五:平面向量与空间向量十年高考题(含答案)

合集下载

平面向量全章习题

平面向量全章习题

《平面向量》学法指导向量是近代数学中重要和基本的概念之一,有着极其丰富的数学和物理背景;同时它也是沟通代数、几何与三角函数的一种工具,在表述和解决相关问题中有着重要应用。

在本模块的学习中,我们首先将了解向量丰富的数学背景(有向线段)和物理背景(位移、速度、力和做功)。

有向线段具有长度和方向,向量也具有大小和方向,两者的几何特征是完全一致的,因此我们常用有向线段来表示..一个向量。

向量也是对物理学中的矢量的进一步抽象,因此我们在学习中可以将向量和矢量对照学习,尤其是向量的正交分解、加减、数乘与数量积运算。

向量的运算的学习要从一些实例开始,如从位移的合成引入向量的加法(减法),从速度的倍数引入数乘向量,从“做功”引入向量的数量积。

同时我们要注意充分利用几何图形语言,从图形直观上获得解题的思路甚至直接获得解法。

在学习中我们要注意到利用向量法解决有关几何问题、力学问题和其它一些实际问题,如距离、角度等的计算以及各种空间关系如垂直、平行等的论证,发展学生的运算能力和解决实际问题的能力。

由22a a = 可知,222222121()()a a x y x x y y ==+=-+- ,此即求距离和线段长度的向量法 ;由cos a b a b θ∙=∙∙ (θ为向量,a b 夹角),知θcos =121222221212,x x y y a b a b x x y y +∙=++ 利用这个公式可以求已知方向向量的两条直线的夹角; 求两条直线夹角常见如已知两条直线方程,则可由方程求出方向向量进而求夹角;再如,判断两条直线的位置关系,求直线方程,求符合某些条件的曲线方程等,均可利用向量法进行;另外,由于空间向量是平面的自然推广,由于向量的平移不变性,每两个空间向量均可视为两个平面向量,所以在立体几何中模块中,对向量的应用将更加广泛,对空间垂直、平行关系的判断与证明、对空间角度与距离的求解等利用向量均有很好的解法。

空间向量练习及答案解析

空间向量练习及答案解析

空间向量练习一、选择题(共15小题,每小题4.0分,共60分)1.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是() A. (4,2,-2) B. (2,0,4) C. (2,-1,-5) D. (4,-2,2)2.如图,过边长为1的正方形ABCD的顶点A作线段EA⊥平面AC,若EA=1,则平面ADE与平面BCE所成的二面角的大小是()A. 120° B. 45° C. 150° D. 60°3.已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当·取得最小值时,点Q的坐标为()A. B. C. D.4.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD所成的角为60°;④AB与CD所成的角为60°.其中错误的结论是()A.① B.② C.③ D.④5.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1的夹角是()A. 45° B. 60° C. 90° D. 120°6.已知在空间四面体O-ABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设=a,=b,=c,则等于()A.a+b- c B.-a+b+ c C.a-b+ c D.a+b-c7.已知在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,建立如图所示的空间直角坐标系,则AB1与D1E所成角的余弦值为()A. B. C.- D.-8.如图所示,在正方体ABCD-A1B1C1D1中,M,N,P分别是棱CC1,BC,A1B1上的点,若∠B1MN=90°,则∠PMN的大小()A.等于90° B.小于90° C.大于90° D.不确定9.如图,S是正三角形ABC所在平面外一点,M,N分别是AB和SC的中点,SA=SB=SC,且∠ASB=∠BSC=∠CSA=90°,则异面直线SM与BN所成角的余弦值为()A.- B. C.- D.10.已知平面α内两向量a=(1,1,1),b=(0,2,-1)且c=ma+nb+(4,-4,1).若c为平面α的法向量,则m ,n 的值分别为( ) A . -1,2 B . 1,-2 C . 1,2 D . -1,-211.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G ,则A 1B 与平面ABD 所成角的正弦值为( )A .√23B .√73C .√32D .√3712.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2,若二面角B 1-DC -C 1的大小为60°,则AD 的长为( ) A .√2 B .√3 C . 2 D .√2213.三棱锥A -BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2,若〈n 1,n 2〉=π3,则二面角A -BD -C 的大小为( ) A .π3 B .2π3 C .π3或2π3D .π3或-π314.已知AB ⃗⃗⃗⃗⃗ =(1,5,-2),BC ⃗⃗⃗⃗⃗ = (3,1,z ),若AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,BP ⃗⃗⃗⃗⃗ =(x -1,y ,-3),且BP ⊥平面ABC ,则BP ⃗⃗⃗⃗⃗ 等于( ) A .(407,157,−3) B .(337,157,−3) C .(−407,−157,−3) D .(337,−157,−3)15.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.给出下列结论:①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.这四个结论中正确的个数为( ) A . 1 B . 2 C . 3 D . 4二、填空题(共6小题,每小题4.0分,共24分)16.如图所示,已知正四面体A-BCD 中,AE =AB ,CF =CD ,则直线DE 和BF 所成角的余弦值为________.17.已知a =(3,-2,-3),b =(-1,x -1,1),且a 与b 的夹角为钝角,则x 的取值范围是________.18.如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD =2,E ,F 分别是线段PA ,CD 的中点,则异面直线EF 与BD 所成角的余弦值为________. 19.如图,在三棱柱ABC -A 1B 1C 1中,所有棱长均为1,且AA 1⊥底面ABC ,则点B 1到平面ABC 1的距离为________.20.如下图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB 的中点,cos 〈DP⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=√33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.21.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB⃗⃗⃗⃗⃗ =(2,-1,-4),AD ⃗⃗⃗⃗⃗ =(4,2,0),AP ⃗⃗⃗⃗⃗ =(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP ⃗⃗⃗⃗⃗ 是平面ABCD 的法向量;④AP ⃗⃗⃗⃗⃗ ∥BD ⃗⃗⃗⃗⃗⃗ .其中正确的是____________.三、解答题(共6小题,每小题11.0分,共66分) 22.如图所示,已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,∠DAB =90°,PA ⊥底面ABCD ,且PA =AD =DC =12AB =1,M 是PB 的中点.(1)证明:面PAD ⊥面PCD ;(2)求AC 与PB 所成角的余弦值; (3)求面AMC 与面BMC 所成二面角的余弦值.23.如下图所示,在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC . (1)求证:BC ⊥平面PAC ;(2)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (3)是否存在点E ,使得二面角A -DE -P 为直二面角?并说明理由.24.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E ,F 是棱BC ,CD 的中点,求:(1)直线DF 与B 1F 所成角的余弦值;(2)二面角C 1-EF -A 的余弦值.25.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SB⊥平面ABCD,且SB=AB=AD=1,BC=2.(1)求SA与CD所成的角;(2)求平面SCD与平面SAB所成的锐二面角的余弦值.26.如下图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值.27.如下图,在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,E为BC的中点,F为CC1的中点.(1)求EF与平面ABCD所成的角的余弦值;(2)求二面角F-DE-C的余弦值.空间向量练习答案解析1.【答案】D【解析】∵α∥β,∴β的法向量与α的法向量平行,又∵(4,-2,2)=2(2,-1,1),故选D.2.【答案】B【解析】以A为坐标原点,分别以AB,AD,AE所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,则E(0,0,1),B(1,0,0),C(1,1,0),=(1,0,-1),=(1,1,-1).设平面BCE的法向量为n=(x,y,z),则即可取n=(1,0,1).又平面EAD的法向量为=(1,0,0),所以cos〈n,〉==,故平面ADE与平面BCE所成的二面角为45°.3.【答案】C【解析】设Q(x,y,z),因Q在上,故有∥,设=λ(λ∈R),可得x=λ,y=λ,z=2λ,则Q(λ,λ,2λ),=(1-λ,2-λ,3-2λ),=(2-λ,1-λ,2-2λ),所以·=6λ2-16λ+10=62-,故当λ=时,·取最小值,此时Q.4.【答案】C【解析】如图所示,取BD的中点O,以点O为坐标原点,OD,OA,OC所在直线分别为x轴,y轴,z轴,建立空间直角坐标系Oxyz,设正方形ABCD边长为,则D(1,0,0),B(-1,0,0),C(0,0,1),A(0,1,0),所以=(0,-1,1),=(2,0,0),·=0,故AC⊥BD.①正确.又||=,||=,||=,所以△ACD为等边三角形.②正确.对于③,为面BCD的一个法向量,cos〈,〉====-.所以AB与OA所在直线所成的角为45°,所以AB与平面BCD所成角为45°.故③错误.又cos〈,〉===-.因为异面直线所成的角为锐角或直角,所以AB与CD所成角为60°.故④正确.5.【答案】B【解析】不妨设AB=BC=AA1=1,则=-=(-),=+,∴||=|-|=,||=,·=(-)·(+)=,∴cos〈,〉===,∴〈,〉=60°,即异面直线EF与BC1的夹角是60°.6.【答案】B【解析】=-=(+)-=b+c-a.7.【答案】A【解析】∵A(2,2,0),B1(2,0,2),E(0,1,0),D1(0,2,2),∴=(0,-2,2),=(0,1,2),∴||=2,||=,·=0-2+4=2,∴cos〈,〉===,又异面直线所成角的范围是,∴AB1与ED1所成角的余弦值为.8.【答案】A【解析】A1B1⊥平面BCC1B1,故A1B1⊥MN,·=(+)·=·+·=0,∴MP⊥MN,即∠PMN=90°.9.【答案】B【解析】不妨设SA=SB=SC=1,以S为坐标原点,,,所在直线分别为x轴,y轴,z 轴,建立空间直角坐标系Sxyz,则相关各点坐标为A(1,0,0),B(0,1,0),C(0,0,1),S(0,0,0),M,N.因为=,=,所以||=,||=,·=-,cos〈,〉==-,因为异面直线所成的角为锐角或直角,所以异面直线SM 与BN 所成角的余弦值为.10.【答案】A【解析】 c =ma +nb +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1),由c 为平面α的法向量,得即解得11.【答案】A【解析】∵侧棱与底面垂直,∠ACB =90°,所以分别以CA ,CB ,CC 1所在直线为x 轴、y 轴、z 轴,建立如图空间直角坐标系, 设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2),D (0,0,1), ∴E (a 2,a2,1),G (a 3,a 3,13),GE ⃗⃗⃗⃗⃗ =(a 6,a 6,23),BD ⃗⃗⃗⃗⃗⃗ =(0,-a,1), ∵点E 在平面ABD 上的射影是△ABD 的重心G ,∴GE ⃗⃗⃗⃗⃗ ⊥平面ABD ,∴GE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =0,解得a =2,∴GE ⃗⃗⃗⃗⃗ =(13,13,23),BA 1⃗⃗⃗⃗⃗⃗⃗ =(2,-2,2),∵GE ⃗⃗⃗⃗⃗ ⊥平面ABD ,∴GE ⃗⃗⃗⃗⃗ 为平面ABD 的一个法向量, 又cos 〈GE ⃗⃗⃗⃗⃗ ,BA 1⃗⃗⃗⃗⃗⃗⃗ 〉=GE ⃗⃗⃗⃗⃗ ·BA 1⃗⃗⃗⃗⃗⃗⃗⃗ |GE ⃗⃗⃗⃗⃗ ||BA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=43√63×2=√23,∴A 1B 与平面ABD 所成角的正弦值为√23,故选A.12.【答案】A【解析】如下图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2)设AD =a ,则D 点坐标为(1,0,a ),CD ⃗⃗⃗⃗⃗ =(1,0,a ),CB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ),则{m ·CB 1⃗⃗⃗⃗⃗⃗⃗ =0,m ·CD⃗⃗⃗⃗⃗ =0⇒{2y +2z =0,x +az =0,令z =-1, 得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0), 则由cos 60°=m·n|m ||n |,得1√a 2+1=12,即a =√2,故AD =√2. 13.【答案】C【解析】如图所示,当二面角A -BD -C 为锐角时,它就等于〈n 1,n 2〉=π3;当二面角A -BD -C 为钝角时,它应等于π-〈n 1,n 2〉=π-π3=2π3. 14.【答案】D【解析】因为AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,所以AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0,即1×3+5×1+(-2)z =0,所以z =4, 因为BP ⊥平面ABC ,所以BP⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,且BP ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,即1×(x -1)+5y +(-2)×(-3)=0,且3(x -1)+y +(-3)×4=0.解得x =407,y =-157,于是BP ⃗⃗⃗⃗⃗ =(337,−157,−3).15.【答案】C【解析】因为A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ ,D 1P ⃗⃗⃗⃗⃗⃗⃗ =D 1D ⃗⃗⃗⃗⃗⃗⃗⃗ +DP ⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ , 所以A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∥D 1P ⃗⃗⃗⃗⃗⃗⃗ ,从而A 1M ∥D 1P ,可得①③④正确. 又B 1Q 与D 1P 不平行,故②不正确.故选C. 16.【答案】 【解析】=+=+,=+=+,所以cos 〈,〉====.17.【答案】 B【解析】 若两向量的夹角为钝角,则a ·b <0,且a 与b 不共线,故3×(-1)+(-2)×(x -1)+(-3)×1<0,且x ≠,解得x >-2,且x ≠,故选B. 18.【答案】【解析】 以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Axyz ,则E (0,0,1),F (1,2,0),B (2,0,0),D (0,2,0). =(1,2,-1),=(-2,2,0),故cos 〈,〉==.19.【答案】√217【解析】建立如图所示的空间直角坐标系,则A (√32,12,0),B (0,1,0),B 1(0,1,1),C 1(0,0,1),则C 1A ⃗⃗⃗⃗⃗⃗⃗ =(√32,12,−1),C 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,0),C 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,1,-1),设平面ABC 1的一个法向量为n =(x ,y,1),则有{C 1A ⃗⃗⃗⃗⃗⃗⃗ ·n =√32x +12y −1=0,C 1B ⃗⃗⃗⃗⃗⃗⃗ ·n =y −1=0.解得n =(√33,1,1),则所求距离为|C 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n |n ||=1√13+1+1=√217.20.【答案】(1,1,1)【解析】设PD =a (a >0),则A (2,0,0),B (2,2,0),P (0,0,a ),E (1,1,a2).∴DP ⃗⃗⃗⃗⃗ =(0,0,a ),AE⃗⃗⃗⃗⃗ =(−1,1,a2),∵cos 〈DP ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=√33,∴a 22=a √2+a 24·√33,∴a =2.∴E 的坐标为(1,1,1).21.【答案】①②③【解析】由于AP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =-1×2+(-1)×2+(-4)×(-1)=0, AP ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =4×(-1)+2×2+0×(-1)=0,所以①②③正确. 22.【答案】因为PA ⊥AD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点,AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0),B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,12), (1)∵AP ⃗⃗⃗⃗⃗ =(0,0,1),DC ⃗⃗⃗⃗⃗ =(0,1,0),故AP ⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ =0,∴AP ⃗⃗⃗⃗⃗ ⊥DC ⃗⃗⃗⃗⃗ ,∴AP ⊥DC , 又由题设知:AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线, 由此得DC ⊥面PAD ,又DC 在面PCD 上,故面PAD ⊥面PCD ; (2)∵AC⃗⃗⃗⃗⃗ =(1,1,0),PB ⃗⃗⃗⃗⃗ =(0,2,-1), ∴|AC ⃗⃗⃗⃗⃗ |=√2,|PB ⃗⃗⃗⃗⃗ |=√5,AC ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ =2,∴cos 〈AC ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ 〉=√105, 由此得AC 与PB 所成角的余弦值为√105;(3)在MC 上取一点N (x ,y ,z ),则存在λ∈R ,使NC ⃗⃗⃗⃗⃗ =λMC ⃗⃗⃗⃗⃗⃗ ,NC ⃗⃗⃗⃗⃗ =(1-x,1-y ,-z ),MC ⃗⃗⃗⃗⃗⃗ =(1,0,−12),∴x =1-λ,y =1,z =12λ.要使AN ⊥MC ,只需AN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,即x -12z =0,解得λ=45, 可知当λ=45时,N 点坐标为(15,1,25),能使AN ⃗⃗⃗⃗⃗⃗ ·MC⃗⃗⃗⃗⃗⃗ =0, 此时,AN ⃗⃗⃗⃗⃗⃗ =(15,1,25),BN ⃗⃗⃗⃗⃗⃗ =(15,−1,25), 由AN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,BN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,得AN ⊥MC ,BN ⊥MC , ∴∠ANB 为所求二面角的平面角,∵|AN⃗⃗⃗⃗⃗⃗ |=√305,|BN ⃗⃗⃗⃗⃗⃗ |=√305,AN ⃗⃗⃗⃗⃗⃗ ·BN ⃗⃗⃗⃗⃗⃗ =-45,∴cos 〈AN ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ 〉=-23, 故所求的二面角的余弦值为-23.23.【答案】以A 为原点,AB ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 分别为y 轴、z 轴的正方向,过A 点且垂直于平面PAB 的直线为x 轴,建立空间直角坐标系Axyz ,设PA =a ,由已知可得:A (0,0,0),B (0,a ,0),C (√34a,34a,0),P (0,0,a ).(1)AP⃗⃗⃗⃗⃗ =(0,0,a ),BC ⃗⃗⃗⃗⃗ =(√34a,−a 4,0),∴BC ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =0,∴BC ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ ,∴BC ⊥AP , 又∵∠BCA =90°,∴BC ⊥AC ,∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点,∴D (0,a 2,a2),E (√38a,38a,a 2),∴由(1)知,BC ⊥平面PAC ,∴DE ⊥平面PAC ,垂足为点E , ∴∠DAE 是AD 与平面PAC 所成的角,∵AD ⃗⃗⃗⃗⃗ =(0,a 2,a 2),AE ⃗⃗⃗⃗⃗ =(√38a,38a,a 2),∴cos ∠DAE =AD ⃗⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗|AD ⃗⃗⃗⃗⃗⃗ ||AE ⃗⃗⃗⃗⃗ |=√144, ∴AD 与平面PAC 所成的角的正弦值为√24.(3)∵DE ∥BC ,又由(1)知BC ⊥平面PAC ,∴DE ⊥平面PAC , 又∵AE ⊂平面PAC ,PE ⊂平面PAC ,∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 为二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∴∠PAC =90°,∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时∠AEP =90°, 故存在点E ,使得二面角A -DE -P 是直二面角.24.【答案】如图,以A 为坐标原点,建立空间直角坐标系Axyz ,则D (0,2,0),E (2,1,0),F (1,2,0),B 1(2,0,2),C 1(2,2,2),(1)因为DE ⃗⃗⃗⃗⃗ =(2,-1,0),B 1F ⃗⃗⃗⃗⃗⃗⃗ =(-1,2,-2),所以cos 〈DE ⃗⃗⃗⃗⃗ ,B 1F ⃗⃗⃗⃗⃗⃗⃗ 〉=DE ⃗⃗⃗⃗⃗⃗ ·B 1F ⃗⃗⃗⃗⃗⃗⃗⃗ |DE ⃗⃗⃗⃗⃗⃗ ||B 1F ⃗⃗⃗⃗⃗⃗⃗⃗ |=−43√5=-4√515, 所以直线DE 与B 1F 所成角的余弦值为4√515; (2)因为C 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,-1,-2),EF ⃗⃗⃗⃗⃗ =(-1,1,0), 设平面C 1EF 的一个法向量为n =(x ,y,1), 则由{n ·C 1E ⃗⃗⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗⃗ =0,可得{−y −2=0,−x +y =0, 解得x =y =-2,所以n =(-2,-2,1),又AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)是平面AEF 的一个法向量,所以cos 〈AA 1⃗⃗⃗⃗⃗⃗⃗ ,n 〉=n·AA1⃗⃗⃗⃗⃗⃗⃗⃗ |n ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=22×3=13, 观察图形,可知二面角C 1-EF -A 为钝角,所以二面角C 1-EF -A 的余弦值为-13. 25.【答案】(1)建立如图所示的空间直角坐标系,则B (0,0,0),S (0,0,1),A (1,0,0),C (0,2,0),D (1,1,0),SA ⃗⃗⃗⃗⃗ =(1,0,-1), CD⃗⃗⃗⃗⃗ =(1,-1,0), 因为cos 〈SA ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 〉=SA ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗|SA⃗⃗⃗⃗⃗ ||CD ⃗⃗⃗⃗⃗ |=12,所以SA 与CD 所成的角为60°; (2)设平面SCD 的法向量为n 1=(x ,y ,z ), 又SC⃗⃗⃗⃗ =(0,2,-1),{n 1·SC⃗⃗⃗⃗ =0,n 1·CD⃗⃗⃗⃗⃗ =0,所以{2y −z =0,x −y =0, 令x =1,则n 1=(1,1,2),因为BC ⊥平面SAB ,第 11 页 共 11 页 所以平面SAB 的一个法向量为n 2=(0,1,0),cos 〈n 1,n 2〉=√66, 所以平面SCD 与平面SAB 所成的锐二面角的余弦值为√66. 26.【答案】如下图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)易得B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(-1,1,-1),于是B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·CE⃗⃗⃗⃗⃗ =0,所以B 1C 1⊥CE ;(2)B 1C ⃗⃗⃗⃗⃗⃗⃗ =(1,-2,-1),设平面B 1CE 的法向量m =(x ,y ,z ),则{m ·B 1C ⃗⃗⃗⃗⃗⃗⃗ =0,m ·CE ⃗⃗⃗⃗⃗ =0,即{x −2y −z =0,−x +y −z =0, 消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1),由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1)为平面CEC 1的一个法向量,于是cos 〈m ,B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 〉=m·B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |m ||B 1C 1|=−4√14×√2=-2√77,从而sin 〈m ,B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 〉=√217,所以二面角B 1-CE -C 1的正弦值为√217. 27.【答案】建立如下图所示的空间直角坐标系D-xyz ,则D (0,0,0),A (2,0,0),C (0,2,0),B (2,2,0),E (1,2,0),F (0,2,2),(1)EF⃗⃗⃗⃗⃗ =(-1,0,2),易得平面ABCD 的一个法向量为n =(0,0,1), 设EF ⃗⃗⃗⃗⃗ 与n 的夹角为θ,则cos θ=EF ⃗⃗⃗⃗⃗ ·n |EF ⃗⃗⃗⃗⃗ ||n|=25√5,∴EF 与平面ABCD 所成的角的余弦值为2√55; (2)EF ⃗⃗⃗⃗⃗ =(-1,0,2),DF ⃗⃗⃗⃗⃗ =(0,2,2),设平面DEF 的一个法向量为m ,则m ·DF ⃗⃗⃗⃗⃗ =0,m ·EF⃗⃗⃗⃗⃗ =0, 可得m =(2,-1,1),∴cos 〈m ,n 〉=m·n|m ||n |=√66,∴二面角F -DE -C 的余弦值为√66.。

