高中数学新课程创新教学设计案例50篇 12 对 数 函 数

合集下载

高中数学新课程创新教学设计案例50篇__34_诱导公式

高中数学新课程创新教学设计案例50篇__34_诱导公式

诱导公式的应用教材分析这节内容以学生在初中已经学习了锐角的三角函数值为基础,利用单位圆和三角函数的定义,导出三角函数的五组诱导公式,即有关角k·360°+α,180°+α,-α,180°-α,360°-α的公式,并通过运用这些公式,把求任意角的三角函数值转化为求锐角的三角函数值,从而渗透了把未知问题化归为已知问题的化归思想.这节课的重点是后四组诱导公式以及这五组公式的综合运用.把这五组公式用一句话归纳出来,并切实理解这句话中每一词语的含义,是切实掌握这五组公式的难点所在.准确把握每一组公式的意义及其中符号语言的特征,并且把公式二、三与图形对应起来,是突破上述难点的关键.教学目标1. 在教师的引导下,启发学生探索发现诱导公式及其证明,培养学生勇于探求新知、善于归纳总结的能力.2. 理解并掌握正弦、余弦、正切的诱导公式,并能应用这些公式解决一些求值、化简、证明等问题.3. 让学生体验探索后的成功喜悦,培养学生的自信心.4. 使学生认识到转化“矛盾”是解决问题的有效途径,进一步树立化归思想.任务分析诱导公式的重要作用之一就是把求任意角的三角函数值转化为求锐角的三角函数值.在五组诱导公式中,关于180°+α与-α的诱导公式是最基本的,也是最重要的.在推导这两组公式时,应放手让学生独立探索,寻求“180°+α与角α的终边”及“-α与角α的终边”之间的位置关系,从而完成公式的推导.此外,要把90°~360°范围内的三角函数转化为锐角的三角函数,除了利用第二、四、五个公式外,还可以利用90°+α,270°±α与α的三角函数值之间的关系.应引导学生在掌握前五组诱导公式的基础上进一步探求新的关系式,从而使学生在头脑中形成完整的三角函数的认知结构.教学设计一、问题情境教师提出系列问题1. 在初中我们学习了求锐角的三角函数值,现在角的概念已经推广到了任意角,能否把任意角的三角函数值转化为锐角的三角函数值呢?2. 当α=390°时,能否求出它的正弦、余弦和正切值?3. 由2你能否得出一般性的结论?试说明理由.二、建立模型1. 分析1在教师的指导下,学生独立推出公式(一),即2. 应用1在公式的应用中让学生体会公式的作用,即把任意角的三角函数值转化为0°~360°范围内的角的三角函数值.练习:求下列各三角函数值.(1)cosπ.(2)tan405°.3. 分析2如果能够把90°~360°范围内的角的三角函数值转化为锐角的三角函数值,即可实现“把任意角的三角函数值转化为锐角的三角函数值”的目标.例如,能否将120°,240°,300°角与我们熟悉的锐角建立某种联系,进而求出其余弦值?引导学生利用三角函数的定义并借助图形,得到如下结果:cos120°=cos(180°-60°)=-cos60°=-,cos240°=cos(180°+60°)=-cos60°=-,cos300°=cos(360°+60°)=cos60°=.4. 分析3一般地,cos(180°+α),cos(180°-α),cos(360°-α)与cosα的关系如何?你能证明自己的结论吗?由学生独立完成下述推导:设角α的终边与单位圆交于点P(x,y).由于角180°+α的终边就是角α的终边的反向延长线,则角180°+α的终边与单位圆的交点P′与点P关于原点O对称.由此可知,点P′的坐标是(-x,-y).又∵单位圆的半径r=1,∴cosα=x,sinα=y,tanα=,cos(180°+α)=-x,sin (180°+α)=-y,tan(180°+α)=.从而得到:5. 分析4在推导公式三时,学生会遇到如下困难,即:若α为任意角,180°-α与角α的终边的位置关系不容易判断.这时,教师可引导学生借助公式二,把180°-α看成180°+(-α),即:先把180°-α的三角函数值转化为-α的三角函数值,然后通过寻找-α的三角函数值与α的三角函数值之间的关系,使原问题得到解决.由学生独立完成如下推导:如图,设任意角α的终边与单位圆相交于P(x,y),角-α的终边与单位圆相交于点P′.∵这两个角的终边关于x轴对称,∴点P′的坐标是(x,-y).又∵r=1,∴cos(-α)=x,sin(-α)=-y,tan(-α)=从而得到:进而推出:注:在问题的解决过程中,教师要注意让学生充分体验成功的快乐.6. 教师归纳公式(一)、(二)、(三)、(四)、(五)都叫作诱导公式,利用它们可以把k·360°+α,180°±α,-α,360°-α的三角函数转化为α的三角函数.那么,在转化过程中,发生了哪些变化?这种变化是否存在着某种规律?引导学生进行如下概括:α+k·360°(k∈Z),-α,180°±α,360°-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.为了便于记忆,还可编成一句口诀“函数名不变,符号看象限”.三、解释应用[例题]1. 求下列各三角函数值.通过应用,让学生体会诱导公式的作用:①把任意角的三角函数转化为锐角三角函数,其一般步骤为评注:本题中,若代入cosα·cot3α形式,就须先求得cosα的值.由于不能确定角α所在象限,解题过程将变得烦锁.以此提醒学生注意选取合理形式解决问题.四、拓展延伸教师出示问题:前面我们利用三角函数的定义及对称性研究了角α+k·360°(k∈Z),-α,180°±α,360°-α的三角函数与角α的三角函数之间的关系,这些角有一个共同点,即:均为180°的整数倍加、减α.但是,在解题过程中,还会遇到另外的情况,如前面遇到的120°角,它既可以写成180°-60°,也可以写成90°+30°,那么90°+α的三角函数与α的三角函数有着怎样的关系呢?学生探究:经过独立探求后,有学生可能会得到如下结果:设角α的终边与单位圆交于点P(x,y),角90°+α的终边与单位圆交于点P′(x′,y′)(如图),则cosα=x,sinα=y,cos(90°+α)=x′,sin(90°+α)=y′.过P作PM⊥x轴,垂足为M,过P′作P′M′⊥y轴,垂足为M′,则△OPM≌△OP′M′,∴OM=OM′,MP=M′P′,即x=y′,y=x′.进而得到cos(90°+α)=sinα,sin(90°+α)=cosα.对此结论和方法,教师不宜作任何评论,而应放手让学生展开辩论和交流,最后得到正确结果:由于OM与OM′,MP与M′P′仅是长度相等,而当点P在第一象限时,P′在第二象限,∴x′<0,y′>0,又∵x>0,y>0,∴x′=-y,y′=x.从而得到:教师进一步引导:(1)推导上面的公式时,利用了点P在第一象限的条件.当点P不在第一象限时,是否仍有上面的结论?(通过多媒体演示角α的终边在不同象限的情景,使学生理解公式六中的角α可以为任意角)(2)推导公式六时,采用了初中的平面几何知识.是否也能像推导前五组公式那样采用对称变换的方式呢?学生探究:学生先针对α为锐角时的情况进行探索,再推广到α为任意角的情形.设角α的终边与单位圆交点为P(x,y),+α的终边与单位圆的交点为P′(x′,y′)(如图).由于角α的终边经过下述变换:2(-α)+2a=,即可得到+α的终边.这是两次对称变换,即先作P关于直线y=x的对称点M(y,x),再作点M关于y轴的对称点P′(-y,-x),∴x′=-y,y′=x.由此,可进一步得到:教师归纳:公式六、七、八、九也称作诱导公式,利用它们可以把90°±α,270°±α的三角函数转化为α的三角函数.引导学生总结出:90°±α,270°±α的三角函数值等于α的余名函数值,前面加上一个把α看成锐角时原函数值的符号.两套公式合起来,可统一概括为对于k·90°±α(k∈Z)的各三角函数值,当k为偶数时,得α的同名函数值;当k为奇数时,得α的余名函数值.然后,均在前面加上一个把α看成锐角时原函数值的符号.为了便于记忆,也可编成口诀:“奇变偶不变,符号看象限”.点评这篇案例从学生的实际出发,充分尊重学生的思维特点,通过创设问题情境,引发认知冲突,较好地调动了学生的积极性和主动性,符合新课程理念的精神.在教学设计中,教师以学生活动为主,注意师生互动,体现学生的自主学习.实际的课堂教学表明,在教学过程中,教师对每名同学的发言都给以充分地鼓励,即使他的解法不完美,甚至不正确.这对保护学生大胆尝试、认真思考的积极性至关重要.只有这样,才能将教学效果落实到学生个体的学习行为上,进而实现预期的教学目标.总之,这篇案例的突出特点就是,注意通过问题驱动的方式,激发学生主动探究的热情,完成五组诱导公式的推导.缺陷是,在关注五组诱导公式推导的“一气呵成”的同时,巩固、强化工作显得单薄.这是一对棘手的矛盾!。

