中考数学方程与方程组(3)

合集下载

2020初中数学中考一轮复习基础达标训练:二元一次方程组3(附答案)

2020初中数学中考一轮复习基础达标训练:二元一次方程组3(附答案)

2020初中数学中考一轮复习基础达标训练:二元一次方程组3(附答案)1.已知长江比黄河长836 km,黄河长的6倍比长江长的5倍多1 284 km.若设长江长x km,黄河长y km,则下列方程组能满足上述关系的是( )A.836651284x yy x-=⎧⎨=+⎩B.836561284x yy x+=⎧⎨=+⎩C.836651284y xy x-=⎧⎨-=⎩D.836561284y xx y-=⎧⎨=+⎩2.某公司向银行申请了甲、乙两种贷款共计68万元,每年需付出8.42万元利息,已知甲种贷款每年的利率为12%,乙种贷款每年的利率为13%,则该公司甲、乙两种贷款的数额分别为()A.26万元,42万元B.40万元,28万元C.28万元,40万元D.42万元,26万元3.已知关于x,y的方程组212ax yx by+=⎧⎨-=⎩,甲看错a得到的解为12xy=⎧⎨=-⎩,乙看错了b得到的解为11xy=⎧⎨=⎩,他们分别把a、b错看成的值为()A.a=5,b=﹣1 B.a=5,b=12C.a=﹣l,b=12D.a=﹣1,b=﹣14.已知方程组5458x yx y+=⎧⎨+=⎩则x y-的值为()A.2 B.﹣1 C.12 D.﹣45.以方程组24321x yx y-=⎧⎨+=-⎩的解为坐标的点(x,y)在平面直角坐标系中的位置是( )A.第一象限B.第二象限C.第三象限D.第四象限6﹣b+1|=0,则(b﹣a)2015=()A.﹣1 B.1 C.52015D.﹣52015 7.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则下列方程组中正确的是()A.1836024360x yx y+=⎧⎨-=⎩B.1836024360x yx y+=⎧⎨+=⎩C.1836024360x yx y-=⎧⎨-=⎩D.1836024360x yx y-=⎧⎨+=⎩8.用代入消元法解方程组21352x y x y -=⎧⎨+=⎩ ①②以下各式正确的是( ) A .3(1-2y)+5y =2B .3(1+2y)+5y =2C .3-2y +5y =2D .1-3×2y +5y =29.关于x ,y 的方程组23,352x y k x y k +=⎧⎨+=+⎩的解x ,y 的和为12,则k 的值为 ( ) A .14 B .10 C .0 D .-1410.方程组43235x y k x y -=⎧⎨+=⎩的解x 与y 的值相等,则k 的值为( ) A .1或-1 B .1 C .-1 D .5或-511.若二元一次方程组23121x y ax by -=⎧⎨+=⎩和51cx ay x y -=⎧⎨+=⎩的解相同,则x= ___ ,y= ____ . 12.已知方程组23y k 3x 5y k 1x +=⎧⎨+=+⎩的解和是2,则k 的值是 . 13.若{x 1y 2==是方程组ax by 7bx cy 12+=⎧+=⎨⎩的解,则a 与c 的关系是______. 14.在等式2y ax bx c =++中,当x 1=-时,y 0=;当x 5=时,y 60=;当x 2=时,y 3.=则a b c ++= ______ .15.如果实数x 、y 满足方程组2214x y x y -=⎧⎨+=⎩,那么(x +y)(x -y)=________. 16.已知 x+2y ﹣3z=0,2x+3y+5z=0,则x y z x y x ++-+=_____. 17.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x ,若1x ,2x 满足1232x x =+,则m 的值为_____________18.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为______. 19.方程组251x y y z x z +=-⎧⎪+=⎨⎪+=-⎩的解为________.20.如果2x n-2﹣y m-2n+3=3是关于x ,y 的二元一次方程,那么m=___,n=____.21.清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?22.(本题10分)(1)解方程组:4 {? 25x yx y-=+=;(2)解不等式:2132x x->-.23.某商店销售两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需280元;购买3个A品牌和1个B品牌的计算器共需210元.(Ⅰ)求这两种品牌计算器的单价;(Ⅱ)开学前,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的九折销售,B品牌计算器10个以上超出部分按原价的七折销售.设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数关系式.(Ⅲ)某校准备集体购买同一品牌的计算器,若购买计算器的数量超过15个,购买哪种品牌的计算器更合算?