八年级数学上学期期末附答案【测试范围:人教版八上全册】7

合集下载

人教版数学八年级上学期《期末检测题》含答案

人教版数学八年级上学期《期末检测题》含答案

人教版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣36.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.337.化简的结果为()A.1B.x+1C.D.8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.99.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b210.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.311.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.14.若关于x的分式方程+=2m无解,则m的值为.15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.19.已知,求的值.20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?答案与解析一、单选题(共12小题)1.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定[解答]解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.[知识点]多边形内角与外角2.在直角坐标系中,点A(﹣2,3)的横坐标乘以﹣1,纵坐标不变,得到点B,则A与B的关系是()A.关于x轴对称B.将点A向x轴的负方向平移了1个单位长度C.关于y轴对称D.将点A向y轴的负方向平移了1个单位长度[解答]解:∵在直角坐标系中A(﹣2,3)点的横坐标乘以﹣1,纵坐标不变,∴B点的横坐标变为原数的相反数,纵坐标不变,∴A与B的关系是关于y轴对称.故选:C.[知识点]坐标与图形变化-平移、关于x轴、y轴对称的点的坐标3.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x﹣y)[解答]解:A、左边不是多项式,不是因式分解,故本选项不符合题意;B、是整式的乘法运算,故本选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故本选项不符合题意;D、把一个多项式转化成几个整式积的形式,故本选项符合题意;故选:D.[知识点]因式分解的意义、因式分解-提公因式法4.已知a=8131,b=2741,c=961,则下列关系中正确的是()A.b>c>a B.a>c>b C.a>b>c D.a<b<c[解答]解:∵a=8131=3124,b=2741=3123,c=961=3122,∴a>b>c.故选:C.[知识点]有理数大小比较、幂的乘方与积的乘方5.关于y的二次三项式y2﹣(k+1)y+1为完全平方式,则k的值为()A.﹣1B.1C.1或﹣1D.1或﹣3[解答]解:∵y2﹣(k+1)y+1为完全平方式,∴﹣(k+1)=±2,∴k=1或﹣3,故选:D.[知识点]完全平方式6.已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.33[解答]解:∵a+b=﹣5,ab=﹣4,∴a2﹣3ab+b2=(a+b)2﹣5ab=52﹣5×(﹣4)=25+20=45,故选:C.[知识点]完全平方公式7.化简的结果为()A.1B.x+1C.D.[解答]解:原式=÷=×=.故选:C.[知识点]分式的混合运算8.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.9[解答]解:∵=11,∴1++1++1+=14,即++=14,∴++=,而++=,∴=,∴x+y+z=12.故选:A.[知识点]分式的加减法9.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.当x≠3时,分式意义D.分式与的最简公分母是a3b2[解答]解:A、形如(A、B为整式、B中含字母)的式子叫分式,故原题说法错误;B、分式是最简分式,故原题说法错误;C、当x≠3时,分式意义,故原题说法正确;D、分式与的最简公分母是a2b,故原题说法错误;故选:C.[知识点]最简分式、分式有意义的条件、最简公分母10.若关于x的方程+1=的解为负数,且关于x的不等式组无解.则所有满足条件的整数a的值之积是()A.0B.1C.2D.3[解答]解:将分式方程去分母得:a(x﹣1)+(x+1)(x﹣1)=(x+a)(x+1)解得:x=﹣2a﹣1∵解为负数∴﹣2a﹣1<0∴a>﹣∵当x=1时, a=﹣1;x=﹣1时,a=0,此时分式的分母为0,∴a>﹣,且a≠0;将不等式组整理得:∵不等式组无解∴a≤2∴a的取值范围为:﹣<a≤2,且a≠0∴满足条件的整数a的值为:0,1,2∴所有满足条件的整数a的值之积是0.故选:A.[知识点]解一元一次不等式、分式方程的解、解一元一次不等式组11.观察下列各式(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1……根据规律计算:(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1的值为()A.22019﹣1B.﹣22019﹣1C.D.[解答]解:∵(﹣2﹣1)[(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1],=(﹣2)2019﹣1,=﹣22019﹣1,∴(﹣2)2018+(﹣2)2017+(﹣2)2016+…+(﹣2)3+(﹣2)2+(﹣2)1+1=.故选:D.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类12.如图,△ABP与△CDP是两个全等的等边三角形,且P A⊥PD.有下列四个结论:(1)∠PBC=15°;(2)AD∥BC;(3)直线PC与AB垂直;(4)四边形ABCD是轴对称图形.其中正确结论个数是()A.1B.2C.3D.4[解答]解:∵△ABP≌△CDP,∴AB=CD,AP=DP,BP=CP.又∵△ABP与△CDP是两个等边三角形,∴∠P AB=∠PBA=∠APB=60°.①根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,故本选项正确;②∵∠ABC=60°+15°=75°,∵AP=DP,∴∠DAP=45°,∵∠BAP=60°,∴∠BAD=∠BAP+∠DAP=60°+45°=105°,∴∠BAD+∠ABC=105°+75°=180°,∴AD∥BC;故本选项正确;③延长CP交于AB于点O.∠APO=180°﹣(∠APD+∠CPD)=180°﹣(90°+60°)=180°﹣150°=30°,∵∠P AB=60°,∴∠AOP=30°+60°=90°,故本选项正确;④根据题意可得四边形ABCD是轴对称图形,故本选项正确.综上所述,以上四个命题都正确.故选:D.[知识点]等边三角形的性质、平行线的判定、轴对称图形、全等三角形的性质二、填空题(共4小题)13.已知x2﹣mx+n=(x﹣3)(x+4),则(mn)m=.[解答]解:∵x2﹣mx+n=(x﹣3)(x+4)=x2+x﹣12,∴m=﹣1,n=﹣12,∴(mn)m=12﹣1=.故答案为:[知识点]因式分解-十字相乘法等、幂的乘方与积的乘方14.若关于x的分式方程+=2m无解,则m的值为.[解答]解:方程两边同时乘以x﹣4,得x﹣4m=2m(x﹣4),解得:x=,∵方程无解,∴2m﹣1=0或x=4,m=或m=1,故答案为或1.[知识点]分式方程的解15.如图,从边长为a+4的正方形纸片中剪去一个边长为a的正方形(a>0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为.[解答]解:(a+4)2﹣a2=8a+16,故答案为8a+16.[知识点]平方差公式的几何背景16.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF=;④EF=AP;当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号).[解答]解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠P AE=∠PCF,在△APE与△CPF中,,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=S△ABC,①②③正确;而AP=BC,EF因不是中位线,则不等于BC的一半,故④不成立.故始终正确的是①②③.故答案为:①②③.[知识点]等腰直角三角形、旋转的性质、全等三角形的判定与性质三、解答题(共6小题)17.计算:(1)x•x3+x2•x2(2)(x+3y)2﹣(x+2y)(x﹣2y)[解答]解:(1)原式=x4+x4=2x4;(2)原式=x2+6xy+9y2﹣x2+4y2=6xy+13y2.[知识点]同底数幂的乘法、完全平方公式、平方差公式18.如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.[解答]解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=×3×2=3.[知识点]作图-轴对称变换、三角形的面积19.已知,求的值.[解答]解:∵==,∴,解得:A=3,B=﹣1,∴=.[知识点]分式的加减法、分式的值20.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.[解答](1)证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.(2)证明:由(1)可得,∠AFC=90°,∴∠DAF=90°﹣∠D,∠CGF=90°﹣∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.∵∠EGA=∠CGF,∴∠EAG=∠EGA.∴EA=EG.[知识点]矩形的判定、全等三角形的判定与性质21.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1……(1)根据上面各式的规律,得(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=﹣(其中n为大于1的正整数);(2)根据这一规律,计算1+2+22+23+24+…+299+2100.[解答]解:(1)由规律得:(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1+1﹣1=x n﹣1,故答案为:x n﹣1,(2)原式=(2﹣1)(1+2+22+23+24+…+299+2100)=2101﹣1.[知识点]平方差公式、多项式乘多项式、规律型:数字的变化类22.从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?[解答]解:(1)设泰州至南京的铁路里程是xkm,则,解得:x=160.答:泰州至南京的铁路里程是160 km;(2)设经过th两车相距40 km.①当相遇前相距两车相距40 km时,80t+1.5×80t+40=160,解得t=0.6;②当相遇后两车相距40 km时,80t+1.5×80t﹣40=160.解得t=1.综上所述,经过0.6h或1h两车相距40km.答:经过0.6h或1h两车相距40km.[知识点]分式方程的应用。