高中数学新课程创新教学设计案例50篇___37_向量加法运算及其几何意义

高中数学新课程创新教学设计案例50篇___37_向量加法运算及其几何意义

37 向量加法运算及其几何意义教材分析引入向量后,考查向量的运算及运算律,是数学研究中的基本的问题.教材中向量的加法运算是以位移的合成、力的合成等物理模型为背景引入的,在此基础上抽象概括了向量加法的意义,总结了向量加法的三角形法则、平行四边形法则.向量加法的运算律,教材是通过“探究”和构造图形引导学生类比数的运算律,验证向量的交换律和结合律.例2是一道实际问题,主要是要让学生体会向量加法的实际意义.这节课的重点是向量加法运算(三角形法则、平行四边形法则),向量的运算律.难点是对向量加法意义的理解和认识.教学目标1. 通过物理学中的位移合成、力的合成等实例,认识理解向量加法的意义,体验数学知识发生、发展的过程.2. 理解和掌握向量加法的运算,熟练运用三角形法则和平行四边形法则作向量的和向量.3. 理解和掌握向量加法的运算律,能熟练地运用它们进行向量运算.4. 通过由实例到概念,由具体到抽象,培养学生的探究能力,使学生数学地思考问题,数学地解决问题.任务分析这节的主要内容是向量加法的运算和向量加法的应用.对向量加法运算,学生可能不明白向量可以相加的道理,产生疑惑:向量既有大小、又有方向,难道可以相加吗?为此,在案例设计中,首先回顾物理学中位移、力的合成,让学生体验向量加法的实际含义,明确向量的加法就是物理学中的矢量合成.在此基础上,归纳总结向量加法的三角形法则和平行四边形法则.向量加法的运算律发现并不困难,主要任务是让学生对向量进行探究,构造图形进行验证.关于例2的教学,主要是帮助学生正确理解题意,把问题转化为向量加法运算.教学设计一、问题情境1. 如图,某物体从A点经B点到C点,两次位移,的结果,与A点直接到C 点的位移结果相同.2. 如图,表示橡皮筋在两个力F1,F2的作用下,沿GE的方向伸长了EO,与力F的作用结果相同.位移与合成为等效,力F与分力F1,F2的共同作用等效,这时我们可以认为:,F分别是位移与、分力F1与F2某种运算的结果.数的加法启发我们,位移、力的合成可看作数学上的向量加法.2. 在师生交流讨论基础上,归纳并抽象概括出向量加法的定义已知非零向量a,b(如图37-3),在平面内任取一点A,作=a,=b,再作向量,则向量叫a与b的和,记作a+b,即a+b=+=.求两个向量和的运算,叫作向量的加法.这种求向量和的作图法则,称为向量求和的三角形法则,我们规定0+a=a+0=a.3. 提出问题,组织学生讨论(1)根据力的合成的平行四边形法则,你能定义两个向量的和吗?(2)当a与b平行时,如何作出a+b?强调:向量的和仍是一个向量.用三角形法则求和时,作图要求两向量首尾相连;而用平行四边形法则求和时,作图要求两向量的起点平移在一起.(3)实数的运算和运算律紧密联系,类似地,向量的加法是否也有运算律呢?首先,让学生回忆实数加法运算律,类比向量加法运算律.向量加法的交换律由平行四边形法则容易验证.向量加法的结合律的验证则比较困难,教学时,应放手让学生进行充分探索.最后通过下面的两个图形验证加法结合律.三、解释应用[例题]1. 已知非零向量a,b,就(1)a与b不共线,(2)a与b共线,分别求作向量a+b.注:要求写出作法,规范解题格式.2. 长江两岸之间没有大桥的地方,常常通过轮船进行运输.一艘轮船从长江南岸A点出发,以5km/h的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h.(1)试用向量表示江水速度、船速以及船实际航行的速度.(2)求船实际航行的速度的大小与方向(速度的大小保留2个有效数字,方向用与江水速度间的夹角表示,精确到度).[练习]1. 如图,已知a,b,画图表示a+b.2. 已知两个力F1,F2的夹角是直角,合力F与F1的夹角是60°,|F|=10N,求F1和F2的大小.3. 在△ABC中,求证.4. 在n边形A1A2…A n中,计算四、拓展延伸1. 对于任意向量a,b,探索|a+b|与|a|+|b|的大小,并指出取“=”号的条件.2. 在求作两个向量和时,你可能选择不同的始点求和.你有没有想过,选择不同的始点作出的向量和都相等吗?你可能认为,这是“显然”对的,你能证明这个问题吗?点评向量的加法运算是向量的基本运算.为了正确认识理解向量加法的运算,案例首先回顾了的物理学中的位移、力的合成.在此基础上,使学生认识到:物理学中的矢量合成可抽象为数学中的向量加法运算,进而总结出向量加法的三角形法则,平行四边形法则,这样设计自然,流畅,全面.向量加法的运算律的教学,是引导学生通过类比方法发现的,并让学生自主探索,构造图形验证,这样不仅体现了学生的主体地位,同时还能培养学生科学的探究能力.例题与练习、“拓展延伸”的设计,有层次,有力度,深入浅出,能较好地培养学生的创新能力.这是一篇优秀的案例设计.。

高中数学教案设计(精选12篇)

高中数学教案设计(精选12篇)

高中数学教案设计(精选12篇)高中数学教学设计篇一一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。

因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。

所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。

因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。

在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。

为此本节内容在三角函数中占有非常重要的地位。

三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

高中数学新课程创新教学设计案例50篇__30_几何概型

高中数学新课程创新教学设计案例50篇__30_几何概型

30 几何概型教材分析和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率.它也是一种等可能概型.教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法.与本课开始介绍的P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整.这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学.教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为几何概型求概率的问题.教学目标1. 通过这节内容学习,让学生了解几何概型,理解其基本计算方法并会运用.2. 通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.3. 通过学习,让学生体会试验结果的随机性与规律性,培养学生的科学思维方法,提高学生对自然界的认知水平.任务分析在这节内容中,介绍几何概型主要是为了更广泛地满足随机模拟的需要,因此,教学重点是随机模拟部分.这节内容的教学需要一些实物模型作为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.有条件的学校可以让学生用一种统计软件统计模拟的结果.教学设计一、问题情境如图,有两个转盘.甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.问题:在下列两种情况下分别求甲获胜的概率.二、建立模型1. 提出问题首先引导学生分析几何图形和甲获胜是否有关系,若有关系,和几何体图形的什么表面特征有关系?学生凭直觉,可能会指出甲获胜的概率与扇形弧长或面积有关.即:字母B 所在扇形弧长(或面积)与整个圆弧长(或面积)的比.接着提出这样的问题:变换图中B 与N的顺序,结果是否发生变化?(教师还可做出其他变换后的图形,以示决定几何概率的因素的确定性).题中甲获胜的概率只与图中几何因素有关,我们就说它是几何概型.注意:(1)这里“只”非常重要,如果没有“只”字,那么就意味着几何概型的概率可能还与其他因素有关,这是错误的.(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积).2. 引导学生讨论归纳几何概型定义,教师明晰———抽象概括如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.在几何概型中,事件A的概率的计算公式如下:3. 再次提出问题,并组织学生讨论(1)情境中两种情况下甲获胜的概率分别是多少?(2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.(3)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10min的概率.通过以上问题的研讨,进一步明确几何概型的意义及基本计算方法.三、解释应用[例题]1. 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.分析:我们有两种方法计算事件的概率.(1)利用几何概型的公式.(2)利用随机模拟的方法.解法1:如图,方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A 发生,所以解法2:设X,Y是0~1之间的均匀随机数.X+6.5表示送报人送到报纸的时间,Y +7表示父亲离开家去工作的时间.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.用计算机做多次试验,即可得到P(A).教师引导学生独立解答,充分调动学生自主设计随机模拟方法,并组织学生展示自己的解答过程,要求学生说明解答的依据.教师总结,并明晰用计算机(或计算器)产生随机数的模拟试验.强调:这里采用随机数模拟方法,是用频率去估计概率,因此,试验次数越多,频率越接近概率.2. 如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.解:随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即假设正方形的边长为2,则由于落在每个区域的豆子数是可以数出来的,所以这样就得到了π的近似值.另外,我们也可以用计算器或计算机模拟,步骤如下:(1)产生两组0~1区间的均匀随机数,a1=RAND,b1=RAND;(2)经平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2;(3)数出落在圆内a2+b2<1的豆子数N1,计算(N代表落在正方形中的豆子数).可以发现,随着试验次数的增加,得到π的近似值的精度会越来越高.本例启发我们,利用几何概型,并通过随机模拟法可以近似计算不规则图形的面积.[练习]1. 如图30-4,如果你向靶子上射200镖,你期望多少镖落在黑色区域.2. 利用随机模拟方法计算图30-5中阴影部分(y=1和y=x2围成的部分)的面积.3. 画一椭圆,让学生设计方案,求此椭圆的面积.四、拓展延伸1. “概率为数…0‟的事件是不可能事件,概率为1的事件是必然事件”,这句话从几何概型的角度还能成立吗?2. 你能说一说古典概型和几何概型的区别与联系吗?3. 你能说说频率和概率的关系吗?点评这篇案例设计完整,整体上按知识难易逐渐深入,同时充分调动了学生的积极性,以学生之间互动为主,教师引导为辅.例题既有深化所学知识的,又有应用所学知识的.“拓展延伸”既培养了学生的思维能力,又有利于学生从总体上把握这节课所学的知识.。

