热运动而引起的动量交换,使部分机械能变为热能。
这几种原因对液体与气体的影响是不同的。
因为液体分子间距增大,内聚力显著下降。
而液体分子动量交换的增加又不足以补偿,故其粘性系数下降。
对于气体则恰恰相反,其分子热运动对粘滞性的影响居主导地位,当温度增加时,分子热运动更为频繁,故气体粘性系数随温度而增加。
另外,在我们研究流体运动规律的时候,ρ和μ经常是以μ/ρ的形式相伴出现,这是为了实用方便,就把μ/ρ叫做运动粘性系数,用符号υ表示。
υ=μ/ρ(m2/s)(1-7)5.比容比容是单位重量的流体占有的容积,它是定量流体容积大小的状态参数。
它与重度的关系为:γ·υ=1 (1-8)气体的比容随温度和压力变化。
6.空气状态变化(理想气体状态方程)理想气体指一种假想的气体,它的质点是不占有容积的质点;分子之间没有内聚力。
虽然自然界中不存在真正的理想气体,但是为了研究流体的客观规律,从复杂的现象中抓住主要环节而忽略某些枝节,在工程应用所要求的精度内,使问题合理化,不至于引起太大的误差。
就此意义来讲,引出理想气体的概念是十分重要的。
在研究通风除尘与气力输送时,完全可以引用理想气体的定律。
空气在压力P或温度T 变化时能改变自身的体积V,具有显著的压缩性和膨胀性,因此,当温度、压力变化时,气体的密度ρ也随之变化。
它们之间的关系,服从于理想气体状态方程。
即:(1-9)或:(1-10)由带入上式得:对于单位质量的气体:(1-11)气体状态方程中的R称为气体状态常数,与气体状态无关。
在通风工程领域,R=288.4牛·米/千克·开(N·m/kg·K)。
1.1.2 与空气流动的有关概念空气是一种流体,其流动规律遵循流体力学的一般规律。
在介绍反映流体流动规律的流体力学基本方程之前,先介绍一些有关的流动的基本概念。
充满运动流体的空间称为流场。
用以表示流体运动规律的一切物理统称为运动参数,如速度v、加速度a、密度ρ、压力P和粘性力F等。
流体运动规律,就是在流场中流体的运动参数随时间及空间位置的分布和连续变化的规律。
1.稳定流与非稳定流如果流场中各点上流体的运动参数不随时间而变化,这种流动就称为稳定流。
如果运动参数不随时间而变化,这种流动就称为非稳定流。
对于稳定流:(1-12)对于非稳定流:(1-13)上述两种流动可用流体经过容器壁上的小孔泄流来说明(如图1-3)。
图1-3(a)表明:容器内有充水和溢流装置来保持水位恒定,流体经孔口的流速及压力不随时间变化而变化,流出的形状为一不变的射流,这就是稳定流。
图1-3(b)表明:由于没有一定的装置来保持容器中水位恒定,当孔口泄流时水位将渐渐下降。
因此,其速度及压力都将随时间而变化,流出的形状也将是随时间不同而改变的流,这就是属于非稳定流在通风除尘网路中,如果网路阻力不变,风机转速不变,则空气的流动可视为稳定流动。
在气力输送网路中,如果提升管的输送量不变,管内空气流动也可以视为稳定流动。
2.迹线与流线(1)迹线流场中流体质点在一段时间内运动的轨迹称为迹线。
(2)流线流场中某一瞬时的一条空间曲线,在该线上各点的流体质点所具有的速度方向与该点的切线方向重合。
3.流管与流束(1)流管流场中画一条封闭的曲线。
经过曲线的每一点作流线由这些流线所围成的管子称为流管。
非稳定流时流管形状随时间变化;稳定流时流管不随时间而变化。
由于流管的表面由流线所组成,根据流线的定义流体不能穿出或穿入流体的表面。