人教版八年级数学上册期末试卷及参考答案

人教版八年级数学上册期末试卷及参考答案

人教版八年级数学上册期末试卷及参考答案,感觉复习不怎么样的你,也不要浮躁,要知道临阵磨枪,不快也光。

诚心祝愿你考场上“亮剑”,为自己,也为家人!祝你八年级数学期末考试成功!下面是店铺为大家精心推荐的人教版八年级数学上册期末试卷,希望能够对您有所帮助。

人教版八年级数学上册期末试题一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个正确答案)1.下列命题中,假命题是( )A.9的算术平方根是3B. 的平方根是±2C.27的立方根是±3D.立方根等于﹣1的实数是﹣12.下列命题中,假命题是( )A.垂直于同一条直线的两直线平行B.已知直线a、b、c,若a⊥b,a∥c,则b⊥cC.互补的角是邻补角D.邻补角是互补的角3.下列长度的线段中,能构成直角三角形的一组是( )A. ,,B.6,7,8C.12,25,27D.2 ,2 ,44.下列计算正确的是( )A. B. C.(2﹣ )(2+ )=1 D.5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为( )A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是( )A. B. C. D.7.方程组的解为,则被遮盖的两个数分别是( )A.1,2B.5,1C.2,﹣1D.﹣1,98.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为( )A.4B.8C.12D.209.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是( )A.∠ADC>∠AEBB.∠ADC=∠AEBC.∠ADC<∠AEBD.大小关系不能确定10.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约( )A.10cmB.12cmC.19cmD.20cm二、填空题(本大题共8小题,每小题3分共24分)11.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为件.12.若点A(m,5)与点B(2,n)关于原点对称,则3m+2n的值为.13.有四个实数分别为32,,﹣23,,请你计算其中有理数的和与无理数的积的差,其结果为.14.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.15.等腰直角三角形ABC的直角顶点C在y轴上,AB在x轴上,且A在B的左侧,AC= ,则A点的坐标是.16.已知 +(x+2y﹣5)2=0,则x+y= .17.如图,点D在△ABC边BC的延长线上,DE⊥AB于E,交AC 于F,∠B=50°,∠CFD=60°,则∠ACB=.18.已知A地在B地的正南方3km,甲、乙两人同时分别从A、B 两地向正北方向匀速行驶,他们与A地的距离s(km)和所行的时间t(h)之间的函数关系如图所示,当他们行进3h时,他们之间的距离为km.三、(本大题共7小题,19题8分,第20,21,22,23,24小题各6分,25小题8分,共44分)19.(1)计算:3 + ﹣4(2)解方程组: .20.如图,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.21.已知:如图,AB∥CD,AD∥BC,∠1=50°,∠2=80°.求∠C的度数.22.甲、乙两名同学参加学校组织的100米短跑集训,教练把10天的训练结果用折线图进行了记录.(1)请你用已知的折线图所提供的信息完成下表:平均数方差 10天中成绩在15秒以下的次数甲 15 2.6 5乙(2)学校欲从两人中选出一人参加市中学生运动会100米比赛,请你帮助学校作出选择,并简述你的理由.23.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?24.小颖和小亮上山游玩,小颖乘缆车,小亮步行,两人相约在山顶的缆车终点会合.小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是m,他途中休息了min;(2)当50≤x≤80时,求y与x的函数关系式;(3)小颖乘缆车到达终点所用的时间是多少?当小颖到达缆车终点时,小亮行走的路程是多少?25.已知△ABC,(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.人教版八年级数学上册期末试卷参考答案一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个正确答案)1.下列命题中,假命题是( )A.9的算术平方根是3B. 的平方根是±2C.27的立方根是±3D.立方根等于﹣1的实数是﹣1【考点】立方根;算术平方根;命题与定理.【分析】分别对每个选项作出判断,找到错误的命题即为假命题.【解答】解:A、9的算术平方根是3,故A选项是真命题;B、 =4,4的平方根是±2,故B选项是真命题;C、27的立方根是3,故C选项是假命题;D、﹣1的立方根是﹣1,故D选项是真命题,故选C.【点评】本题考查了立方根和算术平方根的定义,属于基础题,比较简单.2.下列命题中,假命题是( )A.垂直于同一条直线的两直线平行B.已知直线a、b、c,若a⊥b,a∥c,则b⊥cC.互补的角是邻补角D.邻补角是互补的角【考点】命题与定理.【分析】根据邻补角的性质及常用的知识点对各个命题进行分析,从而得到正确答案.【解答】解:A、垂直于同一条直线的两直线平行,是真命题,不符合题意;B、已知直线a、b、c,若a⊥b,a∥c,则b⊥c,是真命题,不符合题意;C、互补的角不一定是邻补角,是假命题,符合题意;D、邻补角是互补的角,是真命题,不符合题意.故选:C.【点评】此题主要考查了命题与定理,熟练掌握相关定理是解题关键.3.下列长度的线段中,能构成直角三角形的一组是( )A. ,,B.6,7,8C.12,25,27D.2 ,2 ,4【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【解答】解:A、( )2+( )2≠( )2,故不是直角三角形,此选项错误;B、62+72≠82,故不是直角三角形,此选项错误;C、122+252≠272,故不是直角三角形,此选项错误;D、(2 )2+(2 )2=(4 )2,故是直角三角形,此选项正确.故选:D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.下列计算正确的是( )A. B. C.(2﹣ )(2+ )=1 D.【考点】二次根式的加减法;二次根式的性质与化简;二次根式的乘除法.【分析】根据二次根式的运算法则,逐一计算,再选择.【解答】解:A、原式=2 ﹣ = ,故正确;B、原式= = ,故错误;C、原式=4﹣5=﹣1,故错误;D、原式= =3 ﹣1,故错误.故选A.【点评】根式的加减,注意不是同类项的不能合并.计算二次根式时要注意先化简成最简二次根式再计算.5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为( )A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)【考点】点的坐标.【分析】根据点P到两坐标轴的距离相等,可得|2﹣a|=|3a+6|,即可求出a的值,则点P的坐标可求.【解答】解:∵点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=±(3a+6)解得a=﹣1或a=﹣4,即点P的坐标为(3,3)或(6,﹣6).故选D.【点评】本题考查了点到两坐标轴的距离相等的特点,即点的横纵坐标的绝对值相等.6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是( )A. B. C. D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.7.方程组的解为,则被遮盖的两个数分别是( )A.1,2B.5,1C.2,﹣1D.﹣1,9【考点】二元一次方程组的解.【专题】计算题.【分析】把x=2代入方程组中第二个方程求出y的值,确定出方程组的解,代入第一个方程求出被遮住的数即可.【解答】解:把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮住得两个数分别为5,1,故选B.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为( )A.4B.8C.12D.20【考点】算术平均数.【分析】只要运用求平均数公式:即可列出关于d的方程,解出d即可.【解答】解:∵a,b,c三数的平均数是4∴a+b+c=12又a+b+c+d=20故d=8.故选B.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.9.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是( )A.∠ADC>∠AEBB.∠ADC=∠AEBC.∠ADC<∠AEBD.大小关系不能确定【考点】三角形的外角性质.【分析】利用三角形的内角和为180度计算.【解答】解:在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴等量代换后有∠ADC=∠AEB.故选B.【点评】本题利用了三角形内角和为180度.10.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约( )A.10cmB.12cmC.19cmD.20cm【考点】平面展开-最短路径问题.【分析】根据两点之间,线段最短.首先把A和B展开到一个平面内,即展开圆柱的半个侧面,得到一个矩形,然后根据勾股定理,求得蚂蚁爬行的最短路程即展开矩形的对角线的长度.【解答】解:展开圆柱的半个侧面,得到一个矩形:矩形的长是圆柱底面周长的一半即2π=6,矩形的宽是圆柱的高即8.根据勾股定理得:蚂蚁爬行的最短路程即展开矩形的对角线长即10.故选A.【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.本题注意只需展开圆柱的半个侧面.二、填空题(本大题共8小题,每小题3分共24分)11.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为 5.5 件.【考点】中位数.【专题】应用题.【分析】根据中位数的定义解答.把数据按大小排列,第3、4个数的平均数为中位数.【解答】解:从小到大排列为:3,4,5,6,6,7.。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