请说明理由.24.在今年“六•一”期间,扬州市某中学计划组织初一学生到上海研学,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.(1)请问甲、乙两种客车每辆分别能载客多少人?(2)若该学校初一年级参加研学活动的师生共有303名,旅行社承诺每辆车安排一名导游,导游也需一个座位.旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游,为保证所租的每辆车均有一名导游,租车方案调整为:同时租65座、甲种客车和乙种客车的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案应如何安排?25.解方程组:39 431x yx y-=-⎧⎨+=⎩①②26.(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?27.为了解决农民工子女入学难的问题,我市建立了一套进城农民工子女就学的保障机制,其中一项就是免交“借读费”.据统计,2004年秋季有5000名农民工子女进入主城区中小学学习,预计2005年秋季进入主城区中小学学习的农民工子女比2004年有所增加,其中小学增加20%,中学增加30%,这样,2005年秋季将新增1160名农民工子女在主城区中小学学习.元计算,(1)如果按小学每生每年收“借读费”500元,中学每生每年收“借读费”1000求2005年新增加的1160名中小学学生共免收多少“借读费”?(2)如果小学每增加40名学生需配备2名教师,中学每增加40名学生需配备3名教师,若按2005年秋季入学后,农民工子女在主城区中小学就读的学生增加的人数计算,一共需要配备多少名中小学教师?28.已知甲、乙两种商品的原单价之和为100元,因市场变化,甲商品降价10%,乙商品提价10%,调价后甲、乙两种商品的单价之和比原单价之和提高了2%,求甲、乙两种商品的原单价各是多少元?参考答案1.A【解析】试题解析:根据长江比黄河长836千米,则836.x y -=根据黄河长度的6倍比长江长度的5倍多1284千米,则651284y x -=.可列方程组为836651284x y y x -=⎧⎨=+⎩.故选A.点睛:二元一次方程组的应用,审题,找准题目中的等量关系式解题的关键.2.D【解析】设该公司甲、乙两种贷款的数额分别为x 万元与y 万元,则有6812%13%8.42x y x y +=⎧⎨+=⎩,解这个二元一次方程组得4226x y =⎧⎨=⎩,所以该公司甲、乙两种贷款的数额分别为42万元与26万元.【方法点睛】本题目中的相等关系是:甲、乙两种贷款共计68万元,每年需付出8.42万元利息,再利用相等关系列出方程组.3.C【解析】【分析】把甲得到的解代入第二个方程,把乙得到的解代入第一个方程,然后求解即可.【详解】根据题意得:{12221b a +=+=, 解得112a b =-=⎧⎨⎩.故选C.【点睛】此题考查了二元一次方程组的解的定义.此题比较简单,解题的关键是理解比掌握二元次方程组的解的定义.4.B【解析】分析:两式相减即可求出答案.详解:两式相减得:4x ﹣4y =﹣4,∴x ﹣y =﹣1故选B .点睛:本题考查了二元一次方程,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.5.D【解析】24321x y x y -=⎧⎨+=-⎩,解得 12x y =⎧⎨=-⎩, 故点(x ,y )在第四象限.选D.6.A【解析】210a b -+=,∴50210a b a b ++=⎧⎨-+=⎩, 解得:23a b =-⎧⎨=-⎩,则()20152015321b a -=-+=-(), 故选A .【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每一个非负数都为0是解题的关键.7.A【解析】根据题意可得,顺水速度为:x y +,逆水速度为:x y -,所以根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,故选A . 8.B【解析】由①得x=1+2y,代入②. 3(1+2y)+5y=2,故选B. 9.A【解析】【分析】先解关于x、y的方程组23352x y kx y k+=⎧⎨+=+⎩求得用含k的代数式表达的x、y的值,再由x、y的和为12列出关于k的方程,解此方程即可求得k的值. 【详解】解关于x、y的方程组23352x y kx y k+=⎧⎨+=+⎩得:26?4x ky k=-⎧⎨=-+⎩,∵x+y=12,∴2k-6-k+4=12,解得:k=14.故选A.【点睛】读懂题意,熟练掌握二元一次方程组的解法是解答本题的关键. 10.B【解析】由题意得43235x y kx yx y-=⎧⎪+=⎨⎪=⎩,解得,k=1.故选B.11.3, -2【解析】分析:联立两方程组中不含a与b的方程组成方程组,求出x与y的值即可.详解:联立得:23121x yx y-⎧⎨+⎩=①=②,①+②×3得:5x=15,即x=3,把x=3代入②得:y=-2,故答案为:3;-2.