高中数学新课程创新教学设计案例50篇__40_平面向量的数量积-6页word资料

高中数学新课程创新教学设计案例50篇__40_平面向量的数量积-6页word资料

40 平面向量的数量积教材分析两个向量的数量积是中学代数以往内容中从未遇到过的一种新的乘法,它区别于数的乘法.这篇案例从学生熟知的功的概念出发,引出平面向量数量积的概念和性质及其几何意义,介绍向量数量积的运算律及坐标表示.向量的数量积把向量的长度和三角函数联系在一起,这为解决三角形的有关问题提供了方便,特别是能有效解决线段的垂直等问题.这节内容是整个向量部分的重要内容之一,对它的理解与掌握将直接影响向量其他内容的学习.这节内容的教学难点是对平面向量数量积的定义及运算律的理解和对平面向量数量积的应用.教学目标1. 理解并掌握平面向量的数量积、几何意义和数量积的坐标表示,会初步使用平面向量的数量积来处理有关长度、角度和垂直的问题,掌握向量垂直的条件.2. 通过对数量积的引入和应用,初步体会知识发生、发展的过程和运用过程,培养学生的科学思维习惯.任务分析两个向量的数量积从形式和实质上都与数的乘法有区别,这就给理解和掌握这个概念带来了一些困难.在学习时,要充分让学生理解、明白两个向量的数量积是一个数量,而不是向量.两个向量的数量积的值是这两个向量的模与两个向量夹角余弦的乘积,其符号由夹角余弦值的正负而确定.两向量的数量积“a·b”不同于两实数之积“ab”.通过实例理解a·b=b·c与a=c的关系,a·b=0与a=0或b=0的关系,以及(a·b)c =a(b·c)与(ab)c=a(bc)的不同.教学设计一、问题情景如图40-1所示,一个力f作用于一个物体,使该物体发生了位移s,如何计算这个力所做的功.由于图示的力f的方向与前进方向有一个夹角θ,真正使物体前进的力是f在物体前进方向上的分力,这个分力与物体位移的乘积才是力f做的功.即力f使物体位移x所做的功W可用下式计算.W=|s||f|cosθ.其中|f|cosθ就是f在物体前进方向上的分量,也就是力f在物体前进方向上正射影的数量.问题:像功这样的数量值,它由力和位移两个向量来确定.我们能否从中得到启发,把“功”看成这两个向量的一种运算的结果呢?二、建立模型1. 引导学生从“功”的模型中得到如下概念:已知两个非零向量a与b,把数量|a||b|cosθ叫a与b的数量积(内积),记作a·b =|a||b|cosθ.其中θ是a与b夹角,|a|cosθ(|b|cosθ)叫a在b方向上(b在a 方向上)的投影.规定0与任一向量的数量积为0.由上述定义可知,两个向量a与b的数量积是一个实数.说明:向量a与b的夹角θ是指把a,b起点平移到一起所成的夹角,其中0≤θ≤π.当θ=时,称a和b垂直,记作a⊥b.为方便起见,a与b的夹角记作〈a,b〉.2. 引导学生思考讨论根据向量数量积的定义,可以得出(1)设e是单位向量,a·e=|a|cos〈a,e〉.(2)设a·b是非零向量,则a⊥b a·b=0.(3)a·a=|a|2,于是|a|=.(4)cos〈a,b〉=.(5)|a·b|≤|a||b|(这与实数|ab|=|a||b|不同).三、解释应用[例题]已知|a|=5,|b|=4,〈a,b〉=120°,求a·b.解:a·b=|a||b|cos〈a,b〉=5×4×cos120°=-10.[练习]1. 已知|a|=3,b在a上的投影为-2,求:(1)a·b.(2)a在b上的投影.2. 已知:在△ABC中,a=5,b=8,c=60°,求·.四、建立向量数量积的运算律1. 出示问题:从数学的角度考虑,我们希望向量的数量积运算,也能像数量乘法那样满足某些运算律,这样数量积运算才更富有意义.回忆实数的运算律,你能类比和归纳出向量数量积的一些运算律吗?它们成立吗?为什么?2. 运算律及其推导已知:向量a,b,c和λ∈R,则(1)a·b=b·a(交换律).证明:左=|a||b|cosθ=右.(2)(λa)·b=λ(a·b)=a·(λb)(数乘结合律).证明:设a,b夹角为θ,当λ>0时,λa与b的夹角为θ,∴(λa)·b=(λa)·|b|cosθ=λ|a||b|cosθ=λ(a·b);当λ<0时,λa与b的夹角为(π-θ),∴(λa)·b=|λa||b|cos(π-θ)=-λ|a||b|(-cosθ)=λ|a||b|cosθ=λ(a·b);当λ=0时,(λa)·b=0·b=0=λ(a·b).总之,(λa)·b=λ(a·b);同理a·(λb)=λ(a·b).(3)(a+b)·c=a·c+b·c(乘法对加法的分配律).证明:如图40-2,任取一点O,作=a,=b,=c.∵a+b(即)在c方向上的投影等于a,b在c方向上的投影的和,即|a+b|cosθ=|a|cosθ1+|b|cosθ2,∴|c||a+b|cosθ=|c|(|a|cosθ1+|b|cosθ2)=|c||a|cosθ1+|c||b|cosθ2=c·a+c·b,∴(a+b)·c=a·c+b·c.思考:(1)向量的数量积满足结合律,即(a·b)c=a(b·c)吗?(2)向量的数量积满足消去律,即如果a·b=c·b,那么a=c吗?五、应用与深化[例题]1. 对实数a,b,有(a+b)2=a2+2ab+b2,(a+b)(a-b)=a2-b2.类似地,对任意向量a,b,也有类似结论吗?为什么?解:类比完全平方和公式与平方差公式,有(a+b)2=a2+2a·b+b2,(a+b)·(a-b)=a2-b2.其证明是:(a+b)2=(a+b)·(a+b)=a·a+a·b+b·a+b·b=a2+2a·b+b2,(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.∴有类似结论.2. 已知|a|=6,|b|=4,〈a,b〉=60°,求(a+2b)·(a-3b).解:(a+2b)·(a-3b)=a2-3a·b+2b·a-6b2=|a|2-|a||b|cos60°-6|b|2=-72.3. 已知|a|=3,|b|=4,且a与b不共线.当k为何值时,(a+kb)⊥(a-kb)?解:(a+kb)⊥(a-kb),即(a+kb)·(a-kb)=0,即a2-k2b2=0,即9-k2×16=0,k=±.因此,当k=±时,有(a+kb)⊥(a-kb).4. 已知:正方形ABCD的边长为1,并且=a,=b,=c,求|a+b+c|.解法1:∵a+b+c=++=2,∴|a+b+c|=2=2.解法2:|a+b+c|2=(a+b+c)2=a2+b2+c2+2a·b+2a·c+2b·c=1+1+2+2×1×1×cos90°+2×1××+2×1××=8,∴|a+b+c|=2.[练习]1. |a|=4,|b|=3,(2a-3b)·(2a+b)=61,求a与b的夹角θ.2. 在边长为2的正三角形ABC中,求·+·+·.六、拓展延伸1. 当向量a,b的夹角为锐角时,你能说明a·b的几何意义吗?如图40-3,a·b,即以b在a上射影的长和a的长为两邻边的矩形面积(OA=OA1).2. 平行四边形是表示向量加法与减法的几何模型,如图40-4,=+,=-.试说明平行四边形对角线的长度与两条邻边长度之间的关系.3. 三个单位向量a,b,c有相同终点且a+b+c=0,问:它们的起点连成怎样的三角形?解法1:如图40-5,∵|a|=|b|=|c|=1,a+b+c=0,∴a+b=-c,∴(a+b)2=(-c)2,∴a2+b2+2a·b=c2,∴2|a|·|b|cos∠AOC=-1,cos∠AOC=,∠AOC=120°.同理∠BOC=∠AOC=120°,故△AOB,△BOC,△BOC全等,∴AB=AC=BC,即该△ABC为等边三角形.解法2:如图40-6,=c,=-a,=-b,由a+b+c=0,即=+.∵|a|=|b|=1,∴OADB为菱形.又||=1,∴∠AOB=120°.同理∠AOC=∠BOC=120°,…4. 在△ABC中,·=·=·,问:O点在△ABC的什么位置?解:由·=·,即·(-)=0,即·=0,∴⊥,同理⊥,⊥.故O是△ABC的垂心.点评这篇案例的一个突出特点是使用类比方法,即在研究向量的数量积的性质及运算律时,经常以实数为对象进行类比.以物理学中的力对物体做功的实例,引入数量积的过程比较自然,学生容易接受.在“拓展延伸”中,较多地展示了向量的综合应用.这都充分体现了向量是数形结合的重要载体.运用向量方法解决与向量有关的综合问题,越来越成为考查学生数学思维能力的一个重要方面.认识向量并会使用向量是这一部分的基础,也是重点.总之,这篇案例较好地实现了教学目标,同时,关注类比方法的运用,以及学生数学思维水平的提高.美中不足的是,对学生的自主探究的引导似乎有所欠缺.。