十年(2013-2022)高考数学真题分类汇编解析12 立体几何与空间向量(大题)

十年(2013-2022)高考数学真题分类汇编解析12 立体几何与空间向量(大题)

由(1)得 则 则
,所以 ,
设平面 的一个法向量
可取

设平面 的一个法向量

,所以

,所以 的中点

,
,则

,则

6 / 56
可取 则
, ,
所以二面角
的正弦值为
.
4.【2022 年新高考 2 卷 20】如图, 是三棱锥
的高,

,E
是 的中点.
(1)证明: 平面 ;
(2)若


,求二面角
【答案】(1)证明见解析
(1)证明:平面 (2)求二面角
平面

的平面角的余弦值.
【答案】(1)证明见解析;(2) .
(1)取 的中点为 ,连接
.
因为

,则


,故
.
在正方形
中,因为
,故
,故

因为
,故
,故
为直角三角形且

14 / 56
因为
,故 平面

因为 平面 ,故平面
平面
.
(2)在平面
内,过 作
,交 于 ,则

结合(1)中的 平面
(2)作 EF⊥BD 于 F, 作 FM⊥BC 于 M,连 FM
因为 AO⊥平面 BCD,所以 AO⊥BD, AO⊥CD
所以 EF⊥BD, EF⊥CD,
,因此 EF⊥平面 BCD,即 EF⊥BC
11 / 56
因为 FM⊥BC,
,所以 BC⊥平面 EFM,即 BC⊥MF

为二面角 E-BC-D 的平面角,
,所以

数学高考复习空间向量及其运算专题训练(含答案)

数学高考复习空间向量及其运算专题训练(含答案)

数学2021届高考复习空间向量及其运算专题训练(含答案)空间中具有大小和方向的量叫做空间向量,下面是空间向量及其运算专题训练,请考生及时练习。

一、选择题1.以下四个命题中正确的是().A.空间的任何一个向量都可用其他三个向量表示B.若{a,b,c}为空间向量的一组基底,则{a+b,b+c,c+a}构成空间向量的另一组基底C.ABC为直角三角形的充要条件是=0D.任何三个不共线的向量都可构成空间向量的一组基底解析若a+b、b+c、c+a为共面向量,则a+b=(b+c)+(c+a),(1)a=(1)b+(+)c,,不可能同时为1,设1,则a=b+c,则a、b、c为共面向量,此与{a,b,c}为空间向量基底矛盾.答案 B2.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(ca)(2b)=2,则x= ().A.4B.2C.4D.2解析 a=(1,1,x),b=(1,2,1),c=(1,1,1),ca=(0,0,1x),2b=(2,4,2).(ca)(2b)=2(1x)=2,x=2.答案 D3.若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是().A.{a,a+b,ab}B.{b,a+b,ab}C.{c,a+b,ab}D.{a+b,ab,a+2b}解析若c、a+b、ab共面,则c=(a+b)+m(ab)=(+m)a+(m)b,则a、b、c为共面向量,此与{a,b,c}为空间向量的一组基底矛盾,故c,a+b,ab可构成空间向量的一组基底.答案 C4.如图所示,已知空间四边形OABC,OB=OC,且AOB=AOC=,则cos〈,〉的值为().A.0B.C. D.解析设=a,=b,=c,由已知条件〈a,b〉=〈a,c〉=,且|b|=|c|,=a(cb)=acab=|a||c||a||b|=0,cos〈,〉=0.答案 A5.如图所示,在长方体ABCDA1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,=c,则下列向量中与相等的向量是().A.a+b+cB.a+b+cC.ab+cD.ab+c解析 =+=+()=c+(ba)=a+b+c.答案 A.如图,在大小为45的二面角AEFD中,四边形ABFE,CDEF都是边长为1的正方形,则B,D两点间的距离是()A.B.C.1D.解析 =++,||2=||2+||2+||2+2+2+2=1+1+1=3,故||=.答案 D 二、填空题R,向量,且,则解析 .答案8. 在空间四边形ABCD中,++=________.解析如图,设=a,=b,=c,++=a(cb)+b(ac)+c(ba)=0.答案 0.已知ABCDA1B1C1D1为正方体,(++)2=32;()=0;向量与向量的夹角是60正方体ABCDA1B1C1D1的体积为||.其中正确命题的序号是________.解析由,,,得(++)2=3()2,故正确;中=,由于AB1A1C,故正确;中A1B与AD1两异面直线所成角为60,但与的夹角为120,故不正确;中||=0.故也不正确.答案10.如图,空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,OAC=45,OAB=60,则OA与BC所成角的余弦值等于________. 解析设=a,=b,=c.OA与BC所成的角为,=a(cb)=acab=a(a+)a(a+)=a2+aa2a=2416.cos ===.答案三、解答题.已知A、B、C三点不共线,对平面ABC外的任一点O,若点M满足=(++).(1)判断、、三个向量是否共面;(2)判断点M是否在平面ABC内.解 (1)由已知++=3 ,即=+=,,,共面.(2)由(1)知,,,共面且基线过同一点M,四点M,A,B,C共面,从而点M在平面ABC内..把边长为a的正方形ABCD沿对角线AC折起成直二面角,点E、F分别是AD、BC的中点,点O是原正方形的中心,求:(1)EF的长;(2)折起后EOF的大小.如图,以O点为原点建立空间直角坐标系Oxyz,则A(0,a,0),B(a,0,0),C0,a,0),D0,0,a),E0,a,a),F(a,a,0).(1)||2=2+2+2=a2,|EF|=a.(2)=,=,=0a++a0=,||=,||=,cos〈,〉==,EOF=120..如图,已知M、N分别为四面体ABCD的面BCD与面ACD的重心,且G为AM上一点,且GMGA=13.求证:B、G、N三点共线.证明设=a,=b,=c,则=a+(a+b+c)=a+b+c,=a+b+c=.∥,即B、G、N三点共线..如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB、AD、CD的中点,计算:(1)(2)(3)EG的长;(4)异面直线AG与CE所成角的余弦值.解设=a,=b,=c.则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60,(1)==ca,=a,=bc,=(a)=a2ac=,(2)=(ca)(bc)=(bcabc2+ac)=;(3)=++=a+ba+cb=a+b+c,||2=a2+b2+c2ab+bcca=,则||=.(4)=b+c,=+=b+a,cos〈,〉==,由于异面直线所成角的范围是(0,90],所以异面直线AG与CE所成角的余弦值为.空间向量及其运算专题训练及答案的全部内容就是这些,查字典数学网预祝考生可以取得优异的成绩。

十年真题(-2019)高考数学真题分类汇编 专题09 立体几何与空间向量选择填空题 理(含解析)

十年真题(-2019)高考数学真题分类汇编 专题09 立体几何与空间向量选择填空题 理(含解析)

专题09立体几何与空间向量选择填空题历年考题细目表题型年份考点试题位置单选题2019表面积与体积2019年新课标1理科12单选题2018几何体的结构特征2018年新课标1理科07单选题2018表面积与体积2018年新课标1理科12单选题2017三视图与直观图2017年新课标1理科07单选题2016三视图与直观图2016年新课标1理科06单选题2016空间向量在立体几何中的应用2016年新课标1理科11单选题2015表面积与体积2015年新课标1理科06单选题2015三视图与直观图2015年新课标1理科11单选题2014三视图与直观图2014年新课标1理科12单选题2013表面积与体积2013年新课标1理科06单选题2013三视图与直观图2013年新课标1理科08单选题2012三视图与直观图2012年新课标1理科07单选题2012表面积与体积2012年新课标1理科11单选题2011三视图与直观图2011年新课标1理科06单选题2010表面积与体积2010年新课标1理科10填空题2017表面积与体积2017年新课标1理科16填空题2011表面积与体积2011年新课标1理科15填空题2010三视图与直观图2010年新课标1理科14历年高考真题汇编1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由PA=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是PA,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面PAC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.3.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.4.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.5.【2016年新课标1理科06】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( )A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:,R=2.它的表面积是:4π•2217π.故选:A.6.【2016年新课标1理科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.7.【2015年新课标1理科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛【解答】解:设圆锥的底面半径为r,则r=8,解得r,故米堆的体积为π×()2×5,∵1斛米的体积约为1.62立方,∴1。

第10讲空间向量的应用与新定义(五种题型)-高考数学热点、重难点题型(新高考专用)(解析版)

第10讲空间向量的应用与新定义(五种题型)-高考数学热点、重难点题型(新高考专用)(解析版)

第10讲空间向量的应用与新定义(五种题型)【热点、重难点题型】题型一:空间向量的位置关系的证明一、单选题1.(2023·全国·高三专题练习)如图,在正四棱柱1111ABCD A B C D -中,O 是底面ABCD 的中心,,E F 分别是11,BB DD 的中点,则下列结论正确的是()A .1AO //EFB .1AO EF ⊥C .1AO //平面1EFB D .1A O ⊥平面1EFB 【答案】B【分析】建立空间直角坐标系,利用空间位置关系的向量证明,逐项分析、判断作答.【详解】在正四棱柱1111ABCD A B C D -中,以点D 为原点建立如图所示的空间直角坐标系,令12,2(0,0)AB a DD b a b ==>>,O 是底面ABCD 的中心,,E F 分别是11,BB DD 的中点,则11(,,0),(2,0,2),(2,2,),(2,2,2),(0,0,)O a a A a b E a a b B a a b F b ,1(,,2)OA a a b =- ,1(2,2,0),(0,0,)FE a a EB b == ,对于A ,显然1OA 与FE 不共线,即1AO 与EF 不平行,A 不正确;对于B ,因12()2020OA FE a a a a b ⋅=⋅+-⋅+⋅= ,则1OA FE ⊥ ,即1AO EF ⊥,B 正确;对于C ,设平面1EFB 的法向量为(,,)n x y z = ,则12200n EF ax ay n EB bz ⎧⋅=+=⎪⎨⋅==⎪⎩,令1x =,得(1,1,0)n =- ,120OA n a ⋅=> ,因此1OA 与n 不垂直,即1AO 不平行于平面1EFB ,C 不正确;对于D ,由选项C 知,1OA 与n 不共线,即1AO 不垂直于平面1EFB ,D 不正确.故选:B2.(2023春·河南洛阳·高三洛阳市第八中学校考开学考试)在正方体1111ABCD A B C D -中,E ,F 分别为,AB BC 的中点,则()A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BDC .平面1//B EF 平面1A ACD .平面1//B EF 平面11AC D 【答案】A【分析】证明EF ⊥平面1BDD ,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设2AB =,分别求出平面1B EF ,1A BD ,11AC D 的法向量,根据法向量的位置关系,即可判断BCD .【详解】解:在正方体1111ABCD A B C D -中,AC BD ⊥且1DD ⊥平面ABCD ,又EF ⊂平面ABCD ,所以1EF DD ⊥,因为,E F 分别为,AB BC 的中点,所以EF AC ∥,所以EF BD ⊥,又1BD DD D = ,所以EF ⊥平面1BDD ,又EF ⊂平面1B EF ,所以平面1B EF ⊥平面1BDD ,故A 正确;选项BCD 解法一:如图,以点D 为原点,建立空间直角坐标系,设2AB =,则()()()()()()()112,2,2,2,1,0,1,2,0,2,2,0,2,0,2,2,0,0,0,2,0B E F B A A C ,()10,2,2C ,则()()11,1,0,0,1,2EF EB =-= ,()()12,2,0,2,0,2DB DA == ,()()()1110,0,2,2,2,0,2,2,0,AA AC A C ==-=- 设平面1B EF 的法向量为()111,,m x y z = ,则有11111020m EF x y m EB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,可取()2,2,1m =- ,同理可得平面1A BD 的法向量为()11,1,1n =-- ,平面1A AC 的法向量为()21,1,0n = ,平面11AC D 的法向量为()31,1,1n =-,则122110m n ⋅=-+=≠ ,所以平面1B EF 与平面1A BD 不垂直,故B 错误;因为m 与2n u u r 不平行,所以平面1B EF 与平面1A AC 不平行,故C 错误;因为m 与3n 不平行,所以平面1B EF 与平面11AC D 不平行,故D 错误,故选:A.选项BCD 解法二:解:对于选项B ,如图所示,设11A B B E M = ,EF BD N = ,则MN 为平面1B EF 与平面1A BD 的交线,在BMN 内,作BP MN ⊥于点P ,在EMN 内,作GP MN ⊥,交EN 于点G ,连结BG ,则BPG ∠或其补角为平面1B EF 与平面1A BD 所成二面角的平面角,由勾股定理可知:222PB PN BN +=,222PG PN GN +=,底面正方形ABCD 中,,E F 为中点,则EF BD ⊥,由勾股定理可得222NB NG BG +=,从而有:()()2222222NB NG PB PN PG PN BG +=+++=,据此可得222PB PG BG +≠,即90BPG ∠≠ ,据此可得平面1B EF ⊥平面1A BD 不成立,选项B 错误;对于选项C ,取11A B 的中点H ,则1AH B E ,由于AH 与平面1A AC 相交,故平面1∥B EF 平面1A AC 不成立,选项C 错误;对于选项D ,取AD 的中点M ,很明显四边形11A B FM 为平行四边形,则11A M B F ,由于1A M 与平面11AC D 相交,故平面1∥B EF 平面11AC D 不成立,选项D 错误;故选:A.3.(2023春·云南昆明·高三校考阶段练习)如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱1BB 的中点,Q 为正方形11BB C C 内一动点(含边界),则下列说法中不正确...的是()A .若1//D Q 平面1A PD ,则动点Q 的轨迹是一条线段B .存在Q 点,使得1D Q ⊥平面1A PDC .当且仅当Q 点落在棱1CC 上某点处时,三棱锥1Q A PD -的体积最大D.若1=2D Q ,那么Q 点的轨迹长度为4选项C ,1A PD △面积为定值,当且仅当点Q 到平面1(1,1,)AQ x z =- ,Q 到平面1A PD 的距离为12332A Q m d x z m⋅==+- 302x z ≤+≤时,23[()]32d x z =-+,当0x z +=时,322x z ≤+≤时,23[()]32d x z =+-,2x z +=时,综上,0x z +=时,d 取得最大值1,故Q 与1C 重合时,确;选项D ,11D C ⊥平面11BB C C ,CQ ⊂平面11BB C C 所以22111122C QD Q D C =-=,所以Q 点轨迹是以为1222424ππ⨯⨯=,D 正确.故选:B .【点睛】关键点点睛:本题考查空间点的轨迹问题,解题关键是勾画出过1D EF ,由体积公式,在正方形11BB C C 内的点Q 二、多选题4.(2022·湖南长沙·统考模拟预测)如图,已知正方体1111ABCD A B C D -的棱长为2,E F G 、、分别为11,,AD AB B C 的中点,以下说法正确的是()A .三棱锥A EFG -的体积为13B .1AC ⊥平面EFG C .过点E F G 、、作正方体的截面,所得截面的面积是D .异面直线EG 与1AC 所成的角的余弦值为3对于A ,1111123323A EFG EAF V S CC -=⋅⋅=⨯⨯=△,故A 正确;对于B ,以DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,5.(2022·广东·统考三模)在正方体1111ABCD A B C D -中,1AB =,点P 满足1CP CD CC λμ=+,其中[][]0,1,0,1λμ∈∈,则下列结论正确的是()A .当1//B P 平面1A BD 时,1B P 可能垂直1CD B .若1B P 与平面11CC D D 所成角为4π,则点P 的轨迹长度为2πC .当λμ=时,1||DP A P + 的最小值为2+D .当1λ=时,正方体经过点1A 、P 、C 的截面面积的取值范围为[2【答案】ABD 【分析】依题意画出图形,建立空间直角坐标系,利用空间向量法计算A 、D ,连接1C P ,则11B PC ∠即为1B P 与平面11CC D D 所成角,根据锐角三角函数得到P 的轨迹,即可判断B ,将平面1CD D 与平面11A BCD 沿1CD 展成平面图形,化曲为直,利用余弦定理计算即可判断C ;【详解】解:对于A 选项:建立如图所示的空间直角坐标系A xyz -,则()0,0,0A ,()1,0,0B ,()0,1,0D ,()1,1,0C ,()10,0,1A ,()11,1,1C ,()10,1,1D ,所以()11,0,1CD =- ,11B P B C CP =+ 11B C CD CC λμ=++ (),1,1λμ=--,则()11,0,1BA =- ,()1,1,0BD =- ,设平面1A BD 的一个法向量为(),,n x y z = ,所以100BA n x z BD n x y ⎧⋅=-+=⎨⋅=-+=⎩ ,令1x =,则1y z ==,即平面1A BD 的一个法向量为()1,1,1n = ,若1//B P 平面1A BD ,则10n B P ⋅= ,B 选项:因为11BC ⊥平面11CCD D ,连接1C P ,则若1B P 与平面11CC D D 所成角为4π,则1tan B PC ∠即点P 的轨迹是以1C 为圆心,以1为半径的14个圆,于是点C 选项:如图,将平面1CD D 与平面11A BCD 沿CD 线段1A D 即为1DP A P + 的最小值,利用余弦定理可知2221111112A D A D DD A D DD =+-⋅所以122A D =+,故C 错误;。