点睛:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.12.3【解析】试题分析:先把k 当作已知条件求出x 、y 的值,再根据x 与y 的和为2列出关于k 的方程,求出k 的值即可.解23{351x y k x y k +=+=+①②①×3-②×2,得:-y=k-2∴y=2-k把y=2-k 代入①得:2x=4k-6∴x=2k-3∵x+y=2∴2k-3+2-k=2解得:k=3.考点:二元一次方程组的解.13.a-4c=-17【解析】【分析】把x 与y 的值代入方程组,通过整理即可确定出a 与c 的关系.【详解】把{12x y ==代入方程组得:27212a b b c +=⎧⎨+=⎩①②, 2-⨯①②得:417a c -=-,故答案为:417a c -=-【点睛】本题考查了二元一次方程组的解.将解代入方程组中并通过加减消元法得出a 与c 的关系是解题的关键.14.-4【解析】分析:将已知三对值代入等式得到关于a,b,c的方程组,求出方程组的解得到a,b,c的值即可.详解:②﹣①得:24a+6b=60,4a+b=10④,③﹣①得:3a+3b=3,a+b=1⑤,由④和⑤组成方程组,解方程组得:,把a、b的值代入①得:c=﹣5,所以a+b+c=﹣4.故答案为:﹣4.点睛:本题考查了三元一次方程组的解法,把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,消元的方法有:加减消元法与代入消元法.15.2【解析】解:两式相乘得:2(x-y)(x+y)=4,∴(x-y)(x+y)=2,故答案为:2.16.7 29【解析】分析:将x、y写成用z表示的代数式进行计算.详解:由题意得:230 2350x y zx y z+-⎧⎨++⎩=①=②,①×2-②得y=11z,代入①得x=-19z,原式=19117==191129x y z z z z x y z z z z ++-++-+--+. 故本题答案为:729. 点睛:此题需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.17.4【解析】【分析】由韦达定理得出x 1+x 2=6,x 1·x 2=m +4,将已知式子3x 1= | x 2|+2去绝对值,对x 2进行分类讨论,列方程组求出x 1、x 2的值,即可求出m 的值.【详解】由韦达定理可得x 1+x 2=6,x 1·x 2=m +4, ①当x 2≥0时,3x 1=x 2+2,1212326x x x x =+⎧⎨+=⎩,解得1224x x =⎧⎨=⎩, ∴m =4;②当x 2<0时,3x 1=2﹣x 2,1212326x x x x =-⎧⎨+=⎩,解得1228x x =-⎧⎨=⎩,不合题意,舍去. ∴m =4.故答案为4.【点睛】本题主要考查一元二次方程根与系数的关系,其中对x 2分类讨论去绝对值是解题的关键. 18.-15【解析】【分析】观察所求的式子以及所给的方程组,可知利用平方差公式进行求解即可得.【详解】∵x 2y 5x 2y 3-=⎧+=-⎨⎩,∴22x 4y -=(x+2y )(x-2y )=-3×5=-15, 故答案为:-15.【点睛】本题考查代数式求值,涉及到二元一次方程组、平方差公式因式分解,根据代数式的结构特征选用恰当的方法进行解题是关键.19.423x y z =-⎧⎪=⎨⎪=⎩【解析】分析:方程组利用加减消元法求出解即可.详解:251x y y z x z +=-⎧⎪+=⎨⎪+=-⎩①②③,①-②+③,得2x=-8,解得:x=-4,把x=-4代入①得:y=2,把y=2代入②得:z=3,则方程组的解为423x y z =-⎧⎪=⎨⎪=⎩,故答案为:423x y z =-⎧⎪=⎨⎪=⎩.点睛:本题考查了解三元一次方程组的应用,解三元一次方程组的基本思路是想法把三元一次方程组转化成二元一次方程组.20.4 3【解析】【分析】根据二元一次方程的定义,列出关于m 、n 的方程组,然后解方程组即可.【详解】依题意得,21231n m n -=⎧⎨-+=⎩,解得43 mn=⎧⎨=⎩故答案为:(1). 4 (2). 3【点睛】本题考核知识点:二元一次方程.解题关键点:理解二元一次方程定义.21.每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田13亩.【解析】整体分析:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,列二元一次方程组求解.解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩可列方程组为36 4.7 53 5.5 x yx y+=⎧⎨+=⎩解得0.913xy=⎧⎪⎨=⎪⎩.答:每亩山田相当于实田0.9亩,每亩场地相当于实田13亩.22.(1)3{1xy==-;(2)x>125.【解析】分析:(1)用加减消元法求出方程组的解.(2)根据一元一次不等式的解法,去分母,去括号,移项,合并,系数化为1即可得解.详解:(1)4{25x yx y-=+=①②,①+②得:3x=9,x=3,代入①得:3﹣y=4,y=﹣1.则原方程组的解为:3{1 xy==-.