高中数学新课程创新教学设计案例50篇 函数的单调性

高中数学新课程创新教学设计案例50篇 函数的单调性

8 函数的单调性教材分析函数的单调性是函数的重要特性之一,它把自变量的变化方向和函数值的变化方向定性地联系在一起.在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.这节内容的重点是理解函数单调性的概念以及利用函数的单调性的概念证明函数的单调性,难点是理解函数单调性的概念.教学目标1. 通过对增函数、减函数概念的归纳、抽象和概括,体验数学概念的产生和形成过程,培养学生从特殊到一般的抽象概括能力.2. 掌握增函数、减函数等函数单调性的概念,理解函数增减性的几何意义,并能初步运用所学知识判断或证明一些简单函数的单调性,培养学生对数学的理解能力和逻辑推理能力.3. 通过对函数单调性的学习,初步体会知识发生、发展、运用的过程,培养学生形成科学的思维.任务分析这节内容学生在初中已有了较为粗略的认识,即主要根据观察图像得出结论.这节函数增减性的定义,是运用数学符号将自然语言的描述提升到形式化的定义,学生接受起来可能比较困难.在引入定义时,要始终结合具体函数的图像来进行,以增强直观性,采用由具体到抽象,再由抽象到具体的思维方法,便于学生理解.对于定义,要注意对区间上所取两点x1,x2的“任意性”的理解,多给学生操作与思考的时间和空间.教学设计一、问题情境1. 如图为某市一天内的气温变化图:(1)观察这个气温变化图,说出气温在这一天内的变化情况.(2)怎样用数学语言刻画在这一天内“随着时间的增大,气温逐渐升高或下降”这一特征?2. 分别作出下列函数的图像:(1)y=2x.(2)y=-x+2.(3)y=x2.根据三个函数图像,分别指出当x∈(-∞,+∞)时,图像的变化趋势?二、建立模型1. 首先引导学生对问题2进行探讨———观察分析观察函数y=2x,y=-x+2,y=x2图像,可以发现:y=2x在(-∞,+∞)上、y=x2在(0,+∞)上的图像由左向右都是上升的;y=-x+2在(-∞,+∞)上、y=x2在(-∞,0)上的图像由左向右都是下降的.函数图像的“上升”或“下降”反映了函数的一个基本性质———单调性.那么,如何描述函数图像“上升”或“下降”这个图像特征呢?以函数y=x2,x∈(-∞,0)为例,图像由左向右下降,意味着“随着x的增大,相应的函数值y=f(x)反而减小”,如何量化呢?取自变量的两个不同的值,如x1=-5,x2=-3,这时有x1<x2,f(x1)>f(x2),但是这种量化并不精确.因此,x1,x2应具有“任意性”.所以,在区间(-∞,0)上,任取两个x1,x2得到f(x1)=,f(x2)=.当x1<x2时,都有f(x1)>f(x2).这时,我们就说f(x)=x2在区间(-∞,0)上是减函数.注意:在这里,要提示学生如何由直观图像的变化规律,转化为数学语言,即自变量x变化时对函数值y的影响.必要时,对x,y可举出具体数值,进行引导、归纳和总结.这里的“都有”是对应于“任意”的.2. 在学生讨论归纳函数单调性定义的基础上,教师明晰———抽象概括设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f (x1)<f(x2),那么我们就说函数f(x)在区间D上是增函数[如图8-2(1)].如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f (x1)>f(x2),那么我们就说函数f(x)在区间D上是减函数[如图8-2(2)].如果函数y=f(x)在区间D上是增函数或减函数,那么我们就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫作y=f(x)的单调区间.3. 提出问题,组织学生讨论(1)定义在R上的函数f(x),满足f(2)>f(1),能否判断函数f(x)在R是增函数?(2)定义在R上函数f(x)在区间(-∞,0]上是增函数,在区间(0,+∞)上也是增函数,判断函数f(s)在R上是否为增函数.(3)观察问题情境1中气温变化图像,根据图像说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数.强调:定义中x1,x2是区间D上的任意两个自变量;函数的单调性是相对于某一区间而言的.三、解释应用[例题]1. 证明函数f(x)=2x+1,在(-∞,+∞)是增函数.注:要规范解题格式.2. 证明函数f(x)=,在区间(-∞,0)和(0,+∞)上都是减函数.思考:能否说,函数f(x)=在定义域(-∞,0)∪(0,+∞)上是减函数?3. 设函数y=f(x)在区间D上保号(恒正或恒负),且f(x)在区间D上为增函数,求证:f(x)=在区间D上为减函数.证明:设x1,x2∈D,且x1<x2,∵f(x)在区间D上保号,∴f(x1)f(x2)>0.又f(x)在区间D上为增函数,∴f(x1)-f(x2)<0,从而g(x1)-g(x2)>0,∴g(x)在D上为减函数.[练习]1. 证明:(1)函数f(x)=在(0,+∞)上是增函数.(2)函数f(x)=x2-x在(-∞,]上是减函数.2. 判断函数的单调性,并写出相应的单调区间.3. 如果函数y=f(x)是R上的增函数,判断g(x)=kf(x),(k≠0)在R上的单调性.四、拓展延伸1. 根据图像,简要说明近150年来人类消耗能源的结构变化情况,并对未来100年能源结构的变化趋势作出预测.2. 判断二次函数f(x)=ax2+bx+c,(a≠0)的单调性,并用定义加以证明.3. 如果自变量的改变量Δx=x2-x1<0,函数值的改变量Δy=f(x2)-f(x1)>0,那么函数f(x)在区间D上是增函数还是减函数?4. 函数值的改变量与自变量的改变量的比叫作函数f(x)在x1,x2之间的平均变化率.(1)根据函数的平均变化率判断y=f(x)在区间D上是增函数还是减函数.(2)比值的大小与函数值增长的快慢有什么关系?点评这篇案例设计完整,思路清晰.案例首先通过实例阐述了函数单调性产生的背景,归纳、抽象概括出了增函数、减函数的定义,充分体现了数学教学的本质是数学思维过程的教学,符合新课程标准的精神.例题与练习由浅入深,完整,全面.“拓展延伸”的设计有新意,有深度,为学生数学思维能力、创造能力的培养提供了平台.这篇案例的突出特点,体现在如下几个方面:1. 强调对基本概念和基本思想的理解和掌握由于数学高度抽象的特点,注重体现基本概念的来龙去脉.在数学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质.2. 注重联系,提高对数学整体的认识数学的发展既有内在的动力,也有外在的动力.在高中数学的教学中,要注重数学的不同分支和不同内容之间的联系,数学与日常生活的联系,数学与其他学科的联系.例如,通过研讨本节课“拓展延伸”中的第1个问题,可以大大提高了学生学习的积极性和主动性.3. 注重数学知识与实际的联系,发展学生的应用意识和能力在数学教学中,应注重发展学生的应用意识;通过丰富的实例引入数学知识,引导学生应用数学知识解决实际问题,经历探索、解决问题的过程,体会数学的应用价值,帮助学生认识到:数学与我有关,与实际生活有关;数学是有用的,我要用数学,我能用数学.。

高中数学新课程创新教学设计案例50篇---50-基本不等式

高中数学新课程创新教学设计案例50篇---50-基本不等式

50基本不等式:教材分析“”的证明学生比较容易理解,学生难理解的是“当且仅当a=b时取‘=’号”的真正数学内涵,所谓“当且仅当”就是“充分必要”.教学重点是定理及其应用,难点是利用定理求函数的最值问题,进而解决一些实际问题.教学目标1.理解两个实数的平方和不小于它们积的2倍这一重要不等式的证明,并能从几何意义的角度去解释,形成数形结合的完美统一.2.理解两个正数的算术平均数不小于它们的几何平均数定理的证明,及其几何意义,会用这两个重要不等式解决简单的实际应用题.3.通过定理的证明培养学生的逻辑推理能力,通过定理的应用揭示数学的应用价值.任务分析这节内容从实际问题情境展开探讨,“如要围成面积为16m2的一个矩形,所需绳子最短是多少?即设长为x,宽为,则周长为l=2x+2×,求当x取何值时,l最小.”让学生去猜测,去思考,充分调动学生的积极性,激发学生的想象和猜想能力.当学生猜想它应为正方形这一结论时,教师适时引导如何去证明猜想的正确性,激发学生的求知欲望,从而达到由问题到结论的证明,开阔学生的思路,陶冶学生的情操.教学设计一、问题情境教师出示问题,引导学生分析、思考:某工厂要建造一个长方体形无盖贮水池,其容积为4800m3,深为3m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少元?二、建立模型1.通过比较a2+b2与2ab的大小,引入重要不等式.∵a2+b2-2ab=(a-b)2,∴当a≠b时,(a-b)2>0;当a=b时,(a-b)2=0.即(a-b)2≥0,从而有a2+b2≥2ab.2.结论明晰定理1如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时,取“=”号).思考:对于定理1和定理2,当且仅当a=b时取“=”号的具体含义是什么?三、解释应用[例题]1.已知x,y都是正数,求证:小结;上述结论是我们用定理求最值的依据,可简述为和为定值积最大,积为定值和最小.2.设法解决本节课开始提出的问题.因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价为297600元.3.0求证:在直径为d的圆内接矩形中,面积最大的是正方形,并且这个正方形的面积等于d2.2.设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm的空白,左、右各留5cm的空白.问:怎样确定画面的高与宽的尺寸,才能使宣传画所用纸张面积最小?答:当画面高为88cm、宽为55cm时,所用纸张面积最小.3.用一段长为L(m)的篱笆围成一个边靠墙的矩形菜园,问:当这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?上述两种解答的答案不同,哪一种方法是错误的,为什么?四、拓展延伸点评这篇案例由实际问题引入课题,既自然,又能引起学生的兴趣,激发起学生的求知欲望,为本节重点的突破打下良好的基础.由学生已有知识归纳和总结得到这节课的两个定理,使学生易于理解和接受.由典型例题的证明,归纳出一般结论,培养了学生的逻辑推理能力.由练习的变形培养了学生灵活处理问题的能力.对实际问题的解决体现了数学的应用价值.重要不等式灵活变形的使用不仅加深了对推理的理解,同时突破了对本节难点“等号成立的条件”的理解.“拓展延伸”给学生以发挥的空间,启发学生由已知到未知的探索能力.总之,关注基本不等式与现实的联系是这篇案例的突出特点,“问题驱动式”的设计是这篇案例成功的关键,而“从问题出发构建模型,反过来,又利用建立的模型解决开始的问题”的设计又可以使学生领略到学习数学的成功和胜利喜悦.。

高中数学优秀教学设计案例(全)

高中数学优秀教学设计案例(全)

高中数学优秀教学设计案例(全)获奖作品汇编(上部)目录1、集合与函数概念实习作业2、指数函数的图象及其性质3、对数的概念4、对数函数及其性质(1)5、对数函数及其性质(2)6、函数图象及其应用7、方程的根与函数的零点8、用二分法求方程的近似解9、用二分法求方程的近似解10、直线与平面平行的判定11、循环结构12、任意角的三角函数(1)13、任意角的三角函数(2)14、函数yAin(某)的图象15、向量的加法及其几何意义16、平面向量数量积的物理背景及其含义(1)17、平面向量数量积的物理背景及其含义(2)18、正弦定理(1)19、正弦定理(2)20、正弦定理(3)21、余弦定理22、等差数列23、等差数列的前n项和24、等比数列的前n项和25、简单的线性规划问题26、拋物线及其标准方程27、圆锥曲线定义的运用前言在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。

部分体现大纲教材内容的文章则排在后面。

不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。

谢谢你们!1、集合与函数概念实习作业一、教学内容分析二、学生学习情况分析该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。