最新人教版八年级上册数学期末测试题(附答案)

最新人教版八年级上册数学期末测试题(附答案)

最新人教版八年级上册数学期末测试题(附答案)过池塘,分别测量AC和BC的长度,再利用勾股定理求出AB的长度。

已知AC=15m,BC=20m,求AB的长度。

解题思路:根据勾股定理,设AB=x,则有x²=15²+20²,解得x=25.因此,AB的长度为25m。

19.(本小题满分6分)已知点A(2,-3),B(5,1),C(-1,4),求三角形ABC的周长。

解题思路:根据两点间距离公式,可求出AB、BC、CA的长度,然后将它们相加即可得到三角形ABC的周长。

计算过程如下:AB的长度:√[(5-2)²+(1-(-3))²] = √34BC的长度:√[(5-(-1))²+(1-4)²] = √41CA的长度:√[(2-(-1))²+(-3-4)²] = √74因此,三角形ABC的周长为√34+√41+√74.20.(本小题满分8分)已知函数f(x)=3x²-4x+5,求f(2a)与f(a+1)的值,并判断它们的大小关系。

解题思路:将2a和a+1代入函数f(x)中,即可求出f(2a)和f(a+1)的值。

计算过程如下:f(2a) = 3(2a)²-4(2a)+5 = 12a²-8a+5f(a+1) = 3(a+1)²-4(a+1)+5 = 3a²+2a+4因此,f(2a) = 12a²-8a+5,f(a+1) = 3a²+2a+4.接下来判断它们的大小关系,即f(2a)与f(a+1)的大小关系。

将它们相减,得到12a²-11a+1,根据一元二次方程的解法,可得a=1或a=1/12.将这两个值代入12a²-11a+1的值,发现当a=1时,f(2a)>f(a+1);当a=1/12时,f(2a)f(a+1)的解集为a∈(0,1/12)U(1/12,∞),而f(2a)<f(a+1)的解集为a=1/12.21.(本小题满分8分)如图,在平面直角坐标系中,点A(1,2)、B(-3,4)、C(-2,-1)、D(2,-3)依次连线,得到四边形ABCD。

人教版数学八年级上学期《期末测试卷》带答案解析

人教版数学八年级上学期《期末测试卷》带答案解析
B.(a-b)2=a2-2ab+b2
C.a2-b2=(a+b)(a-b)
D.(a+2b)(a-b)=a2+ab-2b2
[答案]C
[解析]
[分析]
分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论.
[详解]解:甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即 ,乙图中阴影部分长方形的长为 ,宽为 ,阴影部分的面积为 ,根据两个图形中阴影部分的面积相等可得 .
18.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,FG∥BC,FH∥AC,下列结论:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正确的结论有________________.(填序号)
三、解答题(共8题,共66分 )
19.分解因式:
A. ∠1=∠2+∠AB. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠AD. 2∠1=∠2+∠A
二、填空题(每小题3分,共24分)
11.当x=时,分式 无意义.
12.如图,在△ABC中,AM是中线,AN是高.如果BM=3.5cm,AN=4cm,那么△ABC的面积是___________cm2.
13.如图,已知AB∥CF,E为DF的中点,若AB=11 cm,CF=5 cm,则BD=________cm.
8.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()
A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°
[答案]B
[解析]
[详解]∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.已知长度分别为3 cm,4 cm,x cm的三根小棒可以摆成一个三角形,则x的值不可能是( )A.2.4 B.3C.5 D.8.52.下列图案中,是轴对称图形的为( )3.如图,已知AB=AC,AD=AE,添加一个条件不能得到“△ABD≌△ACE”的是( )A.∠ABD=∠ACE B.BD=CEC.∠BAD=∠CAE D.∠BAC=∠DAE4.下列因式分解正确的是( )A.2a2-4a+2=2(a-1)2B.a2+ab+a=a(a+b)C.4a2-b2=(4a+b)(4a-b)D.a3b-ab3=ab(a-b)25.如图,在△ABC中,∠A=45°,∠B=30°,尺规作图如下:分别以点B、点BC的长为半径作弧,过两弧交点的直线交AB于点D,连接CD,C为圆心,大于12则∠ACD的度数为( )A.45°B.65°C.60°D.75°6.一个多边形的内角和是外角和的4倍,则这个多边形是( )A.八边形B.九边形C.十边形D.十二边形7.若(2x-m)(x+1)的运算结果是关于x的二次二项式,则m的值等于( ) A.-2或0 B.2或0C.-2或2 D.2或-2或08.若x是非负整数,则表示2xx+2−x2−4(x+2)2的值的对应点落在下图数轴上的范围是( )A.①B.②C.③D.①或②9.某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问:原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是( )A.540x−2−540x=3 B.540x+2−540x=3C.540x −540x+2=3 D.540x−540x−2=310.关于x的分式方程3x−ax−3+x+13−x=1的解为正数,且关于y的不等式组{y+9≤2(y+2)2y−a3>1的解集为y≥5,则所有满足条件的整数a的值之和是( )A.13 B.15 C.18 D.20二、填空题:本题共6个小题,每小题3分,共18分。

部编人教版八年级数学上册期末考试卷及答案【完整版】

部编人教版八年级数学上册期末考试卷及答案【完整版】

部编人教版八年级数学上册期末考试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.若关于x 的方程3m(x +1)+5=m(3x -1)-5x 的解是负数,则m 的取值范围是( )A .m >-54B .m <-54C .m >54D .m <543.若α、β为方程2x 2-5x-1=0的两个实数根,则2235++ααββ的值为( )A .-13B .12C .14D .154.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5) 5.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A .B .C .D .6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P 3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个10.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<1 二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2x有意义,则x的取值范围为__________.328n n为________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图,四边形ABCD 中,∠A=90°,AB=33,AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--2.先化简,再求值:()()22322323a a b ab a a b ---,其中a ,b 满足()2130a b a b +-+--=3.已知关于x 的一元二次方程22(21)10x m x m +++-=有两不相等的实数根. ①求m 的取值范围.②设x 1,x 2是方程的两根且221212170x x x x ++-=,求m 的值.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、B4、D5、A6、C7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、52、0x ≥且1x ≠. 3、74、()()2a b a b ++.5、50°6、3三、解答题(本大题共6小题,共72分)1、x=1.2、483、①54m >-,②m 的值为53.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