(2)去分母得,2x>6﹣3(x﹣2),去括号得,2x>6﹣3x+6,移项、合并得,5x>12,系数化为1得,x>125.【点睛】本题考查了解二元一次方程组,解一元一次不等式,熟练掌握解二元一次方程组的方法,解一元一次不等式的方法及注意事项是关键.23.(1)A种品牌计算器50元/个,B种品牌计算器60元/个;(2)y1=45x,y2=60(010)42180(10)x xx x≤≤⎧⎨+⎩f;(3)详见解析.【解析】【分析】(1)根据题意列出二元一次方程组并求解即可;(2)按照“购买所需费用=折扣×单价×数量”列式即可,注意B品牌计算器的采购要分0≤x≤10和x>10两种情况考虑;(3)根据上问所求关系式,分别计算当x>15时,由y1=y2、y1>y2、y1<y2确定其分别对应的销量范围,从而确定方案.【详解】(Ⅰ)设A、B两种品牌的计算器的单价分别为a元、b元,根据题意得,23280 3210a ba b+=⎧⎨+=⎩,解得:5060 ab=⎧⎨=⎩,答:A种品牌计算器50元/个,B种品牌计算器60元/个;(Ⅱ)A品牌:y1=50x•0.9=45x;B品牌:①当0≤x≤10时,y2=60x,②当x>10时,y2=10×60+60×(x﹣10)×0.7=42x+180,综上所述:y1=45x,y2=()() 60010 4218010x xx x⎧≤≤⎪⎨+⎪⎩>;(Ⅲ)当y 1=y 2时,45x=42x+180,解得x=60,即购买60个计算器时,两种品牌都一样; 当y 1>y 2时,45x >42x+180,解得x >60,即购买超过60个计算器时,B 品牌更合算; 当y 1<y 2时,45x <42x+180,解得x <60,即购买不足60个计算器时,A 品牌更合算, 当购买数量为15时,显然购买A 品牌更划算.【点睛】本题考查了二元一次方程组的应用.24.(1)甲45人,乙30人 (2) 租65座的客车2辆,45座的客车2辆,30座的3辆【解析】分析:(1)根据题意,设甲种客车每辆能载客x 人,乙两种客车每辆能载客x 人,由等量关系列方程组求解即可;(2)根据坐满的租车方案,由总人数列方程求解即可.详解:(1)设甲种客车每辆能载客x 人,乙两种客车每辆能载客x 人,根据题意得 231803165x y x y +=⎧⎨+=⎩,解之得:4530x y =⎧⎨=⎩答:甲种客车每辆能载客45人,乙两种客车每辆能载客30人.(2)设同时租65座.45座和30座的大小三种客车各m 辆,n 辆,(7﹣m ﹣n )辆, 根据题意得出:65m+45n+30(7﹣m ﹣n )=303+7,整理得出:7m+3n=20,故符合题意的有:m=2,n=2,7﹣m ﹣n=3,租车方案为:租65座的客车2辆,45座的客车2辆,30座的3辆.点睛:本题考查二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的等关系式,列出对应的方程.25.23x y =-⎧⎨=⎩【解析】分析:把①×3+②,消去y ,求出x 的值,再把求得的x 的值代入①求出y 的值即可. 详解:①×3+②,得 13x =-26,x =-2,将x =-2代入①,得-6-y =-9,y =3,∴23x y =-⎧⎨=⎩. 点睛:本题考查了二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,当两方程中相同的未知数的系数相等或互为相反数时用加减消元法解方程比较简单.灵活选择合适的方法是解答本题的关键.26.(1)每立方米的基本水价是2.45元,每立方米的污水处理费是1元;(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【解析】分析:(1)设每立方米的基本水价是x 元,每立方米的污水处理费是y 元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t 立方米(t >10),根据题意列出不等式即可求出答案. 详解:(1)设每立方米的基本水价是x 元,每立方米的污水处理费是y 元27.68846.3102212x y x x y +⎧⎨+⨯+⎩==解得: 2.451x y ⎧⎨⎩== 答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t 立方米(t >10)10×2.45+(t-10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米. 点睛:本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式.27.(1)820000元;(2)480人.【解析】本题考查的是方程组的应用(1)根据题意可知本题的等量关系有,2005年进入小学学习的人数=(1+20%)×2004年进入小学学习的人数,2005年进入中学学习的人数=(1+30%)×2004进入中学学习的人数.2005年进入中小学学习的总人数=5000+1160.依此列方程组再求解.(2)先算出秋季入学后,在小学就读的学生人数及在中学就读的学生人数,再根据师生比例即得结果。