学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。

特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

2高中数学新课程创新教学设计案例50篇-6-函-数-的-概-念

2高中数学新课程创新教学设计案例50篇-6-函-数-的-概-念

函数的概念教材分析与传统课程内容相比,这节内容的最大变化就是函数概念的处理方式.事实上,“先讲映射后讲函数”比“先讲函数后讲映射”,有利于学生更好地理解函数概念的本质.第一,在初中函数学习基础上继续深入学习函数,衔接自然,利于学生在原有认知基础上提升对函数概念的理解;第二,直接进入函数概念的学习更有利于学生将注意力放在理解函数概念的学习上,而不必花大量精力学习映射,使其认识映射与函数的关系后才能理解函数的概念.函数概念是中学数学中最重要的概念之一.函数概念、思想贯穿于整个中学教材之中.通过实例,引导学生通过自己的观察、分析、归纳和概括,获得用集合与对应语言刻画的函数概念.对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质.教学重点是函数的概念,难点是对函数概念的本质的理解.教学目标1. 通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型.在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.2. 了解构成函数的要素,会求一些简单函数的定义域和值域.3. 了解映射的概念.任务分析学生在初中对函数概念有了初步的认识.这节课的任务是在学生原认知水平的基础上,用集合与对应的观点认识函数,了解构成函数定义的三要素,认识映射与函数是一般与特殊的关系.教学设计一、问题情景1. 一枚炮弹发射后,经过60s落到地面击中目标.炮弹的射高为4410m,且炮弹距地面的高度h随时间t的变化规律是h=294t-4.9t2,(0≤t≤60,0≤h≤4410).2. 近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.下图中的曲线显示了南极上空臭氧层空洞的面积从1979年到2001年的变化情况.3. 国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.下表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.表6-1“八五”计划以来我国城镇居民恩格尔系数变化情况时间(年)1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 恩格尔系数(%)53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9问题:分析以上三个实例,对任一个给定的t,射高h、臭氧层空洞面积S、恩格尔系数是否有值与之对应?若有,有几个?二、建立模型1. 在学生充分分析和讨论的基础上,总结归纳以上三个实例的共同特点在三个实例中,变量之间的关系都可以描述成两个集合间的一种对应关系:对于数集A中的任一个x,按照某个对应关系,在数集B中都有唯一确定的值与之对应.2. 教师明晰通过学生的讨论归纳出函数的定义:设A,B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任一个x,在集合B中都有唯一确定的数f(x)与它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.其中,x叫作自变量,x的取值范围A叫作函数的定义域,与x的值相对应的y叫作函数值,函数值的集合:{y|y=f(x),x∈A}叫作函数的值域.注意:(1)从函数的定义可以看出:函数由定义域、对应法则、值域三部分组成,它们称为函数定义的三要素.其中,y=f(x)的意义是:对任一x∈A,按照对应法则f有唯一y与之对应.(2)在函数定义的三个要素中,核心是定义域和对应法则,因此,只有当函数的对应关系和定义域相同时,我们才认为这两个函数相同.思考:函数f(x)=与g(x)=是同一函数吗?三、解释应用[例题]1. 指出下列函数的定义域、值域、对应法则各是什么?如何用集合与对应的观点描述它们?(1)y=1,(x∈R).(2)y=ax+b,(a≠0).(3)y=ax2+bx+c,(a>0).(4)y=kx,(k≠0).解:(3)定义域:{x|x∈R},值域:{y|y≥}对应法则f:自变量→a (自变量)2+b·(自变量)+c,即:f:x→ax2+bx+c(1),(2),(4)略.2. 已知:函数f(x)=(1)求函数的定义域.(2)求f(-3),f()的值.(3)当a>0时,求f(a),f(a-1)的值.目的:深化对函数概念的理解.3. 求下列函数的值域.(1)f(x)=2x.(2)f(x)=1-x+x2,(x∈R).(3)y=3-x,(x∈N).解:(1){y|y≠0}.(2){y|y≥}.(3){3,2,1,0,-1,-2,…}.4. (1)已知:f(x)=x2,求f(x-1).(2)已知:f(x-1)=x2,求f(x).目的:深化对函数符号的理解.解:(1)f(x-1)=(x-1)2.(2)f(x-1)=x2=[(x-1)+1]2=(x-1)2+2(x-1)+1.∴f(x)=x2+2x+1.[练习]1. 求下列函数的定义域.2. 已知二次函数f(x)=x2+a的值域是[-2,+∞),求a的值.3. 函数f(x)=[x],[x]表示不超过x的最大整数,求:(1)f(3.5),(2)f(-3.5).四、拓展延伸在函数定义中,将数集推广到任意集合时,就可以得到映射的概念.集合A={a1,a2}到集合B={b1,b2}的映射有哪几个?解:共有4个不同的映射.思考:集合A={a1,a2,a3}到B={b1,b2,b3}的映射有多少个?点评这篇案例设计完整,条理清楚.案例从三个方面(实际是函数的三种表示方法,为后续内容埋下伏笔)各举一个具体事例,从中概括出函数的本质特征,得出函数概念,体现了由具体到抽象的认知规律,有利于学生理解函数概念,更好地体现了数学从实践中来.例题、练习由浅入深,完整,全面.映射的概念作为函数概念的推广,处理方式有新意.“拓展延伸”的设计为学生加深对概念的理解,提供了素材.在“问题情景”中的三个事例中,第一个例子中的“对应关系”比较明显,后两个例子则不太明显.如果能在教学设计中加以细致对比说明,效果会更好.。

高中数学新课程创新教学设计案例对数函数

高中数学新课程创新教学设计案例对数函数

高中数学新课程创新教学设计案例对数函数文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]12 对数函数教材分析对数函数是一类重要的函数模型,它与指数函数互为反函数.教材是在学生学过指数函数、对数及其运算的基础上引入对数函数的概念的.须要说明的是,这里与传统的教材有所不同,即没有先学习反函数,这对学生学习对数函数的概念、图像及性质有较大影响,使指数函数的知识点不能直接应用于对数函数的知识点,但从对数的定义中知道:指数式与对数式可互化.因此,在某些方面,如在画对数函数y=logx的图像列表时,可以把画指数函数y=2x图像时列的表中2的x与y的值对调.这节内容的重点是对数函数的概念、图像及性质,难点是对数函数与指数函数的关系.教学目标1. 通过具体实例,直观了解对数函数模型刻画的数量关系,初步理解对数函数的概念,并能画出具体对数函数的图像,掌握对数函数的图像和性质.x互为反函数(a>0且a≠1).2. 知道指数函数y=a x与对数函数y=loga3. 能应用对数函数的性质解有关问题.任务分析首先复习指数函数、对数的定义及对数的性质,这也是学习本节内容的基y是函数,叫作对数函数,为了符合习惯,常写成y=础.解析式x=logalogx.这些内容学生较难理解,教学时要引起重视.教学中,要注意从实例出a发,使学生从感性认识提高到理性认识;要注意运用对比的方法;要结合对数函数的图像抽象概括对数函数的性质.注意:不要求讨论形式化的函数定义,也不要求求已知函数的反函数,只须知道对数函数与指数函数互为反函数.教学设计一、问题情境同指数函数中的细胞分裂问题,即:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……1个这样的细胞分裂x次后,得到的细胞的个数为y.我们已经知道,个数y是分裂次数x的函数,解析式是y=2x.形式上是指数函数(这里的定义域是N).思考:在这个问题中,细胞分裂的次数x是不是细胞分裂个数y的函数若是,这个函数的解析式是什么y.其中,细胞的x也是y的函数,由对数的定义得到这个新函数是x=log2个数y是自变量,细胞分裂的次数x是函数.二、建立模型1. 学生讨论y与指数函数y=2x有何关系(1)函数x=log2(2)函数x=logy中的自变量、字母与我们以前所学的函数有何区别2结论:问题(1):两函数中的x表示的都是细胞分裂的次数,y表示的都是细胞分裂的个数,对应法则都是以2为底数,一个是取对数,一个是取指数,正好相逆.注意:这里不能说它们互为反函数,因为还没有学习反函数的概念.问题(2):这里的自变量所用字母是y,以前学习的函数的自变量常用字母x,即这里的用法不合习惯.2. 教师明晰y,(a>0,且a≠1)叫作对数函数,它的定义域是定义:函数x=long2(0,+∞),值域是(-∞,+∞).y中,x,y两由对数函数的定义可知,在指数函数y=a x和对数函数x=loga个变量之间的关系是一样的.不同的只是在指数函数y=a x里,x是自变量,y是y中,y是自变量,x是因变量.习惯上,我们常因变量,而在对数函数x=logay,(a>0且用x表示自变量,y表示因变量,因此,对数函数通常写成y=logaa≠1,x>0).3. 练习在同一坐标系中画出下列函数的图像.(1)y=longx.(2)y=.2解:列表:表12-1思考:上表中的x,y的对应值与指数函数中所列表的对应值有何关系描点,画图:4. 观察上面的函数图像,结合列表,仿照指数函数的性质,归纳总结出对数函数的性质(1)定义域是(0,+∞),值域是(-∞,+∞).(2)函数图像在y轴的右侧且过定点(1,0).(3)当a>1时,函数在定义域上是增函数,且当x>1时,y>0;当0<x <1时,y<0.当0<a<1时,函数在定义域上是减函数,且当x>1时,y<0;当0<x<1时,y>0.三、解释应用[例题]1. 求下列函数的定义域.(1)y=log2x2.(2)y=loga(4-x).(3)y=.解:(1){x|x≠0}.(2)(-∞,4).(3)(0,1).2. 比较下列各组数的大小.(1)log23与.(2)与,(a>0且a≠1).(3)log67与log76.解:(1)考查对数函数y=log2x.∵2>1,∴它在(0,+∞)上是增函数.又3<,∴log23<.(2)当a>1时,<;当0<a<1时,>.(3)log67>1>log76.总结:本例是利用对数的单调性比较两个对数的大小,当底数与1的大小不确定时,要分类讨论;当不能直接进行比较时,可在两个数中间插入一个已知数间接比较两个数的大小.3. 溶液的酸碱度是通过pH值来刻画的,pH值的计算公式为pH=-lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是mol/L.(1)根据对数函数性质及上述pH值的计算公式,说明溶液的酸碱度与溶液中氢离子的浓度之间的变化关系.(2)已知纯净水中氢离子的浓度为[H+]=10-7mol/L,计算纯净水的pH 值.解:(1)根据对数的性质,有pH=-lg[H+]=lg[H+]-1=lg,所以溶液中氢离子的浓度越大,溶液的酸度就越小.(2)当[H+]=10-7时,pH=-lg10-7=7,所以,纯净水的pH值是7.4. 设函数f(x)=lg(a x-b x),(a>1>b>0),问:当a,b满足什么关系时,f(x)在(1,+∞)上恒取正值解:当x∈(1,+∞)时,lg(a x-b x)>0恒成立a x-b x>1恒成立.令g(x)=a x-b x.∵a>1>b>0,∴g(x)在(0,+∞)上是增函数,∴当x>1时,g(x)>g(1)=a-b,∴当a-b≥1时,f(x)在(1,+∞)上恒取正值.[练习]1. 求函数y=的定义域.2. 比较与的大小.3. 函数y=lg(x2-2x)的增区间是 ____________ .4. 已知a>0,且a≠1,则在同一直角坐标系中,函数y=a-x和y=loga(-x)的图像有可能是().5. 大西洋鲑鱼每年都要逆流而上2000m,游回产地产卵.研究鲑鱼的科学家发现,一岁鲑鱼的游速可以表示为函数,单位是m/s,其中Q表示鲑鱼的耗氧量.(1)当一条鲑鱼的耗氧量是2700个单位时,它的游速是多少(2)计算一条鲑鱼的最低耗氧量.四、拓展延伸1. 作出对数函数y=loga x,(a>1)与y=logax,(0<a<1)的草图.2. 说出指数函数与对数函数的关系.以指数函数y=2x与对数函数y=log2x为代表加以说明.(1)对数函数y=log2x是把指数函数y=2x中自变量与因变量对调位置而得出的.教师明晰:当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量.我们称这两个函数互为函数.函数y=f(x)的反函数记作:y=f-1(x).x与指数函数y=2x互为反函数.对数函数y=log2(2)对数函数y=logx与指数函数y=2x的图像关于直线y=x对称.2(3)指数函数与对数函数对照表.表12-2点评这篇案例首先通过细胞分裂问题说明了对数函数的意义,这样安排既有利于学生理解对数函数的概念,又有利于学生了解了它与指数函数的关系.其次通过画具体的对数函数的图像,归纳总结出对数函数的性质,体现了由特殊到一般的认识规律,知识传授较为自然.性质的列举模仿了指数函数的性质.通过对比,便于学生理解、记忆.例题、练习的选配注意了题目的代表性,并且由易到难,注重学生解题能力的提高.拓展延伸侧重于指数函数与对数函数的图像、性质方面的关系,加深了学生对这两个函数的理解,并使学生从中了解了反函数的概念.。