人教版八年级上学期数学《期末测试题》及答案

人教版八年级上学期数学《期末测试题》及答案
12.如图,△ABC中,AB=AC,BC=5, , 于D,EF垂直平分AB,交AC于F,在EF上确定一点P使 最小,则这个最小值为()
A.3B.4C.5D.6
二、填空题
13.已知4y2+my+9是完全平方式,则m=____.
14.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.
15.如图,ΔABC与ΔA′B′C′关于直线l对称,则∠B的度数为____.
B、右边不是整式积的形式,不是因式分解,故本选项错误;
C、是符合因式分解的定义,故本选项正确;
D、右边不是整式积的形式,不是因式分解,故本选项错误;
故选C.
点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.
12.如图,△ABC中,AB=AC,BC=5, , 于D,EF垂直平分AB,交AC于F,在EF上确定一点P使 最小,则这个最小值为()
15.如图,ΔABC与ΔA′B′C′关于直线l对称,则∠B的度数为____.
[答案]100°
[解析]
[分析]
依据轴对称的性质可得到∠C=∠C′,然后依据三角形的内角和定理求解即可.
[详解]解:∵△ABC与△A′B′C′关于直线l对称,
∴∠C=∠C′=30°.
∴∠B=180°-∠A-∠C=180°-50°-30°=100°.
26.如图,在四边形 中, , 是 的中点,连接 并延长交 的延长线于点 ,点 在边 上,且 .
(1)求证: ≌ .
(2)连接 ,判断 与 位置关系并说明理由.
27.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米 少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.

人教版数学八年级上学期《期末检测试卷》含答案解析

人教版数学八年级上学期《期末检测试卷》含答案解析
6.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC上的动点,则△BEQ周长的最小值为()
A.5B.6C. D.8
[答案]B
[解析]
[分析]
连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.
[详解]解:连接BD,DE,
A.1个B.2个C.3个D.4个
二、填空题(本题满分18分,共有6道小题,每小题3分)
9.若代数式 的值为零,则x的取值应为_____.
10.某校规定学生 期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是_____分.
②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD=∠CFD,根据三角形的外角性质求出即可;
③④求出∠ECD=90°,根据平行线 性质得出∠BEC=∠ECD,即可得出答案.
[详解]解:∵四边形ABCD是平行四边形,
24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM(如图1).
(1)判断AM与PM的数量关系与位置关系并加以证明;
(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立.请说明理由.
B.若BD=CD,则四边形AEDF是菱形
C.若AD垂直平分BC,则四边形AEDF是矩形

最新人教版八年级数学(上册)期末试卷及答案(完整)

最新人教版八年级数学(上册)期末试卷及答案(完整)

最新人教版八年级数学(上册)期末试卷及答案(完整) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.当22a a +-有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2 D .a ≠-25.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.使x 2-有意义的x 的取值范围是________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--. 2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知,a、b互为倒数,c、d互为相反数,求31-+++的值.ab c d4.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B 型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、A6、A7、B8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、()()33a a +-2、(3,7)或(3,-3)3、x 2≥4、x >3.5、46、8三、解答题(本大题共6小题,共72分)1、2x =2、22x -,12-.3、0.4、(1)y =x +5;(2)272;(3)x >-3.5、略.6、(1) B 型商品的进价为120元, A 型商品的进价为150元;(2) 5500元.。