七年级数学上册 第3章 一次方程与方程组 3.3 二元一次方程组及其解法(第3课时)课件

七年级数学上册 第3章 一次方程与方程组 3.3 二元一次方程组及其解法(第3课时)课件

第十三页,共十五页。
20.对于实数 x、y 定义一种新的运算“*”:x*y=ax+by,其中 a、b 为常数, 等式的右边是通常的加法和乘法运算.已知 3*5=15,4*7=28,求 a+b 的值.
3a+5b=15
a=-35
解:由题意得
4a+7b=28
,解得b=24
,∴a+b=-35+24=-11.
x+y=1 (1)2x-y=5

(2)2x3-y-x+4 y=-112 ; 3x+y-22x-y=3
x·4%=x-y×10% (3)x+300·4%=x-y+300×6.4% .
x=2
x=2
x=500
解:(1)y=-1 ; (2)y=1 ; (3)y=300 .
第十二页,共十五页。
2x+3y=k 18.已知方程组3x+2y=k+2 的解满足 x+y=6,求 k 的值.
x=-5 14.(乐山中考)二元一次方程组x+2 y=2x3-y=x+2 的解是 y=-1 .
x∶y=2∶3
x= 4
15.若3x+2y=24 ,则y= 6 .
2x-y=m
x=2
16.关于 x、y 的方程组x+my=n 的解是y=1 ,则|m-n|的值为 2 .
第十一页,共十五页。
17.用适当的方法解下列方程组:
第四页,共十五页。
2x+3y=1 3.用加减法解方程组3x-2y=8 时,下列变形正确的是( B )
4x+6y=1 ①9x-6y=8
6x+9y=1 ②6x-4y=8
③6-x+6x9+y=4y3=-16
④49xx+-66yy==224
A.①②
B.③④
C.①③
D.①④
4.若二元一次方程 2x+4y=6、5x-2y=3 和 2x-my=-1 有公共解,则 m

