Intertranscriber reliability of prosodic labeling on telephone conversation using tobi

合集下载

半导体一些术语的中英文对照

半导体一些术语的中英文对照

半导体一些术语的中英文对照离子注入机ion implanterLSS理论Lindhand Scharff and Schiott theory 又称“林汉德-斯卡夫—斯高特理论"。

沟道效应channeling effect射程分布range distribution深度分布depth distribution投影射程projected range阻止距离stopping distance阻止本领stopping power标准阻止截面standard stopping cross section 退火annealing激活能activation energy等温退火isothermal annealing激光退火laser annealing应力感生缺陷stress—induced defect择优取向preferred orientation制版工艺mask—making technology图形畸变pattern distortion初缩first minification精缩final minification母版master mask铬版chromium plate干版dry plate乳胶版emulsion plate透明版see—through plate高分辨率版high resolution plate,HRP超微粒干版plate for ultra-microminiaturization 掩模mask掩模对准mask alignment对准精度alignment precision光刻胶photoresist又称“光致抗蚀剂"。

负性光刻胶negative photoresist正性光刻胶positive photoresist无机光刻胶inorganic resist多层光刻胶multilevel resist电子束光刻胶electron beam resistX射线光刻胶X-ray resist刷洗scrubbing甩胶spinning涂胶photoresist coating后烘postbaking光刻photolithographyX射线光刻X—ray lithography电子束光刻electron beam lithography离子束光刻ion beam lithography深紫外光刻deep—UV lithography光刻机mask aligner投影光刻机projection mask aligner曝光exposure接触式曝光法contact exposure method接近式曝光法proximity exposure method光学投影曝光法optical projection exposure method 电子束曝光系统electron beam exposure system分步重复系统step—and—repeat system显影development线宽linewidth去胶stripping of photoresist氧化去胶removing of photoresist by oxidation等离子[体]去胶removing of photoresist by plasma 刻蚀etching干法刻蚀dry etching反应离子刻蚀reactive ion etching,RIE各向同性刻蚀isotropic etching各向异性刻蚀anisotropic etching反应溅射刻蚀reactive sputter etching离子铣ion beam milling又称“离子磨削”。

TCSM

TCSM
∗ Jacobs
Raed Mesleh∗ , Irina Stefan∗ , Harald Haas∗‡ and Peter M. Grant‡
I. I NTRODUCTION Wireless radio frequency channel generally poses several challenges on the system design. The physical layer of such systems has to deal with multipath propagation, interference and limited available spectrum. MIMO (multiple-inputmultiple-output) transmission technology constructively exploits multipath propagation to provide higher data throughput for the same given bandwidth [1]. One of the most promising MIMO techniques to achieve the expected high data rate is the proposed V-BLAST (vertical Bell Labs layered space-time) architecture [2]. In V-BLAST, the information bit stream is separated in substreams. All the symbols of a certain stream are transmitted through the same antenna (one stream per antenna). The substreams are cochannel signals, that is, they have the same frequency band. Therefore, as compared to a SISO (single-input-single-output)

电催化二氧化碳还原催化剂、电解液、反应器和隔膜研究进展

电催化二氧化碳还原催化剂、电解液、反应器和隔膜研究进展

物 理 化 学 学 报Acta Phys. -Chim. Sin. 2023, 39 (12), 2302037 (1 of 24)Received: February 23, 2023; Revised: March 28, 2023; Accepted: March 28, 2023; Published online: April 4, 2023. *Correspondingauthor.Email:**************.cn;Tel:+86-21-67792379;Fax:+86-21-67792159.The project was supported by the “Scientific and Technical Innovation Action Plan” Hong Kong, Macao and Taiwan Science & Technology Cooperation Project of Shanghai Science and Technology Committee, China (19JC1410500) and the National Natural Science Foundation of China (91645110). 上海市“科技创新行动计划”港澳台科技合作(19JC1410500)和国家自然科学基金(91645110)资助项目© Editorial office of Acta Physico-Chimica Sinica[Review]doi: 10.3866/PKU.WHXB202302037Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction ReactionLuwei Peng 1,3, Yang Zhang 1, Ruinan He 1, Nengneng Xu 1, Jinli Qiao 1,2,*1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering,Donghua University, Shanghai 201620, China.2 Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.3 Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong 999077, China.Abstract: Human activities primarily rely on the consumption of the fossil energy, which has led to an energy crisis and environmental pollution. Since the industrial revolution, the atmospheric CO 2 concentration has been continuously increasing, and reached 414 × 10−6 in 2020, which has resulted in global warming and glacial ablation. Converting CO 2 into high-value-added fuels and chemicals can alleviate environmental problems, enable the storage of intermittent renewable energy (wind and solar power), and provide a new route for fuel synthesis. The electrochemical CO 2 reduction reaction (CO 2RR) has attracted extensive attention owing to its mild reaction conditions, controllability, environmental friendliness, and the ability to generate various products. There are four key steps in a typical CO 2RR: (1) charge transport (electrons are transported from the conductive substrate to the electrocatalyst); (2) surface conversion(CO 2 is adsorbed and activated on the surface of the catalyst); (3) charge transfer (electrons are transferred from the catalyst surface to the CO 2 intermediate); and (4) mass transfer (CO 2 diffuses from the electrolyte to the catalyst surface, and the products diffuse in the reverse pathway). The former two steps depend on the type of membrane and the development of highly conductive catalysts with abundant active sites, while the latter two steps rely on the properties of the electrolyte and the optimization of the electrolytic cell configuration. To meet the high-selectivity (> 90%), superior-activity (> 200 mA ∙cm −2), and excellent-stability (> 1000 h) requirements of the CO 2RR as per industrial standards, the design of efficient electrocatalysts has been a key research area in recent decades. However, other factors have rarely been investigated. In this review, we systematically summarize the development of electrocatalysts, effect of the electrolyte, progress in the development of the reactor, and type of membrane in the CO 2RR from industrial and commercial perspectives. First, we discuss how first-principles calculations can be used to determine the chemical rate for CO 2 reduction. Additionally, we discuss how in situ or operando techniques such as X-ray absorption measurements can reveal the theoretically proposed reaction pathway. The microenvironment (e.g., pH, anions, and cations) at the three-phase interface plays a vital role in achieving a high CO 2RR performance, which can be controlled by changing the electrolyte properties. Further, the suitable design and development of the reactor is very critical for commercial CO 2RR technology because CO 2RR reactors must efficiently utilize the CO 2 feedstock to minimize the cost of upstream CO 2 capture. Finally, different types of membranes based on different ion-transfer mechanisms can affect the CO 2RR performance. The development opportunities and challenges toward the practical application of the CO 2RR are also highlighted. Key Words: Electrochemical CO 2 reduction reaction; Electrocatalyst; Electrolyte; Membrane; Reactor;Industrialization电催化二氧化碳还原催化剂、电解液、反应器和隔膜研究进展彭芦苇1,3,张杨1,何瑞楠1,徐能能1,乔锦丽1,2,*1东华大学环境科学与工程学院,纤维材料改性国家重点实验室,上海 2016202上海市污染控制与生态安全研究院,上海 2000923香港理工大学应用物理系,香港999077摘要:人类社会的正常运转非常依赖化石能源,然而化石能源的消耗已导致能源危机和环境污染,同时空气中CO 2的含量从工业革命以来一直攀升。

表面分子印迹法制备克仑特罗印迹材料及其分子识别特性

表面分子印迹法制备克仑特罗印迹材料及其分子识别特性
相色谱 串联 质谱 法[] 7 等 - 9 在检 测过程 中 .样 品净化技 术是 制约 复杂基 质 样 品高灵 敏度 检测 的瓶颈 .常 用 的液液分 配 、固相
东 京 化 成 工 业 株 式 会 社 公 司 : 甲 基 丙 烯 酸 ( A) l ea 公 司 :克 仑 特 罗 、莱 克 多 巴 MA :Af A sr a 胺 、沙 丁胺 醇 :中国药 品生 物制 品检定 所 ;其 它试 剂 均为市 售分 析纯试 剂
1 h。 2
平 衡 后 ,离 心 。测 定 上 清 液 浓 度 ,弃 上 清 。加 入
5 L洗 脱 液 ,涡 流 振 荡 洗 脱 一 定 时 间后 ,吸取 溶 m
液 。测定洗 脱 液 中克 仑特 罗浓 度 ,计 算洗 脱率 。
1 . 克 仑特 罗表 面分子 印迹材 料 结合选择 性 实验 .5 3 选择 莱 克多 巴胺 、沙 丁胺 醇 为对照 ,考察 印迹 材料 对 克仑 特罗 的分 子识 别特 性 。分 别将 3 m 0 L浓 度 为 10 m / 克 多 巴胺 、沙 丁胺 醇 水 溶 液加 至 0 0 gL莱 5 mL离 心 管 中 .然 后 在 每 个 离 心 管 中分 别 加 入 0 30 0 mg的分子 印迹 材料 .振 荡达 到吸 附平衡 后 。离 心 取上 清液 测 定 药物 浓 度 ,按 式 ( )计 算 印 迹材 1
物薄 层 中留下 了大量 匹配 克仑 特罗 的空穴 .形成 了
ห้องสมุดไป่ตู้
溶 液 .过 膜 后 用 U L P C测 定 克 仑 特 罗 浓 度 ,按 式
( )计算 克 仑 特 罗 的 吸 附量 Q ( 儋) 1 mg ,并 绘 制 吸
附量 时 间关 系 曲线 .考察 分子 印迹 材料 与克仑 特 罗 的结 合速 度 ,确定 吸附 剂达 到平衡 的 时间 。