(人教版)八年级上学期期末数学试卷7+参考答案

(人教版)八年级上学期期末数学试卷7+参考答案

八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.以下列各组线段为边,不能组成三角形的是( )A.1cm,2cm,3cm B.2cm,3cm,4cm C.1cm,2cm,2cm D.2cm,2cm,3cm 2.下面四个图案中,是轴对称图形的是( )A.B.C.D.3.正多边形的一个外角等于45°,这个多边形的边数是( )A.6 B.8 C.10 D.124.下列运算正确的是( )A.x8÷x2=x4B.(x2)3=x5C.(﹣3xy)2=6x2y2D.2x2y•3xy=6x3y25.下列分式中,无论x取何值,分式总有意义的是( )A.B.C.D.6.点P(2,﹣3)关于x轴的对称点是( )A.(﹣2,3)B.(2,3)C.(﹣2,3)D.(2,﹣3)7.下列因式分解结果正确的是( )A.10a3+5a2=5a(2a2+a)B.4x2﹣9=(4x+3)(4x﹣3)C.a2﹣2a﹣1=(a﹣1)2D.x2﹣5x﹣6=(x﹣6)(x+1)8.下列各式中,正确的是( )A.B.C.D.9.如图,直线m表示一条河,M,N表示两个村庄,欲在m上的某处修建一个给水站,向两个村庄供水,现有如图所示的四种铺设管道的方案,图中实线表示铺设的管道,则所需管道最短的方案是( )A.B.C.D.10.如图,△ABC中,AB=AC,∠A=36°,∠ABC和∠ACB的平分线BE和CD相交于点O,则图中等腰三角形的个数是( )A.4 B.6 C.7 D.8二、填空题(毎小题3分,共30分)11.△ABC中,已知∠B=40°,∠C的外角等于100°,则∠A=__________.12.一个多边形的内角和是1440°,那么这个多边形边数是__________.13.计算4x2y•(﹣x)=__________.14.计算:()﹣2=__________.15.如图,AB+AC=7,D是AB上一点,若点D在BC的垂直平分线上,则△ACD的周长为__________.16.如图,己知∠1=∠2,要根据ASA判定△ABD≌△ACD,则需要补充的一个条件为__________.17.若点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,则m﹣n=__________.18.已知a﹣b=2,那么a2﹣b2﹣4b的值为__________.19.分式方程的解是__________.20.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,第一次碰到长方形的边时的位置为P1(3,0),当点P第2015次碰到长方形的边时,点P的坐标为__________.三、解答题(本題共8个小題,共60分)21.计算:(1)(2a﹣3b)(﹣3b﹣2a)(2)(a+1+)•.22.分解因式:(1)3m2﹣24m+48(2)x3y﹣4xy.23.解方程:2﹣=.24.尺规作图:己知直线AB和AB外一点C(如图)求作:一点P,使点P与点C位于直线AB的两侧,且点P到直线AB的距离是点C到线AB距离的2倍.(不写作法,保留作图痕迹)25.已知:如图,AB=AC,∠DAC=∠EAB,∠B=∠C.求证:BD=CE.26.如图,D为AB的中点,点E在AC上,将△ABC沿DE折叠,使点A落在BC边上的点F处.求证:EF=EC.27.小明是学校图书馆A书库的志愿者,小伟是学校图书馆B书库的志愿者,他们各自负责本书库读者当天还回图书的整理工作.已知某天图书馆A书库恰有120册图书需整理,而B书库恰有80册图书需整理,小明每小时整理图书的数量是小伟每小时整理图书数量的1.2倍,他们同时开始工作,结果小伟比小明提前15分钟完成工作.求小明和小伟每小时分别可以整理多少册图书?28.如图,AD是△ABC的角平分线,点F,E分别在边AC,AB上,且FD=BD.(1)求证:∠B+∠AFD=180°;(2)如果∠B+2∠DEA=180°,探究线段AE,AF,FD之间满足的等量关系,并证明.八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.以下列各组线段为边,不能组成三角形的是( )A.1cm,2cm,3cm B.2cm,3cm,4cm C.1cm,2cm,2cm D.2cm,2cm,3cm 【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【解答】解:A、∵1+2=3,∴1,2,3不能组成三角形,故本选项正确;B、∵2+3=5>4,∴2,3,4能组成三角形,故本选项错误;C、∵1+2=3>2,∴1,2,2能组成三角形,故本选项错误;D、∵2+2=4>1=3,∴2,2,3能组成三角形,故本选项错误.故选A.【点评】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和>较大的边,则能组成三角形,否则,不可以.2.下面四个图案中,是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.正多边形的一个外角等于45°,这个多边形的边数是( )A.6 B.8 C.10 D.12【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角和是360°,且正多边形的每个外角相等,则多边形的边数是:360÷45=8,故选B.【点评】本题考查了外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握,比较简单.4.下列运算正确的是( )A.x8÷x2=x4B.(x2)3=x5C.(﹣3xy)2=6x2y2D.2x2y•3xy=6x3y2【考点】同底数幂的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】根据同底数幂的除法底数不变指数相减;幂的乘方底数不变指数相乘;积的乘方等于乘方的积;单项式的乘法,系数相乘、同底数的幂相乘,可得答案.【解答】解:A、同底数幂的除法底数不变指数相减,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、积的乘方等于乘方的积,故C错误;D、单项式的乘法,系数相乘、同底数的幂相乘,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.下列分式中,无论x取何值,分式总有意义的是( )A.B.C.D.【考点】分式有意义的条件.【分析】根据分式有意义的条件对各选项进行逐一分析即可.【解答】解:A、∵x2≥0,∴x2+1>0,∴无论x取何值,分式总有意义,故本选项正确;B、当x+1=0,即x=﹣1时分式无意义,故本选项错误;C、当x3﹣1=0,即x=1时分式无意义,故本选项错误;D、当x=0时分式无意义,故本选项错误.故选A.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.6.点P(2,﹣3)关于x轴的对称点是( )A.(﹣2,3)B.(2,3)C.(﹣2,3)D.(2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中对称点的规律解答.【解答】解:点P(2,﹣3)关于x轴的对称点坐标为:(2,3).故选:B.【点评】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.下列因式分解结果正确的是( )A.10a3+5a2=5a(2a2+a)B.4x2﹣9=(4x+3)(4x﹣3)C.a2﹣2a﹣1=(a﹣1)2D.x2﹣5x﹣6=(x﹣6)(x+1)【考点】因式分解-十字相乘法等;因式分解-提公因式法;因式分解-运用公式法.【分析】分别根据提取公因式法以及公式法、十字相乘法分解因式得出即可.【解答】解:A、10a3+5a2=5a2(2a+1),故此选项错误;B、4x2﹣9=(2x+3)(2x﹣3),故此选项错误;C、a2﹣2a﹣1,无法因式分解,故此选项错误;D、x2﹣5x﹣6=(x﹣6)(x+1),此选项正确.故选:D.【点评】此题主要考查了提取公因式法以及公式法、十字相乘法分解因式,正确记忆公式是解题关键.8.下列各式中,正确的是( )A.B.C.D.【考点】分式的基本性质;分式的加减法.【分析】根据分式的分子分母都乘以或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解:A 分母中的a没除以b,故A错误;B 异分母分式不能直接相加,故B错误;C 分式的分子分母没同乘或除以同一个不为零整式,故C错误;D 分式的分子分母都乘以(a﹣2),故D正确;故选:D.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的整式,分式的值不变,注意不能一部分乘或除.9.如图,直线m表示一条河,M,N表示两个村庄,欲在m上的某处修建一个给水站,向两个村庄供水,现有如图所示的四种铺设管道的方案,图中实线表示铺设的管道,则所需管道最短的方案是( )A.B.C.D.【考点】轴对称-最短路线问题.【分析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点M关于直线m的对称点P′,连接nP′交直线L于P.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选D.【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.10.如图,△ABC中,AB=AC,∠A=36°,∠ABC和∠ACB的平分线BE和CD相交于点O,则图中等腰三角形的个数是( )A.4 B.6 C.7 D.8【考点】等腰三角形的判定与性质.【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB 的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,由等角对等边,即可求得答案.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD、CE分别为∠ABC与∠ACB的角平分线,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BO=CO,∴△ABC,△ABD,△ACE,△BOC是等腰三角形,∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,∴BE=BO,CO=CD,BC=BD=CO,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选D.【点评】本题考查了等腰三角新的判定与性质、三角形内角和定理以及三角外角的性质.此题难度不大,解题的关键是求得各角的度数,掌握等角对等边与等边对等角定理的应用.二、填空题(毎小题3分,共30分)11.△ABC中,已知∠B=40°,∠C的外角等于100°,则∠A=60°.