高中数学新课程创新教学设计案例50篇___27_随机抽样

高中数学新课程创新教学设计案例50篇___27_随机抽样

27 随机抽样教材分析这节课是学生在初中已学过一些统计知识、了解统计的基本思想方法的基础上,进一步研究怎样通过样本去统计总体的相应情况,即怎样从总体中抽取样本才能更充分地反映总体的情况.教材首先通过学生熟悉的问题情境给出抽样方法,然后对三种抽样方法进行比较,归纳出三种抽样的特点、联系及适用范围,使学生对三种抽样有一个较完整的认识.教学目标1. 了解统计的基本思想,会用简单随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本.2. 通过抽样方法的学习,培养学生运用统计方法解决问题的能力.任务分析这节课的重点是三种抽样方法,难点是三种抽样方法的特点,以及用三种抽样方法解决实际问题.教学设计一、问题情境1. 从含有120个个体的总体中抽取一个容量为6的样本,应怎样抽取?每个个体被抽取的概率是多少?2. 为了了解参加某种知识竞赛的1000名学生的成绩,打算从中抽取一个容量为50的样本,应怎样抽取?每个个体被抽取的概率是多少?3. 一个单位的职工有500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人.为了解这个单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,应怎样抽取?每个个体被抽取的概率是多少?二、分组讨论针对上述问题讨论:1. 在上述三个问题中,总体的个数及组成上有何区别?2. 如何抽样.3. 每个个体在抽样过程中被抽取的概率是多少?学生分组讨论后,教师明晰:(1)上述三个问题在总体的个数上有明显不同,问题1中总体个数较少,问题2和3中总体个数较多;从组成上问题l,2与3有明显不同,问题3中总体由差异明显的三部分组成.(2)问题1可用生活中常用的抽签法,而问题2和3个体的个数较多,并且问题3中的各个体间又存在明显差异,故用抽签法不方便.(3)每个个体被抽取的概率均等.三、建立模型由问题1,2和3及讨论结果,归纳概括出三种抽样的概念.1. 简单随机抽样(1)定义一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,并且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.(2)抽样方法①抽签法对总体中的所有个体(共N个)编号,号码从1到N,并把号码写在形状、大小相同的签上.抽签时,每次从中抽出1个签,连续抽n次,就可得到一个容量为n的样本.②随机数表法第一步:编号.第二步:在随机数表中任选一个数作为起始数.第三步:从选定的数开始向任一方向读下去,到n个号码读完为止.教师明晰:第一,当总体中的个体数不多时,适宜抽签法.第二,从个体数为N的总体中抽取一个容量为n的样本,每个个体被抽到的概率都等于.3. 系统抽样(1)定义当总体中的个体数较多时,采用简单随机抽样,就显得烦锁.这时,可将总体分成均衡的若干部分,然后按照预先定出的规则,从每一部分中抽取一个个体,得到需要的样本,这种抽样叫作系统抽样.(2)系统抽样的步骤第一步:采用随机的方式将总体中的个体编号.为简便起见,有时可直接利用个体带有的号码编号,如考生的准考证号、街道上各户的门牌号等.第二步:为将整个的编号进行分段(即分成几个部分),要确定分段的间隔k.当(N 为总体中的个体数,n为样本容量)是整数时,k=;当Nn不是整数时,通过从总体中剔除一些个体,使剩下的总体中个体个数N′能被n整除,这时.第三步:在第1段用简单随机抽样确定起始的个体编号l.第四步:按照事先确定的规则抽取样本(通常是将l加上间隔k,得到第2个编号l+k,再将(l+k)加上k,得到第3个编号l+2k,这样继续下去,直到获取整个样本).教师明晰:第一,编号的方式可酌情决定,如100个个体可以编号为1~100,也可以编号为(1,1),(1,2),…,(10,10)等.第二,系统抽样与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用简单随机抽样.4. 分层抽样(1)定义当总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫作分层抽样,其中所分成的各部分叫作层.教师明晰:第一,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,故分层抽样时,每一个个体被抽到的概率都是相等的.第二,由于分层抽样充分利用了我们掌握的信息,使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.5. 三种抽样方法的比较教师引导学生分组讨论,归纳,并填写下表:表26-1类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的概率相等从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几部分,按事先确定的规则在各部分抽取在起始部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成[练习]1. 将全班女学生(或男学生)按座位编号,制作相应的卡片签,放入同一个箱子里均匀搅拌,从中抽出8个签,就相应的8名学生对看足球比赛的喜爱程度(很喜爱、喜爱、一般、不喜爱、很不喜爱)进行调查,还可对其他感兴趣的问题进行调查.2. (1)在上面用随机数表抽取样本的例子中,再按照下面的规则来抽取容量为10的样本:从表中的某一个两位数字号码开始依次向下读数,到头后再转向它左面的两位数字号码,并向上读数,以此下去,直到取足样本.(2)自己设计一个抽样规则,抽取上面要求的样本.3. 一个礼堂有30排座位,每排有40个座位.一次报告会,礼堂内坐满了听众.会后,为听取意见,留下了座位号为14的所有30名听众进行座谈.这里运用了哪种抽取样本的方法?4. 10000个有机会中奖的号码(编号为0000~9999)中,有关部门按照随机抽取的方式确定,后两位数字是37的号码为中奖号码.这是运用哪种抽样方法来确定中奖号码的?试依次写出这100个中奖号码.5. 一个田径队中有男运动员56人,女运动员42人,用分层抽样的方法从全队的运动员中抽出一个容量为28的样本.6. 某市的3个区共有高中学生20000人,且3个区的高中学生人数之比为2∶3∶5.现要用分层抽样的方法从所有学生中抽取一个容量为200的样本,那么分别应从这3个区中抽取多少人?四、拓展延伸1. 运用本节知识在本校范围内就学生的某一指标进行抽样调查,并写出实习报告.2. 利用系统抽样从总体数为3782的总体中抽取样本容量为15的样本时,每个个体被抽取的概率是多少?分析:找间隔,此时k不为整数,须从总体中剔除2个个体,每个个体被剔除的概率为,被保留的概率为,所以每个个体被抽取的概率为点评这篇案例主要研究了抽样的思想方法,属于概念课.案例首先从学生日常熟悉的问题情境入手,然后展开讨论,并让学生大胆设想抽样方法.虽然他们的方法并不完善,但可以充分使学生参与知识的形成,并形成合作学习的意识,最后的“拓展延伸”是本节内容的应用和深化.该案例充分体现了从具体到抽象又从抽象到具体的模式,符合学生的认知规律.。

高中数学新课程创新教学设计案例50篇__44_数列

高中数学新课程创新教学设计案例50篇__44_数列

数列教材分析这一节课主要研究数列的有关定义,运用概念去解决有关问题,其中,对数列概念的理解及应用,是教学的重点,也是教学的难点。

教学目标1、知识与技能:理解数列及数列的通项公式等有关概念,会根据一个数列的有限项写出这个数列的一个通项公式。

2.、过程与方法:了解递推数列,并会由递推公式写出此数列的若干项。

3、情感态度与价值观:进一步培养学生观察、归纳和猜想的能力。

教学设计一、问题情景传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们研究过1,3,6,10,…由于这些数都能够表示成三角形(如图44-1),他们就将其称为三角形数.类似地,1,4,9,16,…能够表示成正方形(如图44-2),他们就将其称为正方形数。

二、建立模型1.引导学生观察、分析数列的顺序要求,设法用自己的语言描述出数列的定义及有穷数列、无穷数列、递增数列、摆动数列等有关概念像1,4,9,16,…等按照一定规律排列的一列数,就叫作数列。

数列的概念: 按一定顺序排列的一列数叫做数列,数列中的每一个数叫做数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项,通常也叫做首项,排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。

注: 从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么他们就不是同一数列,显然数列和数集有本质的区别。