IEC-61854架空线.隔离层的要求和检验

IEC-61854架空线.隔离层的要求和检验

NORMEINTERNATIONALECEI IEC INTERNATIONALSTANDARD 61854Première éditionFirst edition1998-09Lignes aériennes –Exigences et essais applicables aux entretoisesOverhead lines –Requirements and tests for spacersCommission Electrotechnique InternationaleInternational Electrotechnical Commission Pour prix, voir catalogue en vigueurFor price, see current catalogue© IEC 1998 Droits de reproduction réservés Copyright - all rights reservedAucune partie de cette publication ne peut être reproduite niutilisée sous quelque forme que ce soit et par aucunprocédé, électronique ou mécanique, y compris la photo-copie et les microfilms, sans l'accord écrit de l'éditeur.No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical,including photocopying and microfilm, without permission in writing from the publisher.International Electrotechnical Commission 3, rue de Varembé Geneva, SwitzerlandTelefax: +41 22 919 0300e-mail: inmail@iec.ch IEC web site http: //www.iec.chCODE PRIX PRICE CODE X– 2 –61854 © CEI:1998SOMMAIREPages AVANT-PROPOS (6)Articles1Domaine d'application (8)2Références normatives (8)3Définitions (12)4Exigences générales (12)4.1Conception (12)4.2Matériaux (14)4.2.1Généralités (14)4.2.2Matériaux non métalliques (14)4.3Masse, dimensions et tolérances (14)4.4Protection contre la corrosion (14)4.5Aspect et finition de fabrication (14)4.6Marquage (14)4.7Consignes d'installation (14)5Assurance de la qualité (16)6Classification des essais (16)6.1Essais de type (16)6.1.1Généralités (16)6.1.2Application (16)6.2Essais sur échantillon (16)6.2.1Généralités (16)6.2.2Application (16)6.2.3Echantillonnage et critères de réception (18)6.3Essais individuels de série (18)6.3.1Généralités (18)6.3.2Application et critères de réception (18)6.4Tableau des essais à effectuer (18)7Méthodes d'essai (22)7.1Contrôle visuel (22)7.2Vérification des dimensions, des matériaux et de la masse (22)7.3Essai de protection contre la corrosion (22)7.3.1Composants revêtus par galvanisation à chaud (autres queles fils d'acier galvanisés toronnés) (22)7.3.2Produits en fer protégés contre la corrosion par des méthodes autresque la galvanisation à chaud (24)7.3.3Fils d'acier galvanisé toronnés (24)7.3.4Corrosion causée par des composants non métalliques (24)7.4Essais non destructifs (24)61854 © IEC:1998– 3 –CONTENTSPage FOREWORD (7)Clause1Scope (9)2Normative references (9)3Definitions (13)4General requirements (13)4.1Design (13)4.2Materials (15)4.2.1General (15)4.2.2Non-metallic materials (15)4.3Mass, dimensions and tolerances (15)4.4Protection against corrosion (15)4.5Manufacturing appearance and finish (15)4.6Marking (15)4.7Installation instructions (15)5Quality assurance (17)6Classification of tests (17)6.1Type tests (17)6.1.1General (17)6.1.2Application (17)6.2Sample tests (17)6.2.1General (17)6.2.2Application (17)6.2.3Sampling and acceptance criteria (19)6.3Routine tests (19)6.3.1General (19)6.3.2Application and acceptance criteria (19)6.4Table of tests to be applied (19)7Test methods (23)7.1Visual examination (23)7.2Verification of dimensions, materials and mass (23)7.3Corrosion protection test (23)7.3.1Hot dip galvanized components (other than stranded galvanizedsteel wires) (23)7.3.2Ferrous components protected from corrosion by methods other thanhot dip galvanizing (25)7.3.3Stranded galvanized steel wires (25)7.3.4Corrosion caused by non-metallic components (25)7.4Non-destructive tests (25)– 4 –61854 © CEI:1998 Articles Pages7.5Essais mécaniques (26)7.5.1Essais de glissement des pinces (26)7.5.1.1Essai de glissement longitudinal (26)7.5.1.2Essai de glissement en torsion (28)7.5.2Essai de boulon fusible (28)7.5.3Essai de serrage des boulons de pince (30)7.5.4Essais de courant de court-circuit simulé et essais de compressionet de traction (30)7.5.4.1Essai de courant de court-circuit simulé (30)7.5.4.2Essai de compression et de traction (32)7.5.5Caractérisation des propriétés élastiques et d'amortissement (32)7.5.6Essais de flexibilité (38)7.5.7Essais de fatigue (38)7.5.7.1Généralités (38)7.5.7.2Oscillation de sous-portée (40)7.5.7.3Vibrations éoliennes (40)7.6Essais de caractérisation des élastomères (42)7.6.1Généralités (42)7.6.2Essais (42)7.6.3Essai de résistance à l'ozone (46)7.7Essais électriques (46)7.7.1Essais d'effet couronne et de tension de perturbations radioélectriques..467.7.2Essai de résistance électrique (46)7.8Vérification du comportement vibratoire du système faisceau/entretoise (48)Annexe A (normative) Informations techniques minimales à convenirentre acheteur et fournisseur (64)Annexe B (informative) Forces de compression dans l'essai de courantde court-circuit simulé (66)Annexe C (informative) Caractérisation des propriétés élastiques et d'amortissementMéthode de détermination de la rigidité et de l'amortissement (70)Annexe D (informative) Contrôle du comportement vibratoire du systèmefaisceau/entretoise (74)Bibliographie (80)Figures (50)Tableau 1 – Essais sur les entretoises (20)Tableau 2 – Essais sur les élastomères (44)61854 © IEC:1998– 5 –Clause Page7.5Mechanical tests (27)7.5.1Clamp slip tests (27)7.5.1.1Longitudinal slip test (27)7.5.1.2Torsional slip test (29)7.5.2Breakaway bolt test (29)7.5.3Clamp bolt tightening test (31)7.5.4Simulated short-circuit current test and compression and tension tests (31)7.5.4.1Simulated short-circuit current test (31)7.5.4.2Compression and tension test (33)7.5.5Characterisation of the elastic and damping properties (33)7.5.6Flexibility tests (39)7.5.7Fatigue tests (39)7.5.7.1General (39)7.5.7.2Subspan oscillation (41)7.5.7.3Aeolian vibration (41)7.6Tests to characterise elastomers (43)7.6.1General (43)7.6.2Tests (43)7.6.3Ozone resistance test (47)7.7Electrical tests (47)7.7.1Corona and radio interference voltage (RIV) tests (47)7.7.2Electrical resistance test (47)7.8Verification of vibration behaviour of the bundle-spacer system (49)Annex A (normative) Minimum technical details to be agreed betweenpurchaser and supplier (65)Annex B (informative) Compressive forces in the simulated short-circuit current test (67)Annex C (informative) Characterisation of the elastic and damping propertiesStiffness-Damping Method (71)Annex D (informative) Verification of vibration behaviour of the bundle/spacer system (75)Bibliography (81)Figures (51)Table 1 – Tests on spacers (21)Table 2 – Tests on elastomers (45)– 6 –61854 © CEI:1998 COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE––––––––––LIGNES AÉRIENNES –EXIGENCES ET ESSAIS APPLICABLES AUX ENTRETOISESAVANT-PROPOS1)La CEI (Commission Electrotechnique Internationale) est une organisation mondiale de normalisation composéede l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Normes internationales.Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.2)Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesuredu possible un accord international sur les sujets étudiés, étant donné que les Comités nationaux intéressés sont représentés dans chaque comité d’études.3)Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiéscomme normes, rapports techniques ou guides et agréés comme tels par les Comités nationaux.4)Dans le but d'encourager l'unification internationale, les Comités nationaux de la CEI s'engagent à appliquer defaçon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cette dernière.5)La CEI n’a fixé aucune procédure concernant le marquage comme indication d’approbation et sa responsabilitén’est pas engagée quand un matériel est déclaré conforme à l’une de ses normes.6) L’attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent fairel’objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.La Norme internationale CEI 61854 a été établie par le comité d'études 11 de la CEI: Lignes aériennes.Le texte de cette norme est issu des documents suivants:FDIS Rapport de vote11/141/FDIS11/143/RVDLe rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.L’annexe A fait partie intégrante de cette norme.Les annexes B, C et D sont données uniquement à titre d’information.61854 © IEC:1998– 7 –INTERNATIONAL ELECTROTECHNICAL COMMISSION––––––––––OVERHEAD LINES –REQUIREMENTS AND TESTS FOR SPACERSFOREWORD1)The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprisingall national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.2)The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, aninternational consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.3)The documents produced have the form of recommendations for international use and are published in the formof standards, technical reports or guides and they are accepted by the National Committees in that sense.4)In order to promote international unification, IEC National Committees undertake to apply IEC InternationalStandards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.5)The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for anyequipment declared to be in conformity with one of its standards.6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subjectof patent rights. The IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61854 has been prepared by IEC technical committee 11: Overhead lines.The text of this standard is based on the following documents:FDIS Report on voting11/141/FDIS11/143/RVDFull information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.Annex A forms an integral part of this standard.Annexes B, C and D are for information only.– 8 –61854 © CEI:1998LIGNES AÉRIENNES –EXIGENCES ET ESSAIS APPLICABLES AUX ENTRETOISES1 Domaine d'applicationLa présente Norme internationale s'applique aux entretoises destinées aux faisceaux de conducteurs de lignes aériennes. Elle recouvre les entretoises rigides, les entretoises flexibles et les entretoises amortissantes.Elle ne s'applique pas aux espaceurs, aux écarteurs à anneaux et aux entretoises de mise à la terre.NOTE – La présente norme est applicable aux pratiques de conception de lignes et aux entretoises les plus couramment utilisées au moment de sa rédaction. Il peut exister d'autres entretoises auxquelles les essais spécifiques décrits dans la présente norme ne s'appliquent pas.Dans de nombreux cas, les procédures d'essai et les valeurs d'essai sont convenues entre l'acheteur et le fournisseur et sont énoncées dans le contrat d'approvisionnement. L'acheteur est le mieux à même d'évaluer les conditions de service prévues, qu'il convient d'utiliser comme base à la définition de la sévérité des essais.La liste des informations techniques minimales à convenir entre acheteur et fournisseur est fournie en annexe A.2 Références normativesLes documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite, constituent des dispositions valables pour la présente Norme internationale. Au moment de la publication, les éditions indiquées étaient en vigueur. Tout document normatif est sujet à révision et les parties prenantes aux accords fondés sur la présente Norme internationale sont invitées à rechercher la possibilité d'appliquer les éditions les plus récentes des documents normatifs indiqués ci-après. Les membres de la CEI et de l'ISO possèdent le registre des Normes internationales en vigueur.CEI 60050(466):1990, Vocabulaire Electrotechnique International (VEI) – Chapitre 466: Lignes aériennesCEI 61284:1997, Lignes aériennes – Exigences et essais pour le matériel d'équipementCEI 60888:1987, Fils en acier zingué pour conducteurs câblésISO 34-1:1994, Caoutchouc vulcanisé ou thermoplastique – Détermination de la résistance au déchirement – Partie 1: Eprouvettes pantalon, angulaire et croissantISO 34-2:1996, Caoutchouc vulcanisé ou thermoplastique – Détermination de la résistance au déchirement – Partie 2: Petites éprouvettes (éprouvettes de Delft)ISO 37:1994, Caoutchouc vulcanisé ou thermoplastique – Détermination des caractéristiques de contrainte-déformation en traction61854 © IEC:1998– 9 –OVERHEAD LINES –REQUIREMENTS AND TESTS FOR SPACERS1 ScopeThis International Standard applies to spacers for conductor bundles of overhead lines. It covers rigid spacers, flexible spacers and spacer dampers.It does not apply to interphase spacers, hoop spacers and bonding spacers.NOTE – This standard is written to cover the line design practices and spacers most commonly used at the time of writing. There may be other spacers available for which the specific tests reported in this standard may not be applicable.In many cases, test procedures and test values are left to agreement between purchaser and supplier and are stated in the procurement contract. The purchaser is best able to evaluate the intended service conditions, which should be the basis for establishing the test severity.In annex A, the minimum technical details to be agreed between purchaser and supplier are listed.2 Normative referencesThe following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication of this standard, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.IEC 60050(466):1990, International Electrotechnical vocabulary (IEV) – Chapter 466: Overhead linesIEC 61284:1997, Overhead lines – Requirements and tests for fittingsIEC 60888:1987, Zinc-coated steel wires for stranded conductorsISO 34-1:1994, Rubber, vulcanized or thermoplastic – Determination of tear strength – Part 1: Trouser, angle and crescent test piecesISO 34-2:1996, Rubber, vulcanized or thermoplastic – Determination of tear strength – Part 2: Small (Delft) test piecesISO 37:1994, Rubber, vulcanized or thermoplastic – Determination of tensile stress-strain properties– 10 –61854 © CEI:1998 ISO 188:1982, Caoutchouc vulcanisé – Essais de résistance au vieillissement accéléré ou à la chaleurISO 812:1991, Caoutchouc vulcanisé – Détermination de la fragilité à basse températureISO 815:1991, Caoutchouc vulcanisé ou thermoplastique – Détermination de la déformation rémanente après compression aux températures ambiantes, élevées ou bassesISO 868:1985, Plastiques et ébonite – Détermination de la dureté par pénétration au moyen d'un duromètre (dureté Shore)ISO 1183:1987, Plastiques – Méthodes pour déterminer la masse volumique et la densitérelative des plastiques non alvéolairesISO 1431-1:1989, Caoutchouc vulcanisé ou thermoplastique – Résistance au craquelage par l'ozone – Partie 1: Essai sous allongement statiqueISO 1461,— Revêtements de galvanisation à chaud sur produits finis ferreux – Spécifications1) ISO 1817:1985, Caoutchouc vulcanisé – Détermination de l'action des liquidesISO 2781:1988, Caoutchouc vulcanisé – Détermination de la masse volumiqueISO 2859-1:1989, Règles d'échantillonnage pour les contrôles par attributs – Partie 1: Plans d'échantillonnage pour les contrôles lot par lot, indexés d'après le niveau de qualité acceptable (NQA)ISO 2859-2:1985, Règles d'échantillonnage pour les contrôles par attributs – Partie 2: Plans d'échantillonnage pour les contrôles de lots isolés, indexés d'après la qualité limite (QL)ISO 2921:1982, Caoutchouc vulcanisé – Détermination des caractéristiques à basse température – Méthode température-retrait (essai TR)ISO 3417:1991, Caoutchouc – Détermination des caractéristiques de vulcanisation à l'aide du rhéomètre à disque oscillantISO 3951:1989, Règles et tables d'échantillonnage pour les contrôles par mesures des pourcentages de non conformesISO 4649:1985, Caoutchouc – Détermination de la résistance à l'abrasion à l'aide d'un dispositif à tambour tournantISO 4662:1986, Caoutchouc – Détermination de la résilience de rebondissement des vulcanisats––––––––––1) A publierThis is a preview - click here to buy the full publication61854 © IEC:1998– 11 –ISO 188:1982, Rubber, vulcanized – Accelerated ageing or heat-resistance testsISO 812:1991, Rubber, vulcanized – Determination of low temperature brittlenessISO 815:1991, Rubber, vulcanized or thermoplastic – Determination of compression set at ambient, elevated or low temperaturesISO 868:1985, Plastics and ebonite – Determination of indentation hardness by means of a durometer (Shore hardness)ISO 1183:1987, Plastics – Methods for determining the density and relative density of non-cellular plasticsISO 1431-1:1989, Rubber, vulcanized or thermoplastic – Resistance to ozone cracking –Part 1: static strain testISO 1461, — Hot dip galvanized coatings on fabricated ferrous products – Specifications1)ISO 1817:1985, Rubber, vulcanized – Determination of the effect of liquidsISO 2781:1988, Rubber, vulcanized – Determination of densityISO 2859-1:1989, Sampling procedures for inspection by attributes – Part 1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-lot inspectionISO 2859-2:1985, Sampling procedures for inspection by attributes – Part 2: Sampling plans indexed by limiting quality level (LQ) for isolated lot inspectionISO 2921:1982, Rubber, vulcanized – Determination of low temperature characteristics –Temperature-retraction procedure (TR test)ISO 3417:1991, Rubber – Measurement of vulcanization characteristics with the oscillating disc curemeterISO 3951:1989, Sampling procedures and charts for inspection by variables for percent nonconformingISO 4649:1985, Rubber – Determination of abrasion resistance using a rotating cylindrical drum deviceISO 4662:1986, Rubber – Determination of rebound resilience of vulcanizates–––––––––1) To be published.。

溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展

溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展

第53卷第4期2024年4月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.53㊀No.4April,2024溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展张庆文,单东明,张㊀虎,丁㊀然(吉林大学电子科学与工程学院,集成光电子学国家重点实验室,长春㊀130012)摘要:近年来,有机-无机杂化卤化铅钙钛矿材料因其出色的光电特性在国际上备受瞩目,并已成功应用于太阳能光伏㊁光电探测㊁电致发光等多个领域㊂目前绝大部分器件研究都集中在钙钛矿多晶材料上,但钙钛矿单晶材料拥有更低的缺陷态密度㊁更高的载流子迁移率㊁更长的载流子复合寿命㊁更宽的光吸收范围,以及更高的稳定性等优异的性质,可有效减少载流子传输过程中的散射损失,以及在晶界处的非辐射复合,并抑制离子迁移所引起的迟滞效应㊂采用钙钛矿单晶薄膜作为器件有源层有望制备性能更高效且更稳定的钙钛矿光电器件㊂目前,已报道的多种钙钛矿单晶薄膜制备方法包括溶液空间限域法㊁化学气相沉积法㊁自上而下加工法等,其中溶液空间限域法的发展和应用最为广泛㊂本文聚焦利用溶液空间限域法制备高质量钙钛矿单晶薄膜的相关方法,以及钙钛矿单晶薄膜在光电探测器㊁太阳能电池㊁场效应晶体管和发光二极管等相关器件应用中的研究进展,并对钙钛矿单晶薄膜及其光电器件的未来发展趋势进行了展望㊂关键词:钙钛矿半导体材料;溶液空间限域法;钙钛矿单晶薄膜;光电子器件;单晶薄膜生长中图分类号:O78;O484;TN36㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2024)04-0572-13Research Progress on Preparation of Organic-Inorganic Hybrid Lead Halide Perovskite Single-Crystalline Thin-Films by Solution-Processed Space-Confined Method and Their Device ApplicationsZHANG Qingwen ,SHAN Dongming ,ZHANG Hu ,DING Ran(State Key Laboratory of Integrated Optoelectronics,College of Electronic Science and Engineering,Jilin University,Changchun 130012,China)㊀㊀收稿日期:2023-11-20㊀㊀基金项目:国家重点研发计划青年科学家项目(2022YFB3607500);国家自然科学基金(62274076)㊀㊀作者简介:张庆文(1999 ),男,山东省人,硕士研究生㊂E-mail:zhangqw1012@ ㊀㊀通信作者:丁㊀然,教授,博士生导师㊂E-mail:dingran@Abstract :In recent years,organic-inorganic hybrid lead halide perovskite materials have attracted much attention in the world because of their excellent photoelectric properties,and have been successfully applied in many fields such as solar photovoltaic,photoelectric detection,electroluminescence and so on.At present,most of the device research focuses on perovskite polycrystalline materials,but perovskite single crystal materials have excellent properties such as lower defect state density,higher carrier mobility,longer carrier recombination lifetime,wider light absorption range and higher stability,which can effectively reduce the scattering loss during carrier transport and non-radiative recombination at the grain boundary,and inhibit the hysteresis effect caused by ion ing perovskite single crystal thin film as the active layer of the device is expected to produce more efficient and stable perovskite photoelectric devices.At present,many preparation methods of perovskite single crystal films have been reported,mainly including solution-processed space-confined method,chemical vapor deposition method,top-down processing method,etc.Among them,solution-processed space-confined method is the most widely developed and applied.This paper focuses on the preparation of high-quality perovskite single crystal thin films by solution-processed space-confined method,and the research progress of perovskite single crystal thin films in photodetectors,solar cells,field effect transistors,light-emitting diodes and other related devices,and prospects the future development trend of perovskite single crystal thin films and photoelectric devices.㊀第4期张庆文等:溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展573㊀Key words:hybrid perovskite semiconductor;solution-processed space-confined method;perovskite single-crystalline thin-film;optoelectronic device;growth of single crystal thin film0㊀引㊀㊀言近年来,有机-无机杂化卤化铅钙钛矿材料因高的光吸收系数[1]㊁高的载流子迁移率[2-3]㊁长的载流子扩散距离[4]㊁带隙可调谐[5-7]等优异的光电性能,引起了科研界和产业界的广泛关注㊂尤其是在光伏器件领域,钙钛矿电池的功率转换效率(power conversion efficiency,PCE)从最初的3.8%[8]攀升到目前的25.9%[9],发展速度出人意料且远超其他光伏材料体系㊂理论计算得到单结钙钛矿电池的最高转换效率可达33%,这一效率优于晶体硅的理论极限效率29.4%㊂除光伏领域外,钙钛矿材料在光电探测[5,10-15]㊁电致发光[16-19]㊁光泵激光[20-23]和辐射探测[24-26]等诸多光电领域也展现出巨大的应用前景㊂有机-无机杂化卤化铅钙钛矿材料化学结构式通常为ABX3,一般为立方体或八面体结构[27],对于典型的三维钙钛矿材料,其中A代表一价阳离子(如MA+㊁FA+等),B代表二价Pb2+阳离子,X为一价卤素阴离子(如Cl-㊁Br-㊁I-等)㊂在钙钛矿材料中,B离子位于立方晶胞的中心[28],被6个X离子包围形成配位立方八面体结构㊂钙钛矿光电器件有源层材料以多晶薄膜为主,多晶材料虽然在器件应用方面已展现出卓越的性能,但是内部存在大量晶界,且在晶界处存在高密度的晶格位错,以及无序的晶粒生长,从而导致薄膜内存在大量的晶格缺陷和可自由移动的离子㊂多晶膜内大量晶粒㊁晶界㊁空隙和表面缺陷等,会显著增大非辐射复合过程并诱使激子猝灭,严重限制光电及电光转换效率[29-30]㊂同时,在外场作用下钙钛矿多晶膜中会产生明显的离子迁移现象,移动的离子会抑制自由载流子的感生㊁积累与传输,也将极大影响器件的光电性能[31]㊂相比之下,钙钛矿单晶拥有更低的缺陷态密度㊁更长的载流子扩散长度㊁更长的载流子复合寿命㊁更宽的光吸收范围,以及更高的稳定性等[32-33]㊂这些优秀的本征特性为克服以上挑战提供了良好的载体,有望制备性能更高效且更稳定的钙钛矿光电器件㊂从晶体形态学角度区分,钙钛矿单晶材料主要可分为块体[34-35]和薄膜两种类型[36-38]㊂相比于单晶块体材料,单晶薄膜更易于与传统半导体工艺相集成,并有望制备性能更加优越的光电器件,更因其突出的柔性[39]和机械性,在未来柔性电子器件领域也展现出良好的应用前景㊂目前,已报道的钙钛矿单晶薄膜制备方法中,主要包括溶液空间限域法[36-37,40]㊁化学气相沉积法[41-44]㊁自上而下加工法[13,45-48]等,其中溶液空间限域法的发展和应用最为广泛㊂由于单晶各向异性生长,为了有效控制单晶薄膜厚度,抑制薄膜沿垂直纵向方向生长,并且提高水平横向方向的生长速率㊁增大薄膜的表面积,常引入空间结构限制策略,实现可控制备钙钛矿单晶薄膜㊂本文聚焦利用溶液空间限域法制备高质量钙钛矿单晶薄膜的相关技术方法,以及钙钛矿单晶薄膜在光电探测器㊁太阳能电池㊁场效应晶体管和电致发光器件等相关器件应用中的研究进展㊂同时,对未来钙钛矿单晶薄膜材料的发展及其应用所面临的难题提出可行的解决方案㊂1㊀钙钛矿单晶薄膜生长策略目前,溶液法生长钙钛矿单晶块体技术较为成熟,包括冷却结晶法[4,49-52]㊁逆温结晶法[46,53-57]㊁反溶剂扩散法[58-62]等方法,但单晶块体的厚度较厚,展现出较高的光吸收损耗和较长的激子扩散距离,不适于垂直结构型光电器件的应用㊂为了进一步扩展钙钛矿单晶材料在光电器件领域的应用,急需开发厚度和形貌可控㊁重复性高的钙钛矿单晶薄膜制备方法㊂2016年,陕西师范大学刘生忠教授团队报道采用空间限域结合动态流反应系统的生长方法,通过控制两个玻璃片之间的间隙大小,确保钙钛矿单晶薄膜在预设的限域空间结构内生长,达到单晶薄膜厚度可控的目的,如图1(a)所示[37]㊂利用蠕动泵驱动空隙中溶液流动,为单晶薄膜生长提供源源不断的前驱体溶液,最终实现一系列厚度约为150μm的MAPbI3单晶薄片㊂然而,微米厚度的钙钛矿单晶薄膜依然无法满足垂直结构型器件的需求,通过施加外部压力的方式来控制几何限域空间的间隙距离,达到进一步减薄钙钛矿单晶薄膜的作用㊂2016年,中国科学院化学研究所胡劲松研究员团队设计如图1(b)所示装置,实现可控制备厚度均匀的钙钛矿单晶薄膜生长方法[36]㊂实验具体流程是将两个平面衬底夹在一起,通过控制夹具的压力来限制几何限域空间间隙,再垂直浸入钙钛矿前驱体溶液中,在毛细力的作用下溶液会填充满整个限域空间,然后加热底部前驱体溶液,控制溶剂挥发速率,形成底部饱和㊁顶部过574㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第53卷饱和的溶液环境,由于温度差引起的热对流,底部的溶液不断向顶部流动补充,为限域空间内生长钙钛矿单晶薄膜提供充足的前驱体溶液㊂制备的单晶薄膜具有厚度从纳米至微米可调㊁表面积达到亚毫米尺寸㊁横纵比可达~105等特点㊂同时,该方法可将钙钛矿单晶薄膜制备在各种衬底(如玻璃㊁石英㊁氧化铟锡(indiumtin oxide,ITO)㊁氟掺杂氧化锡(F-doped tin oxide,FTO))上,其厚度只取决于两个衬底之间的间隙距离,不同厚度的薄膜呈现出多彩均匀的颜色㊂图1㊀溶液空间限域法中厚度可控策略制备钙钛矿单晶薄膜㊂(a)溶液空间限域结合动态流反应系统生长法[37];(b)溶液空间限域法生长厚度可调的钙钛矿单晶薄膜[36]Fig.1㊀Strategies for the growth of thickness-controlled perovskite single-crystalline thin-films.(a)Schematic diagram of the geometry-confined dynamic-flow reaction system[37];(b)schematic diagram of the solution-processed space-confined growthmethod for perovskite single-crystalline thin-films[36]为了扩大钙钛矿单晶薄膜的横向尺寸,从晶体成核动力学角度出发,降低溶液空间限域法中衬底的表面能,将有助于提高溶剂中离子的扩散速度和扩散距离,诱导晶体沿横向方向加速生长㊂2017年,美国北卡罗来纳大学教堂山分校黄劲松教授团队提出对衬底表面进行疏水处理,在ITO衬底表面旋涂疏水的聚[双(4-苯基)(2,4,6-三甲基苯基)胺](Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine,PTAA)空穴传输层材料,再用两片PTAA修饰后的ITO衬底构建限域空间,在空间内滴加MAPbBr3前驱体溶液后,将衬底结构置于㊀第4期张庆文等:溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展575㊀110ħ热台上[1]㊂对比PTAA处理和未处理的衬底所构建限域空间内前驱体溶液的扩散差异,从图2(a)不难发现,由于疏水材料处理的衬底表面具有较低的表面能,将加速前驱体溶液中离子的扩散速率,解决生长过程中离子长程输运差的问题,有助于减少多晶成核结晶概率,同时增大单晶薄膜的横向生长尺寸㊂基于该衬底修饰方法,实现MAPbBr3单晶薄膜厚度可控制在10~20μm,横向截面尺寸可达数十mm2,该工作证明了对衬底表面进行合理改性对于控制钙钛矿单晶薄膜横向生长至关重要㊂2020年,北京大学马仁敏教授团队采取对衬底表面进行特异性处理的策略[63]㊂具体方式是对玻璃衬底进行不同的亲疏水处理,由于具有特异性的亲疏水能力,衬底展现出大小不同的溶液接触角㊂在观测亲疏水能力与单晶成核密度之间的关系后,发现从亲水到疏水的转变过程中,衬底表面的成核密度显著降低㊂分析其原因是亲水表面的成核自由能垒相对低于疏水条件下的表面成核自由能垒,从而拥有较快速的成核速率;并且亲水表面更易于吸附和捕获前驱体溶液中的离子,而降低了离子的扩散速率,导致单晶结晶速率较为缓慢㊂因此,疏水处理的衬底可有效降低单晶成核密度,并且加快单晶生长速率,更易于制备大尺寸的钙钛矿单晶薄膜㊂制得的MAPbBr3单晶薄膜边长尺寸达到1cm,厚度控制在10μm,同时展现出较好的结晶质量,薄膜陷阱态密度仅为1011cm-3,载流子迁移率超过60cm2/(V㊃s)㊂除了衬底修饰策略,衬底自身独特的表面特征也有助于钙钛矿单晶薄膜的生长㊂2020年,天津理工大学吴以成教授团队以云母作为溶液空间限域法的生长衬底[64],如图2(b)所示,将含有适量油酸(oleic acid,OA)的钙钛矿前驱体溶液滴加到两片云母组成的间隙中,旋转云母衬底去除多余的前驱体溶液,然后放置于热板上加热,最终获得超薄的MAPbBr3单晶薄膜㊂该方法是基于云母表面的钾原子与钙钛矿中卤素原子之间会产生较强的相互作用,导致界面能降低并促进钙钛矿单晶薄膜在云母表面横向生长,同时油酸作为表面改性剂附着在钙钛矿表面,抑制钙钛矿单晶薄膜沿纵向方向的生长,最终成功制备出厚度仅为8nm㊁横向尺寸可达数百微米的MAPbBr3单晶薄膜㊂图2㊀溶液空间限域法中衬底修饰策略制备钙钛矿单晶薄膜㊂(a)PTAA处理和未处理的ITO衬底结构中前驱体溶液扩散速度对比图[1];(b)云母衬底上生长钙钛矿单晶薄膜流程示意图[64]Fig.2㊀Substrate modification for the growth of perovskite single-crystalline thin-films.