五:平面向量与空间向量十年高考题(含答案)

五:平面向量与空间向量十年高考题(含答案)

第五章 平面向量与空间向量●考点阐释1.向量是数学中的重要概念,并和数一样,也能运算.它是一种工具,用向量的有关知识能有效地解决数学、物理等学科中的很多问题.向量法和坐标法是研究和解决向量问题的两种方法.坐标表示,使平面中的向量与它的坐标建立了一一对应关系,用"数〞的运算处理"形〞的问题,在解析几何中有广泛的应用.向量法便于研究空间中涉及直线和平面的各种问题.2.平移变换的价值在于可利用平移变换,使相应的函数解析式得到简化. ●试题类编 一、选择题 1.〔2002春,13〕假设a 、b 、c 为任意向量,m ∈R ,那么以下等式不一定...成立的是〔 〕 A.〔a +b 〕+c =a +〔b +c 〕 B.〔a +b 〕·c =a ·c +b ·c C.m 〔a +b 〕=m a +m b D.〔a ·b 〕c =a 〔b ·c 〕2.〔2002XX 文12,理10〕平面直角坐标系中,O 为坐标原点,两点A 〔3,1〕,B 〔-1,3〕,假设点C 满足OB OA OC βα+=,其中α、β∈R ,且α+β=1,那么点C 的轨迹方程为〔 〕A.3x +2y -11=0B.〔x -1〕2+〔y -2〕2=5C.2x -y =0D.x +2y -5=0 3.〔2001、、XX 文〕假设向量a =〔3,2〕,b =〔0,-1〕,那么向量2b -a 的坐标是〔 〕 A.〔3,-4〕 B.〔-3,4〕 C.〔3,4〕 D.〔-3,-4〕 4.〔2001、、XX 〕设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,那么OB OA ⋅等于〔 〕A.43B.-43C.3D.-3 5.〔2001〕如图5—1,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,假设B A 1=a ,11D A =b ,A A 1=c .那么以下向量中与M B 1相等的向量是〔 〕A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c 6.〔2001、、XX 理,5〕假设向量a =〔1,1〕,b =〔1,-1〕,c =〔-1,2〕,那么c 等于〔 〕A.-21a +23b B.21a -23bC.23a -21b D.-23a +21b 7.(2000、、XX 理,4)设a 、b 、c 是任意的非零平面向量,且相互不共线,那么①〔a ·b 〕c -〔c ·a 〕b =0②|a |-|b |<|a -b | ③〔b ·c 〕a -〔c ·a 〕b 不与c 垂直 ④〔3a +2b 〕〔3a -2b 〕=9|a |2-4|b |2中,是真命题的有〔 〕 A.①②B.②③C.③④D.②④8.〔1997全国,5〕如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率为〔 〕A.-31B.-3 C.31D.3 二、填空题 9.〔2002文,理2〕向量a 和b 的夹角为120°,且|a |=2,|b |=5,那么〔2a -b 〕·a =_____. 10.〔2001春,8〕假设非零向量α、β满足|α+β|=|α-β|,那么α与β所成角的大小为_____. 11.〔2000,1〕向量OA =〔-1,2〕,OB =〔3,m 〕,假设OA ⊥AB ,那么m =. 12.〔1999理,8〕假设将向量a =〔2,1〕围绕原点按逆时针方向旋转4π得到向量b ,那么向量b 的坐标为_____.13.〔1997,14〕设a =〔m +1〕i -3j ,b =i +〔m -1〕j ,〔a +b 〕⊥〔a -b 〕,那么m =_____. 14.〔1996,15〕a +b =2i -8j ,a -b =-8i +16j ,那么a ·b =_____.15.〔1996,15〕O 〔0,0〕和A 〔6,3〕两点,假设点P 在直线OA 上,且21=PA OP ,又P 是线段OB 的中点,那么点B 的坐标是_____.三、解答题16.〔2003春,19〕三棱柱ABC —A 1B 1C 1,在某个空间直角坐标系中,1},0,0,{},0,23,2{AA m AC m AB =-=={0,0,n }.〔其中m 、n >0〕.如图5—2.〔1〕证明:三棱柱ABC —A 1B 1C 1是正三棱柱; 〔2〕假设m =2n ,求直线CA 1与平面A 1ABB 1所成角的大小.17.〔2002春,19〕如图5—3,三棱柱OAB —O 1A 1B 1,平面OBB 1O 1⊥平面OAB ,∠O 1OB =60°,∠AOB =90°,且OB =OO 1=2,OA =3.求:〔1〕二面角O 1—AB —O 的大小;〔2〕异面直线A 1B 与AO 1所成角的大小.图5—2〔上述结果用反三角函数值表示〕 18.〔2002,17〕如图5—4,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OA =4,OB =3,∠AOB =90°,D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点,假设OP ⊥BD ,求OP 与底面AOB 所成角的大小.〔结果用反三角函数值表示〕图5—3 图5—4 图5—519.〔2002XX 文9,理18〕如图5—5,正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a .〔1〕建立适当的坐标系,并写出点A 、B 、A 1、C 1的坐标; 〔2〕求AC 1与侧面ABB 1A 1所成的角.20.〔2002XX 文22,理21〕两点M 〔-1,0〕,N 〔1,0〕,且点P 使,MN MP ⋅,PN PM ⋅NP NM ⋅成公差小于零的等差数列.〔1〕点P 的轨迹是什么曲线.〔2〕假设点P 坐标为〔x 0,y 0〕,θ为PM 与PN 的夹角,求tan θ.21.〔2001、、XX 理〕如图5—6,以正四棱锥V —ABCD 底面中心O 为坐标原点建立空间直角坐标系O —xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点,正四棱锥底面边长为2a ,高为h .〔1〕求cos<DE BE , >;〔2〕记面BCV 为α,面DCV 为β,假设∠BED 是二面角α—VC —β的平面角,求∠BED .图5—6 图5—7 图5—822.〔2001春〕在长方体ABCD —A 1B 1C 1D 1中,点E 、F 分别在BB 1、DD 1上,且AE ⊥A 1B ,AF ⊥A 1D.〔1〕求证:A 1C ⊥平面AEF ;〔2〕假设规定两个平面所成的角是这两个平面所组成的二面角中的锐角〔或直角〕.那么在空间中有定理:假设两条直线分别垂直于两个平面,那么这两条直线所成的角与这两个平面所成的角相等.试根据上述定理,在AB =4,AD =3,AA 1=5时,求平面AEF 与平面D 1B 1BD 所成角的大小.〔用反三角函数值表示〕23.〔2001〕在棱长为a 的正方体OABC —O ′A ′B ′C ′中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF .如图5—8.〔1〕求证:A ′F ⊥C ′E .〔2〕当三棱锥B ′—BEF 的体积取得最大值时,求二面角B ′—EF —B 的大小〔结果用反三角函数表示〕24.〔2000春,21〕四棱锥P —ABCD 中,底面ABCD 是一个平行四边形,AB ={2,-1,-4},AD ={4,2,0},AP ={-1,2,-1}.〔1〕求证:PA ⊥底面ABCD ; 〔2〕求四棱锥P —ABCD 的体积;〔3〕对于向量a ={x 1,y 1,z 1},b ={x 2,y 2,z 2},c ={x 3,y 3,z 3},定义一种运算:〔a ×b 〕·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算〔AB ×AD 〕·AP 的绝对值的值;说明其与四棱锥P —ABCD 体积的关系,并由此猜想向量这一运算〔AB ×AD 〕·AP 的绝对值的几何意义.25.〔2000,18〕如图5—9所示四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且AB =BC =2,E 是AC 中点,异面直线AD 与BE 所成的角的大小为arccos1010,求四面体ABCD 的体积. 图5—9 图5—10 图5—1126.〔2000XX 、、〕如图5—10所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.〔1〕求BN 的长;〔2〕求cos<11,CB BA >的值;〔3〕求证:A 1B ⊥C 1M .27.〔2000全国理,18〕如图5—11,平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形且∠C 1CB =∠C 1CD =∠BCD =60°.〔1〕证明:C 1C ⊥BD ;〔2〕假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值;〔3〕当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD .请给出证明. 28.〔1999,20〕如图5—12,在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角.〔1〕假设AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; 〔2〕求异面直线AE 与CD 所成角的大小.29.〔1995,21〕如图5—13在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是〔21,23,0〕,点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°。

高中数学向量专项练习(含答案)

高中数学向量专项练习(含答案)

高中数学向量专项练习一、选择题1. 已知向量若则()A. B. C. 2 D. 42. 化简+ + + 的结果是()A. B. C. D.3.已知向量, 若与垂直, 则()A. -3B. 3C. -8D. 84.已知向量, , 若, 则()A. B. C. D.5.设向量, , 若向量与平行, 则A. B. C. D.6.在菱形中, 对角线, 为的中点, 则()A. 8B. 10C. 12D. 147.在△ABC中, 若点D满足, 则()A. B. C. D.8.在中, 已知, , 若点在斜边上, , 则的值为().A. 6B. 12C. 24D. 489.已知向量若, 则()A. B. C. D.10.已知向量, , 若向量, 则实数的值为A. B. C. D.11.已知向量, 则A. B. C. D.12.已知向量, 则A. B. C. D.13.的外接圆圆心为, 半径为, , 且, 则在方向上的投影为A. 1B. 2C.D. 314.已知向量, 向量, 且, 则实数等于()A. B. C. D.15.已知平面向量, 且, 则实数的值为()A. 1B. 4C.D.16.是边长为的等边三角形, 已知向量、满足, , 则下列结论正确的是()A. B. C. D.17.已知菱形的边长为, , 则()A. B. C. D.18.已知向量, 满足, , 则夹角的余弦值为( )A. B. C. D.19.已知向量=(1, 3), =(-2, -6), | |= , 若(+ )·=5, 则与的夹角为()A. 30° B. 45° C. 60° D. 120°20.已知向量, 则的值为A. -1B. 7C. 13D. 1121.如图, 平行四边形中, , 则()A. B. C. D.22.若向量 , , 则 =( )A. B. C. D.23.在△ 中, 角 为钝角, , 为 边上的高, 已知 , 则 的取值范围为(A )39(,)410 (B )19(,)210 (C )33(,)54 (D )13(,)2424. 已知平面向量 , , 则向量 ( )A. B. C. D.25.已知向量 , , 则A. (5,7)B. (5,9)C. (3,7)D.(3,9) 26.已知向量 , 且 , 则实数 =( )A. -1B. 2或-1C. 2D. -227.在 中, 若 点 满足 , 则 ( )A. B. C. D.28.已知点 和向量 , 若 , 则点 的坐标为( )A. B. C. D.29.在矩形ABCD 中, 则 ( )A. 12B. 6C.D.30. 已知向量 , ,则 ( ).A. B. C. D.31.若向量 与 共线且方向相同, 则 ( )A. B. C. D.32.设 是单位向量, 且 则 的最小值是( )A. B. C. D.33.如图所示, 是 的边 上的中点, 记 , , 则向量 ( )A. B. C. D.34.如图, 在 是边BC 上的高, 则 的值等于 ( )ADCB35.已知平面向量的夹角为, ()A. B. C. D.36.已知向量且与共线, 则()A. B. C. D.二、填空题37. 在△ABC中, AB=2, AC=1, D为BC的中点, 则=_____________.38.设, , 若, 则实数的值为()A. B. C. D.39.空间四边形中, , , 则()A. B. C. D.40. 已知向量, , 满足, , 若, 则的最大值是 .41. 化简: = .42. 在中, 的对边分别为, 且, , 则的面积为 .43. 已知向量=(1, 2), •=10, | + |=5 , 则| |= .44.如图, 在中, 是中点, , 则.45. 若| |=1, | |=2, = + , 且⊥, 则与的夹角为________。

平面向量高考题选及答案

平面向量高考题选及答案
最小值是________,最大值是_______.
10.2017全国高考江苏卷理数·12T如图,在同一个平面内,向量 , , ,的模分别为1,1, , 与 的夹角为 ,且tan =7, 与 的夹角为45°;若 =m +n m,n R,则m+n=
11.2017全国高考浙江卷理数·13T在平面直角坐标系xOy中,A-12,0,B0,6,点P在圆O:x2+y2=50上,若 · 20,则点P的横坐标的取值范围是
30.2015高考湖北,理11已知向量 , ,则 .
31.2015高考天津,理14在等腰梯形 中,
已知 ,动点 和 分别在线段 和 上,且, 则 的最小值为.
32.2015高考浙江,理15已知 是空间单位向量, ,若空间向量 满足 ,
且对于任意 , ,则 , , .
33.2015高考新课标2,理13设向量 , 不平行,向量 与 平行,则实数 _________.
24.2015高考陕西,理7对任意向量 ,下列关系式中不恒成立的是
A. B.
C. D.
25.2015高考四川,理7设四边形ABCD为平行四边形, , .若点M,N满足 , ,则 A20B15C9D6
26.2015高考重庆,理6若非零向量a,b满足|a|= |b|,且a-b 3a+2b,则a与b的夹角为A、 B、 C、 D、
A B C D
17、2016年全国II高考已知向量 ,且 ,则m=
A-8B-6C6D8
18、2016年全国III高考已知向量 , 则 ABC=
A300B 450C 600D1200
19、2016年上海高考在平面直角坐标系中,已知A1,0,B0,-1,P是曲线 上一个动点,则 的取值范围是.