【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠B=40°,∠C的外角等于100°,∴∠A=100°﹣40°=60°.故答案为:60°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.12.一个多边形的内角和是1440°,那么这个多边形边数是10.【考点】多边形内角与外角.【分析】利用多边形的内角和为(n﹣2)•180°即可解决问题.【解答】解:设它的边数为n,根据题意,得(n﹣2)•180°=1440°,所以n=10.故答案为:10.【点评】本题考查了多边形的内角和,利用多边形的内角和公式结合方程即可解决问题.13.计算4x2y•(﹣x)=﹣x3y.【考点】单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:4x2y•(﹣x)=﹣x3y.故答案为:﹣x3y.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.14.计算:()﹣2=.【考点】负整数指数幂.【分析】根据分式的乘方:分子分母分别乘方可得,再根据a﹣p=(a≠0,p为正整数)进行计算.【解答】解:原式==•=.故答案为:.【点评】此题主要考查了负整数指数幂,关键是掌握a﹣p=(a≠0,p为正整数).15.如图,AB+AC=7,D是AB上一点,若点D在BC的垂直平分线上,则△ACD的周长为7.【考点】线段垂直平分线的性质.【分析】先根据点D在BC的垂直平分线上得出BD=CD,故△ACD的周长=AD+CD+AC=AD+BD+AC=AB+AC.【解答】解:∵AB+AC=7,D是AB上一点,点D在BC的垂直平分线上,∴BD=CD,∴△ACD的周长=AD+CD+AC=AD+BD+AC=AB+AC=7.故答案为:7.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.16.如图,己知∠1=∠2,要根据ASA判定△ABD≌△ACD,则需要补充的一个条件为AAS.【考点】全等三角形的判定.【专题】开放型.【分析】添加∠B=∠C,再加上∠1=∠2和公共边AD=AD可利用AAS可判定△ABD≌△ACD.【解答】解:添加∠B=∠C,∵在△ADB和△ADC中,∴△ABD≌△ACD(AAS),故答案为:AAS.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.若点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,则m﹣n=3.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,根据移项、合并同类项,可得答案.【解答】解:由点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,得1﹣m=﹣2﹣n,移项,得m﹣n=3,故答案为:3.【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.18.已知a﹣b=2,那么a2﹣b2﹣4b的值为4.【考点】完全平方公式.【分析】求出a=2+b,代入a2﹣b2﹣4b,再进行计算即可.【解答】解:∵a﹣b=2,∴a=2+b,∴那么a2﹣b2﹣4b的=(2+b)2﹣b2﹣4b=4+4b+b2﹣b2﹣4b=4,故答案为:4.【点评】本题考查了完全平方公式的应用,主要考查学生的化简能力.19.分式方程的解是x=9.【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.【点评】本题考查了解分式方程,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.20.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,第一次碰到长方形的边时的位置为P1(3,0),当点P第2015次碰到长方形的边时,点P的坐标为(1,4).【考点】规律型:点的坐标.【专题】推理填空题;规律型.【分析】由图可知,每6次反弹为一个循环组依次循环,用2015除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:根据题意可得P(0,3),P1(3,0),P2(7,4),P3(8,3),P4(5,0),P5(1,4),P6(0,3)…经过6次反弹后动点回到出发点(0,3),∵2015÷6=335…5,∴当点P第2015次碰到矩形的边时为第336个循环组的第5次反弹,∴点P的坐标为(1,4).故答案为(1,4).【点评】本题主要考查了点的坐标的规律,由图形观察出每6次反弹为一个循环组依次循环是解题的关键.三、解答题(本題共8个小題,共60分)21.计算:(1)(2a﹣3b)(﹣3b﹣2a)(2)(a+1+)•.【考点】分式的混合运算;平方差公式.【专题】计算题.【分析】(1)根据多项式乘以多项式,然后合并同类项即可解答本题;(2)先将括号内的式子通分,然后根据同分母分式的加法合并然后再化简即可.【解答】解:(1)(2a﹣3b)(﹣3b﹣2a)=﹣6ab﹣4a2+9b2+6ab=﹣4a2+9b2(2)(a+1+)•====a.【点评】本题考查分式的混合运算和平方差公式,解题的关键是明确分式的混合运算的计算方法和平方差公式.22.分解因式:(1)3m2﹣24m+48(2)x3y﹣4xy.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式3,进而利用完全平方公式分解因式即可;(2)直接提取公因式xy,再利用平方差公式分解因式.【解答】解:(1)原式=3(m2﹣8m+16)=3(m﹣4)2;(2)原式=xy(x2﹣4)=xy(x﹣2)(x+2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.23.解方程:2﹣=.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边都乘x(x+1),得2x(x+1)﹣1=x(2x+1),去括号得:2x2+2x﹣1=2x2+x,整理,得x=1,检验,当x=1时,x(x+1)≠0,则x=1是原分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24.尺规作图:己知直线AB和AB外一点C(如图)求作:一点P,使点P与点C位于直线AB的两侧,且点P到直线AB的距离是点C到线AB距离的2倍.(不写作法,保留作图痕迹)【考点】作图—复杂作图.【专题】作图题.【分析】过点P作PD⊥AB于D,然后在CD的延长线上截取PD=2CD即可得到点P.【解答】解:如图,点P为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25.已知:如图,AB=AC,∠DAC=∠EAB,∠B=∠C.求证:BD=CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证BD=CE,可利用判定两个三角形全等的方法“两角和它们的夹边对应相等的两个三角形全等”证△DAB≌△EAC,然后由全等三角形对应边相等得出.【解答】证明:∵∠DAC=∠EAB,∴∠DAC+∠BAC=∠EAB+∠BAC.∴∠EAC=∠DAB.在△EAC和△DAB中,,∴△DAB≌△EAC(ASA),∴BD=CE.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“角边边”判定方法.由∠EAB=∠DAC得∠EAC=∠DAB是解决本题的关键.26.如图,D为AB的中点,点E在AC上,将△ABC沿DE折叠,使点A落在BC边上的点F处.求证:EF=EC.【考点】翻折变换(折叠问题).【专题】证明题.【分析】根据折叠的性质得到DA=DF,AE=FE,∠ADE=∠FDE,根据等腰三角形性质得∠B=∠DFB,再根据三角形外角性质得到∠ADE+∠FDE=∠B+∠DFB,则∠ADE=∠B,所以DE∥BC,易得DE为△ABC的中位线,得到AE=EC,于是EF=EC.【解答】证明:∵△ABC沿DE折叠,使点A落在BC边上的点F处,∴DA=DF,AE=FE,∠ADE=∠FDE,∴∠B=∠DFB,∵∠ADF=∠B+∠DFB,即∠ADE+∠FDE=∠B+∠DFB,∴∠ADE=∠B,∴DE∥BC,而D为AB的中点,∴DE为△ABC的中位线,∴AE=EC,∴EF=EC.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形中位线性质.27.小明是学校图书馆A书库的志愿者,小伟是学校图书馆B书库的志愿者,他们各自负责本书库读者当天还回图书的整理工作.已知某天图书馆A书库恰有120册图书需整理,而B书库恰有80册图书需整理,小明每小时整理图书的数量是小伟每小时整理图书数量的1.2倍,他们同时开始工作,结果小伟比小明提前15分钟完成工作.求小明和小伟每小时分别可以整理多少册图书?【考点】分式方程的应用.【分析】设小伟每小时可以整理x册图书,则小明每小时可以整理1.2x册图书,根据同时开始工作,小伟比小明提前15分钟完成工作.列方程求解.【解答】解:设小伟每小时可以整理x册图书,则小明每小时可以整理1.2x册图书.由题意得,=+,解得:x=80,经检验:x=80是原方程的解且符合实际,则1.2x=1.2×80=96(册),答:小伟每小时可以整理80册图书,小明每小时可以整理96册图书.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.28.如图,AD是△ABC的角平分线,点F,E分别在边AC,AB上,且FD=BD.(1)求证:∠B+∠AFD=180°;(2)如果∠B+2∠DEA=180°,探究线段AE,AF,FD之间满足的等量关系,并证明.【考点】全等三角形的判定与性质.(1)在AB上截取AG=AF,进而得出∠FAD=∠DAG,利用SAS得出△AFD≌△AGD,【分析】进而得出∠AFD=∠AGD,FD=GD,即可得出∠B+∠AFD=∠DGB+∠AGD=180°;(2)首先过点E作∠DEH=∠DEA,点H在BC上,进而得出∠AFD=∠AGD=∠GEH,则GD∥EH,求出AE=AG+GE=AF+FD.【解答】解:(1)在AB上截取AG=AF.∵AD是△ABC的角平分线,∴∠FAD=∠DAG.在△AFD和△AGD中,∴△AFD≌△AGD(SAS),∴∠AFD=∠AGD,FD=GD,∵FD=BD,∴BD=GD,∴∠DGB=∠B,∴∠B+∠AFD=∠DGB+∠AGD=180°;(2)AE=AF+FD.过点E作∠DEH=∠DEA,点H在BC上.∵∠B+2∠DEA=180°,∴∠HEB=∠B.∵∠B+∠AFD=180°,∴∠AFD=∠AGD=∠GEH,∴GD∥EH.∴∠GDE=∠DEH=∠DEG.∴GD=GE.又∵AF=AG,∴AE=AG+GE=AF+FD.【点评】本题考查三角形全等的性质和判定方法以及等边三角形的性质.判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。