(a)Comparison of the diffusion rate of precursor solution within the PTAA treated and untreated ITO substrates[1];(b)growth of perovskite single-crystalline thin-films on mica substrates[64]钙钛矿单晶薄膜的生长开始于成核阶段,考虑到处于复杂溶液环境中,晶体将发生各向异性生长,容易形成多个晶核,并诱使出现晶畴㊁晶界等结构,严重影响钙钛矿单晶成膜的结晶质量[65]㊂为解决这一问题,科研人员提出了一种晶种法技术策略,首先生长钙钛矿单晶种子,再将种子转移到目标衬底,最后在合适的溶液环境中再结晶生长形成高质量的钙钛矿单晶薄膜㊂2018年,中国科学院化学研究所宋延林研究员团队提出了一种溶液空间限域结合晶种印刷法的生长策略,通过晶种再生长的方式,实现了厚度可控㊁重复性好㊁576㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第53卷结晶质量高的钙钛矿单晶薄膜[66]㊂如图3(a)所示,首先使用喷墨打印技术将钙钛矿前驱体溶液选择性滴加在目标衬底上,随着前驱体溶液的挥发,形成规则排布的钙钛矿单晶种子㊂获得的钙钛矿单晶种子将有效抑制无序成核结晶现象㊂然后,将载有钙钛矿单晶种子的衬底转移并浸入到钙钛矿前驱体饱和溶液中,置于热台上加热结晶后,通过控制钙钛矿单晶种子的数量和尺寸,最终制备出批量的毫米级钙钛矿单晶薄膜㊂2021年,韩国首尔大学Lee教授团队进一步拓展了晶种生长法,结合种子转移技术,如图3(b)所示[67]㊂首先在两片玻璃片中注入前驱体溶液,玻璃片之间由厚度为25μm的聚四氟乙烯(polytetrafluoroethylene,PTFE)薄膜隔开,在110ħ的加热温度下,过饱和的钙钛矿前驱体溶液成核结晶,形成厚度为23μm㊁尺寸为100~200μm 的MAPbBr3单晶种子㊂然后,挑选出单个种子转移至一个密封式液体池腔体中,随着浓度为1mol/L的MAPbBr3前驱体溶剂以5μL/min速率源源不断地流入液体池腔体内,基于逆温结晶法,MAPbBr3单晶薄膜将匀速生长,最终制得了高质量㊁大尺寸的MAPbBr3单晶薄膜,其厚度为40μm,表面积可达16.23mm2,表面粗糙度为0.51nm,缺陷态密度仅有7.61ˑ108cm-3㊂图3㊀溶液空间限域法中晶种法策略制备钙钛矿单晶薄膜㊂(a)溶液空间限域结合晶种印刷法制备钙钛矿单晶薄膜技术流程示意图[66];(b)晶种生长法结合晶种转移技术制备钙钛矿单晶薄膜技术流程示意图[67]Fig.3㊀Seed-induced methods for the growth of perovskite single-crystalline thin-films.(a)Technical flow diagram of preparation of perovskite single crystal film by solution-processed space-confined combined with seed printing[66];(b)process flow diagram of preparation of perovskite single crystal thin film by seed growth and seed transfer technology[67]图案化生长钙钛矿单晶薄膜对于推动钙钛矿单晶材料面向集成化光电器件应用至关重要㊂其主要思路是通过引入周期性的模板,构建结构化限域空间用于生长图案化钙钛矿单晶[68-74]㊂2021年,合肥工业大学罗林保教授团队利用高密度数字视频光盘(digital video disc,DVD)上的沟道作为结构化限域空间用于溶液空间限域法,如图4(a)所示[71]㊂首先,将聚二甲基硅氧烷(polydimethylsiloxane,PDMS)溶液旋涂在准备好的DVD磁盘上,固化后形成与磁盘沟道结构和形貌一致的PDMS模板㊂然后,在亲水性衬底上滴加钙钛矿前驱体溶液,溶液在亲水衬底上形成一层均匀的液膜,再将表面具有周期性沟道结构的PDMS模板覆盖其上,前驱体溶液便被重新分配并限制在PDMS模板与亲水性衬底形成的纳米沟道之间㊂放置于热台上加热之后,晶体沿着纳米沟道不断生长,最终形成规则且均匀的钙钛矿单晶阵列,得到的钙钛矿单晶阵列的结构完全与磁盘沟道形貌相一致,并可实现在不同衬底上生长大规模钙钛矿单晶阵列结构㊂2022年,苏州大学揭建胜教授团队开发了类似的三维限制结晶方法,在三维结构化的微通道模板上方利用一个三角形PDMS 基板协助溶液剪切过程,用于生长钙钛矿单晶阵列,PDMS模板紧密地附着在微通道表面,避免了溶液剪切㊀第4期张庆文等:溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展577㊀过程中对微通道的破坏,同时利用PDMS模板表面的疏水性,可以有效防止溶液黏附在三角形PDMS基板上,如图4(b)所示[72]㊂在底部进行加热的情况下,缓慢移动三角形玻璃基板,钙钛矿前驱体溶液逐渐挥发结晶,最终形成与模板结构相同的MAPbI3单晶阵列㊂为了进一步提高钙钛矿单晶阵列横向尺寸,韩国汉阳大学Sung教授团队引入滚筒印刷技术,如图4(c)所示[73]㊂首先,钙钛矿前驱体溶液加在180ħ加热的基板衬底上,通过旋转图案化的PDMS模具包裹的圆柱形金属滚轮,PDMS模具上具有宽度为10mm㊁深度为200nm的周期性阵列,前驱体溶液被限制在模具和基板衬底之间,随着前驱体溶液的迅速蒸发而结晶,最终制得的钙钛矿单晶薄膜阵列与滚筒图案完全一致㊂成功实现了总宽度为10mm,周期尺寸为400nm,厚度为200nm的MAPbI3单晶薄膜阵列㊂利用该方法不仅可以在横向方向上约束钙钛矿单晶的生长,并且实现滚筒印刷制备大尺度钙钛矿单晶薄膜阵列的目的㊂通过上述总结,围绕溶液空间限域法制备大尺寸㊁高质量钙钛矿单晶薄膜,详细阐述了从厚度可控㊁衬底修饰㊁晶种生长㊁图案化生长等几个主要方面的生长和制备方法,相关性能参数如表1所示,对于未来实现可控制备钙钛矿单晶薄膜材料,进一步扩展其在光电器件领域的应用至关重要㊂图4㊀溶液空间限域法中图案化生长策略制备钙钛矿单晶薄膜㊂(a)磁盘沟道模板生长钙钛矿单晶阵列的技术流程图[71];(b)三维限制结晶方法生长钙钛矿单晶阵列装置示意图[72];(c)滚筒印刷技术制备大尺度钙钛矿单晶阵列的装置流程图[73] Fig.4㊀Periodic structures for the growth of perovskite single-crystalline thin-films.(a)Digital channel template for the growth of perovskite single-crystalline arrays[71];(b)schematic diagram of apparatus for growing perovskite single crystal array by a three-dimensional restricted crystallization method[72];(c)flow chart of device for preparing large-scale perovskite singlecrystal array by roller printing technology[73]578㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第53卷表1㊀溶液空间限域法及其改进策略制备钙钛矿单晶薄膜的相关性能参数Table1㊀Performance parameters of the perovskite single-crystalline thin-films prepared by solution-processedspace-confined method and its improvement strategySolution-processed space-confined method and its improvement strategy Perovskitematerial type Thickness/μmDensity of defectstates/cm-3Carrier mobility/(cm2㊃V-1㊃s-1)Surface dimension ReferenceDynamic-flow reaction system MAPbI3~1506ˑ10839.6 5.84mmˑ5.62mm[37] Thickness controlledgrowth method MAPbBr30.01~1 4.8ˑ101015.7Hundreds of microns[36]Substrate treatment MAPbI310~40Electron:36.8ʃ3.7Hole:12.1ʃ1.5Tens of square millimeters[1] Substrate specific processing MAPbBr3~10 1.6ˑ1011>601cm[63] Mica substrate MAPbX30.008~0.01436.5Hundreds of microns[64] Seed printing method MAPbX3,CsPbBr30.1~10 2.6ˑ101014000μm2[66] Seed transfer technology MAPbBr3407.61ˑ10816.23mm2[67] Digital channeltemplate method MAPbI3~0.065cycle:760nm[71] Three-dimensional confinedcrystallization method MAPbI30.5~58.5ˑ1010cycle:8μm[72] Rolling mould printingtechnology MAPbI30.2or0.545.64cycle:400nm[73] 2㊀钙钛矿单晶薄膜器件应用钙钛矿单晶薄膜因其高的光吸收系数㊁高的载流子迁移率㊁长的载流子扩散长度㊁带隙可调谐等优异的光电性能,被广泛应用于光电探测器㊁太阳能电池㊁场效应晶体管㊁发光二极管等器件中㊂光电探测器是基于传统光电效应将光信号转变为电信号的器件装置,其在光通信㊁激光雷达㊁医疗诊断㊁安防监控等多个领域应用广泛㊂传统光电探测器多以无机半导体材料为主,例如Si㊁GaAs㊁GaN等材料[11]㊂近年来,随着有机-无机杂化卤化物钙钛矿半导体材料的出现,其展现出的巨大的应用潜力,有望促进光电探测器在成本和性能上取得进一步的提升和跨越㊂大量研究表明,由于较低的光吸收损耗和理想的激子扩散距离,钙钛矿单晶薄膜光电探测器[68-69,75-77]相比于单晶块体探测器,在光电探测方面已展露出明显的性能优势㊂2015年,阿卜杜拉国王科学大学Bakr教授团队首次报道利用直接生长在ITO玻璃衬底上的MAPbCl3单晶薄膜,制备一种具有金属-半导体-金属器件结构的光电导型探测器[54],并展现出出色的光电探测性能,具有较高的探测率与开关比,响应时间在ms数量级,这与当时商用的III-V族半导体光电晶体管的性能几乎相当㊂2017年,黄劲松团队利用MAPbBr3单晶薄膜制作了垂直器件结构为p-i-n型的Cu/BCP/C60/MAPbBr3/PTAA/ITO钙钛矿单晶探测器[78],如图5(a)所示,该光电探测器的探测率(D∗)高达1.5ˑ1013Jones㊂由于单晶薄膜较低的缺陷态密度,探测器对于弱光探测极为敏感,探测最低可达pW/cm2量级,同时线性动态范围高达256dB,是当时报道最高的结果㊂2018年,马仁敏教授团队系统性研究了光电探测器性能与单晶薄膜厚度之间的依赖关系[14]㊂发现随着钙钛矿单晶薄膜的厚度从10μm降低到几百nm,光电探测器的探测能力提升了2个数量级,增益提升了4个数量级㊂通过优化钙钛矿单晶薄膜的厚度以及结晶度,器件的增益可达5ˑ107,增益带宽积为70GHz㊂钙钛矿材料具有可低温㊁液相制备的特点,并可与多种柔性衬底相兼容,制备可弯折的柔性光电子器件㊂同时,钙钛矿单晶薄膜展现出较好的柔性和机械性,可用于制备柔性钙钛矿单晶薄膜光电探测器㊂为此, 2020年,马仁敏教授团队引入超薄钙钛矿单晶薄膜作为有源层,制备了高性能的柔性光电探测器[39],如图5 (b)所示,该光电探测器的单晶薄膜厚度仅为20nm,器件响应度高达5600A/W,在经过1000次循环弯折后,探测器的光电流和开关比没有出现明显的下降,展现出较好的弯折稳定性㊂高质量的钙钛矿单晶纳米线阵列有利于限制载流子在几何通道内输运,提高载流子的迁移率和扩散距离㊂2021年罗林保教授团队制备的基于MAPbI3单晶纳米线阵列的光电探测器[71],在520nm入射光照射下,随入射光功率的升高,该光电探㊀第4期张庆文等:溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展579㊀测器的光电流呈线性递增,最低暗电流为0.3nA,最高光电流达350nA,总开关比高达1.2ˑ103㊂同时,该探测器的响应度为20.56A/W,探测率达到4.73ˑ1012Jones㊂由于钙钛矿单晶纳米线阵列展现出良好的偏振敏感性,该类型器件也适用于探测线偏光的偏振度㊂为了解决钙钛矿材料中铅毒性[79]和不稳定性的问题,2020年,中山大学匡代彬教授团队在ITO玻璃上原位生长不含铅元素的全无机Cs3Bi2I9单晶薄膜并制备了相应的光电探测器[80]㊂制得的Cs3Bi2I9钙钛矿单晶薄膜的陷阱态密度比多晶材料低3个数量级,载流子迁移率也高出3.8ˑ104倍㊂这些优异的性质有利于实现高性能的光电探测器,基于此材料制备的垂直结构型光电探测器的开关比高达11000㊂而且,在未封装的情况下,处在潮湿环境中1000h之后,该钙钛矿单晶薄膜光探测器的光电流仍维持初始值的91%,体现了该材料出色的环境稳定性㊂由于钙钛矿多晶薄膜内存在大量的晶界㊁空穴和缺陷态等,太阳能电池存在显著的非辐射复合能量损失,限制了钙钛矿太阳能电池PCE的进一步提升㊂而无晶界㊁低缺陷态密度的钙钛矿单晶薄膜成为解决材料内在问题及器件PCE的理想材料体系㊂2017年,中国科学院深圳先进技术研究院李江宇教授团队在FTO/TiO2衬底上直接生长MAPbI3单晶薄膜,并制造了相应的钙钛矿单晶薄膜太阳能电池,该电池器件的PCE达到了8.78%[81]㊂同年,黄劲松教授团队利用在PTAA空穴传输层上直接生长的MAPbI3单晶薄膜,构建器件结构为ITO/PTAA/MAPbI3/PCBM/C60/BCP/Cu的太阳能电池器件,如图5(c)所示[1]㊂通过优化钙钛矿单晶薄膜厚度,其电池的光谱响应范围可以扩展到820nm,比相对应的多晶薄膜材料的光谱响应要宽20nm,器件的最佳短路电流密度J sc为20.5mA/cm2,开路电压V oc为1.06V,填充因子(fill factor,FF)为74.1%,PCE可达16.1%㊂在使用MAI离子溶液对单晶薄膜表面进行钝化处理之后,有效降低了MAPbI3单晶薄膜表面的电荷陷阱,器件最佳PCE提升到17.8%㊂2019年,Bakr教授团队利用20μm厚的MAPbI3单晶薄膜制备太阳能电池,器件结构为ITO/PTAA/MAPbI3/C60/BCP/Cu[82]㊂该钙钛矿单晶薄膜电池器件的PCE达到21.09%,填充因子FF为84.3%㊂之后,该团队通过优化前驱体溶液,采用碳酸丙烯酯(propylene carbonate,PC)和γ-丁内酯(1,4-butyrolactone,GBL)的混合溶剂,90ħ下生长MAPbI3钙钛矿单晶薄膜㊂基于此单晶材料制备的钙钛矿太阳能电池的V oc明显提高,PCE达到21.9%[84]㊂2021年,该团队在之前的器件结构基础上,将钙钛矿单晶的成分改为混合阳离子FA0.6MA0.4PbI3钙钛矿单晶,如图5(d)所示,制备的钙钛矿太阳能电池对近红外响应要比纯FAPbI3器件扩展了50meV,J sc达到26mA/cm2,PCE达到22.8%[84]㊂2023年,该团队在亲水性的([2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid,MeO-2PACz)单分子层表面生长FA0.6MA0.4PbI3钙钛矿单晶薄膜,与PTAA上生长的单晶薄膜相比,MeO-2PACz有效提高了钙钛矿单晶薄膜与衬底的机械粘附力,PCE达到创纪录的23.1%[85]㊂伴随着钙钛矿单晶薄膜生长技术的更新和迭代,钙钛矿单晶薄膜太阳能电池的器件性能有望超越钙钛矿多晶太阳能电池,在太阳能电池器件领域占据一席之地[86]㊂从钙钛矿材料结构角度出发,由金属阳离子和卤化物阴离子形成的强共价或离子键相互作用结合的钙钛矿八面体骨架结构,将为材料提供高的载流子迁移率骨架模型,据理论预测的迁移率最高可达1000cm2/(V㊃s);有机阳离子可以间接扭曲无机骨架,在分子尺度上影响材料的晶体结构和电学特性㊂因此,钙钛矿材料因其展现出较高的载流子迁移率,被认为是发展新一代半导体电子技术最理想的光电材料㊂基于钙钛矿单晶薄膜材料的场效应晶体管研究起步相对较晚,2018年,阿卜杜拉国王科技大学Amassian教授团队制备了底栅顶接触的钙钛矿单晶薄膜场效应晶体管器件,器件的沟道长度为10~150μm,如图5(e)所示[87]㊂该团队设计和制备了一系列基于MAPbCl3㊁MAPbBr3㊁MAPbI3单晶薄膜的场效应晶体管器件,测量和分析器件的转移和传输特性曲线,其空穴迁移率最高分别可达2.6㊁3.1㊁2.9cm2/(V㊃s),电子迁移率分别为2.2㊁1.8㊁1.1cm2/(V㊃s),且器件开关比分别可达2.4ˑ104㊁4.8ˑ103㊁6.7ˑ103㊂该系列场效应晶体管器件展现出良好的电学输运特性,为进一步推动钙钛矿单晶薄膜材料在集成电子器件领域的应用提供了良好的研究基础㊂钙钛矿发光二极管(perovskitelight emitting diodes,PeLED)近年来也发展迅速,自2014年英国剑桥大学的Friend教授课题组首次报道室温下PeLED器件以来,PeLED以其优异的光电性能㊁较低的器件成本,以及。