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。

空间向量及其运算(习题及答案)

空间向量及其运算(习题及答案)

1 1空间向量及其运算(习题)➢ 例题示范例 1:如图,在正方体 ABCD -A 1B 1C 1D 1 中,E 为上底面 A 1B 1C 1D 1−−→ −−→ −−→ −−→的中心,若 AE = AA 1 + x AB + y AD ,则 x ,y 的值分别为( ) A . x = 1,y = 1 C . x = 1 ,y = 1 2 2B . x = 1,y = 1 2 D . x = 1 ,y = 1 2 思路分析:−−→−−→ −−→AE = AA 1 + A 1E−−→ = −−→ −−→ AA 1 + 2 (A 1B 1 + A 1D 1 )−−→ =−−→ −−→ AA 1 + 2 ( AB + AD ) −−→ = 1 −−→ 1 −−→AA 1 + 2 AB + 2 AD −−→ −−→ −−→ −−→∵ AE = AA 1 + x AB + y AD , ∴ x = 1 ,y = 1 ,故选 C .2 2例 2:如图,在平行六面体 ABCD -A 1B 1C 1D 1 中,AB =2,AA 1=2,−−→ −−→AD =1,且 AB ,AD ,AA 1 两两之间的夹角都是 60°,则 AC 1 ⋅ BD 1 = .过程示范:−−→ −−→ −−→ 设 AB = a , AD = b , A A 1 = c ,−−→ −−→ −−→ −−→ −−→ −−→ −−→则 AC 1 = AB + BC + CC 1 = AB + AD + AA 1 = a + b + c ,1思路分析:平行六面体中 AB ,AD ,AA 1 的长度和夹角都清楚,选取 AB ,AD , AA 1 作为一组基底,表达 AC 1 和 BD 1 ,利用数量积的运算法则进行计算.−−→ −−→ −−→ −−→ −−→17 17 17 BE DF BE ⋅ D F 思路分析: 利用空间向量,将线线角转化为直线的方向向量的夹角问题. 例 3:如图,在正方体 ABCD -A 1B 1C 1D 1 中,E ,F 分别是 A 1B 1, C 1D 1 的一个四等分点,求 BE 与 DF 所成角的余弦值.过程示范:设正方体 ABCD -A 1B 1C 1D 1 的棱长为 1,−−→ −−→ −−→如图,以 DA ,DC ,DD 1 为单位正交基底建立空间直角坐标系D -xyz ,则 B (1,1,0),E (1, 3 ,1),D (0,0,0),F (0, 1 ,1),4 4∴ −−→ =(1, 3 ,1) - (1,1,0)=(0, - 1 ,1), 4 4−−→ =(0, 1 ,1) - (0,0,0)=(0, 1 ,1), 4 −−→4−−→ 则 BE −−→ ⋅ = , DF 4 −−→ =0×0+( - 1 = , 4 1 15 , BE DF × )+1×1= 4 4 16cos < −−→ −−→ −−→ −−→ BE ,DF > = 15 = 16 = 15 , −−→ BE −−→ DF ⨯ 17 4 4 即 BE 与 DF 所成角的余弦值为15 .17➢ 巩固练习1.如图,在三棱锥 O -ABC 中,M ,N 分别是 AB ,OC 的中点, −−→ −−→ −−→ −−→ −−→设 OA = a ,OB = b ,OC = c ,用 a ,b ,c 表示MN ,则MN = ( )A . 1 (b +c -a )B . 1 (a +b -c )2 2 C . 1 (a -b +c ) D . 1 (c -a -b )2 22 172. 如图,在斜四棱柱 ABCD -A 1B 1C 1D 1 中,各面均为平行四边形,−−→ −−→ −−→设 AA 1 = a ,AB = b ,AD = c ,M ,N ,P 分别是 AA 1,BC ,C 1D 1−−→的中点,试用 a ,b ,c 表示以下向量: AP = , −−→ −−→ MP + NC 1 = .3. 下列等式:−−→ −−→ −−→ −−→① OP = OA - AB - AC ;−−→ ② OP =−−→ OA + −−→ OB + 1−−→OC ;6 3 2 −−→ −−→ −−→③ PA + PB + PC = 0 ;−−→ −−→ −−→ −−→④ OP + OA + OB + OC = 0 .其中使 P ,A ,B ,C 四点共面的是 .(填写序号)4. 已知向量 a =(2,-3,1),b =(2,0,3),c =(0,0,2),则a + b - c = ; a ⋅ (b + c ) = .5. 已知向量 a =(1,0,-1),则下列向量与 a 成 60°夹角的是( )A .(-1,1,0)B .(1,-1,0)C .(0,-1,1)D .(-1,0,1)6. 已知向量 a =(2,-1,3),b =(-4,2,x ),若 a ⊥b ,则 x 的值为 .7. 已知{a ,b ,c }是空间向量的一组基底,{a +b ,a -b ,c }是另一组基底,若向量 p 在基底{a ,b ,c }下的坐标为(4,2,3), 则 p 在基底{a +b ,a -b ,c }下的坐标为 .38. 如图,已知空间四边形 ABCD 的每条边及对角线的长都为 a ,1 1E,F,G 分别是AB,AD,CD 的中点,则−−→−−→AB ⋅AC = ;−−→−−→AD ⋅DB = ;−−→−−→GF ⋅AC = ;−−→−−→EF ⋅BC = ;−−→−−→FG ⋅BA = ;−−→−−→GE ⋅GF = .9. 已知向量a=(1,0,-1),b=(-1,1,2).①a-b 与a 的夹角的余弦值为;②若k a+b 与a-2b 平行,则k 的值为;③若k a+b 与a+3b 垂直,则k 的值为.10.已知点M(-3,-2,0)在平面α内,且平面α的一个法向量是n=(6,-3,6),则下列点在平面α内的是()A.(2,3,3) B.(-2,0,1)C.(-4,-4,0) D.(3,-3,4)11.已知两不重合直线l1,l2 的方向向量分别为v1=(1,-1,2),v2=(0,2,1),则l1,l2 的位置关系是()A.平行B.相交C.垂直D.不确定412.给出下列命题:①若直线l 的方向向量为a=(1,-1,2),直线m 的方向向量为b=(2,1, 1),则l⊥m;2②若直线l 的方向向量为a=(0,1,-1),平面α的一个法向量为n=(1,-1,-1),且l⊄α,则l⊥α;③若平面α的一个法向量为n1=(0,1,3),平面β的一个法向量为n2=(1,0,2),则α∥β;④若平面α经过A(1,0,-1),B(0,1,0),C(-1,2,0)三点,且向量n=(1,u,t)是平面α的一个法向量,则u=1,t=0.其中属于真命题的是()A.②③B.①④C.③④D.①②13.如图,在正方体ABCD-A1B1C1D1 中,M,N 分别是棱AA1,BB1 的中点,求CM 与D1N 所成角的余弦值.5【参考答案】➢巩固练习1. D2. a +1b +c ,3a +1b +3c 23. ①②③2 2 24. (4,-3,2),95. B6. 1037. (3,1,3)8. 1a2 ,-1a2 ,-1a2 ,1a2 ,-1a2 ,1a2 2 2 2 4 4 49. ①5 7 ;②-1 ;③1514 2 710.C11.C12. 413. B14. 196。

十年真题(2010-2019)高考数学(理)分类汇编专题10 立体几何与空间向量解答题(新课标Ⅰ卷)(解析版)

十年真题(2010-2019)高考数学(理)分类汇编专题10 立体几何与空间向量解答题(新课标Ⅰ卷)(解析版)

专题10立体几何与空间向量解答题历年考题细目表历年高考真题汇编1.【2019年新课标1理科18】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD =60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值.【解答】(1)证明:如图,过N作NH⊥AD,则NH∥AA1,且,又MB∥AA1,MB,∴四边形NMBH为平行四边形,则NM∥BH,由NH∥AA1,N为A1D中点,得H为AD中点,而E为BC中点,∴BE∥DH,BE=DH,则四边形BEDH为平行四边形,则BH∥DE,∴NM∥DE,∵NM⊄平面C1DE,DE⊂平面C1DE,∴MN∥平面C1DE;(2)解:以D为坐标原点,以垂直于DC得直线为轴,以DC所在直线为y轴,以DD1所在直线为轴建立空间直角坐标系,则N(,,2),M(,1,2),A1(,﹣1,4),,,设平面A1MN的一个法向量为,由,取,得,又平面MAA1的一个法向量为,∴cos.∴二面角A﹣MA1﹣N的正弦值为.2.【2018年新课标1理科18】如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,,由于四边形ABCD为正方形,所以EF⊥BC.由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.又因为BF⊂平面ABFD,所以:平面PEF⊥平面ABFD.(2)在平面PEF中,过P作PH⊥EF于点H,连接DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故V F﹣PDE,因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.设正方形边长为2a,则PD=2a,DE=a在△PDE中,,所以,故V F﹣PDE,又因为,所以PH,所以在△PHD中,sin∠PDH,即∠PDH为DP与平面ABFD所成角的正弦值为:.3.【2017年新课标1理科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴P A⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵P A∩PD=P,且P A⊂平面P AD,PD⊂平面P AD,∴AB⊥平面P AD,又AB⊂平面P AB,∴平面P AB⊥平面P AD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面P AD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由P A=PD,∠APD=90°,可得△P AD为等腰直角三角形,设P A=AB=2a,则AD.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为、y、轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面P AD,AD⊂平面P AD,∴AB⊥PD,又PD⊥P A,P A∩AB=A,∴PD⊥平面P AB,则为平面P AB的一个法向量,.∴cos.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.4.【2016年新课标1理科18】如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴(0,2a,0),(,﹣2a,a),(﹣2a,0,0)设平面BEC的法向量为(1,y1,1),则,则,取(,0,﹣1).设平面ABC的法向量为(2,y2,2),则,则,取(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ,则二面角E﹣BC﹣A的余弦值为.5.【2015年新课标1理科18】如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG,且EG⊥AC,在直角△EBG中,可得BE,故DF,在直角三角形FDG中,可得FG,在直角梯形BDFE中,由BD=2,BE,FD,可得EF,从而EG2+FG2=EF2,则EG⊥FG,(或由tan∠EGB•tan∠FGD••1,可得∠EGB+∠FGD=90°,则EG⊥FG)AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣y,由(Ⅰ)可得A(0,,0),E(1,0,),F(﹣1,0,),C(0,,0),即有(1,,),(﹣1,,),故cos,.则有直线AE与直线CF所成角的余弦值为.6.【2014年新课标1理科19】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴(0,,),(1,0,),(﹣1,,0),设向量(,y,)是平面AA1B1的法向量,则,可取(1,,),同理可得平面A1B1C1的一个法向量(1,,),∴cos,,∴二面角A﹣A1B1﹣C1的余弦值为7.【2013年新课标1理科18】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则(1,0,),(﹣1,,0),(0,,),设(,y,)为平面BB1C1C的法向量,则,即,可取y=1,可得(,1,﹣1),故cos,,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.8.【2012年新课标1理科19】如图,直三棱柱ABC﹣A1B1C1中,AC=BC AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°9.【2011年新课标1理科18】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB =2AD,PD⊥底面ABCD.(Ⅰ)证明:P A⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.【解答】(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面P AD.故P A⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D﹣y,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).(﹣1,,0),(0,,﹣1),(﹣1,0,0),设平面P AB的法向量为(,y,),则即,因此可取(,1,)设平面PBC的法向量为(,y,),则,即:可取(0,1,),cos故二面角A﹣PB﹣C的余弦值为:.10.【2010年新课标1理科18】如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(Ⅰ)证明:PE⊥BC(Ⅱ)若∠APB=∠ADB=60°,求直线P A与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为,y,轴,线段HA的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m,n=1,故C(),设(,y,)为平面PEH的法向量则即因此可以取,由,可得所以直线P A与平面PEH所成角的正弦值为.考题分析与复习建议本专题考查的知识点为:直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以解答题题型出现,重点考查的知识点为:直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.预测明年本考点题目会比较稳定,备考方向以知识点直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等为重点较佳.最新高考模拟试题1.如图,在三棱柱111ABC A B C -中,侧面11ABB A 是菱形,160BAA ∠=︒,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AF FC =.(1)证明:1//CB 面1A EF ;(2)若CA CB ⊥,面CAB ⊥面11ABB A ,求二面角1F A E A --的余弦值.【答案】(1)详见解析;(2529. 【解析】解:(1)连接1AB 交1A E 于点G ,连接FG . 因为11AGA B GE ∆∆:,所以1112AA AG GB EB ==,又因为2AF FC =,所以1AF AGFC GB =,所以1//FG CB , 又1CB ⊄面1A EF ,FG ⊂面1A EF ,所以1//CB 面1A EF .(2)过C 作CO AB ⊥于O ,因为CA CB =,所以O 是线段AB 的中点.因为面CAB ⊥面11ABB A ,面CAB I 面11ABB A AB =,所以CO ⊥面1ABA .连接1OA , 因为1ABA ∆是等边三角形,O 是线段AB 的中点,所以1OA AB ⊥.如图以O 为原点,OA u u u v ,1OA u u ur ,OC u u u r 分别为x 轴,y 轴,轴的正方向建立空间直角坐标,不妨设2AB =,则(1,0,0)A ,13,0)A ,(0,0,1)C ,(1,0,0)B -,12(,0,)33F , 由11AA BB =u u u v u u u v ,得(3,0)B -,1BB 的中点33(2E -,133(,2A E =-u u u r ,112(,3,)33A F =--u u u u r . 设面1A FE 的一个法向量为1111(,,)n x y z =u v ,则111100A E n A F n ⎧⋅=⎪⎨⋅=⎪⎩u u u v u v u u u u v u v ,即1111230333302x z x y ⎧-+=⎪⎪⎨⎪-=⎪⎩,得方程的一组解为111135 xyz=-⎧⎪=⎨⎪=⎩,即1(1,3,5)n=-u r.面1ABA的一个法向量为2(0,0,1)n=u u r,则121212529cos,29n nn nn n⋅<>==u r u u ru r u u ru r u u r,所以二面角1F A E A--的余弦值为529.2.如图,菱形ABCD与正三角形BCE的边长均为2,它们所在平面互相垂直,FD⊥平面ABCD,EF P 平面ABCD.(1)求证:平面ACF⊥平面BDF;(2)若60CBA∠=︒,求二面角A BC F--的大小.【答案】(1)见证明;(2)4π【解析】(1)∵菱形ABCD,∴AC BD⊥,∵FD⊥平面ABCD,∴FD AC⊥,∵BD FD D⋂=,∴AC⊥平面BDF,∵AC⊂平面ACF,∴平面ACF⊥平面BDF.(2)设AC BD O=I,以O为原点,OB为x轴,OA为y轴,过O作平面ABCD的垂线为轴,建立空间直角坐标系,则(3,0,0)B ,()0,1,0C -,(3,0,3)F -,(3,1,0)BC =--u u u r ,(23,0,3)BF =-u u u r,设平面BCF 的法向量(,,)n x y z =r,则302330n BC x y n BF x z ⎧⋅=--=⎪⎨⋅=-+=⎪⎩u u u v v u u u v v ,取1x =,得(1,3,2)n =-r , 平面ABC 的法向量(0,0,1)m =u r,设二面角A BC F --的大小为θ,则||2cos ||||28m n m n θ⋅===⋅r r r r , ∴4πθ=.∴二面角A BC F --的大小为4π. 3.如图,在几何体1111ACD A B C D -中,四边形1111ADD A CDD C ,为矩形,平面11ADD A ⊥平面11CDD C ,11B A ⊥平面11ADD A ,1111,2AD CD AA A B ====,E 为棱1AA 的中点.(Ⅰ)证明:11B C ⊥平面1CC E ;(Ⅱ)求直线11B C 与平面1B CE 所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)7. 【解析】(Ⅰ)因为11B A ⊥平面11ADD A , 所以111B A DD ⊥,又11111111DD D A B A D A A ⊥⋂=,, 所以1DD ⊥平面1111D C B A , 又因为11//DD CC ,所以1CC ⊥平面1111D C B A ,11B C ⊂平面1111D C B A ,所以111CC B C ⊥,因为平面11ADD A ⊥平面11CDD C , 平面11ADD A ⋂平面111CDD C DD =,111C D DD ⊥,所以11C D ⊥平面11ADD A ,经计算可得1111B E BC EC = 从而2221111B E B C EC =+,所以在11B EC V 中,111B C C E ⊥,又11CC C E ⊂,平面1111CC E CC C E C ⋂=,, 所以11B C ⊥平面1CC E .(Ⅱ)如图,以点A 为原点建立空间直角坐标系,依题意得()()()10001,0,00,2,2A C B ,,,,, ()()11,2,10,1,0C E ,.∵1(1,1,1)(1,2,1)CE B C =--=--u u u r u u u r,,设平面1B CE 的一个法向量(,,)m x y z =则100m B C m CE ⎧⋅=⎨⋅=⎩u u u vu u u v ,, 即200x y z x y z --=⎧⎨-+-=⎩,,消去x 得20y z +=, 不妨设1z =,可得()3,2,1m =--,又()111,0,1B C =-u u u u r,设直线11B C 与平面1B CE 所成角为θ,于是111111427sin cos ,142||m B C m B C m B C θ⋅-====⨯⋅u u u u ru u u u r u u u u r ,故直线11B C 与平面1B CE 所成角的正弦值为77. 4.如图,在四凌锥P ABCD -中,PC ABCD ⊥底面,底面ABCD 是直角梯形,AB AD ⊥,AB CD ∥,222AB AD CD ===,4PC =,E 为线段PB 上一点(1)求证:EAC PBC ⊥平面平面; (2)若二面角P AC E --的余弦值为63,求BE BP 的值【答案】(1)见解析(2)13BE BP = 【解析】 (1)如图,由题意,得2AC BC ==,且2AB =,∴BC AC ⊥∵ABCD PC ⊥底面,∴PC AC ⊥又∵PC BC C ⋂=,∴AC ⊥底面PBC∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBC(2)如图,以C 为原点,取AB 中点M ,以CM ,CD ,CP 所在直线为,,x y z 轴建立空间直角坐标系则()1,1,0B -,()0,0,4P ,()1,1,0A ,设(),,E x y z ,且()01BE BP λλ=<<u u u r u u u r ,得()()1,1,1,1,4x y z λ-+=-,即()1,1,4E λλλ--()()1,1,0,1,1,4CA CE λλλ==--u u u r u u u r ,设平面EAC 的法向量为(),,n x y z =r, 由00CE n CA n u u u r r u u u r r ⎧⋅=⎪⎨⋅=⎪⎩即()()11400x y z x y λλλ⎧-+-+=⎨+=⎩,令1x =,得11,1,2n r λλ-⎛⎫=- ⎪⎝⎭ 又BC AC ⊥,且BC PC ⊥,所以BC ⊥平面PAC故平面PAC 的法向量为()1,1,0m BC u u u r r ==-,由二面角P AC E --6 ()226cos ,312114m n m n m n λλ⋅===⋅-++r r r r r r ,解得1λ=-或13,由01λ<<得13λ=,即13BE BP = 5.如图,在三棱锥P ABC -中,20{ 28x x ->-≥,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45o .(1)求证平面PAB ⊥平面PCD ;(2)求二面角P AC D --的平面角的余弦值。

十年高考真题分类汇编(2010-2019) 数学专题20空间向量(含答案及解析)

十年高考真题分类汇编(2010-2019) 数学专题20空间向量(含答案及解析)