2.数列的记法数列的一般形式可以写成:,,,,21n a a a ,可简记为}{n a .其中n a 是数列的第n 项。

3.数列的通项公式如果数列}{n a 的第n 项n a 与序号n 之间的关系可以用一个公式)(n f a n =来表示,那么这个公式叫做这个数列的通项公式。

注: (1)一个数列的通项公式有时不唯一。

如 ,0,1,0,1,0,1,0,1, 它的通项公式可以是2)1(11+-+=n n a ,也可以是|21cos |π+=n a n 。

高中数学优秀教学案例10篇

高中数学优秀教学案例10篇

高中数学优秀教学案例10篇引言本文将介绍十篇高中数学优秀教学案例,这些案例不仅能够激发学生对数学的兴趣,还能够提高他们的数学理解和解决问题的能力。

案例1:数列与函数的关系这个案例通过数列与函数的关系展示了数学的实际应用。

学生通过分析数列与函数之间的规律,掌握了数学模型的建立和使用方法。

案例2:应用题解决这个案例通过一系列应用题,让学生综合运用所学的知识来解决实际问题。

学生通过解决这些应用题,培养了数学思维和问题解决能力。

案例3:图形的变换这个案例通过图形变换来帮助学生理解几何知识。

学生通过观察图形的变换规律,加深了对几何知识的理解。

案例4:概率统计这个案例将概率与统计应用于实际生活中的问题中。

学生通过统计数据和计算概率,培养了数据分析和推理能力。

案例5:三角函数的应用这个案例通过三角函数的应用,让学生更好地理解三角函数的概念和用途。

学生通过解决实际问题,进一步巩固了三角函数的知识。

案例6:平面向量的运算这个案例通过平面向量的运算,让学生掌握向量的性质和运算规律。

学生通过解决向量运算的问题,提高了数学建模和计算能力。

案例7:解析几何的应用这个案例通过解析几何的应用,让学生熟练运用解析几何的方法解决几何问题。

学生通过解决实际问题,进一步加深了对解析几何的理解。

案例8:数学建模这个案例通过数学建模,让学生在实际问题中运用数学知识进行建模分析。

学生通过解决实际问题,培养了数学建模和分析能力。

案例9:数学思维训练这个案例通过数学思维训练,提供了一系列拓展性的数学问题和思考方法。

学生通过解决这些问题,培养了创新思维和数学思维能力。

案例10:数学竞赛解题这个案例通过数学竞赛解题,让学生在竞争中锻炼和提高自己的数学能力。

学生通过参与数学竞赛,培养了良好的数学竞赛素养。

总结这些高中数学优秀教学案例涵盖了数学的各个知识点和应用领域,能够帮助学生提高数学能力和解决问题的能力。

教师可以根据实际情况选择合适的案例来进行教学,激发学生对数学的兴趣和热爱。

高中数学新课程创新教学设计案例--指数函数

高中数学新课程创新教学设计案例--指数函数

11 指数函数教材阐发指数函数是底子初等函数之一,在数学中占有重要地位,在实际中有着十分广泛的应用,如细胞分裂、考古中所用的14C的衰减、放射性物质的剩留量等都与指数函数有关.有理指数幂及其运算是学习指数函数的根底.教材首先通过实例引入什么是指数函数.然后给出三个具编制子y=2x,y=10x,y=〔〕x,用描点法画其图像,并借助图像,不雅察得出指数函数的定义域、值域、图像过定点〔1,0〕及单调性.最后配备得当的习题及操练.在常识的形成过程中,表达图像不雅察、归纳猜测的思想.这节内容的重点是指数函数的图像与性质,难点是应用指数函数的性质解决相关问题.教学目标1. 了解指数函数模型的实际布景.2. 理解并掌握指数函数的定义、图像及性质.3. 通过对指数函数的概念、性质的归纳、抽象和概括,体验数学常识的发生和形成的过程,培养学生的抽象概括能力.4. 在解决简单实际问题的过程中,体会指数函数是一类重要的数学模型,培养学生的应用意识.任务阐发学生在学习本节内容时,已学过了一些底子函数,如二次函数,而且学过有理指数幂及其运算,这均为学生学习这节内容奠基了根底.由应用问题成立指数函数模型是个难点,为此必然要使学生理解问题的意义,进而由少到多、由浅入深逐步成立起两个变量间的关系.要重视列表、画图像的过程,这样才有利于不雅察、归纳出指数函数的性质.要充实显示出常识的形成过程.教学设计一、问题情境某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……如果1个这样的细胞分裂x次后,得到细胞的个数为y,试求y关于x的函数关系式.先由学生独立解答,然后教师明晰细胞分裂的规律是:每次每个细胞分裂为2个.当x=0时,y=1=20;当x=1时,y=20×2=21;当x=2时,y=21×2=22;当x=3时,y=22×2=23;……归纳:分裂x次,得到细胞的个数y=2x,此中x∈N.二、成立模型1. 学生讨论上面得到的函数y=2x有何特点?〔底数为常数,自变量在指数的位置上〕2. 教师明晰一般地,函数y=ax,〔a>0且a≠1,x∈R〕叫作指数函数.思考:为什么要限制a>0且a≠1?〔理由:当a=0,x≤0时,ax无意义;当a<0时,如y=〔-2〕无意义;当a=1时,y=1x=1是常数函数.没有研究的必要.〕3. 练习在同一坐标系内,画出下面三个指数函数的图像.〔1〕y=2x.〔2〕y=10x.〔3〕y=〔〕x.解:列表:描点,画图:4. 不雅察上面的函数的图像,结合列表,归纳总结出指数函数y=a x的性质〔1〕定义域是〔-∞,+∞〕,值域是〔0,+∞〕.〔2〕函数图像在x轴的上方且都过定点〔0,1〕.〔3〕当a>1时,函数在定义域上是增函数,且当x>0时,y>1;当x<0时,0<y <1.当0<a<1时,函数在定义域上是减函数,且当x>0时,0<y<1;当x<0时,y>1.5. 提出问题,组织学生讨论〔1〕函数y=2x与y=x2的图像有何关系?试对你的结论加以证明.〔2〕试举一个在生活、出产、科技等实际中与指数函数有关的例子.三、解释应用[例题]1. 操纵指数函数的性质,比拟以下各题中两个值的大小:3.x.∵>1,∴y x在〔-∞,+∞〕是增函数.又2.5<3,∴3..的大小?2. 某种放射性物质不竭衰变为其他物质,每颠末1年剩留的这种物质是本来的84%.画出这种物质的剩留量随时间变化的图像,并按照图像求出颠末多少年,剩留量是本来的一半.〔成果保留1个有效数字〕解:设这种物质最初的质量是1,颠末x年,剩留量是y,那么1;2;……x.列表:表11-3x 0 1 2 3 4 5y 1x的图像:由图上看出y=0.5时,x≈4.答:约颠末4年,剩留量是本来的一半.说明:为便于不雅察,两轴上的单元长度可不相等.3. 说明以下函数的图像与指数函数y=2x的图像的关系,并画出它们的草图.〔1〕y=2x+1.〔2〕y=2x-2.解:〔1〕比拟函数y=2x+1与y=2x的关系,知y=2-1+1与y=x0相等.∴函数y=2x+1中的x=-1时的y值,与函数y=2x中的x=0时的y值相等.又y=20+1与y=x1相等;y=23+1与y=x4相等;……∴将指数函数y=2x的图像向左平行移动1个单元长度,即可得到函数y=2x+1的图像.〔2〕将指数函数y=2x的图像向右平行移动2个单元长度,即可得到函数y=2x-2的图像.[练习]1. 比拟大小:-2.2. 画出以下函数的图像.〔1〕y=3x.〔2〕y=〔〕x.3. 求以下函数的定义域.〔1〕y=.〔2〕y=.4. 函数f〔x〕=a x在[0,1]上的最大值与最小值之和为3,求a的值.5. 用清水漂洗衣服,假设每次能洗去污垢的,试写出存留污垢y与漂洗次数x的函数关系式.如果要使存留的污垢不超过原有的1%,那么至少要漂洗几次?四、拓展延伸xx=0.5的解吗?思考:你能判断出方程2x+x2-2=0有几个实数根吗?2. 以下是某地域不同身高的未成年男性的体重平均值表:表11-4身高/cm 60 70 80 90 100 110体重/kg身高/cm 120 130 140 150 160 170体重/kg〔1〕按照表中提供的数据,能否从我们已经学过的函数y=ax+b,y=ax2+bx+c,y=,y=a·bx中选择一种函数使它比拟近似地反映出该地域未成年男性体重y关于身高x的函数关系?假设能,求出这个函数解析式.〔2〕如果体重超过不异身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地域某中学一男生身高为175cm,体重为78kg,问:他的体重是否正常?解:〔1〕以身高为横坐标,体重为纵坐标,在直角坐标系中画出散点图如下.按照图,可考虑用函数y=ab x,反映上述数据之间的对应关系.把x=70,y=7.90和x=160,y=47.25两组数据代入y=a·b x,得操纵计算器计算,得a=2,b=1.02.x.将数据代入所得的函数解析式或作出所得函数的图像,可知所求函数能较好地反映该地域未成年男性体重与身高的关系.x,得175.操纵计算器计算,得y=63.98.由于78÷63.98≈1.22>1.2,因此,这名男生体型偏胖.点评这节课的中心问题有三个,即指数函数的定义、图像与性质,围绕这三个问题,这篇案例进行了精心设计:首先通过实例引入了指数函数的概念,再通过画具体的指数函数的图像归纳出一般指数函数的性质.这样安排有利于学生理解指数函数的概念,掌握指数函数的性质.选配的例题难易适中,具有典型性和代表性.操练由易到难,既可以安定根底常识,又可以提高学生的解题技能.“拓展延伸〞对本节中心内容进行了拓展,有用图像法求方程的解,判断方程根的个数;有函数图像的平移;还有应用题.这些都是数学中经常遇到的问题,它们的解决将有利于学生此后的学习.。

【免费下载】高中数学新课程创新教学设计案例50篇 副本

【免费下载】高中数学新课程创新教学设计案例50篇 副本
通过实验探索发现证明应用这一学习过程激发学生学习数学的自信心和积极性端正他们学习数学的科学态度培养他们良好的思维习惯进一步培养他们的探索精神和创新意识同时让他们感受到数学体系在内容上的严谨与和谐
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