第五章跨膜运输《细胞生物学》.

第五章跨膜运输《细胞生物学》.

第五章跨膜运输细胞膜是防止细胞外物质自由进入细胞的屏障,它保证了细胞内环境的相对稳定,使各种生化反应能够有序运行。

但是细胞必须与周围环境发生信息、物质与能量的交换,才能完成特定的生理功能。

因此细胞必须具备一套物质转运体系,用来获得所需物质和排出代谢废物,据估计细胞膜上与物质转运有关的蛋白占核基因编码蛋白的15~30%,细胞用在物质转运方面的能量达细胞总消耗能量的三分之二。

细胞膜上存在两类主要的转运蛋白,即:载体蛋白(carrier protein)和通道蛋白(channel protein)。

载体蛋白又称做载体(carrier)、通透酶(permease)和转运器(transporter),能够与特定溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧,载体蛋白有的需要能量驱动,如:各类APT驱动的离子泵;有的则不需要能量,以自由扩散的方式运输物质,如:缬氨酶素。

通道蛋白与所转运物质的结合较弱,它能形成亲水的通道,当通道打开时能允许特定的溶质通过,所有通道蛋白均以自由扩散的方式运输溶质。

第一节被动运输一、简单扩散也叫自由扩散(free diffusing),特点是:①沿浓度梯度(或电化学梯度)扩散;②不需要提供能量;③没有膜蛋白的协助。

某种物质对膜的通透性(P)可以根据它在油和水中的分配系数(K)及其扩散系数(D)来计算:P=KD/t,t为膜的厚度。

脂溶性越高通透性越大,水溶性越高通透性越小;非极性分子比极性容易透过,小分子比大分子容易透过。

具有极性的水分子容易透过是因水分子小,可通过由膜脂运动而产生的间隙。

非极性的小分子如O2、CO2、N2可以很快透过脂双层,不带电荷的极性小分子,如水、尿素、甘油等也可以透过人工脂双层,尽管速度较慢,分子量略大一点的葡萄糖、蔗糖则很难透过,而膜对带电荷的物质如:H+、Na+、K+、Cl—、HCO3—是高度不通透的(图5-1)。