十年高考真题分类汇编(2010—2019)数学专题20空间向量1.(2014·全国2·理T11)直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( )A.110B.25C.√3010D.√22 【答案】C【解析】如图,以点C 1为坐标原点,C 1B 1,C 1A 1,C 1C 所在的直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 不妨设BC=CA=CC 1=1,可知点 A (0,1,1),N (0,12,0),B (1,0,1),M (12,12,0).∴AN ⃗⃗⃗⃗⃗⃗ =(0,-1,-1),BM ⃗⃗⃗⃗⃗⃗ =(-1,1,-1). ∴cos <AN ⃗⃗⃗⃗⃗⃗ ,BM ⃗⃗⃗⃗⃗⃗ >=AN ⃗⃗⃗⃗⃗⃗⃗ ·BM⃗⃗⃗⃗⃗⃗⃗ |AN ⃗⃗⃗⃗⃗⃗⃗ ||BM ⃗⃗⃗⃗⃗⃗⃗ |=√3010. 根据AN ⃗⃗⃗⃗⃗⃗ 与BM ⃗⃗⃗⃗⃗⃗ 的夹角及AN 与BM 所成角的关系可知,BM 与AN 所成角的余弦值为√30.2.(2013·北京·文T8)如图,在正方体ABCD-A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )A.3个B.4个C.5个D.6个【答案】B【解析】设正方体的棱长为a.建立空间直角坐标系,如图所示.则D (0,0,0),D 1(0,0,a ),C 1(0,a ,a ),C (0,a ,0),B (a ,a ,0),B 1(a ,a ,a ),A (a ,0,0),A 1(a ,0,a ),P (23a ,23a ,13a),则|PB ⃗⃗⃗⃗⃗ |=√19a 2+19a 2+19a 2=√33a , |PD ⃗⃗⃗⃗⃗ |=√49a 2+49a 2+19a 2=a , |PD 1⃗⃗⃗⃗⃗⃗⃗ |=√49a 2+49a 2+49a 2=2√33a , |PC 1⃗⃗⃗⃗⃗⃗⃗ |=|PA 1⃗⃗⃗⃗⃗⃗⃗ |=√49a 2+19a 2+49a 2=a , |PC ⃗⃗⃗⃗⃗ |=|PA ⃗⃗⃗⃗⃗ |=√49a 2+19a 2+19a 2=√63a ,|PB 1⃗⃗⃗⃗⃗⃗⃗ |=√19a 2+19a 2+49a 2=√63a ,3.(2012·陕西·理T5)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA=CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.√55B.√53C.2√55D.35【答案】A【解析】不妨设CB=1,则CA=CC 1=2.由题图知,A 点的坐标为(2,0,0),B 点的坐标为(0,0,1),B 1点的坐标为(0,2,1),C 1点的坐标为(0,2,0).所以BC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,-1),AB 1⃗⃗⃗⃗⃗⃗⃗ =(-2,2,1).所以cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,AB 1⃗⃗⃗⃗⃗⃗⃗ >=3√5=√55. 4.(2010·大纲全国·文T6)直三棱柱ABC-A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线BA 1与AC 1所成的角等于( )A.30°B.45°C.60°D.90°【答案】C【解析】不妨设AB=AC=AA 1=1,建立空间直角坐标系如图所示,则B(0,-1,0),A 1(0,0,1),A(0,0,0),C 1(-1,0,1),∴BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),AC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1).∴cos <BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >=BA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |BA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2×2=12. ∴<BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >=60°.∴异面直线BA 1与AC 1所成的角为60°.5.(2019·天津·理T17)如图,AE ⊥平面ABCD,CF ∥AE,AD ∥BC,AD ⊥AB,AB=AD=1,AE=BC=2.(1)求证:BF ∥平面ADE;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E-BD-F 的余弦值为13,求线段CF 的长.【解析】(1)证明依题意,可以建立以A 为原点,分别以AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AE⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得A(0,0,0),B(1,0,0),C(1,2,0),D(0,1,0),E(0,0,2).设CF=h(h>0),则F(1,2,h).依题意,AB⃗⃗⃗⃗⃗ =(1,0,0)是平面ADE 的法向量, 又BF⃗⃗⃗⃗⃗ =(0,2,h ),可得BF ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE. (2)解依题意,BD ⃗⃗⃗⃗⃗⃗ =(-1,1,0),BE⃗⃗⃗⃗⃗ =(-1,0,2),CE ⃗⃗⃗⃗⃗ =(-1,-2,2). 设n =(x ,y ,z )为平面BDE 的法向量,则{n ·BD ⃗⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{-x +y =0,-x +2z =0,不妨令z=1, 可得n =(2,2,1).因此有cos <CE ⃗⃗⃗⃗⃗ ,n >=CE ⃗⃗⃗⃗⃗⃗ ·n |CE⃗⃗⃗⃗⃗⃗ ||n |=-49. 所以,直线CE 与平面BDE 所成角的正弦值为49.(3)解设m =(x ,y ,z )为平面BDF 的法向量,则{m ·BD ⃗⃗⃗⃗⃗⃗ =0,m ·BF⃗⃗⃗⃗⃗ =0,即{-x +y =0,2y +ℎz =0, 不妨令y=1,可得m =1,1,-2ℎ.由题意,有|cos <m,n >|=|m ·n ||m ||n |=|4-2ℎ|3√2+4ℎ2=13, 解得h=87,经检验,符合题意.所以,线段CF 的长为87.6.(2019·浙江·T 19)如图,已知三棱柱ABC-A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC=90°,∠BAC=30°,A 1A=A 1C=AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A=A 1C ,E 是AC 的中点,所以A 1E ⊥AC.又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC=AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC.又因为A 1F ∥AB ,∠ABC=90°,故BC ⊥A 1F.所以BC ⊥平面A 1EF.因此EF ⊥BC.(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC=4,则在Rt △A 1EG 中,A 1E=2√3,EG=√3.由于O 为A 1G 的中点,故EO=OG=A 1G 2=√152, 所以cos ∠EOG=EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二:(1)连接A 1E ,因为A 1A=A 1C ,E 是AC 的中点,所以A 1E ⊥AC.又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC=AC ,所以,A 1E ⊥平面ABC.如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E-xyz.不妨设AC=4,则A 1(0,0,2√3),B (√3,1,0),B 1(√3,3,2√3),F √32,32,2√3,C (0,2,0).因此,EF ⃗⃗⃗⃗⃗ =√32,32,2√3,BC⃗⃗⃗⃗⃗ =(-√3,1,0). 由EF⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0得EF ⊥BC.(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ⃗⃗⃗⃗⃗ =(-√3,1,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0.2,-2√3).设平面A 1BC 的法向量为n =(x ,y ,z ).由{BC ⃗⃗⃗⃗⃗ ·n =0,A 1C ⃗⃗⃗⃗⃗⃗⃗ ·n =0,得{-√3x +y =0,y -√3z =0. 取n =(1,√3,1),故sin θ=|cos <EF ⃗⃗⃗⃗⃗ ·n >|=|EF⃗⃗⃗⃗⃗⃗ ·n ||EF ⃗⃗⃗⃗⃗⃗ |·|n |=4.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.7.(2019·全国1·理T18)如图,直四棱柱ABCD-A 1B 1C 1D 1的底面是菱形,AA 1=4,AB=2,∠BAD=60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A-MA 1-N 的正弦值.【解析】(1)连接B 1C ,ME.因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME= B 1C.又因为N 为A 1D 的中点,所以ND= A 1D.由题设知A 1B 1 DC ,可得B 1C A 1D ,故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED.又MN ⊄平面EDC 1,所以MN ∥平面C 1DE.(2)由已知可得DE ⊥DA.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz,则A (2,0,0),A 1(2,0,4),M (1,√3,2),N (1,0,2),A 1A ⃗⃗⃗⃗⃗⃗⃗ =(0,0,-4),A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,√3,-2),A 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-2),MN ⃗⃗⃗⃗⃗⃗⃗ =(0,-√3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则{m ·A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =0,m ·A 1A ⃗⃗⃗⃗⃗⃗⃗ =0.所以{-x +√3y -2z =0,-4z =0.可取m =(√3,1,0). 设n =(p ,q ,r )为平面A 1MN 的法向量,则{n ·MN ⃗⃗⃗⃗⃗⃗⃗ =0,n ·A 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =0. 所以{-√3q =0,-p -2r =0.可取n =(2,0,-1). 于是cos <m,n >=m ·n|m ||n |=√32×√5=√155,所以二面角A-MA 1-N 的正弦值为√105.8.(2019·全国2·理T17)如图,长方体ABCD-A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE=A 1E ,求二面角B-EC-C 1的正弦值.【解析】(1)证明由已知得,B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故B 1C 1⊥BE.又BE ⊥EC 1,所以BE ⊥平面EB 1C 1.(2)解由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB=45°,故AE=AB ,AA 1=2AB.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|DA ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系D-xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB ⃗⃗⃗⃗⃗ =(1,0,0),CE ⃗⃗⃗⃗⃗ =(1,-1,1),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2).{CB ⃗⃗⃗⃗⃗ ·n =0,CE ⃗⃗⃗⃗⃗ ·n =0,即{x =0,x -y +z =0, 所以可取n=(0,-1,-1).设平面ECC 1的法向量为m =(x ,y ,z ),则{CC 1⃗⃗⃗⃗⃗⃗⃗ ·m =0,CE ⃗⃗⃗⃗⃗ ·m =0,即{2z =0,x -y +z =0, 所以可取m =(1,1,0).于是cos <n,m >=n ·m |n ||m |=-12. 所以,二面角B-EC-C 1的正弦值为√32. 9.(2019·全国3·理T19)图1是由矩形ADEB,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC 折起使得BE 与BF 重合,连接DG,如图2.(1)证明:图2中的A,C,G,D 四点共面,且平面ABC ⊥平面BCGE;(2)求图2中的二面角B-CG-A 的大小.【解析】(1)证明由已知得AD ∥BE,CG ∥BE,所以AD ∥CG,故AD,CG 确定一个平面,从而A,C,G,D 四点共面.由已知得AB ⊥BE,AB ⊥BC,故AB ⊥平面BCGE.又因为AB ⊂平面ABC,所以平面ABC ⊥平面BCGE.(2)解作EH ⊥BC,垂足为H.因为EH ⊂平面BCGE,平面BCGE ⊥平面ABC,所以EH ⊥平面ABC.由已知,菱形BCGE 的边长为2,∠EBC=60°,可求得BH=1,EH=√3.以H 为坐标原点,HC ⃗⃗⃗⃗⃗ 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H-xyz,则A (-1,1,0),C (1,0,0),G (2,0,√3),CG⃗⃗⃗⃗⃗ =(1,0,√3),AC ⃗⃗⃗⃗⃗ =(2,-1,0).则{CG ⃗⃗⃗⃗⃗ ·n =0,AC⃗⃗⃗⃗⃗ ·n =0,即{x +√3z =0,2x -y =0. 所以可取n =(3,6,-√3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos <n,m >=n ·m|n ||m |=√32.因此二面角B-CG-A 的大小为30°.10.(2018·浙江·T 8)已知四棱锥S-ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S-AB-C 的平面角为θ3,则( )A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【答案】D【解析】当点E 不是线段AB 的中点时,如图,点G 是AB 的中点,SH ⊥底面ABCD,过点H 作HF ∥AB,过点E 作EF ∥BC,连接SG,GH,EH,SF.可知θ1=∠SEF ,θ2=∠SEH ,θ3=∠SGH.由题意可知EF ⊥SF ,故tan θ1=SF EF =SF GH >SH GH=tan θ3. ∴θ1>θ3.又tan θ3=SH GH >SH EH =tan θ2,∴θ3>θ2.∴θ1>θ3>θ2.当点E 是线段AB 的中点时,即点E 与点G 重合,此时θ1=θ3=θ2.综上可知,θ1≥θ3≥θ2.11.(2018·全国3·理T19)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD⏜所在平面垂直,M 是CD ⏜上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC;(2)当三棱锥M-ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【解析】(1)由题设知,平面CMD ⊥平面ABCD,交线为CD.因为BC ⊥CD,BC ⊂平面ABCD,所以BC ⊥平面CMD,故BC ⊥DM.因为M 为CD⏜上异于C,D 的点,且DC 为直径,所以DM ⊥CM.又BC ∩CM=C,所以DM ⊥平面BMC. 而DM ⊂平面AMD,故平面AMD ⊥平面BMC.(2)以D 为坐标原点, DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz.当三棱锥M-ABC 体积最大时,M 为 CD⏜的中点.由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ⃗⃗⃗⃗⃗⃗ =(-2,1,1),AB ⃗⃗⃗⃗⃗ =(0,2,0),DA ⃗⃗⃗⃗⃗ =(2,0,0).设n=(x,y,z)是平面MAB 的法向量,则{n ·AM ⃗⃗⃗⃗⃗⃗ =0,n ·AB⃗⃗⃗⃗⃗ =0.即{-2x +y +z =0,2y =0. 可取n=(1,0,2),DA ⃗⃗⃗⃗⃗ 是平面MCD 的法向量,因此cos <n,DA ⃗⃗⃗⃗⃗ >=n ·DA ⃗⃗⃗⃗⃗⃗ |n ||DA ⃗⃗⃗⃗⃗⃗ |=√55,sin <n,DA ⃗⃗⃗⃗⃗ >=2√55. 所以面MAB 与面MCD 所成二面角的正弦值是2√55.12.(2018·北京·理T16)如图,在三棱柱ABC-A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB=BC= √5,AC=AA 1=2.(1)求证:AC ⊥平面BEF;(2)求二面角B-CD-C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【解析】(1)证明在三棱柱ABC-A 1B 1C 1中,∵CC 1⊥平面ABC ,∴四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,∴AC ⊥EF.∵AB=BC ,∴AC ⊥BE ,∴AC ⊥平面BEF.(2)解由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.∵CC 1⊥平面ABC ,∴EF ⊥平面ABC. ∵BE ⊂平面ABC ,∴EF ⊥BE.建立如图所示的空间直角坐标系E-xyz.由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).∴CD ⃗⃗⃗⃗⃗ =(2,0,1),CB ⃗⃗⃗⃗⃗ =(1,2,0). 设平面BCD 的法向量为n =(a ,b ,c ), 则{n ·CD⃗⃗⃗⃗⃗ =0,n ·CB ⃗⃗⃗⃗⃗ =0,∴{2a +c =0,a +2b =0,令a=2,则b=-1,c=-4,∴平面BCD 的法向量n =(2,-1,-4),又平面CDC 1的法向量为EB ⃗⃗⃗⃗⃗ =(0,2,0), ∴cos <n,EB⃗⃗⃗⃗⃗ >=n ·EB ⃗⃗⃗⃗⃗⃗ |n ||EB ⃗⃗⃗⃗⃗⃗ |=-√2121.由图可得二面角B-CD-C 1为钝角,∴二面角B-CD-C 1的余弦值为-√2121. (3)证明平面BCD 的法向量为n=(2,-1,-4), ∵G(0,2,1),F(0,0,2), ∴GF⃗⃗⃗⃗⃗ =(0,-2,1), ∴n ·GF ⃗⃗⃗⃗⃗ =-2,∴n 与GF⃗⃗⃗⃗⃗ 不垂直, ∴FG 与平面BCD 不平行且不在平面BCD 内, ∴FG 与平面BCD 相交.13.(2018·天津·理T17)如图,AD ∥BC 且AD=2BC,AD ⊥CD,EG ∥AD 且EG=AD,CD ∥FG 且CD=2FG,DG ⊥平面ABCD,DA=DC=DG=2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE; (2)求二面角E-BC-F 的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【解析】依题意,可以建立以D 为原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DG ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M 0,32,1,N (1,0,2).(1)证明:依题意DC ⃗⃗⃗⃗⃗ =(0,2,0),DE ⃗⃗⃗⃗⃗ =(2,0,2). 设n0=(x,y,z)为平面CDE 的法向量, 则{n 0·DC ⃗⃗⃗⃗⃗ =0,n 0·DE⃗⃗⃗⃗⃗ =0,即{2y =0,2x +2z =0,不妨令z=-1,可得n 0=(1,0,-1).又MN ⃗⃗⃗⃗⃗⃗⃗ =(1,-32,1),可得MN ⃗⃗⃗⃗⃗⃗⃗ ·n 0=0.(2)依题意,可得BC ⃗⃗⃗⃗⃗ =(-1,0,0),BE ⃗⃗⃗⃗⃗ =(1,-2,2),CF ⃗⃗⃗⃗⃗ =(0,-1,2).设n =(x ,y ,z )为平面BCE 的法向量,则{n ·BC⃗⃗⃗⃗⃗ =0,n ·BE⃗⃗⃗⃗⃗ =0,即{-x =0,x -2y +2z =0,不妨令z=1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则{m ·BC⃗⃗⃗⃗⃗ =0,m ·CF ⃗⃗⃗⃗⃗ =0,即{-x =0,-y +2z =0,不妨令z=1,可得m =(0,2,1). 因此有cos <m,n >=m ·n |m ||n |=3√1010,于是sin <m,n >=√1010.所以,二面角E-BC-F 的正弦值为√1010. (3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得BP ⃗⃗⃗⃗⃗ =(-1,-2,h ).易知,DC ⃗⃗⃗⃗⃗ =(0,2,0)为平面ADGE 的一个法向量,故|cos <BP ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗⃗ ||BP ⃗⃗⃗⃗⃗⃗ ||DC ⃗⃗⃗⃗⃗⃗ |=√ℎ+5.由题意,可得√ℎ+5=sin 60°=√32,解得h=√33∈[0,2].所以,线段DP 的长为√33.14.(2018·全国1·理T18)如图,四边形ABCD 为正方形,E,F 分别为AD,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF. (1)证明:平面PEF ⊥平面ABFD; (2)求DP 与平面ABFD 所成角的正弦值.【解析】(1)由已知可得,BF ⊥PF,BF ⊥EF, 所以BF ⊥平面PEF.又BF ⊂平面ABFD,所以平面PEF ⊥平面ABFD. (2)作PH ⊥EF,垂足为H. 由(1)得,PH ⊥平面ABFD.