高中数学新课程创新教学设计案例--对数函数

高中数学新课程创新教学设计案例--对数函数

精心整理12对数函数教材分析对数函数是一类重要的函数模型,它与指数函数互为反函数.教材是在学生学过指数函数、对数及其运算的基础上引入对数函数的概念的.须要说明的是,这里与传统的教材有所不同,即没有先学习反函数,这对学生学习对数函数的概念、图像及性质有较大影响,使指数函数的知识点不能直接应用于对数函数的知识点,但从对数的定义中知道:指数式与对数式可互化.因此,在某些方面,如在画对数函数y=log2x的图像列表时,可以把画指数函数y=2x图像时列的表中的x与y的值对调.这节内容的重点是对数函数的概念、图像及性质,难点是对数函数与指数函数的关系.教学目标1.2.3.发,函数. (1)x也是y x 是函数.1.(1(2)函数x=log2y中的自变量、字母与我们以前所学的函数有何区别?结论:问题(1):两函数中的x表示的都是细胞分裂的次数,y表示的都是细胞分裂的个数,对应法则都是以2为底数,一个是取对数,一个是取指数,正好相逆.注意:这里不能说它们互为反函数,因为还没有学习反函数的概念.问题(2):这里的自变量所用字母是y,以前学习的函数的自变量常用字母x,即这里的用法不合习惯.2.教师明晰定义:函数x=long2y,(a>0,且a≠1)叫作对数函数,它的定义域是(0,+∞),值域是(-∞,+∞).由对数函数的定义可知,在指数函数y=a x和对数函数x=log a y中,x,y两个变量之间的关系是一样的.不同的只是在指数函数y=a x里,x是自变量,y是因变量,而在对数函数x=log a y中,y是自变量,x是因变量.习惯上,我们常用x表示自变量,y表示因变量,因此,对数函数通常写成y=log a y,(a>0且a≠1,x>0).3.练习在同一坐标系中画出下列函数的图像.(1)y=long2x.(2)y=.解:列表:表12-1思考:上表中的x,y的对应值与指数函数中所列表的对应值有何关系?描点,画图:4.观察上面的函数图像,结合列表,仿照指数函数的性质,归纳总结出对数函数的性质(1)定义域是(0,+∞),值域是(-∞,+∞).(2)函数图像在y轴的右侧且过定点(1,0).(3)当a>1时,函数在定义域上是增函数,且当x>1时,y>0;当0<x<1时,y<0.当0<a<[例1.(1)y=解:(12.(1)log2(2)log a(3)log6解:(1∵2>1又3<3.5∴log23<(2)当当0<a<(3)log63.(1(2解:(1)根据对数的性质,有pH=-lg[H+]=lg[H+]-1=lg,所以溶液中氢离子的浓度越大,溶液的酸度就越小.(2)当[H+]=10-7时,pH=-lg10-7=7,所以,纯净水的pH值是7.4.设函数f(x)=lg(a x-b x),(a>1>b>0),问:当a,b满足什么关系时,f(x)在(1,+∞)上恒取正值?解:当x∈(1,+∞)时,lg(a x-b x)>0恒成立a x-b x>1恒成立.令g(x)=a x-b x.∵a>1>b>0,∴g(x)在(0,+∞)上是增函数,∴当x>1时,g(x)>g(1)=a-b,∴当a-b≥1时,f(x)在(1,+∞)上恒取正值.[练习]1.求函数y=的定义域.2.比较log0.50.2与log0.50.3的大小.3.函数y=lg(x2-2x)的增区间是____________.4.已知a>0,且a≠1,则在同一直角坐标系中,函数y=a-x和y=log a(-x)的图像有可能是().5.大西洋鲑鱼每年都要逆流而上2000m,游回产地产卵.研究鲑鱼的科学家发现,一岁鲑鱼的游速可以表示为函数(1(21.2.(1对数函数(2(3表12-2点评例。

高中数学教案优秀教案设计及反思(汇集十二篇)

高中数学教案优秀教案设计及反思(汇集十二篇)

高中数学教案优秀教案设计及反思(汇集十二篇)高中数学教案优秀教案设计及反思篇1一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程_+y+D_+Ey+F=0表示圆的条件。

【过程与方法】通过对方程_+y+D_+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】二元二次方程与圆的一般方程及标准圆方程的关系。

三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。

2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?高中数学教案优秀教案设计及反思篇2一、教学内容分析:本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。

本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。

本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

二、学生学习情况分析:任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12 对数函数
教材分析
对数函数是一类重要的函数模型,它与指数函数互为反函数.教材是在学生学过指数函数、对数及其运算的基础上引入对数函数的概念的.须要说明的是,这里与传统的教材有所不同,即没有先学习反函数,这对学生学习对数函数的概念、图像及性质有较大影响,使指数函数的知识点不能直接应用于对数函数的知识点,但从对数的定义中知道:指数式与对数式可互化.因此,在某些方面,如在画对数函数y=log2x的图像列表时,可以把画指数函数y=2x图像时列的表中的x与y的值对调.这节内容的重点是对数函数的概念、图像及性质,难点是对数函数与指数函数的关系.
教学目标
1. 通过具体实例,直观了解对数函数模型刻画的数量关系,初步理解对数函数的概念,并能画出具体对数函数的图像,掌握对数函数的图像和性质.
2. 知道指数函数y=a x与对数函数y=log a x互为反函数(a>0且a≠1).
3. 能应用对数函数的性质解有关问题.
任务分析
首先复习指数函数、对数的定义及对数的性质,这也是学习本节内容的基础.解析式x =log a y是函数,叫作对数函数,为了符合习惯,常写成y=log a x.这些内容学生较难理解,教学时要引起重视.教学中,要注意从实例出发,使学生从感性认识提高到理性认识;要注意运用对比的方法;要结合对数函数的图像抽象概括对数函数的性质.注意:不要求讨论形式化的函数定义,也不要求求已知函数的反函数,只须知道对数函数与指数函数互为反函数.
教学设计
一、问题情境
同指数函数中的细胞分裂问题,即:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……1个这样的细胞分裂x次后,得到的细胞的个数为y.
我们已经知道,个数y是分裂次数x的函数,解析式是y=2x.形式上是指数函数(这里的定义域是N).
思考:在这个问题中,细胞分裂的次数x是不是细胞分裂个数y的函数?若是,这个函数的解析式是什么?
x也是y的函数,由对数的定义得到这个新函数是x=log2y.其中,细胞的个数y是自变量,细胞分裂的次数x是函数.
二、建立模型
1. 学生讨论
(1)函数x=log2y与指数函数y=2x有何关系?
(2)函数x=log2y中的自变量、字母与我们以前所学的函数有何区别?
结论:问题(1):两函数中的x表示的都是细胞分裂的次数,y表示的都是细胞分裂的个数,对应法则都是以2为底数,一个是取对数,一个是取指数,正好相逆.
注意:这里不能说它们互为反函数,因为还没有学习反函数的概念.
问题(2):这里的自变量所用字母是y,以前学习的函数的自变量常用字母x,即这里的用法不合习惯.
2. 教师明晰
定义:函数x=long2y,(a>0,且a≠1)叫作对数函数,它的定义域是(0,+∞),值域是(-∞,+∞).
由对数函数的定义可知,在指数函数y=a x和对数函数x=log a y中,x,y两个变量之间的关系是一样的.不同的只是在指数函数y=a x里,x是自变量,y是因变量,而在对数函数x=log a y中,y是自变量,x是因变量.习惯上,我们常用x表示自变量,y表示因变量,因此,对数函数通常写成y=log a y,(a>0且a≠1,x>0).
3. 练习
在同一坐标系中画出下列函数的图像.
(1)y=long2x.(2)y=.
解:列表:
表12-1
思考:上表中的x,y的对应值与指数函数中所列表的对应值有何关系?
描点,画图:
4. 观察上面的函数图像,结合列表,仿照指数函数的性质,归纳总结出对数函数的性质
(1)定义域是(0,+∞),值域是(-∞,+∞).
(2)函数图像在y轴的右侧且过定点(1,0).
(3)当a>1时,函数在定义域上是增函数,且当x>1时,y>0;当0<x<1时,y <0.
当0<a<1时,函数在定义域上是减函数,且当x>1时,y<0;当0<x<1时,y>0.
三、解释应用
[例题]
1. 求下列函数的定义域.
(1)y=log2x2.(2)y=log a(4-x).(3)y=.
解:(1){x|x≠0}.(2)(-∞,4).(3)(0,1).
2. 比较下列各组数的大小.
(1)log23与log23.5.
(2)log a5.1与log a5.9,(a>0且a≠1).
(3)log67与log76.
解:(1)考查对数函数y=log2x.
∵2>1,∴它在(0,+∞)上是增函数.
又3<3.5,
∴log23<log23.5.
(2)当a>1时,log a5.1<log a5.9;
当0<a<1时,log a5.1>log a5.9.
(3)log67>1>log76.
总结:本例是利用对数的单调性比较两个对数的大小,当底数与1的大小不确定时,要分类讨论;当不能直接进行比较时,可在两个数中间插入一个已知数间接比较两个数的大小.
3. 溶液的酸碱度是通过pH值来刻画的,pH值的计算公式为pH=-lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是mol/L.
(1)根据对数函数性质及上述pH值的计算公式,说明溶液的酸碱度与溶液中氢离子的浓度之间的变化关系.
(2)已知纯净水中氢离子的浓度为[H+]=10-7mol/L,计算纯净水的pH值.
解:(1)根据对数的性质,有
pH=-lg[H+]=lg[H+]-1=lg,
所以溶液中氢离子的浓度越大,溶液的酸度就越小.
(2)当[H+]=10-7时,pH=-lg10-7=7,所以,纯净水的pH值是7.
4. 设函数f(x)=lg(a x-b x),(a>1>b>0),问:当a,b满足什么关系时,f(x)在(1,+∞)上恒取正值?
解:当x∈(1,+∞)时,lg(a x-b x)>0恒成立a x-b x>1恒成立.
令g(x)=a x-b x.
∵a>1>b>0,
∴g(x)在(0,+∞)上是增函数,
∴当x>1时,g(x)>g(1)=a-b,
∴当a-b≥1时,f(x)在(1,+∞)上恒取正值.
[练习]
1. 求函数y=的定义域.
2. 比较log0.50.2与log0.50.3的大小.
3. 函数y=lg(x2-2x)的增区间是____________ .
4. 已知a>0,且a≠1,则在同一直角坐标系中,函数y=a-x和y=log a(-x)的图像有可能是().
5. 大西洋鲑鱼每年都要逆流而上2000m,游回产地产卵.研究鲑鱼的科学家发现,一
岁鲑鱼的游速可以表示为函数,单位是m/s,其中Q表示鲑鱼的耗氧量.
(1)当一条鲑鱼的耗氧量是2700个单位时,它的游速是多少?
(2)计算一条鲑鱼的最低耗氧量.
四、拓展延伸
1. 作出对数函数y=log a x,(a>1)与y=log a x,(0<a<1)的草图.
2. 说出指数函数与对数函数的关系.
以指数函数y=2x与对数函数y=log2x为代表加以说明.
(1)对数函数y=log2x是把指数函数y=2x中自变量与因变量对调位置而得出的.
教师明晰:当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量.我们称这两个函数互为函数.函数y =f(x)的反函数记作:y=f-1(x).
对数函数y=log2x与指数函数y=2x互为反函数.
(2)对数函数y=log2x与指数函数y=2x的图像关于直线y=x对称.
(3)指数函数与对数函数对照表.
表12-2
点评
这篇案例首先通过细胞分裂问题说明了对数函数的意义,这样安排既有利于学生理解对数函数的概念,又有利于学生了解了它与指数函数的关系.其次通过画具体的对数函数的图像,归纳总结出对数函数的性质,体现了由特殊到一般的认识规律,知识传授较为自然.性
质的列举模仿了指数函数的性质.通过对比,便于学生理解、记忆.例题、练习的选配注意了题目的代表性,并且由易到难,注重学生解题能力的提高.拓展延伸侧重于指数函数与对数函数的图像、性质方面的关系,加深了学生对这两个函数的理解,并使学生从中了解了反函数的概念.。

相关文档
最新文档