事实上细胞的物质转运过程中,透过脂双层的简单扩散现象很少,绝大多数情况下,物质是通过载体或者通道来转运的。

半导体物理与器件——Terms汉译英

半导体物理与器件——Terms汉译英

半导体物理与器件——Terms(术语)U1 Terms:Semiconductor physics and devices半导体物理与器件,Space lattice空间晶格, unit cell晶胞, primitive cell原胞,basic crystal structures 基本晶格结构(five), Miller indices密勒指数, atomic bonding原子价键U2 Terms:quantum mechanics量子力学,energy quanta能量子, wave-particle duality波粒二象性,the uncertainty principle测不准原理/海森堡不确定原理Schrodinger's wave equation薛定谔波动方程, eletrons in free Space自由空间中的电子the infinite potential well无限深势阱, the step potential function 阶跃势函数, the potential barrier势垒.U3 Terms:Pauli exclusion principle泡利不相容原理, quantum state量子态. allowed energy band允带, forbidden energy band禁带.conduction band导带, valence band价带,hole空穴, electron 电子.effective mass有效质量.density of states function状态密度函数,the Fermi-Dirac probability function费米-狄拉克概率函数,the Boltzmann approximation波尔兹曼近似,the Fermi energy费米能级.U4 Terms:charge carriers载流子, effective density of states function有效状态密度函数,intrinsic本征的,the intrinsic carrier concentration本征载流子浓度, the intrinsic Fermi level本征费米能级.charge neutrality电中性状态, compensated semiconductor补偿半导体, degenerate简并的,non-degenerate非简并的, position of E F费米能级的位置U5 Terms:drift current漂移电流, diffusion current 扩散电流,mobility迁移率, lattice scattering晶格散射, ionized impurity scattering 电离杂质散射, velocity saturation饱和速度,conductivity电导率,resistivity电阻率.graded impurity distribution杂质梯度分布,the induced electric field感生电场, the Einstein relation爱因斯坦关系, the hall effect霍尔效应U6 Terms:nonequilibrium excess carriers非平衡过剩载流子,carrier generation and recombination载流子的产生与复合,excess minority carrier过剩少子,lifetime寿命,low-level injection小注入,ambipolar transport双极输运, quasi-Fermi energy准费米能级.U7 Terms:the space charge region空间电荷区,the built-in potential内建电势, the built-in potential barrier内建电势差,the space charge width空间电荷区宽度, zero applied bias零偏压, reverse applied bias反偏, onesided junction单边突变结.U8 Terms:the PN junction diode PN结二极管, minority carrier distribution少数载流子分布, the ideal-diode equation理想二极管方程, the reverse saturation current density反向饱和电流密度.a short diode短二极管,generation-recombination current产生-复合电流,the Zener effect齐纳效应, the avalanche effect雪崩效应, breakdown击穿.U9 Terms:Schottky barrier diode (SBD)肖特基势垒二极管,Schottky barrier height肖特基势垒高度.Ohomic contact欧姆接触,heterojunction异质结, homojunction单质结,turn-on voltage开启电压,narrow-bandgap窄带隙, wide-bandgap宽带隙,2-D electron gas二维电子气U10 Terms:bipolar transistor双极晶体管,base基极, emitter发射极, collector集电极.forward active region正向有源区, inverse active region反向有源区, cut-off截止, saturation饱和,current gain电流增益,common-base共基, common-emitter共射.base width modulation基区宽度调制效应, Early effect厄利效应, Early voltage厄利电压U11 Terms:Gate栅极, source源极, drain漏极, substrate基底.work function difference功函数差threshold voltage阈值电压, flat-band voltage平带电压enhancement mode增强型, depletion mode耗尽型strong inversion强反型, weak inversion弱反型,transconductance跨导, I-V relationship电流-电压关系。

推移质中接触质的英文

推移质中接触质的英文

推移质中接触质的英文Contact electrophoresis, the Electrophoretic Transfer of Proteins from Gels to Membranes.Contact electrophoresis, also known as electroblotting, is a technique used to transfer proteins from a gel to a membrane. The proteins are first separated by electrophoresis, and then the gel is placed in contact with a membrane. An electric current is passed through the gel and the membrane, which causes the proteins to move from the gel to the membrane.Contact electrophoresis is a relatively simple and inexpensive technique, and it can be used to transfer proteins from a variety of gels, including polyacrylamide gels, agarose gels, and cellulose gels. The proteins can be transferred to a variety of membranes, including nitrocellulose membranes, PVDF membranes, and nylon membranes.Contact electrophoresis is often used to transfer proteins from gels to membranes for Western blotting. Western blotting is a technique used to detect proteins ina sample. The proteins are first separated by electrophoresis, and then the gel is transferred to a membrane. The membrane is then incubated with a primary antibody that binds to the protein of interest. The membrane is then washed to remove any unbound antibody, and then it is incubated with a secondary antibody that bindsto the primary antibody. The secondary antibody is conjugated to an enzyme, which is used to generate a signal that can be detected.Contact electrophoresis can also be used to transfer proteins from gels to membranes for other applications,such as protein sequencing and protein characterization.Procedure.The procedure for contact electrophoresis is as follows:1. Prepare the gel. The gel is prepared byelectrophoresis. The proteins are loaded onto the gel, and the gel is run until the proteins are separated.2. Prepare the membrane. The membrane is cut to the size of the gel. The membrane is then soaked in a transfer buffer.3. Assemble the transfer sandwich. The gel is placed on top of the membrane. A piece of filter paper is placed on top of the gel. A weight is placed on top of the filter paper.4. Transfer the proteins. An electric current is passed through the gel and the membrane. The proteins move from the gel to the membrane.5. Remove the membrane. The membrane is removed from the gel. The membrane is then washed to remove any unbound proteins.Factors affecting the transfer of proteins.The transfer of proteins from gels to membranes is affected by a number of factors, including:The type of gel. The type of gel used can affect the efficiency of the transfer. Polyacrylamide gels are more efficient than agarose gels.The concentration of the gel. The concentration of the gel can affect the efficiency of the transfer. Higher concentrations of gel are more efficient than lower concentrations.The type of membrane. The type of membrane used can affect the efficiency of the transfer. Nitrocellulose membranes are more efficient than PVDF membranes.The size of the proteins. The size of the proteins can affect the efficiency of the transfer. Smaller proteins are more efficiently transferred than larger proteins.The electric current. The electric current used can affect the efficiency of the transfer. Higher currents aremore efficient than lower currents.Applications of contact electrophoresis.Contact electrophoresis is used in a variety of applications, including:Western blotting. Western blotting is a technique used to detect proteins in a sample. The proteins are first separated by electrophoresis, and then the gel is transferred to a membrane. The membrane is then incubated with a primary antibody that binds to the protein of interest. The membrane is then washed to remove any unbound antibody, and then it is incubated with a secondary antibody that binds to the primary antibody. The secondary antibody is conjugated to an enzyme, which is used to generate a signal that can be detected.Protein sequencing. Protein sequencing is a technique used to determine the amino acid sequence of a protein. The protein is first separated by electrophoresis, and then the gel is transferred to a membrane. The membrane is thenincubated with a protease, which cleaves the protein into smaller peptides. The peptides are then separated by electrophoresis, and the amino acid sequence of the protein is determined.Protein characterization. Protein characterization is a technique used to characterize the properties of a protein. The protein is first separated by electrophoresis, and then the gel is transferred to a membrane. The membrane is then incubated with a variety of reagents that can be used to characterize the protein, such as antibodies, lectins, and enzymes.。

211170285_微生物固定化技术及其强化生物脱氮研究进展

211170285_微生物固定化技术及其强化生物脱氮研究进展

DOI :10.19965/ki.iwt.2022-0159第 43 卷第 4 期2023年 4 月Vol.43 No.4Apr.,2023工业水处理Industrial Water Treatment 微生物固定化技术及其强化生物脱氮研究进展慕浩1,胡凯耀1,朱红娟1,彭钰卓1,王倩1,王亚娥1,李杰1,2(1.兰州交通大学环境与市政工程学院,甘肃兰州 730070;2.甘肃省膜科学技术研究院有限公司,甘肃兰州 730020)[ 摘要 ] 许多研究致力于用生物脱氮技术去除污染水体中的氮。

微生物固定化是采用物理或化学的方法,将微生物截留在某一特定区域的技术。

该技术既可保证功能微生物在适宜条件下快速增殖,使其具有较高的抵御外界不利环境因素的优势,同时可提高功能微生物与本土微生物的竞争力。

生物脱氮技术与微生物固定化技术相结合具有很大的应用潜力。

综述了几种传统微生物固定化方法和新型微生物固定化方法的分类、原理、优缺点、应用范围及前景。

在此基础上,以凝胶包埋法为例,介绍了微生物固定化技术强化生物脱氮的机理,如为微生物提供相应保护,加快微生物生长富集速度,在凝胶球内外形成不同浓度的溶解氧,以及额外提供功能微生物和营养物质等。

以凝胶包埋法加快厌氧氨氧化菌生长富集速度,利用凝胶球内外溶解氧浓度差实现短程硝化-厌氧氨氧化为实例进行阐述。

最后对微生物固定化技术强化生物脱氮目前存在的问题进行总结并提出展望,开发成本低廉且稳定性强的固定化材料具有重要意义。

[关键词] 固定化;微生物;生物脱氮;凝胶包埋法[中图分类号] X703.1 [文献标识码]A [文章编号] 1005-829X (2023)04-0028-08Research progress on microbial immobilization technology andits enhanced biological nitrogen removalMU Hao 1,HU Kaiyao 1,ZHU Hongjuan 1,PENG Yuzhuo 1,WANG Qian 1,WANG Yae 1,LI Jie 1,2(1.School of Environmental and Municipal Engineering ,Lanzhou Jiaotong University ,Lanzhou 730070,China ;2.Gansu Membrane Science and Technology Research Institute Co., L td., L anzhou 730020,China )Abstract :Many studies have been devoted to remove nitrogen from polluted water bodies by biological nitrogen re⁃moval techniques. Immobilization is a technique that uses a physical or chemical method to trap microorganisms in a specific area. The technique ensures rapid proliferation of microorganisms under suitable conditions , giving them the advantage against external adverse environmental factors , while improving the competitiveness of functional mi⁃croorganisms with local microorganisms. The combination of biological nitrogen removal technology and microbial immobilization technology has great potential for application. The classification , principles , advantages and disad⁃vantages , application and prospects of several traditional and new microbial immobilization methods were reviewed. On the basis , the mechanism of enhanced biological nitrogen removal by by gel embedding method in microbial im ⁃mobilization technology were introduced , such as providing protection for microorganisms , accelerating the growth and enrichment rate of microorganisms , forming different concentrations of dissolved oxygen inside and outside the bulb , and providing additional functional microorganisms and nutrients. The gel embedding method was used as an example to illustrate the accelerated growth and enrichment of Anammox bacteria , and partial nitrification -anammox by using the difference in dissolved oxygen between the inside and outside of the bulb. Finally , the cur⁃rent problems of microbial immobilization technology to enhance biological nitrogen removal were summarized andthe prospect was proposed. It is important to develop low -cost and stable immobilization materials.Key words :immobilization ;microorganism ;biological nitrogen removal ;gel embedding[基金项目] 国家自然科学基金项目(51768032)工业水处理 2023-04,43(4)慕浩,等:微生物固定化技术及其强化生物脱氮研究进展过量的氮排放会导致水体富营养化,使水生生态系统恶化,进而危害人类健康〔1〕。

盐酸坦索罗辛对输尿管硬镜联合封堵器治疗中上段输尿管结石的影响

盐酸坦索罗辛对输尿管硬镜联合封堵器治疗中上段输尿管结石的影响

107 Journal of China Prescription Drug Vol.19 No.3·疗效评价·输尿管结石是泌尿外科门急诊的常见病、多发病,占泌尿外科住院手术患者首位。

我国泌尿系结石病的发病率约1%~10%,其中1/4需要手术治疗[1]。

目前我们治疗输尿管结石方法有体外冲击波碎石术(ESWL)、输尿管镜碎石术(URL)、经皮肾经碎石取石术(PCNL),对于腰4椎体以下的、<1 cm的输尿管上段结石及中段结石,临床常用输尿管硬镜联合封堵器治疗,其具有较高的手术安全性和成功率[2]。

但是术中输尿管扩张程度、输尿管扭曲等情况亦是导致手术失败的主要原因[3]。

高选择性α受体阻滞剂盐酸坦索罗辛能够阻断α1A、α1D两种受体,从而达到松弛输尿管远端平滑肌的目的,临床常用于药物排石治疗。

本研究分析术前应用盐酸坦索罗辛对输尿管镜联合封堵器治疗中上段输尿管结石的影响,以期确立更优的治疗方案。

1 资料与方法1.1 一般资料本项研究采取简单随机对照方式,观察2016年1月~2018盐酸坦索罗辛对输尿管硬镜联合封堵器治疗中上段输尿管结石的影响余琪伟,曾学明*,姚林亚,胡兵,张曦,王骏,朱润宇,沈斌进,徐振宇(昆山市中医医院泌尿外科,江苏昆山 215300)【摘要】目的 研究术前口服盐酸坦索罗辛对输尿管镜联合封堵器治疗中上段输尿管结石的作用,以期确立更优的治疗方案。

方法 采取简单随机对照方式,收集符合条件的输尿管中上段结石患者96例,其中药物组46例,对照组50例。

两组患者采用相同手术方式,即输尿管硬镜联合封堵器。

药物组患者术前3 d口服盐酸坦索罗辛缓释胶囊,每日1次,每次0.4 mg。

记录两组患者粗细镜使用情况、手术时间、手术成功率、术后疼痛评分(VAS)、残石率、术后并发症。

结果 药物组患者手术时间明显短于对照组,残石率与疼痛评分明显低于对照组,且药物组粗输尿管镜使用率高于对照组,差异具有统计学意义(P<0.05);药物组患者术后并发症发生率小于对照组,差异具有统计学意义(P<0.05)。