以H 为坐标原点,HF⃗⃗⃗⃗⃗ 的方向为y 轴正方向,|BF ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系H-xyz. 由(1)可得,DE ⊥PE.又DP=2,DE=1,所以PE=√3.又PF=1,EF=2,故PE ⊥PF.可得PH=√32,EH=32.则H (0,0,0),P (0,0,√32),D (-1,-32,0),DP ⃗⃗⃗⃗⃗ =(1,32,√32),HP ⃗⃗⃗⃗⃗⃗ =(0,0,√32)为平面ABFD 的法向量. 设DP 与平面ABFD 所成角为θ, 则sin θ=|HP ⃗⃗⃗⃗⃗⃗ ·DP⃗⃗⃗⃗⃗⃗ |HP ⃗⃗⃗⃗⃗⃗ ||DP ⃗⃗⃗⃗⃗⃗ ||=343=√34.所以DP 与平面ABFD 所成角的正弦值为√34.15.(2018·全国2·理T20)如图,在三棱锥P-ABC 中,AB=BC=2√2,PA=PB=PC=AC=4,O 为AC 的中点. (1)证明:PO ⊥平面ABC;(2)若点M 在棱BC 上,且二面角M-PA-C 为30°,求PC 与平面PAM 所成角的正弦值.【解析】(1)因为AP=CP=AC=4,O 为AC 的中点, 所以OP ⊥AC ,且OP=2√3. 连接OB ,因为AB=BC=√22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB=12AC=2. 由OP2+OB2=PB2知PO ⊥OB.由OP ⊥OB,OP ⊥AC 知PO ⊥平面ABC.(2)如图,以O 为坐标原点,OB⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立空间直角坐标系O-xyz. 由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,2√3),AP ⃗⃗⃗⃗⃗ =(0,2,2√3). 取平面PAC 的法向量OB ⃗⃗⃗⃗⃗ =(2,0,0),由AP ⃗⃗⃗⃗⃗ ·n =0,AM ⃗⃗⃗⃗⃗⃗ ·n =0得 {2y +2√3z =9,ax +(4-a )y =0.可取n =(√3(a-4),√3a ,-a ),所以cos <OB ⃗⃗⃗⃗⃗ ,n >=√3(2√3(a -4)+3a 2+a 2.由已知可得|cos <OB ⃗⃗⃗⃗⃗ ,n >|=√32. 所以√32√3(a -4)+3a 2+a 2=√32,解得a=-4(舍去),a=43. 所以n =(-8√33,4√33,-43).又PC ⃗⃗⃗⃗⃗ =(0,2,-2√3),所以cos <PC ⃗⃗⃗⃗⃗ ,n >=√34. 所以PC 与平面PAM 所成角的正弦值为√34.16.(2018·浙江·T9)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【解析】解法一(1)证明:由AB=2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=2√2,所以A 1B 12+A B 12=A A 12,故AB 1⊥A 1B 1.由BC=2,BB 1=2,CC 1=1,BC 1⊥BC ,CC 1⊥BC ,得B 1C 1=√5,由AB=BC=2,∠ABC=120°,得AC=2√3,由CC 1⊥AC ,得AC 1=√13,所以A B 12+B 1C 12=A C 12,故AB 1⊥B 1C 1.因此AB 1⊥平面A 1B 1C 1.(2)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD.由AB 1⊥平面A 1B 1C 1,得平面A 1B 1C 1⊥平面ABB 1,由C 1D ⊥A 1B 1,得C 1D ⊥平面ABB 1,所以∠C 1AD 是AC 1与平面ABB 1所成的角. 由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21, 得cos ∠C 1A 1B 1=√6√7,sin ∠C 1A 1B 1=√7,所以C 1D=√3,故sin ∠C 1AD=C 1D AC 1=√3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.解法二(1)证明:如图,以AC 的中点O 为原点,分别以射线OB,OC 为x,y 轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:A (0,-√3,0),B (1,0,0),A 1(0,-√3,4),B 1(1,0,2),C 1(0,√3,1). 因此AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,√3,2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,√3,-2),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,-3).由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1B 1. 由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1C 1.所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,1),AB ⃗⃗⃗⃗⃗ =(1,√3,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2). 设平面ABB 1的法向量n =(x ,y ,z ).由{n ·AB ⃗⃗⃗⃗⃗ =0,n ·BB 1⃗⃗⃗⃗⃗⃗⃗ =0,即{x +√3y =0,2z =0,可取n =(-√3,1,0).所以sin θ=|cos <AC 1⃗⃗⃗⃗⃗⃗⃗ ,n >|=|AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|n |=√3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.17.(2018·上海·T17)已知圆锥的顶点为P,底面圆心为O,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB 是底面半径,且∠AOB=90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.【解析】(1)∵圆锥的顶点为P,底面圆心为O,半径为2,母线长为4,∴圆锥的体积V=13πr 2h=13×π×22×√42-22=8√3π3. (2)∵PO=4,OA,OB 是底面半径,且∠AOB=90°,M 为线段AB 的中点,∴以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,∴P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0), ∴PM⃗⃗⃗⃗⃗⃗ =(1,1,-4),OB ⃗⃗⃗⃗⃗ =(0,2,0). 设异面直线PM 与OB 所成的角为θ,则cos θ=|PM ⃗⃗⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗⃗ ||PM ⃗⃗⃗⃗⃗⃗⃗ ||OB ⃗⃗⃗⃗⃗⃗ |=√1+1+(-4)×√0+2+0=√26.∴θ=arccos √26.∴异面直线PM 与OB 所成的角的大小为arccos √26.18.(2017·北京·理T16)如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD,点M 在线段PB 上,PD ∥平面MAC,PA=PD=√6,AB=4. (1)求证:M 为PB 的中点; (2)求二面角B-PD-A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.【解析】(1)证明设AC,BD 交点为E,连接ME. 因为PD ∥平面MAC,平面MAC ∩平面PDB=ME,所以PD ∥ME. 因为ABCD 是正方形,所以E 为BD 的中点. 所以M 为PB 的中点.(2)解取AD 的中点O,连接OP,OE. 因为PA=PD,所以OP ⊥AD.又因为平面PAD ⊥平面ABCD,且OP ⊂平面PAD,所以OP ⊥平面ABCD. 因为OE ⊂平面ABCD,所以OP ⊥OE. 因为ABCD 是正方形,所以OE ⊥AD.如图建立空间直角坐标系O-xyz ,则P (0,0,√2),D (2,0,0),B (-2,4,0),BD⃗⃗⃗⃗⃗⃗ =(4,-4,0),PD ⃗⃗⃗⃗⃗ =(2,0,-√2).设平面BDP 的法向量为n =(x ,y ,z ), 则{n ·BD⃗⃗⃗⃗⃗⃗ =0,n ·PD ⃗⃗⃗⃗⃗ =0,即{4x -4y =0,2x -√2z =0.令x=1,则y=1,z=√2.于是n =(1,1,√2),平面PAD 的法向量为p =(0,1,0).所以cos <n,p >=n ·p|n ||p |=12.由题知二面角B-PD-A 为锐角,所以它的大小为π3.(3)解由题意知M (-1,2,√22),C (2,4,0),MC ⃗⃗⃗⃗⃗⃗ =(3,2,-√22). 设直线MC 与平面BDP 所成角为α, 则sin α=|cos <n,MC⃗⃗⃗⃗⃗⃗ >|=|n ·MC ⃗⃗⃗⃗⃗⃗⃗ ||n ||MC ⃗⃗⃗⃗⃗⃗⃗ |=2√69.所以直线MC 与平面BDP 所成角的正弦值为2√6.19.(2017·全国1·理T18)如图,在四棱锥P-ABCD 中,AB ∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB ⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C 的余弦值.【解析】(1)证明由已知∠BAP=∠CDP=90°,得AB ⊥AP,CD ⊥PD. 由于AB ∥CD,故AB ⊥PD,从而AB ⊥平面PAD. 又AB ⊂平面PAB,所以平面PAB ⊥平面PAD. (2)解在平面PAD 内作PF ⊥AD,垂足为F. 由(1)可知,AB ⊥平面PAD ,故AB ⊥PF , 可得PF ⊥平面ABCD.以F 为坐标原点,FA⃗⃗⃗⃗⃗ 的方向为x 轴正方向, |AB⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系F-xyz. 由(1)及已知可得A (√22,0,0),P (0,0,√22),B (√22,1,0),C (-√22,1,0).所以PC ⃗⃗⃗⃗⃗ =(-√22,1,-√22),CB⃗⃗⃗⃗⃗ =(√2,0,0),PA ⃗⃗⃗⃗⃗ =(√22,0,-√22),AB ⃗⃗⃗⃗⃗ =(0,1,0). 设n =(x ,y ,z )是平面PCB 的法向量,则{n ·PC ⃗⃗⃗⃗⃗ =0,n ·CB ⃗⃗⃗⃗⃗ =0,即{-√22x +y -√22z =0,√2x =0.可取n =(0,-1,-√2).设m =(x ,y ,z )是平面PAB 的法向量,则{m ·PA⃗⃗⃗⃗⃗ =0,m ·AB ⃗⃗⃗⃗⃗ =0,即{√22x -√22z =0,y =0.可取m =(1,0,1).则cos <n,m >=n ·m |n ||m |=-√33.所以二面角A-PB-C 的余弦值为-√33.20.(2017·全国2·理T19)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD, AB=BC=12AD,∠BAD=∠ABC=90°,E 是PD 的中点. (1)证明:直线CE ∥平面PAB;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M-AB-D 的余弦值.【解析】(1)证明取PA 的中点F,连接EF,BF. 因为E 是PD 的中点,所以EF ∥AD,EF=12 AD. 由∠BAD=∠ABC=90°得BC ∥AD,又BC=12AD,所以EF BC,四边形BCEF 是平行四边形,CE ∥BF,又BF ⊂平面PAB,CE ⊄平面PAB,故CE ∥平面PAB. (2)解由已知得BA ⊥AD ,以A 为坐标原点,AB⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|AB ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系A-xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,√3),PC ⃗⃗⃗⃗⃗ =(1,0,-√3),AB ⃗⃗⃗⃗⃗ =(1,0,0). 设M (x ,y ,z )(0<x<1),则BM ⃗⃗⃗⃗⃗⃗ =(x-1,y ,z ),PM ⃗⃗⃗⃗⃗⃗ =(x ,y-1,z-√3). 因为BM 与底面ABCD 所成的角为45°,而n=(0,0,1)是底面ABCD 的法向量,所以|cos <BM ⃗⃗⃗⃗⃗⃗ ,n >|=sin 45°,√(x -1)+y 2+z2=√22,即(x-1)2+y 2-z 2=0.① 又M 在棱PC 上,设PM⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ ,则x=λ,y=1,z=√3−√3λ. ②由①,②解得{ x =1+√22,y =1,z =-√62(舍去),{x =1-√22,y =1,z =√62,所以M (1-√22,1,√62),从而AM ⃗⃗⃗⃗⃗⃗ =(1-√22,1,√62).设m=(x0,y0,z0)是平面ABM 的法向量,则{m ·AM⃗⃗⃗⃗⃗⃗ =0,m ·AB⃗⃗⃗⃗⃗ =0,即{(2-√2)x 0+2y 0+√6z 0=0,x 0=0,所以可取m =(0,-√6,2).于是cos <m,n >=m ·n |m ||n |=√105.因此二面角M-AB-D 的余弦值为√105.21.(2017·全国3·理T19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD=∠CBD,AB=BD. (1)证明:平面ACD ⊥平面ABC;(2)过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D-AE-C 的余弦值.【解析】(1)证明由题设可得,△ABD ≌△CBD ,从而AD=DC. 又△ACD 是直角三角形,所以∠ADC=90°. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO=AO. 又由于△ABC 是正三角形,故BO ⊥AC. 所以∠DOB 为二面角D-AC-B 的平面角.在Rt △AOB 中,BO 2+AO 2=AB 2,又AB=BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB=90°.所以平面ACD ⊥平面ABC.(2)解由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|OA ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系O-xyz.则A (1,0,0),B (0,√3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的1,即E 为DB 的中点,得E (0,√3,1). 故AD ⃗⃗⃗⃗⃗ =(-1,0,1),AC ⃗⃗⃗⃗⃗ =(-2,0,0),AE ⃗⃗⃗⃗⃗ =(-1,√32,12).设n =(x ,y ,z )是平面DAE 的法向量,则{n ·AD ⃗⃗⃗⃗⃗ =0,n ·AE⃗⃗⃗⃗⃗ =0,即{-x +z =0,-x +√32y +12z =0. 可取n =(1,√33,1).设m 是平面AEC 的法向量,则{m ·AC ⃗⃗⃗⃗⃗ =0,m ·AE⃗⃗⃗⃗⃗ =0. 同理可取m =(0,-1,√3).则cos <n,m >=n ·m |n ||m |=√7. 所以二面角D-AE-C 的余弦值为√77. 22.(2017·山东·理T17)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF⏜的中点. (1)设P 是 CE⏜ 上的一点,且AP ⊥BE,求∠CBP 的大小; (2)当AB=3,AD=2时,求二面角E-AG-C 的大小.【解析】(1)因为AP ⊥BE,AB ⊥BE,AB,AP ⊂平面ABP,AB ∩AP=A,所以BE ⊥平面ABP,又BP ⊂平面ABP,所以BE ⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)解法一:取EC⏜的中点H,连接EH,GH,CH. 因为∠EBC=120°,所以四边形BEHC 为菱形,所以AE=GE=AC=GC=√32+22=√13.取AG 中点M,连接EM,CM,EC,则EM ⊥AG,CM ⊥AG,所以∠EMC 为所求二面角的平面角.又AM=1,所以EM=CM=√13-1=2√3.在△BEC 中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12,所以EC=2√3,因此△EMC 为等边三角形,故所求的角为60°.解法二:以B 为坐标原点,分别以BE,BP,BA 所在的直线为x,y,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,√3,3),C (-1,√3,0),故AE ⃗⃗⃗⃗⃗ =(2,0,-3),AG⃗⃗⃗⃗⃗ =(1,√3,0),CG ⃗⃗⃗⃗⃗ =(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由{m ·AE ⃗⃗⃗⃗⃗ =0,m ·AG⃗⃗⃗⃗⃗ =0,可得{2x 1-3z 1=0,x 1+√3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-√3,2). 设n=(x2,y2,z2)是平面ACG 的一个法向量.由{n ·AG ⃗⃗⃗⃗⃗ =0,n ·CG⃗⃗⃗⃗⃗ =0,可得{x 2+√3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-√3,-2).所以cos <m,n >=m ·n|m ||n |=12. 因此所求的角为60°.23.(2017·天津·理T17)如图,在三棱锥P-ABC 中,PA ⊥底面ABC,∠BAC=90°,点D,E,N 分别为棱PA,PC,BC 的中点,M 是线段AD 的中点,PA=AC=4,AB=2.(1)求证:MN ∥平面BDE;(2)求二面角C-EM-N 的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为√721求线段AH 的长.【解析】如图,以A 为原点,分别以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系. 依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)证明:DE ⃗⃗⃗⃗⃗ =(0,2,0),DB⃗⃗⃗⃗⃗⃗ =(2,0,-2),设n =(x ,y ,z )为平面BDE 的法向量, 则{n ·DE ⃗⃗⃗⃗⃗ =0,n ·DB⃗⃗⃗⃗⃗⃗ =0,即{2y =0,2x -2z =0. 不妨设z=1,可得n =(1,0,1).又MN ⃗⃗⃗⃗⃗⃗⃗ =(1,2,-1),可得MN⃗⃗⃗⃗⃗⃗⃗ ·n =0. 因为MN ⊄平面BDE,所以MN ∥平面BDE.(2)易知n1=(1,0,0)为平面CEM 的一个法向量.设n2=(x,y,z)为平面EMN 的法向量,则{n 2·EM ⃗⃗⃗⃗⃗⃗ =0,n 2·MN ⃗⃗⃗⃗⃗⃗⃗ =0.因为EM ⃗⃗⃗⃗⃗⃗ =(0,-2,-1),MN⃗⃗⃗⃗⃗⃗⃗ =(1,2,-1), 所以{-2y -z =0,x +2y -z =0.不妨设y=1,可得n 2=(-4,1,-2).因此有cos <n 1,n 2>=n 1·n 2|n 1||n 2|=-√21, 于是sin <n 1,n 2>=√10521.所以,二面角C-EM-N 的正弦值为√10521.(3)依题意,设AH=h (0≤h ≤4),则H (0,0,h ),进而可得NH ⃗⃗⃗⃗⃗⃗ =(-1,-2,h ),BE⃗⃗⃗⃗⃗ =(-2,2,2). 由已知,得|cos <NH ⃗⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ >|=|NH ⃗⃗⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗⃗ ||NH ⃗⃗⃗⃗⃗⃗⃗ ||BE ⃗⃗⃗⃗⃗⃗ |=√ℎ+5×2√3=√721, 整理得10h 2-21h+8=0,解得h=85或h=12.所以,线段AH 的长为85或12.24.(2016·全国1·理T18)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60°.(1)证明:平面ABEF ⊥平面EFDC;(2)求二面角E-BC-A 的余弦值.【解析】(1)证明由已知可得AF ⊥DF,AF ⊥FE,所以AF ⊥平面EFDC.又AF ⊂平面ABEF,故平面ABEF ⊥平面EFDC.(2)解过D 作DG ⊥EF,垂足为G,由(1)知DG ⊥平面ABEF.以G 为坐标原点,GF ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|GF⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系G-xyz.由(1)知∠DFE 为二面角D-AF-E 的平面角,故∠DFE=60°,则|DF|=2,|DG|=√3 ,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0, √3).由已知,AB ∥EF,所以AB ∥平面EFDC.又平面ABCD ∩平面EFDC=CD,故AB ∥CD,CD ∥EF.由BE ∥AF,可得BE ⊥平面EFDC,所以∠CEF 为二面角C-BE-F 的平面角,∠CEF=60°.从而可得C (-2,0,√3).所以EC⃗⃗⃗⃗⃗ =(1,0,√3),EB ⃗⃗⃗⃗⃗ =(0,4,0),AC ⃗⃗⃗⃗⃗ =(-3,-4,√3),AB ⃗⃗⃗⃗⃗ =(-4,0,0), 设n =(x ,y ,z )是平面BCE 的法向量,则{n ·EC ⃗⃗⃗⃗⃗ =0,n ·EB ⃗⃗⃗⃗⃗ =0,即{x +√3z =0,4y =0.所以可取n =(3,0,-√3).设m 是平面ABCD 的法向量,则{m ·AC ⃗⃗⃗⃗⃗ =0,m ·AB ⃗⃗⃗⃗⃗ =0,同理可取m =(0,√3,4),则cos <n,m >=n ·m |n ||m |=-2√1919. 故二面角E-BC-A 的余弦值为-2√1919.25.(2016·全国2·理T19)如图,菱形ABCD 的对角线AC 与BD 交于点O,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=54 ,EF 交BD 于点H.将△DEF 沿EF 折到△D'EF 的位置,OD'=√10.(1)证明:D'H ⊥平面ABCD;(2)求二面角B-D'A-C 的正弦值.【解析】(1)证明由已知得AC ⊥BD ,AD=CD.