人教版八年级数学上册期末试卷及答案【含答案】

人教版八年级数学上册期末试卷及答案【含答案】

人教版八年级数学上册期末试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?()A. 21B. 29C. 35D. 39()1分2. 如果 a > b,那么下列哪个式子一定成立?()A. a c > b cB. a + c > b + cC. a c > b cD. a / c > b / c()1分3. 下列哪个图形是平行四边形?()A. 矩形B. 梯形C. 正方形D. 圆形()1分4. 下列哪个数是无理数?()A. √9B. √16C. √25D. √26()1分5. 下列哪个图形是轴对称图形?()A. 等边三角形B. 等腰三角形C. 等腰梯形D. 长方形()1分二、判断题1. 两个质数的和一定是偶数。

()()1分2. 任何两个奇数的和都是偶数。

()()1分3. 任何两个偶数的和都是偶数。

()()1分4. 任何两个奇数的积都是奇数。

()()1分5. 任何两个偶数的积都是偶数。

()()1分三、填空题1. 如果 a = 3,那么 a 的平方是______。

()1分2. 如果 a = 5,那么 a 的立方是______。

()1分3. 如果 a = 2,那么 a 的平方根是______。

()1分4. 如果 a = 9,那么 a 的立方根是______。

()1分5. 如果 a = 4,那么 a 的平方根是______。

()1分四、简答题1. 请简述质数的定义。

()2分2. 请简述偶数的定义。

()2分3. 请简述奇数的定义。

()2分4. 请简述无理数的定义。

()2分5. 请简述有理数的定义。

()2分五、应用题1. 如果 a = 6,那么 a 的平方是多少?()2分2. 如果 a = 7,那么 a 的立方是多少?()2分3. 如果 a = 8,那么 a 的平方根是多少?()2分4. 如果 a = 27,那么 a 的立方根是多少?()2分5. 如果 a = 16,那么 a 的平方根是多少?()2分六、分析题1. 请分析两个质数的和是否一定是偶数,并给出理由。

人教版八年级上学期数学《期末检测卷》附答案

人教版八年级上学期数学《期末检测卷》附答案
∴BG=BF,∠BFG=∠BGF=60°,
∴△BFG是等边三角形,
∴FG∥AD,
∵BF=BG,AB=BC,∠ABF=∠CBG=60°,
∴△ABF≌△CGB,
∴∠BAF=∠BCG,
∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,
∴∠AHC=60°,
∵∠FHG+∠FBG=120°+60°=180°,
11.如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且CE=1.5,则AB的长为
A.3B.4.5C.6D.7.5
[答案]C
[解析]
因为在等边△ABC中,BD平分∠ABC交AC于点D,所以∠CBD=30°,
∠C=60°,∠BDC=90°,因为DE⊥BC于点E,所以∠CDE=30°,在Rt△CDE中,
∠CDE=30°,所以CE= ,所以CD=3,又因为在Rt△CDB中,∠CBD=30°,所以CD= ,
所以BC=6,即AB=6,故选C.
12..如图所示,已知△ABC和△BDE都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等边三角形;⑥FG∥AD,其中正确 有()
A.3个B.4个C.5个D.6个
[答案]D
[解析]
∵△ABC与△BDE为等边三角形,
∴AB=BC,BD=BE,∠ABC=∠DBE=60°,
∴∠ABE=∠CBD,
即AB=BC,BD=BE,∠ABE=∠CBD
∴△ABE≌△CBD,
∴AE=CD,∠BDC=∠AEB,
又∵∠DBG=∠FBE=60°,
∴△BGD≌△BFE,

人教版八年级上册数学期末考试及完整答案

人教版八年级上册数学期末考试及完整答案

4人教版八年级上册数学期末考试及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.—3的倒数是()A.3B.1C.-1 D.—3 3312—的图像上,2.若点A(x,—6), B(x,--2), C(x,2)在反比例函数y—则x,123x1 x2,肯的大小关系是()A.x,x,x123B.x2,x1,x C.x,x,x3231D.x,x32,x13.解分式方程匕二丄-2时,去分母变形正确的是()x—22—xA.-1+x—-1-2(x-2)B.1-x—1-2(x-2)C.—1+x—1+2(2—x…D.1—x——1—2(x—2…a+2…当有意义时,a的取值范围是()a一2Aa ±2 B.a >2 C.a H2 D.a H —25已知点P (a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为 A (4,-2 B.(—4,2) C.(—2,4) D (2,-4)6如图,矩形ABCD 的对角线AC , BC —8,X 过点作0E 丄AC ,交AD 于点E ,则0E +EF 的值A B.32748下列四个图形中,线段BE 是厶ABC 的高的是(C .24D12飞BD 交于点O ,AB —6,AB 8如图,小华剪了两条宽为1的纸条, 交叉叠放在一起,且它们较小的交角为60。