Clariom D solutions 产品说明书

Clariom D solutions 产品说明书

DATA SHEET Clariom D solutionsClariom D solutions for human, mouse, and ratDeep and broad transcriptome-level expression profiling solutions for a faster path to biomarker discoveryRobust results even from precious samples• Generate robust expression profiles from as little as 100 pg of total RNA—as few as 10 cells• Use RNA from various sample types, including whole blood, cultured cells, and fresh/fresh-frozen or formalin-fixed, paraffin-embedded (FFPE) tissues• Preserve sample integrity and reduce data variability with an assay that does not require a globin or rRNA removal stepClariom D solutions are available in a single-sample(cartridge array) format for use on the Applied Biosystems ™ GeneChip ™ 3000 instrument system and comewith reagents and fast, simple Applied Biosystems ™Transcriptome Analysis Console (TAC) Software to analyze and visualize global expression patterns of genes, exons, pathways, and alternative splicing events.Accelerate your biomarker research withApplied Biosystems ™ Clariom ™ D solutions—the nextgeneration of transcriptome-level profiling tools—providing a highly detailed view of the transcriptome for a faster path to biomarker discovery. Available for human,mouse, and rat, Clariom D solutions allow translational scientists to generate high-fidelity biomarker signatures quickly and easily with a design that provides intricate transcriptome-wide, gene- and exon-level expression profiles, including the ability to detect alternative splicing events of coding and long noncoding RNA, in a single three-day experiment.Get all the data you need• Rapidly identify complex disease signatures from as many as 540,000 transcripts, the most comprehensive coverage available, helping to ensure that biomarkers are not missed• Confidently detect genes, exons, and alternative splicing events that give rise to coding and long noncoding RNA isoforms• Detect rare and low-expressing transcripts otherwise missed by common sequencing practices• Go from data to insight in minutes with intuitive, highly visual, free analysis softwareTranscripts*>542,500>214,900>495,200 Exons*>948,300>498,500>320,400 Exon-exonsplice junctions*>484,900>282,500>293,700 Total probes*>6,765,500>6,022,300>5,946,400 Probes targeting exons*>4,781,200>4,895,600>4,780,700 Probes targeting exon-exon splice junctions*>1,984,300>1,126,700>1,165,700 Probe length (bases)252525 Probe feature size 5 μm 5 μm 5 μmBackground probes AntigenomicsetAntigenomicsetAntigenomicsetPerformance specifications Human, mouse, ratTotal RNA input required**100 pg–500 ngSensitivity ≥1.5 pMDetectable 2-fold change1:100,000 vs. 1:50,000Dynamic range~3 logarithmic unitsTechnical replicate signal correlation≥0.90Correlation coefficient (intra-lot)≥0.99cRNA yield≥20 μgcDNA yield≥6 μgControls†• 92 ERCC transcripts• poly(A) (dap, lys, phe, thr)Target orientation‡Sense targetFluidics script FS450_0001* Numbers are representative of annotations as of April 2016. All numbers have been rounded down to the nearest hundred.** Total RNA input requirements depend on assay selection. The assay types offered require different total RNA input amounts based on sample sources.† P robe sets interrogating external RNA controls present in the Applied Biosystems™ ERCC RNA Spike-In Control Mixes (Cat. No. 4456740 and 4456739).‡ The probes tiled on the array are designed in the antisense orientation, requiring sense-strand, labeled targets to be hybridized to the array.* Numbers are representative of annotations as of April 2016. All numbers have been rounded down to the nearest hundred.** 1. Luo H, et al. (2013) Comprehensive characterization of 10,571 mouse large intergenic noncoding RNAs from whole transcriptome sequencing. PLoS One 8(8):e70835.2. Chalmel F, et al. (2014) High-resolution profiling of novel transcribed regions during rat spermatogenesis. Biol Reprod 91(1):5.3. Williams WP, et al. (2004) Increased levels of B1 and B2 SINE transcripts in mouse fibroblast cells due to minute virus of mice infection. Virology 327(2):233–241.4. Guo JU, et al. (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409.Find out more at /microarraysFor Research Use Only. Not for use in diagnostic procedures. © 2017 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. COL13238 0417Clariom D Assay, human10 reactions 90292230 reactions 902923Clariom D Assay, mouse(previously named GeneChip Mouse Transcriptome Assay 1.0)10 reactions 90251330 reactions 902514Clariom D Assay, rat(previously named GeneChip Rat Transcriptome Assay 1.0)10 reactions 90263330 reactions 902634GeneChip Hybridization, Wash, and Stain Kit30 reactions900720。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Intertranscriber Reliability of Prosodic Labeling on Telephone ConversationUsing ToBITae-Jin Yoon1,Sandra Chavarr´ıa1,Jennifer Cole1&Mark Hasegawa-Johnson2Department of Linguistics1;Department of Electrical and Computer Engineering2University of Illinois at Urbana-Champaign,U.S.A.{tyoon;chavarri;jscole;jhasegaw}@AbstractTwo transcribers have labeled prosodic events indepen-dently on a subset of Switchboard corpus using adapted ToBI (TOnes and Break Indices)system.Transcriptions of two types of pitch accents(H*and L*),phrasal accents(H-and L-)and boundary tones(H%and L%)encoded independently by two transcribers are compared for intertranscriber reliabil-ity.Two commonly used methods of reliability measurement,‘transcriber-pair-word’comparison and kappa statistic,are used for comparison with previous reports on the intertranscriber consistency.The results obtained from transcriber-pair-word comparison are:The overall agreement on the presence or ab-sence and choice of pitch accent is86.57%.The agreement on the presence or absence and the choice of phrasal accent is 85.63%.The presence and choice of boundary tone is89.33%. When both transcribers agreed that there is at least a phrasal tone,the agreement on the choice of the type of either phrasal accent or boundary tone is73.86%.The kappa coefficient of agreement(K)of0.7to1indicates the degree of reliability to be from good to perfect.A kappa coefficient of0.75is obtained for agreement on the presence or absence of pitch accents,0.67 for the presence of phrasal accents,and0.61for the strength of disjuncture between phrasal accent and boundary -parison of the present results with those of previous reliability studies[1][2][3][4]suggests that some higher agreement rates for this study may result from our adoption of fewer labeling distinctions in the transcription of pitch accent events.The results for phrase boundary labeling suggest that spontaneous speech of the type found in the Switchboard corpus is harder to code for the degree of disjuncture between prosodic domains than is read speech.1.IntroductionProsodic events that mark phrasal prominence or disjuncture may be encoded variously by phonetic properties such as pitch, intensity,or duration.The non-uniform acoustic expression of prosody presents a challenge for the development of com-puter speech synthesis and recognition systems,and for fun-damental scientific inquiry into the nature of prosody.To ful-fill the need for a standard prosodic transcription system and large scale prosodically-labeled speech corpora,the ToBI sys-tem has been developed by speech scientists and engineers over the last decade[1][5][6].Since then,the ToBI system for stan-dard American English has been widely adopted as a stan-dard prosody transcription system.It also has been adapted to other languages like German[7],Japanese[8]and Korean [4],or other variants of English such as Glasgow English[3]. The advantages of using the ToBI system are its reliable inter-transcriber consistency[1][3]due to the relatively simple label-ing conventions,and its applicability to both prosody-dependent speech recognition requiring large corpora[9]and fundamental research on prosody and spoken language[1][10][11].Though favorable intertranscriber reliability results have been reported for ToBI-labeled corpora of mainly read speech produced in a laboratory setting or by professional announcers,only a few in-tertranscriber reliability tests have been reported for large scale spontaneous speech corpora including numerous speakers.When considering a speaker-independent application of prosody-dependent automatic speech recognition(ASR),a large scale database of multi-speaker,prosodically transcribed corpora is still in demand.In addition,potential differences be-tween spontaneous speech and read speech will diminish the ef-fectiveness of a speaker independent recognition system trained solely on labeled corpora of read speech.In order to build a model of prosody-dependent ASR for spontaneous speech that can make use of high-level(pragmatic)linguistic information, we have undertaken work on the ToBI transcription of sponta-neous telephone conversation speech.In this paper,we report on the intertranscriber reliability of transcriptions produced in our lab by two linguistics graduate students’ToBI labeling on a subset of the Switchboard corpus.2.Methodology2.1.CorpusSwitchboard is a corpus of spontaneous informal telephone con-versations[12][13].Prosodic events have been transcribed for files from the WS97subset of the Switchboard corpus which are segmented by conversational turn and have word-and phone-aligned transcriptions.Two transcribers,graduate students in Linguistics with training in acoustic phonetics and phonology, independently labeled181files,containing utterances from79 different speakers and around1600words.The mean duration of the speechfiles is3.6seconds with standard deviation of2.4 seconds.The overall duration for allfiles is approximately9 minutes.Table1shows the number of words,transcribers,and transcriber-pair-word comparison pairs labeled on the Switch-board subset for the present study(ToBI-Swb),along with the corresponding numbers taken from previous studies([1],[2], [3],and[4],respectively).2.2.Transcription ProcedureThe basic structure of the ToBI system for prosodic transcrip-tion consists of4separate tiers:the tone tier,the orthographic tier,the break index tier,and the miscellaneous tier.The toneTable1:Number of tokens for reliability testWords Transcriber Pairs ToBI on Swb159423188Original ToBI4892612714ToBI on Read Speech64463864Glasgow ToBI27371911K-ToBI153213213 tier denotes the main prosodic events in terms of pitch accents to mark the perceived prominence of words,and phrasal tones to mark perceived juncture within the utterance.Both pitch ac-cents and phrasal tones are marked with either low(L)or high (H)tone features.Pitch accents are distinguished from phrasal tones by the star diacritic(*)next to L or H.Phrasal tones are further divided into phrasal accents that mark the end of an in-termediate phrase,and boundary tones that mark the end of an intonational phrase.The two types of phrasal tones are differ-entiated by appending to L or H a dash(-)for phrasal accents and percentage sign(%)for boundary tones.The basic tone elements can be combined using diacritics to denote a complex or more detailed prosodic event.For ex-ample,the combination of L and H as L*+H marks a scooped late rise usually found in the context of pragmatic uncertainty [1].In the present study,pitch accents have been labeled only for the starred tone,collapsing pitch movements with specified leading or trailing tones.1Though losing some detail,the la-beling of only the starred tone for pitch accents has facilitated labeling with less confusion on the choice of pitch accents.In this regard,it is interesting to observe that Syrdal and McGory [2]report that the distinction between H*and L+H*was the most often confused,accounting for50%of the disagreements involving either or both of these accents.Another basic tier of the ToBI system is the orthographic tier.The WS97subset of the Switchboard corpus includes a word-aligned transcription for the orthographic tier,with addi-tional information like[BREATH],[CROSSTALK],[LAUGH], etc.Break indices,which comprise another basic tier of the sys-tem,have not been labeled.In general,the labeling of break indices is redundant because the information can usually be in-ferred from the tone tier[1][14].While not the focal concern of this study,one of the com-monly observed phenomena in informal spontaneous speech is disfluency.The transcribers labeled disfluencies in the Switch-board subset,marking the reparandum,editing phase,and alter-ation on the miscellaneous tier.Disfluencies frequently inter-rupt the otherwise coherent phrasing in a way that affects the realization of a boundary tone.When an apparent boundary interruption is observed,%r is labeled on the tone tier.The mis-cellaneous tier can also be used for labeling non-prosodic events such as breathing,cross-talk,or laughter,but these events were already marked in the WS97transcription for the orthographic tier.1The transcribers optionally used complex bitonal pitch accents when the observed pitch contours were otherwise hard to describe. However,the complex tones were collapsed into either H*or L*for the purpose of the reliability measurements reported here.When perceived prominence was elusive between H*and L*,X*was conservatively used.3.Reliability MeasurementThe measurement of intertranscriber consistency in this study follows as much as possible that of previous studies to facili-tate comparisons between studies.The two most commonly re-ported measurements are transcriber-pair-word comparison and the kappa statistic.3.1.Pairwise Transcriber AgreementSince thefirst study of reliability of ToBI by Pitrelli et al.