又由AE=CF 得AE AD =CF CD ,故AC ∥EF.因此EF ⊥HD ,从而EF ⊥D'H.由AB=5,AC=6得DO=BO=√AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14.所以OH=1,D'H=DH=3.于是D'H 2+OH 2=32+12=10=D'O 2,故D'H ⊥OH.又D'H ⊥EF ,而OH ∩EF=H ,所以D'H ⊥平面ABCD.(2)解如图,以H 为坐标原点HF⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D'(0,0,3),AB ⃗⃗⃗⃗⃗ =(3,-4,0),AC ⃗⃗⃗⃗⃗ =(6,0,0),AD '⃗⃗⃗⃗⃗⃗⃗⃗ =(3,1,3).设m=(x1,y1,z1)是平面ABD'的法向量,则{m ·AB ⃗⃗⃗⃗⃗ =0,m ·AD '⃗⃗⃗⃗⃗⃗⃗⃗ =0,即{3x 1-4y 1=0,3x 1+y 1+3z 1=0, 所以可取m=(4,3,-5).设n=(x2,y2,z2)是平面ACD'的法向量,则{n ·AC ⃗⃗⃗⃗⃗ =0,n ·AD '⃗⃗⃗⃗⃗⃗⃗⃗ =0,即{6x 2=0,3x 2+y 2+3z 2=0, 所以可取n=(0,-3,1).于是cos <m,n >=m ·n|m ||n |=√50×√10=-7√525.sin <m,n >=2√9525. 因此二面角B-D'A-C 的正弦值是2√9525.26.(2016·山东·理T17)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O'的直径,FB 是圆台的一条母线.(1)已知G,H 分别为EC,FB 的中点.求证:GH ∥平面ABC;(2)已知EF=FB=12AC=2√3,AB=BC ,求二面角F-BC-A 的余弦值.【解析】(1)证明设FC 中点为I,连接GI,HI.在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF.又EF ∥OB,所以GI ∥OB.在△CFB 中,因为H 是FB 的中点,所以HI ∥BC.又HI ∩GI=I,所以平面GHI ∥平面ABC.因为GH ⊂平面GHI,所以GH ∥平面ABC.(2)解连接OO',则OO'⊥平面ABC.又AB=BC,且AC 是圆O 的直径,所以BO ⊥AC.以O 为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B (0,2√3,0),C (-2√3,0,0).过点F 作FM 垂直OB 于点M,所以FM=√FB 2-BM 2=3,可得F (0,√3,3).故BC ⃗⃗⃗⃗⃗ =(-2√3,-2√3,0),BF ⃗⃗⃗⃗⃗ =(0,-√3,3).设m =(x ,y ,z )是平面BCF 的一个法向量.由{m ·BC ⃗⃗⃗⃗⃗ =0,m ·BF ⃗⃗⃗⃗⃗ =0,可得{-2√3x -2√3y =0,-√3y +3z =0.可得平面BCF 的一个法向量m =(-1,1,√33).因为平面ABC 的一个法向量n =(0,0,1),所以cos <m,n >=m ·n |m |·|n |=√77.所以二面角F-BC-A 的余弦值为√77.27.(2016·浙江·理T17)如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求二面角B-AD-F的平面角的余弦值.【解析】(1)证明延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,因此BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.(2)解如图,延长AD,BE,CF相交于一点K,则△BCK为等边三角形. 取BC的中点O,则KO⊥BC,又平面BCFE⊥平面ABC,所以,KO⊥平面ABC.以点O为原点,分别以射线OB,OK的方向为x,z的正方向,建立空间直角坐标系O-xyz.由题意得B(1,0,0),C(-1,0,0),K(0,0,√3),A(-1,-3,0),E(12,0,√32),F(-12,0,√32).因此,AC ⃗⃗⃗⃗⃗ =(0,3,0),AK ⃗⃗⃗⃗⃗ =(1,3,√3),AB⃗⃗⃗⃗⃗ =(2,3,0). 设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2).由{AC ⃗⃗⃗⃗⃗ ·m =0,AK ⃗⃗⃗⃗⃗ ·m =0得{3y 1=0,x 1+3y 1+√3z 1=0, 取m =(√3,0,-1);由{AB ⃗⃗⃗⃗⃗ ·n =0,AK ⃗⃗⃗⃗⃗ ·n =0得{2x 2+3y 2=0,x 2+3y 2+√3z 2=0, 取n =(3,-2,√3).于是,cos <m,n >=m ·n|m |·|n |=√34.所以,二面角B-AD-F 的平面角的余弦值为√34. 28.(2016·全国3·理T19)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD,AD ∥BC,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD,N 为PC 的中点.(1)证明:MN ∥平面PAB;(2)求直线AN 与平面PMN 所成角的正弦值.【解析】(1)证明由已知得AM=23AD=2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN=12BC=2. 又AD ∥BC,故TN AM,四边形AMNT 为平行四边形,于是MN ∥AT.因为AT ⊂平面PAB,MN ⊄平面PAB,所以MN ∥平面PAB.(2)解取BC 的中点E,连接AE.由AB=AC 得AE ⊥BC,从而AE ⊥AD,且AE=√AB 2-BE 2=√AB 2-(BC 2)2=√5. 以A 为坐标原点,AE⃗⃗⃗⃗⃗ 的方向为x 轴正方向, 建立如图所示的空间直角坐标系A-xyz.由题意知,P (0,0,4),M (0,2,0),C (√5,2,0),N (√52,1,2),PM ⃗⃗⃗⃗⃗⃗ =(0,2,-4),PN ⃗⃗⃗⃗⃗⃗ =(√52,1,-2),AN ⃗⃗⃗⃗⃗⃗ =(√52,1,2).设n =(x ,y ,z )为平面PMN 的法向量,则{n ·PM ⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗⃗ =0,即{2y -4z =0,√52x +y -2z =0, 可取n =(0,2,1).于是|cos <n,AN ⃗⃗⃗⃗⃗⃗ >|=|n ·AN ⃗⃗⃗⃗⃗⃗⃗ ||n ||AN ⃗⃗⃗⃗⃗⃗⃗ |=8√525. 29.(2015·全国2·理T19)如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F=4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.【解析】(1)交线围成的正方形EHGF 如图:(2)作EM ⊥AB ,垂足为M ,则AM=A 1E=4,EM=AA 1=8.因为EHGF 为正方形,所以EH=EF=BC=10.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),FE ⃗⃗⃗⃗⃗ =(10,0,0),HE⃗⃗⃗⃗⃗⃗ =(0,-6,8). 设n=(x,y,z)是平面EHGF 的法向量,则{n ·FE ⃗⃗⃗⃗⃗ =0,n ·HE ⃗⃗⃗⃗⃗⃗ =0,即{10x =0,-6y +8z =0,所以可取n =(0,4,3).又AF ⃗⃗⃗⃗⃗ =(-10,4,8), 故|cos <n,AF ⃗⃗⃗⃗⃗ >|=|n ·AF ⃗⃗⃗⃗⃗⃗ ||n ||AF ⃗⃗⃗⃗⃗⃗ |=4√515.所以AF 与平面EHGF 所成角的正弦值为4√515.30.(2015·上海·理T19)如图,在长方体ABCD-A 1B 1C 1D 1中,AA 1=1,AB=AD=2,E ,F 分别是棱AB ,BC 的中点.证明A 1,C 1,F ,E 四点共面,并求直线CD 1与平面A 1C 1FE 所成的角的大小.【解析】如图,以D 为原点建立空间直角坐标系,可得有关点的坐标为A 1(2,0,1),C 1(0,2,1),E (2,1,0),F (1,2,0),C (0,2,0),D 1(0,0,1).因为A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,2,0),EF⃗⃗⃗⃗⃗ =(-1,1,0), 所以A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF⃗⃗⃗⃗⃗ ,因此直线A 1C 1与EF 共面, 即A 1,C 1,F ,E 四点共面.设平面A 1C 1FE 的法向量为n =(u ,v ,w ),则n ⊥EF ⃗⃗⃗⃗⃗ ,n ⊥FC 1⃗⃗⃗⃗⃗⃗⃗ ,又EF ⃗⃗⃗⃗⃗ =(-1,1,0),FC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),故{-u +v =0,-u +w =0,解得u=v=w. 取u=1,得平面A 1C 1FE 的一个法向量n =(1,1,1).又CD 1⃗⃗⃗⃗⃗⃗⃗ =(0,-2,1),故CD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n |CD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||n |=-√1515.因此直线CD 1与平面A 1C 1FE 所成的角的大小为arcsin √1515.31.(2015·北京·理T17)如图,在四棱锥A-EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB,EF ∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O 为EF 的中点.(1)求证:AO ⊥BE;(2)求二面角F-AE-B 的余弦值;(3)若BE ⊥平面AOC,求a 的值.【解析】(1)证明因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF.又因为平面AEF ⊥平面EFCB,AO ⊂平面AEF,所以AO ⊥平面EFCB,所以AO ⊥BE.(2)解取BC 中点G,连接OG.由题设知EFCB 是等腰梯形,所以OG ⊥EF.由(1)知AO ⊥平面EFCB,又OG ⊂平面EFCB,所以OA ⊥OG.如图建立空间直角坐标系O-xyz ,则E (a ,0,0),A (0,0,√3a ),B (2,√3(2-a ),0),EA ⃗⃗⃗⃗⃗ =(-a ,0,√3a ),BE⃗⃗⃗⃗⃗ =(a-2,√3(a-2),0). 设平面AEB 的法向量为n =(x ,y ,z ),则{n ·EA ⃗⃗⃗⃗⃗ =0,n ·BE⃗⃗⃗⃗⃗ =0,即{-ax +√3az =0,(a -2)x +√3(a -2)y =0.令z=1,则x=√3,y=-1.于是n =(√3,-1,1).平面AEF 的法向量为p =(0,1,0).所以cos <n,p >=n ·p |n ||p |=-√55.由题知二面角F-AE-B 为钝角,所以它的余弦值为-√55.(3)解因为BE ⊥平面AOC ,所以BE ⊥OC ,即BE⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0. 因为BE⃗⃗⃗⃗⃗ =(a-2,√3(a-2),0),OC ⃗⃗⃗⃗⃗ =(-2,√3(2-a ),0), 所以BE⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =-2(a-2)-3(a-2)2. 由BE ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0及0<a<2,解得a=43. 32.(2015·浙江·理T17)如图,在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1-BD-B 1的平面角的余弦值.【解析】(1)证明设E 为BC 的中点,由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE.因为AB=AC ,所以AE ⊥BC.故AE ⊥平面A 1BC.由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE=B 1B ,从而DE ∥A 1A 且DE=A 1A ,所以A 1AED 为平行四边形.故A 1D ∥AE.又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC.(2)解以CB 的中点E 为原点,分别以射线EA ,EB 为x ,y 轴的正半轴,建立空间直角坐标系E-xyz ,如图所示. 由题意知各点坐标如下:A 1(0,0,√14),B (0,√2,0),D (-√2,0,√14),B 1(-√2,√2,√14).因此A 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,√2,-√14),BD ⃗⃗⃗⃗⃗⃗ =(-√2,-√2,√14),DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,√2,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 平面向量与空间向量●考点阐释1.向量是数学中的重要概念,并和数一样,也能运算.它是一种工具,用向量的有关知识能有效地解决数学、物理等学科中的很多问题.向量法和坐标法是研究和解决向量问题的两种方法. 坐标表示,使平面中的向量与它的坐标建立了一一对应关系,用“数”的运算处理“形”的问题,在解析几何中有广泛的应用.向量法便于研究空间中涉及直线和平面的各种问题.2.平移变换的价值在于可利用平移变换,使相应的函数解析式得到简化. ●试题类编 一、选择题1.(2002春,13)若a 、b 、c 为任意向量,m ∈R ,则下列等式不一定...成立的是( ) A.(a +b )+c =a +(b +c ) B.(a +b )·c =a ·c +b ·c C.m (a +b )=m a +m b D.(a ·b )c =a (b ·c )2.(2002天津文12,理10)平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OB OA OC βα+=,其中α、β∈R ,且α+β=1,则点C 的轨迹方程为( )A.3x +2y -11=0B.(x -1)2+(y -2)2=5C.2x -y =0D.x +2y -5=0 3.(2001、、天津文)若向量a =(3,2),b =(0,-1),则向量2b -a 的坐标是( ) A.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4) 4.(2001、、天津)设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则⋅等于( )A.43B.-43 C.3 D.-35.(2001)如图5—1,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b ,A 1=c .则下列向量中与M B 1相等的向量是( )A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c 6.(2001、、天津理,5)若向量a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A.-21a +23b B.21a -23bC.23a -21b D.-23a +21b 7.(2000、、天津理,4)设a 、b 、c 是任意的非零平面向量,且相互不共线,则①(a ·b )c -(c ·a )b =0 ②|a |-|b |<|a -b | ③(b ·c )a -(c ·a )b 不与c 垂直④(3a +2b )(3a -2b )=9|a |2-4|b |2中,是真命题的有( ) A.①② B.②③ C.③④ D.②④8.(1997全国,5)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率为( )A.-31 B.-3 C.31 D.3二、填空题9.(2002文,理2)已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )·a =_____.10.(2001春,8)若非零向量α、β满足|α+β|=|α-β|,则α与β所成角的大小为_____.11.(2000,1)已知向量OA =(-1,2),OB =(3,m ),若OA ⊥AB ,则m = . 12.(1999理,8)若将向量a =(2,1)围绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为_____.13.(1997,14)设a =(m +1)i -3j ,b =i +(m -1)j ,(a +b )⊥(a -b ),则m =_____. 14.(1996,15)已知a +b =2i -8j ,a -b =-8i +16j ,那么a ·b =_____.15.(1996,15)已知O (0,0)和A (6,3)两点,若点P 在直线OA 上,且21=PA OP ,又P 是线段OB 的中点,则点B 的坐标是_____.三、解答题16.(2003春,19)已知三棱柱ABC —A 1B 1C 1,在某个空间直角坐标系中,1},0,0,{},0,23,2{AA m AC m AB =-=={0,0,n }.(其中m 、n >0).如图5—2.(1)证明:三棱柱ABC —A 1B 1C 1是正三棱柱;(2)若m =2n ,求直线CA 1与平面A 1ABB 1所成角的大小.17.(2002春,19)如图5—3,三棱柱OAB —O 1A 1B 1,平面OBB 1O 1⊥平面OAB ,∠O 1OB =60°,∠AOB =90°,且OB =OO 1=2,OA =3.求:图5—2(1)二面角O 1—AB —O 的大小;(2)异面直线A 1B 与AO 1所成角的大小. (上述结果用反三角函数值表示)18.(2002,17)如图5—4,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OA =4,OB =3,∠AOB =90°,D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点,若OP ⊥BD ,求OP 与底面AOB 所成角的大小.(结果用反三角函数值表示)图5—3 图5—4 图5—519.(2002天津文9,理18)如图5—5,正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a .(1)建立适当的坐标系,并写出点A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角.20.(2002天津文22,理21)已知两点M (-1,0),N (1,0),且点P 使,MN MP ⋅,PN PM ⋅NP NM ⋅成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),θ为PM 与PN 的夹角,求tan θ.21.(2001、、天津理)如图5—6,以正四棱锥V —ABCD 底面中心O 为坐标原点建立空间直角坐标系O —xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点,正四棱锥底面边长为2a ,高为h .(1)求cos<DE BE , >;(2)记面BCV 为α,面DCV 为β,若∠BED 是二面角α—VC —β的平面角,求∠BED .图5—6 图5—7 图5—822.(2001春)在长方体ABCD —A 1B 1C 1D 1中,点E 、F 分别在BB 1、DD 1上,且AE ⊥A 1B ,AF ⊥A 1D.(1)求证:A 1C ⊥平面AEF ;(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角).则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.试根据上述定理,在AB =4,AD =3,AA 1=5时,求平面AEF 与平面D 1B 1BD 所成角的大小.(用反三角函数值表示)23.(2001)在棱长为a 的正方体OABC —O ′A ′B ′C ′中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF .如图5—8.(1)求证:A ′F ⊥C ′E .(2)当三棱锥B ′—BEF 的体积取得最大值时,求二面角B ′—EF —B 的大小(结果用反三角函数表示)24.(2000春,21)四棱锥P —ABCD 中,底面ABCD 是一个平行四边形,AB ={2,-1,-4},AD ={4,2,0},AP ={-1,2,-1}.(1)求证:P A ⊥底面ABCD ; (2)求四棱锥P —ABCD 的体积;(3)对于向量a ={x 1,y 1,z 1},b ={x 2,y 2,z 2},c ={x 3,y 3,z 3},定义一种运算: (a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P —ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义.25.(2000,18)如图5—9所示四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且AB =BC =2,E 是AC 中点,异面直线AD 与BE 所成的角的大小为arccos1010,求四面体ABCD 的体积.图5—9 图5—10 图5—1126.(2000天津、、)如图5—10所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求BN 的长;(2)求cos<11,CB BA >的值;(3)求证:A 1B ⊥C 1M .27.(2000全国理,18)如图5—11,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形且∠C 1CB =∠C 1CD =∠BCD =60°.(1)证明:C 1C ⊥BD ;(2)假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值;(3)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. 28.(1999,20)如图5—12,在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角.(1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的大小.29.(1995,21)如图5—13在空间直角坐标系中BC =2,原点O 是BC 的中 点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°。