,则它们重叠部分的面积为()AB.2 2爲~3~9 B.40。

如图将直尺与含30°角的三角尺摆放在一起,若€1=20。

,则€2的度数是二、填空题(本大题共6小题,每小题3分,共18分)1. 若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是-2•计算J27飞3BC ADCA30°B C是中心对称图形的是(C D(2)2x 2-2x -1=0.3・4的平方根是.4•如图,在△ABC 中,点A 的坐标为(0,1),点B 的坐标为(0,4),点C 的坐标为(4,3),点D 在第二象限,且ABD 与厶ABC 全等,点D 的坐标是・5・如图,一个宽度相等的纸条按如图所示方法折叠一下,则,1=度.6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处•若点D 的坐标为(10,8),则点E 的坐标为.三、解答题(本大题共6小题,共72分)1.解方程: (1)x 2一4x 一5=0;2.先化简,再求值:(~-~)…一,其中x 满足X 2—2X —2=0.xx+1x2+2x+13.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是耳''13的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根.4.如图,已知AC平分ZBAD,CE丄AB于E,CF丄AD于F,且BC二CD.(1)求证:ABCE竺ADCF;a05.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求ZCPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当ZABC=120°6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、B5、A6、C7、D8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、8-v32、33、±2.4、(-4,2)或(-4,3)5、656、(10,3)三、解答题(本大题共6小题,共72分)1+J317-x,,x,—1、(1)x=5,X=-1;(2)12221212、23、(1)a=5,b=2,c=3;(2)±4.4、略5、(1)略(2)90°(3)AP=CE6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上学期期末八年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:人教版八上全册。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列图形中,不是轴对称图形的是A .B .C .D .2.下列分式是最简分式的A .223aa bB .3a a a -C .22a ba b ++D .24a bc3.下列计算结果正确的是 A .a 3⨯a 4=a 12 B .(2m 2)3=6m 6 C .x 5÷x =x 5D .(x –2y )2=x 2–4xy +4y 24.把多项式232x x -+分解因式,下列结果正确的是 A .(1)(2)x x -+B .(1)(2)x x --C .(1)(2)x x ++D .(1)(2)x x +-5.下列命题是真命题的是A .顶角相等的两个等腰三角形全等B .底角相等的两个等腰三角形全等C .底角、顶角分别相等的两个等腰三角形全等D .顶角和底边对应相等的两个等腰三角形全等6.如图,已知点P 是∠AOB 角平分线上的一点,∠AOB =60°,PD ⊥OA ,M 是OP 的中点,DM =6 cm ,如果点C 是OB 上一个动点,则PC 的最小值为A .3 cm B.cmC .6 cmD.cm7.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是A .∠A =∠1+∠2B .2∠A =∠1+∠2C .3∠A =2∠1+∠2D .3∠A =2(∠1+∠2)8.小颖同学借了一本书,共280页,要在两周借期内读完,当她读了一半时,发现平均每天要多读21页才能在借期内读完,她读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是A .1401402121x x +=- B .2802801421x x +=+ C .140140 1421x x +=+ D .1010121x x +=+ 9.已知关于x 的分式方程329133x mxx x--+=---无解,则m 的值为 A .1m = B .4m =C .3m =D .1m =或4m =10.如图,四边形ABCD 中,F 是CD 上一点,E 是BF 上一点,连接AE 、AC 、DE .若AB =AC ,AD =AE ,∠BAC =∠DAE =70°,AE 平分∠BAC ,则下列结论中:①△ABE ≌△ACD :②BE =EF ;③∠BFD =110°;④AC 垂直平分DE ,正确的个数有A .1个B .2个C .3个D .4个第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分) 11.多边形的外角和等于__________.12.计算22163y x x÷=__________.13.若长方形的面积是2482a ab a ++,它的一边长为2a ,则它的周长为__________.14.若等腰三角形的周长为20 cm ,其中一边长为5 cm ,则该等腰三角形的腰长是__________cm . 15.如图,△ABC ≌△ADE ,BC 的延长线交DA 于F 点,交DE 于G 点,∠ACB =105°,∠CAD =15°,∠B =30°,则∠1的度数为__________度.16.如图,在△ABC 中,∠ABC =2∠C ,AP 和BQ 分别为∠BAC 和∠ABC 的角平分线,若△ABQ 的周长为18,BP =4,则AB 的长为__________.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)(1)化简:23223211()()()525a b a b ab ⨯÷-;(2)先化简,再求值:322(48)4(2)(2)ab a b ab a b a b -÷++-,其中a =2,b =1. 18.(本小题满分8分)先化简,再求值:(1)2211(1)m m m m+--÷,其中1m =. (2)222322()6939a a a a a a a --+÷-+--,并在2,3,4,5这四个数中取一个合适的数作为a 的值代入求值. 19.(本小题满分8分)已知△ABC .(1)如图(1),∠C >∠B ,若AD ⊥BC 于点D ,AE 平分∠BAC ,你能找出∠EAD 与∠B ,∠C 之间的数量关系吗?并说明理由.(2)如图(2),AE 平分∠BAC ,F 为AE 上一点,FM ⊥BC 于点M ,∠EFM 与∠B ,∠C 之间有何数量关系?并说明理由.20.(本小题满分8分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).①请画出△ABC 关于y 轴对称的△A 1B 1C 1; ②请画出△ABC 关于x 轴对称的△A 2B 2C 2;③在x 轴上求作一点P ,使△PAB 的周长最小,请画出△PAB ,并直接写出点P 的坐标.21.(本小题满分8分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?22.(本小题满分10分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与点A,点B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.23.(本小题满分10分)以下关于x的各个多项式中,a,b,c,m,n均为常数.(1)根据计算结果填写下表:(2)已知(x+3)2(x+mx+n)既不含二次项,也不含一次项,求m+n的值;(3)多项式M与多项式x2–3x+1的乘积为2x4+ax3+bx2+cx–3,求2a+b+c的值.24.(本小题满分12分)如图,△ABC中,∠ABC=90°,AB=BC,D在边AC上,AE⊥BD于E.(1)如图1,作CF⊥BD于F,求证:CF-AE=EF;(2)如图2,若BC=CD,求证:BD=2AE;(3)如图3,作BM⊥BE,且BM=BE,AE=2,EN=4,连接CM交BE于N,请直接写出△BCM的面积为__________.八年级数学·参考答案11.360°12.22xy13.8a+8b+2 14.7.5 15.60 16.7 17.【解析】(1)原式=634233811()1254125a b a b a b⨯÷-=6433232a b+-+--=722ab-.(4分)(2)原式=b2-2ab+4a2-b2=4a2-2ab.当a=2,b=1时,原式=16-4=12.(8分)18.【解析】(1)2211(1)m mm m+--÷()()2111m m mm m m+-=⋅+-()()111m mm m m+=⋅+-11m=-,(2分)当1m=+时,原式3===4分)(2)原式2(3)22[](3)3(3)(3)a a aa a a a--=-÷--+-2(3)(3)()332a a aa a a+-=-⋅---2(3)(3)32a a aa a-+-=⋅--3a=+,(6分)∵3a ≠-、2、3, ∴4a =或5a =,则4a =时,原式7=或(则5a =时,原式8=)只要一个结果正确即可.(8分)19.【解析】(1)∵AE 平分∠BAC ,∴∠EAC =12∠BAC =12(180º-∠B -∠C ), 又∵AD ⊥BC ,∴∠DAC =90º-∠C ,(2分) ∴∠EAD =∠EAC -∠DAC =12(180º-∠B -∠C )-(90º-∠C )=12(∠C -∠B ), 即∠EAD =12(∠C –∠B ).(4分) (2)如图,过点A 作AD ⊥BC 于D ,∵FM ⊥BC , ∴AD ∥FM , ∴∠EFM =∠EAD =12(∠C -∠B ).(8分) 20.【解析】(1)图中△A 1B 1C 1即为所求.(3分)(2)如图,△A 2B 2C 2即为所求.(5分)(3)图中点P 即为所求,点P 坐标为(2,0).(6分)(8分)21.【解析】(1)设二月份每辆车售价为x 元,则一月份每辆车售价为(x +100)元,根据题意得:3000027000100x x=+,(2分)解得:x =900,经检验,x =900是原分式方程的解. 答:二月份每辆车售价是900元.(4分)(2)设每辆山地自行车的进价为y 元, 根据题意得:900×(1−10%)−y =35%y ,(6分) 解得:y =600.答:每辆山地自行车的进价是600元.(8分) 22.【解析】(1)∵三角形CDE 为等腰直角三角形,∴∠DCE =90°,CD =CE , 又∵∠ACB =90°, ∴∠ACB =∠DCE ,∴∠ACD =∠BCE ,(3分)在△ACD 和△BCE 中,CD CE ACD BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE .(5分)(2)∵∠ACB =90°,AC =BC , ∴∠A =45°,由(1)可知:∠A =∠CBE =45°,(7分) ∵AD =BF , ∴BE =BF ,∴∠BEF =67.5°.(10分)23.【解析】(1)(2x +1)(x +2)=2x 2+5x +2,(2x +1)(3x –2)=6x 2–x –2,(ax +b )(mx +n )=amx 2+(an +bm )x +bn ,故填:(3分)(2)∵(x +3)2(x +mx +n )=(x 2+6x +9)(x +mx +n )=32232666999m n m nx x x x x x x m x n ++++++++ =32(1)(66)(699)9x x m n m n m x n ++++++++ ∵不含二次项,也不含一次项, ∴n +6+6m =0,6n +9+9m =0, 解得n =0,m =–1, 故m +n =–1.(6分)(3)∵多项式M 与多项式x 2–3x +1的乘积为2x 4+ax 3+bx 2+cx –3, 可设M =2x 2+mx +n ,则(2x 2+mx +n )(x 2–3x +1)=2x 4–6x 3+2x 2+mx 3–3mx 2+mx +nx 2–3nx +n=2x 4+(m –6)x 3+(2–3m +n )x 2+(m –3n )x +n =2x 4+ax 3+bx 2+cx –3,(8分)∴a =m –6,b =2–3m +n ,c =(m –3n ),n =–3, ∴2a +b +c =–12–1+9=–4.(10分)24.【解析】(1)∵CF ⊥BD 于点F ,AE ⊥BD ,∴∠AEB =∠CFB =90°, ∴∠ABE +∠BAE =90°, 又∵∠ABC =90°, ∴∠ABE +∠CBF =90°,∴∠BAE =∠CBF ,在ABE △和BCF △中,AEB BFC BAE CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△BCF ,(2分) ∴BE =CF ,AE =BF ,∴CF –AE =BE –BF =EF .(4分)(2)如图,过点C 作CF ⊥BD 于点F ,∵BC =CD ,∴BF =DF , 由(1)得AE =BF ,(6分) ∴AE =DF ,∴BD =2AE .(8分) (3)5.(12分) 如图,由(1)得△ABE ≌△BCF , ∵BM =BE , ∴BM =CF ,∵BM⊥BE,∴∠MBN=∠CFN,又∠MNB=∠CNF,∴△BMN≌△FCN,∴BN=FN,∵AE=2,EN=4,∴BF=AE=2,BN=12BF=1,故BE=5,∴S△BCM=S△BCN+S△MBN=S△BCN+S△CFN=11255 22AE BE⨯=⨯⨯=.。

相关文档
最新文档