[1],“a comparison of the labels that transcribers assigned to a word or word boundary in the corpus,”called transcriber-pair-word,has been the basic unit of reliability measurement.This pairwise analysis compares the labels of each transcriber against the la-bels of every other transcriber for each prosodic unit on a word or word boundary,and offers a stringent measure of transcriber agreement.For instance,if three out of four labelers marked a word H*,and one labeler did not mark any pitch accent on that word,the level of agreement is considered to be3agreements out of6,not3out of4.Since there are only two transcribers in our study,the pairwise transcriber agreement results represent only a single comparison pair for each word in the corpus.3.2.Kappa StatisticMayo(1996)[3]states that“while pairwise agreement used by Pitrelli et al.is relatively reliable in that it produces onefigure which sums reliably over all coder pairs,it does not take into account the number of possible categories available to the tran-scriber at any one time.”Thus,when considering the number of categories available to the transcriber,the kappa statistic,as in (1),is commonly used as an alternative evaluation of intertran-scriber reliability.K=P o−P c1−P c(1) where P o is the percent agreement measured between tran-scribers and P c is the agreement that would be predicted by chance.When the value obtained from the kappa statistic is greater than0.7,the level of agreement between transcribers is consid-ered to be good.4.ResultsTable2shows the distribution of the presence or absence of pitch accent(PA)and the type of pitch accent for the two tran-scribers in the present study of speech from the Switchboard corpus.Table2:Agreement Matrix of Pitch Accents(Column headings indicate labels assigned by labeler A and row headings are la-bels assigned by labeler B)H*L*X*No PA TotalH*61214273700L*162401757X*900413No PA7090744823Total7074728381594The choice each transcriber can make on each of1594 words is1out of3categories(H*,L*,and no pitch accent).X*is not counted as a full choice here,as labelers were ad-vised to use this label only in the face of extreme uncertainty. So,the agreement by chance is around33%.The agreement on whether or not there is a pitch accent,regardless of its type, is89.14%.The agreement becomes86.57%when we consider whether both transcribers marked the same pitch accent or both did not mark any pitch accent.The agreement on the pitch ac-cent type when both transcribers agreed that there is a pitch ac-cent is94.6%.The agreement obtained in this study is higher than the agreement made in the original ToBI reliability study[1].In that study,the agreement on the presence or absence of pitch accent is80.6%,the agreement on the presence and choice of pitch accent is68%,and agreement on the choice of pitch accent when pitch accent is present is64.1%.Table3shows the distribution of the presence or absence of phrasal accent(PhA)and the type of phrasal accent for two transcribers.Table3:Agreement Matrix of phrasal accents(Column head-ings indicate labels assigned by labeler A and row headings are labels assigned by labeler B)H-L-No PhA TotalH-27261467L-1829872388No PhA79210401139Total5241611261594 As with pitch accent analysis,the choice each transcriber can make for phrasal accents on each of1594words is1out of3categories(H-,L-,and no phrasal accent).The agreement on the presence or absence of phrasal accent is88.39%.The agreement on the presence or absence and the choice of phrasal accent is85.63%.And the agreement on the choice of phrasal accent when both transcribers agreed that there is a phrasal ac-cent is88.07%.Though the present agreement results for pitch accent are higher,the results for phrasal accent are comparable to the origi-nal ToBI results.In the original ToBI transcriber-pair-wise com-parison,the agreement on the presence or absence of phrasal accent is89.8%,the agreement on the presence and type of phrasal accent is85%.And the choice of phrasal accent when transcribers agreed on the presence of phrasal accent is72.9%.Table4shows the distribution of the presence or absence of boundary tone(BT)and the type of boundary tone for the two transcribers.Table4:Agreement Matrix of Boundary Tones(Column head-ings indicate labels assigned by labeler A and row headings are labels assigned by labeler B)H%L%%r No BT TotalH%351201057L%283130116%r11151551No BT29361412911370Total671323013651594A similar analysis of boundary tone to pitch accent and phrasal tone shows the following results:an agreement of 90.4%is obtained for the presence or absence of boundary tone.The presence and choice of boundary tone is89.33%,and when both transcribers agree that there is a boundary tone,the agree-ment on the choice of boundary tone is88.7%.In the original ToBI reliability study,the agreement rate for the presence or absence of boundary tone is93.4%.Overall agreement on the presence or absence and choice of boundary tone is90.9%.When transcribers agreed that a boundary tone is present,the agreement on the choice of boundary tone is78.7%.When comparing the agreement strength between phrasal accent and boundary tone,the agreement on the presence or absence of phrasal tone,regardless of its type,is87.4%.The agreement on the presence or absence and the choice of the phrasal tone is80.9%.When both transcribers agreed that there is a phrasal tone,the agreement on the level of phrasal tone is 73.86%.In addition to the transcriber-pair-word analysis,the Kappa statistic is also obtained,as shown in Table5.Table5:Kappa statisticKappa coefficientPitch accentsPresence of pitch accent0.75Choice of pitch accent0.51Phrasal accents and Boundary tonesPresence of phrasal accent0.67Choice of phrasal accent0.48Presence of boundary tone0.58Choice of boundary tone0.79Strength of phrasal tone0.61The presence of pitch accent and the choice of boundary tone each have a kappa statistic of over0.7,which indicates that those categories are reliably labeled in general.However, the agreement on which label is assigned within a pitch accent or phrasal tone category is lower,as is the agreement on the presence of boundary tone,as shown by the relatively smaller kappa coefficients for these measures.parison with Previous Studies The results of the current study have interesting implications when we compare the level of agreement reported above to agreement levels from the previous studies,in particular when we consider the number of categories available to the tran-scribers.First,when compared to the level of consistency reported for the original ToBI reliability study,the overall agreement rates on the presence or absence and choice of phrasal accent and boundary tone are quite similar.However,when the over-all agreement rate on the presence or absence and choice of pitch accent is compared,our result is much higher than the re-sult from the original ToBI study(86.57%for our result versus 68%for the result from the original ToBI).Our higher agree-ment rate for pitch accents is almost certainly due to the smaller number of accents distinguished in the modified ToBI labeling performed by our transcribers.While the number of distinct phrasal accents and boundary tones is the same for both stud-ies,the number of distinct pitch accents is limited to two(H* and L*)for our study,but the original ToBI study is based on a transcription that distinguishes more than6categories (H*(L+H*),L*+H,!H*(L+!H*),H*+!H*,L*,L*+!H*),even after the merger of L+H*into H*and L+!H*into!H*.Thesmaller set of pitch accent choices for the labelers in our study certainly contributes to our higher agreement rate.Second,our agreement rates may be considered as a mea-sure of the difficulty of the labeling task for telephone conversa-tional speech,and as such can be compared with two of the pre-vious reliability studies with regard to agreement on boundary types.The Syrdal and McGory study[2]reports the reliability of the ToBI labeling on read speech by professional announcers in a near optimal condition,and Mayo’s study[3]reports the reliability of a ToBI transcription for spontaneous speech.The kappa statistics reported by Syrdal and McGory[2]for the agreement on phrasal accent and on boundary tone type are 0.84for female and0.76for male speakers.The corresponding kappa statistics reported in Mayo[3]and in the current study are only0.7and0.61,respectively.These differences suggest that decisions about boundary strength are more difficult for sponta-neous speech than for read speech.6.ConclusionThe intertranscriber agreement for prosodic transcription of spontaneous speech reported in this study exhibits comparable and,for one category,higher levels of reliability when com-pared with other agreement studies.Differences in the type of speech transcribed,and in the number of categories available to the transcribers,must be taken into account when comparing agreement results.As stated in the introduction,an efficient and reliable method for prosodic transcription of speech is needed for lin-guistic research on prosody,in general,and for the development of prosody-dependent ASR systems in particular.Prosodic events are known to condition acoustic(and articulatory)vari-ation in read speech,but less is known about the effects of prosody on spontaneous speech.The results reported here con-firm that reliable prosodic transcriptions can be manually pro-duced for spontaneous speech,which in turn opens the door to the future development of automatic prosody transcription us-ing machine learning techniques.Our study of prosody in the Switchboard corpus demon-strates that the subjective judgment of prosodic events are shared across labelers.In related work,we report on acoustic correlates that differentiate prosodic categories in the Switch-board corpus annotated with our prosody transcription[15], and on the improved performance of prosody-dependent ASR systems trained on prosodically-transcribed speech corpora [9][16].7.AcknowledgementsThis work was funded through the University of Illinois Critical Research Initiative.8.References[1]Pitrelli,J.F.,Beckman,M.E.,and Hirschberg,J.,“Eval-uation of prosodic transcription labeling reliability in the ToBI framework”,Preceedings of the International Conference on Spoken Language Processing,Yokohama: Japan,123-126,1994.[2]Syrdal,A.,and McGory,A.,“Inter-transcriber reliabilityof ToBI prosodic labeling”,Proceedings of the Interna-tional Conference on Spoken Language Processing,Bei-jing:China,235-238,2000.[3]Mayo,C.J.,Prosodic transcription of Glasgow English:an evaluation study of GlaToBI,MSc in Speech and Lan-guage Processing,University of Edinburgh,1996.[4]Jun,S.,Lee,S.,Kim,K.,and Lee,Y.,“Labeler agreementin transcribing Korean intonation with K-ToBI”,Proceed-ings of the International Conference on Spoken Language Processing,Beijing:China,211-214,2000.[5]Beckman,M.E.,and Ayers,G.,Guidelines for ToBI la-belling(version3.0),ms.,The Ohio State University, 1997.[6]Beckman,M.E.,and Hirschberg,J.,The ToBI annotationconventions,ms,The Ohio State University and AT&T Bell Telephone Laboratories,1994.[7]Grice,M.,Reyelt,R.,Benzm¨u ller,R.,Mayer,J.,andBatliner,A.,“Consistency in transcription and labelling of German intonation with GToBI”,Proceedings of In-ternational Conference on Spoken Language Processing, Philadelphia,USA.1716-1719,1996.[8]Venditti,J.,Discourse structure and attentional salienceeffects on Japanese intonation,PhD Dissertation,The Ohio State University,2000.[9]Chen,K.,and Hasegawa-Johnson,M.,“How prosody im-proves word recognition”,ISCA International Conference on Speech Prosody2004,Nara:Japan,583-586,2004 [10]Pierrehumbert,J.,and Hirschberg,J.,“The meaning ofintonational contours in the interpretation of discourse”, In Intonations in Communication,Cohen,P.,Morgan,J., and Pollack,M.E.(eds.),Cambridge,Mass.:MIT Press, 271-311,1990.[11]Cole,J.,Choi,H.,Kim,H.,and Hasegawa-Johnson,M.,“The effect of accent on the acoustic cues to stop voicing in radio news speech”,Proceedings of International Con-ference on Phonetic Sciences,Barcelona:Spain,2665-2668,2003.[12]Godfrey,J.J.,Holliman, E.C.,and McDaniel,J.,“SWITCHBOARD:Telephone speech corpus for research and development”,Proceedings of the International Con-ference on Audio,Speech and Signal Processing,517-520, 1992.[13]Riley,M.,Byrne,W.,Finke,M.,Khudanpur,S.,Ljolje,A.,McDonough,J.,Nock,H.,Saraclar,M.,Wooters,C.,and Zavaliagkos,G.,“Stochastic pronunciation modelling from hand-labelled phonetic corpora”,Speech Communi-cation29,209-224,1999.[14]Wightman,C.,“ToBI or not ToBI”,Preceedings of theInternational Conference on Speech Prosody2002,Aix-en-Provence:France,2002.[15]Chavarr´ıa,S.,Yoon,T.,Cole,J.,and Hasegawa-Johnson,M.,“Acoustic differentiation of ip and IP boundary lev-els:Comparison of L-and L-L%in the Switchboard cor-pus”,ICSA Proceedings of the International Conference on Speech Prosody2004,Nara:Japan,333-336,2004. [16]Hasegawa-Johnson,M.,Cole,J.,Shih,C.,Chen,K.,Co-hen,A.,Chavarr´ıa,S.,Kim,H.,Yoon,T.,Borys,S.,and Choi,J.,“Speech recognition models of the interdepen-dence among syntax,prosody,and segmental acoustics”, HLT/NAACL Workshop on Linguistic and Other Higher Level Knowledge in Speech Recognition and Understand-ing,Boston:USA,2004.。

相关文档
最新文档