(1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值.图5—12 图5—13答案解析1.答案:D解析:因为(a ·b )c =|a |·|b |·cos θ·c 而a (b ·c )=|b |·|c |·cos α·a 而c 方向与a 方向不一定同向.评述:向量的积运算不满足结合律. 2.答案:D解析:设OC =(x ,y ),OA =(3,1),OB =(-1,3),αOA =(3α,α),βOB =(-β,3β)又α+β=(3α-β,α+3β) ∴(x ,y )=(3α-β,α+3β),∴⎩⎨⎧+=-=βαβα33y x又α+β=1 因此可得x +2y =5评述:本题主要考查向量法和坐标法的相互关系及转换方法. 3.答案:D解析:设(x ,y )=2b -a =2(0,-1)-(3,2)=(-3,-4). 评述:考查向量的坐标表示法. 4.答案:B解法一:设A (x 1,y 1),B (x 2,y 2),AB 所在直线方程为y =k (x -21),则⋅=x 1x 2+y 1y 2.又⎪⎩⎪⎨⎧=-=x y x k y 2)21(2,得k 2x 2-(k 2+2)x +42k =0,∴x 1·x 2=41,而y 1y 2=k (x 1-21)k (x 2-21)=k 2(x 1-21)(x 2-21)=-1.∴x 1x 2+y 1y 2=41-1=-43.解法二:因为直线AB 是过焦点的弦,所以y 1·y 2=-p 2=-1.x 1·x 2同上.评述:本题考查向量的坐标运算,及数形结合的数学思想.5.答案:A解析:)(21111BC BA A A BM B B MB ++=+==c +21(-a +b )=-21a +21b +c评述:用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力.6.答案:B解析:设c =m a +n b ,则(-1,2)=m (1,1)+n (1,-1)=(m +n ,m -n ).∴⎩⎨⎧=--=+21n m n m ∴⎪⎪⎩⎪⎪⎨⎧-==2321n m 评述:本题考查平面向量的表示及运算.7.答案:D解析:①平面向量的数量积不满足结合律.故①假;②由向量的减法运算可知|a |、|b |、|a -b |恰为一个三角形的三条边长,由“两边之差小于第三边”,故②真;③因为[(b ·c )a -(c ·a )b ]·c =(b ·c )a ·c -(c ·a )b ·c =0,所以垂直.故③假;④(3a +2b )(3a -2b )=9·a ·a -4b ·b =9|a |2-4|b |2成立.故④真. 评述:本题考查平面向量的数量积及运算律. 8.答案:A解析:设直线l 的方程为y =kx +b (此题k 必存在),则直线向左平移3个单位,向上平移1个单位后,直线方程应为y =k (x +3)+b +1即y =kx +3k +b +1因为此直线与原直线重合,所以两方程相同.比较常数项得3k +b +1=b .∴k =-31. 评述:本题考查平移变换与函数解析式的相互关系. 9.答案:13解析:∵(2a -b )·a =2a 2-b ·a =2|a |2-|a |·|b |·cos120°=2·4-2·5(-21)=13.评述:本题考查向量的运算关系.10.答案:90°解析:由|α+β|=|α-β|,可画出几何图形,如图5—14. |α-β|表示的是线段AB 的长度,|α+β|表示线段OC 的长度,由|AB |=|OC |∴平行四边形OACB 为矩形,故向量α与β所成的角为90° 评述:本题考查向量的概念,向量的几何意义,向量的运算.这些知识不只在学习向量时用到,而且在复数、物理学中也是一些最基本的知识.11.答案:4解析:∵OA ={-1,2},OB ={3,m },OA OB AB-=={4,m -2},又OA ⊥AB ,∴-1×4+2(m -2)=0,∴m =4.评述:本题考查向量的概念,向量的运算,向量的数量积及两向量垂直的充要条件. 12.答案:(223,22) 解析:设a =OA =2+i ,b =OB ,由已知OA 、OB 的夹角为4π,由复数乘法的几何意义,得OB =OA (cos4π+isin4π)=(2+i )i i 22322)2222(+=+. ∴b =(223,22) 评述:本题考查向量的概念,向量与复数一一对应关系,考查变通、变换等数学方法,以及运用数学知识解决问题的能力.13.答案:-2∵(a +b )⊥(a -b ),∴(m +2)×m +(m -4)(-m -2)=0,∴m =-2. 评述:本题考查平面向量的加、减法,平面向量的数量积及运算,两向量垂直的充要条件.得∴a ·b =(-3)×5+4×(-12)=-63.评述:本题考查平面向量数量积的坐标表示及求法. 15.答案:(4,2)解析:设P (x ,y ),由定比分点公式12113210,22116210=+⋅+==+⋅+=y x ,则P (2,1),又由中点坐标公式,可得B (4,2). 16.(1)证明:∵}0,23,2{mm AB AC BC=-=,∴| BC |=m ,又}0,0,{},0,23,2{m m m =-= ∴||=m ,|AC |=m ,∴△ABC 为正三角形.又AB ·1AA =0,即AA 1⊥AB ,同理AA 1⊥AC ,∴AA 1⊥平面ABC ,从而三棱柱ABC —A 1B 1C 1是正三棱柱.(2)解:取AB 中点O ,连结CO 、A 1O .∵CO ⊥AB ,平面ABC ⊥平面ABB 1A 1,∴CO ⊥平面ABB 1A 1,即∠CA 1O 为直线CA 1与平面A 1ABB 1所成的角.在Rt △CA 1O 中,CO =23m ,CA 1=22n m +, ∴sin CA 1O =221=CA CO ,即∠CA 1O =45°. 17.解:(1)取OB 的中点D ,连结O 1D ,则O 1D ⊥O B.∵平面OBB 1O 1⊥平面OAB , ∴O 1D ⊥平面OA B.过D 作AB 的垂线,垂足为E ,连结O 1E . 则O 1E ⊥A B.∴∠DEO 1为二面角O 1—AB —O 的平面角. 由题设得O 1D =3,sin OBA =72122=+OB OA OA , ∴DE =DB sin OBA =721 ∵在R t △O 1DE 中,tan DEO 1=7,∴∠DEO 1=arctan7,即二面角O 1—AB —O 的大小为arctan 7.(2)以O 点为原点,分别以OA 、OB 所在直线为x 、y 轴,过O 点且与平面AOB 垂直的直线为z 轴,建立空间直角坐标系如图5—15.则O (0,0,0),O 1(0,1,3),A (3,0,0),A 1(3,1,3),B (0,2,0).设异面直线A 1B 与AO 1所成的角为α, 则}3,1,3{},31,3{1111-=-=--=-=OO OA A O OA OB B A ,cos α=71||||1111=⋅⋅A O B A A O B A ,∴异面直线A 1B 与AO 1所成角的大小为arccos71. 18.解法一:如图5—16,以O 点为原点建立空间直角坐标系. 由题意,有B (3,0,0),D (23,2,4),设P (3,0,z ),则 BD ={-23,2,4},OP ={3,0,z }.∵BD ⊥OP ,∴BD ·OP =-29+4z =0,z =89.∵BB ′⊥平面AOB ,∴∠POB 是OP 与底面AOB 所成的角. tan POB =83,∴∠POB =arctan 83. 解法二:取O ′B ′中点E ,连结DE 、BE ,如图5—17,则DE ⊥平面OBB ′O ′,∴BE 是BD 在平面OBB ′O ′的射影. 又∵OP ⊥B D.由三垂线定理的逆定理,得OP ⊥BE .在矩形OBB ′O ′中,易得Rt △OBP ∽Rt △BB ′E , ∴B B OBE B BP '=',得BP =89.(以下同解法一)19.解:(1)如图5—18,以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系.由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2 a ),C 1(a aa 2,2,23-). (2)坐标系如图,取A 1B 1的中点M ,于是有M (0,2,2aa ),连AM ,MC 1有 图5—16图5—17图5—181MC =(-23a ,0,0),且=(0,a ,0),1AA =(0,0,2 a ) 由于1MC ·AB =0,1MC ·1AA =0,所以MC 1⊥面ABB 1A 1. ∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角. ∵1AC =(aaa 2,2,23-),AM =(0,2,2a a ), ∴1AC ·AM =0+42a +2a 2=49a 2.而|1AC |=a a a a 32443222=++.||=a a a 232422=+.∴cos <1AC ,AM >=23233492=⋅a a a. 所以1AC 与AM 所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.20.解:(1)记P (x ,y ),由M (-1,0),N (1,0)得PM =-=(-1-x ,-y ),PN =-NP =(1-x ,-y ),MN =-NM =(2,0)∴MP ·MN =2(1+x ),·PN =x 2+y 2-1,NM ·NP =2(1-x ). 于是,MP ·MN ,·PN ,NM ·NP 是公差小于零的等差数列等价于⎪⎩⎪⎨⎧<+---++=-+,0)1(2)1(2)],1(2)1(2[21122x x x x y x 即⎩⎨⎧>=+0,322x y x 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆.(2)点P 的坐标为(x 0,y 0).PM ·PN =x 02+y 02-1=2.|PM |·|PN |=20202020)1()1(y x y x +-⋅++.∴cos θ2202043tan .41||||x x x PB PM PN PM --=-=⋅θ 21.解:(1)由题意知B (a ,a ,0),C (-a ,a ,0),D (-a ,-a ,0),E (2,2,2ha a -). 由此得,)2,23,2(),2,2,23(h a a DE h a a BE =--= ∴42322)232()223(22h a h h a a a a DE BE +-=⋅+⋅-+⋅-=⋅, 222221021)2()2()23(||||h a h a a DE BE +=+-+-==. 由向量的数量积公式有cos<DE BE , >222222222210610211021423||||ha h a h a h a h a DE BE DE BE ++-=+⋅++-=⋅ (2)若∠BED 是二面角α—VC —β的平面角,则CV BE ⋅,则有CV BE ⊥=0.又由C (-a ,a ,0),V (0,0,h ),有CV =(a ,-a ,h )且)2,2,23(ha a BE--=, ∴02223222=++-=⋅h a a CV BE . 即h =2a ,这时有cos<DE BE ,>=31)2(10)2(610622222222-=++-=++-a a a a h a h a , ∴∠BED =<DE BE ,>=arccos (31-)=π-arccos 31评述:本小题主要考查空间直角坐标的概念、空间点和向量的坐标表示以及两个向量夹角的计算方法;考查运用向量研究空间图形的数学思想方法.22.(1)证明:因为CB ⊥平面A 1B ,所以A 1C 在平面A 1B 上的射影为A 1B . 由A 1B ⊥AE ,AE ⊂平面A 1B ,得A 1C ⊥AE . 同理可证A 1C ⊥AF .因为A 1C ⊥AF ,A 1C ⊥AE , 所以A 1C ⊥平面AEF .(2)解:过A 作BD 的垂线交CD 于G ,因为D 1D ⊥AG ,所以AG ⊥平面D 1B 1BD .设AG 与A 1C 所成的角为α,则α即为平面AEF 与平面D 1B 1BD 所成的角.由已知,计算得DG =49. 如图5—19建立直角坐标系,则得点A (0,0,0),G (49,3,0),A 1(0,0,5), C (4,3,0).AG ={49,3,0},A 1C ={4,3,-5}. 因为AG 与A 1C 所成的角为α, 所以cos α=25212arccos ,25212||||11==⋅⋅αC A AG C A AG .由定理知,平面AEF 与平面D 1B 1BD 所成角的大小为arccos25212. 注:没有学习向量知识的同学可用以下的方法求二面角的平面角.解法一:设AG 与BD 交于M ,则AM ⊥面BB 1D 1D ,再作AN ⊥EF 交EF 于N ,连接MN ,则∠ANM 即为面AEF 与D 1B 1BD 所成的角α,用平面几何的知识可求出AM 、AN 的长度.解法二:用面积射影定理cos α=AEFABDS S ∆∆. 评述:立体几何考查的重点有三个:一是空间线面位置关系的判定;二是角与距离的计算;三是多面体与旋转体中的计算.23.建立坐标系,如图5—20.(1)证明:设AE =BF =x ,则A ′(a ,0,a ),F (a -x ,a ,0),C ′(0,a ,a ),E (a ,x ,0)∴F A '={-x ,a ,-a },E C '={a ,x -a ,-a }. ∵A '·E C '=-xa +a (x -a )+a 2=0 ∴A ′F ⊥C ′E(2)解:设BF =x ,则EB =a -x三棱锥B ′—BEF 的体积 V =61x (a -x )·a ≤6a (2a )2=241a 3 当且仅当x =2a时,等号成立. 因此,三棱锥B ′—BEF 的体积取得最大值时BE =BF =2a,过B 作BD ⊥EF 于D ,连 B ′D ,可知B ′D ⊥EF .∴∠B ′DB 是二面角B ′—EF —B 的平面角在直角三角形BEF 中,直角边BE =BF =2a ,BD 是斜边上的高.∴BD =42a .∴tan B ′DB =22='BDBB 故二面角B ′—EF —B 的大小为arctan22.评述:本题考查空间向量的表示、运算及两向量垂直的充要条件.二次函数求最值或均值不等式求最值,二面角等知识.考查学生的空间想象能力和运算能力.用空间向量的观点处理立体几何中的线面关系,把几何问题代数化,降低了立体几何的难度.本题考查的线线垂直等价于A '·E C '=0,使问题很容易得到解决.而体积的最值除用均值不等式外亦可用二次函数求最值的方法处理.二面角的平面角的找法是典型的三垂线定理找平面角的方法,计算较简单,有一定的思维量.24.(1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴AP ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABV =31|AB |·||·sin θ·||=161411059110532=++⋅-⋅ (3)解:|(×AD )·AP |=|-4-32-4-8|=48它是四棱锥P —ABCD 体积的3倍.猜测:|(×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积).评述:本题考查了空间向量的坐标表示、空间向量的数量积、空间向量垂直的充要条件、空间向量的夹角公式和直线与平面垂直的判定定理、棱锥的体积公式等.主要考查考生的运算能力,综合运用所学知识解决问题的能力及空间想象能力.25.解:如图5—21建立空间直角坐标系 由题意,有A (0,2,0)、C (2,0,0)、E (1,1,0) 设D 点的坐标为(0,0,z )(z >0)则BE ={1,1,0},AD ={0,-2,z }, 设BE 与AD 所成角为θ. 则AD ·BE =2·224+cos θ=-2,且AD 与BE 所成的角的大小为arccos1010.∴cos 2θ=101422=+z ,∴z =4,故|BD |的长度为4. 又V A —BCD =61|AB |×|BC |×|BD |=38,因此,四面体ABCD 的体积为38.评述:本题考查空间图形的长度、角度、体积的概念和计算.以向量为工具,利用空间向量的坐标表示、空间向量的数量积计算线段的长度、异面直线所成角等问题,思路自然,解法灵活简便.26.解:如图5—22,建立空间直角坐标系O —xyz . (1)依题意得B (0,1,0)、N (1,0,1)∴|BN |=3)01()10()01(222=-+-+-.(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2)∴1BA ={-1,-1,2},1CB ={0,1,2,},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA . (3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,2}, M C 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1,∴A 1B ⊥C 1M . 图5—21图5—22评述:本题主要考查空间向量的概念及运算的基本知识.考查空间两向量垂直的充要条件.27.(1)证明:设CB =a ,CD =b ,1CC =c ,则|a |=|b |,∵CB CD BD-==b -a ,∴BD ·1CC =(b -a )·c =b ·c -a ·c =|b |·|c |cos60°-|a |·|c |cos60°=0, ∴C 1C ⊥BD .(2)解:连AC 、BD ,设AC ∩BD =O ,连OC 1,则∠C 1OC 为二面角α—BD —β的平面角.∵21)(21=+=CD BC CO (a +b ),2111=-=CC C (a +b )-c ∴CO ·211=OC (a +b )·[21(a +b )-c ]=41(a 2+2a ·b +b 2)-21a ·c -21b ·c =41(4+2·2·2cos60°+4)-21·2·23cos60°-21·2·23cos60°=23. 则|CO |=3,|O C 1|=23,∴cos C 1OC 3311= (3)解:设1CC CD=x ,CD =2, 则CC 1=x 2.∵BD ⊥平面AA 1C 1C ,∴BD ⊥A 1C ∴只须求满足:D C C A 11⋅=0即可. 设A 1=a ,AD =b ,DC =c , ∵A 1=a +b +c ,D C 1=a -c ,∴C A 11⋅=(a +b +c )(a -c )=a 2+a ·b -b ·c -c 2=x x 242+-6,令6-242xx -=0,得x =1或x =-32(舍去). 评述:本题蕴涵着转化思想,即用向量这个工具来研究空间垂直关系的判定、二面角的求解以及待定值的探求等问题.28.(1)证明:∵P A ⊥平面ABCD ,∴P A ⊥AB ,又AB ⊥AD .∴AB ⊥平面PAD .又∵AE ⊥PD ,∴PD ⊥平面ABE ,故BE ⊥PD .(2)解:以A 为原点,AB 、AD 、AP 所在直线为坐标轴,建立空间直角坐标系,则点C 、D 的坐标分别为(a ,a ,0),(0,2a ,0).∵P A ⊥平面ABCD ,∠PDA 是PD 与底面ABCD 所成的角,∴∠PDA =30°.于是,在Rt △AED 中,由AD =2a ,得AE =a .过E 作EF ⊥AD ,垂足为F ,在Rt △AFE 中,由AE =a ,∠EAF =60°,得AF =2a ,EF =23a ,∴E (0,23,21a a ) 于是,a a },23,21,0{=={-a ,a ,0}设与CD 的夹角为θ,则由cos θ||||CD AE CDAE ⋅420)()23()21(002321)(0222222=++-⋅++⋅+⋅+-⋅a a a a a a a a ∴θ=arccos42,即AE 与CD 所成角的大小为arccos 42. 评述:第(2)小题中,以向量为工具,利用空间向量坐标及数量积,求两异面直线所成的角是立体几何中的常见问题和处理手段.29.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量OD [TX →]的坐标为{0,-23,21}. (2)依题意:}0,1,0{},0,1,0{},0,21,23{=-==OC OB OA , 所以}0,2,0{},23,1,23{=-=--=-=OB OC BC OA OD AD . 设向量和BC 的夹角为θ,则cos θ222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅BC AD 1051-=. 评述:本题考查空间向量坐标的概念,空间向量数量积的运算及空间向量的夹角公式.解决好本题的关键是对空间向量坐标的概念理解清楚,计算公式准确,同时还要具备很好的运算能力.制作:SD。

相关文档
最新文档