方程与方程组知识点

方程与方程组知识点

第三章方程与方程组一、一元一次方程1•等式用等号表示相等关系的式子,叫做等式. 等式的性质:(1)等式的两边都加上 (或减去)同一个数或同一个整式,所得的结果仍是等式. 即若a=b,贝U a_m 二b_m.(2) _______________________________________________ 等式的两边都乘以同一个数(或除以同一个不为 ________________________________________________ 的数),所得结果仍是等式•即a b若a = b,贝U am = bm,或(m = 0)m m2.方程含有未知数的等式叫方程叫方程.使方程左右两边相等的未知数的值,叫做方程的解.求方程的解的过程叫解方程.3•同解方程及方程的同解原理(1 )如果两个方程的解相同,那么两个方程叫同解方程.(2)方程的同解原理:①方程的两边都加上(或减去)同一个数或同一个整式,所得方程与原方程是同解方程.②方程的两边都乘以同一个数(或除以同一个不为0的数),所得方程与原方程是同解方程.4.一元一次方程在方程中,只含一个未知数,且未知数的指数是1,这样的方程叫做一元一次方程.标准形式:ax • b = 0(a = 0) 最简形式:ax二b(a = 0)补含字母系数的方程ax=b的解(1)若a = 0,则方程有唯一解x = b;a(2)若a=0,且b=0,方程变为0 • x=0,则方程有无数个解;(3)若a=0,且0,方程变为0・x=b,则方程无解.5•解一元一次方程的一般步骤(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b; (5)方程两边同除以未知数的系数(系数化为1),得出方程的解.6 .列方程解应用题的方法及步骤(1 )审题:明确己知是什么,未知是什么及相互关系,并用x表示题中一个合理未知数.(2 )根据题意找出能表示应用题含义的等量关系(关键一步)(3)据等量关系列出正确方程.(4 )解出方程:求出未知数的值.(5)检验、作答,检验应是:检验所求的解既能使方程成立,又能使它符合实际意7 •一兀一次方程应用题的主要类型(1)和差倍分问题 (2)等积变形 (3) 行程问题 (4 )百分比浓度问题(5)劳力调配 (6) 比例问题 (7 )工程问题(8)商品利润率问题(9) 数字问题&几个典型问题 储蓄问题 (1) 本金 顾客存入银行的钱叫本金 (2)利息 银行付给储户的酬金叫利息(3) 本息和 本息和=本金+利息 (4) 期数 存款的时间(年、月等) (5)利率 每个期数内的利息与本金之比.记本金为P,利率为i ,期数为n 则① 单利:本息和=本金+本金利率期数=本金 (1+利率期数),即S=P (1+in )利息税=利息税率 =本金+ 利息一利息税率=本金+ 利息(1—税率) 最后金额=本息和一税金 市场经济问题 (2)进价,原价,售价,利润率的关系:利润原价汉0.1x —进价打x 折:实际售价=原价X 0.1x .此时,禾U 润率=——=——-----进价进价练习:原价为a ,实际售价为b ,则打 _______________ 折,折扣率为 __________ . 行程问题有相遇问题,追及问题、逆(顺)流问题,上坡、下坡问题等,在运动形式上分直线 运动及曲线运动(如环形跑道、时钟问题)基本量之间的关系:路程 =速度 时间(s =v t )(1)相遇问题:s 甲 ■ s^ = s (或V 甲t V z t 二S), t 为甲、乙相遇时间.(2)追及问题:s 甲=s 乙■ s 0 ( V 甲 v z ,s 0为追及初距离),V 甲t=V 乙t ■ S 0义.②复利:本息和=本金(1+利率)n即 S=P (1+i )(1)利润=售价一进价 利润率=利润=售价进价进价 进价 〜S 甲B工程问题基本量之间的关系:工作量=工作效率X工作时间. 常见等量关系:甲的工作量+乙的工作量基本量之间的关系:现产量=原产量X (1+增长率)• 百分比浓度问题基本量之间的关系:溶质=溶液X浓度. 水中航行问题基本量之间的关系:V静-v水 =切顺,v静- v水二V逆,v顺-v逆= 2v水川顺-v^ = 2v静二、二元一次方程组1.二元一次方程组的相关概念含有两个未知数,并且未知数的项的次数都是1的方程叫做二元一次方程.一般形式:ax by c 0 a 0,b = 0 .含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组. 适合一个二元一次方程的一组未知数的值,叫做二元一次方程的一个解. 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.2 .解二元一次方程组(1)代入消元法(代入法):①用含有x(或y )代数式表示y (或x),即变成y=ax,b(或x=ay,b)的形式;②将y =ax - b(或x =ay ■ b)代入另一个方程中,消去y (或x),得到一个关于x(或y)的一元一次方程;③解这个一元一次方程,求出x(或y)的值;④把x(或y)的值代入y=ax,b(或x=ay,b)中,求出y (或x)的值,从而得到方程组的解.(2)加减消兀法(加减法):①方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程;④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.I ------------ ----------------------------------------------- --------------------------------------------: 补三元一次方程组: 三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.; 由三个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.i 解三元一次方程组的一般步骤:[… ①利用代入法或加减法-把方程组中一个方程与另两个方程分别组成两组,逍去两组______________《中考基础知识大扫描》中的同一个未知数,得到关于另外两个未知数的二元二次方程组; ■: ②解这个二元一次方程组,求出两个未知数的值;. : ③将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一i元一次方程;: ④解这个一元一次方程,求出最后一个未知数的值,从而得到方程组的解. iI __________________________________________________________________________________________________________________________________________________________________________________________________ I3 •二元一次方程组的应用能分析出题目中的等量关系列二元一次方程组.*4 •二元一次方程与一次函数新课标要求:能根据一次函数的图象求二元一次方程组的近似解.(1)一次函数与二元一次方程(组)以二元一次方程ax + by=c ( a,b = 0 )的解为坐标的点组成的图象与一次函数a cy x 的图象相同.b b广二元一次方程组」a i X+ b,y = c,的解可以看作是两个一次函数y = _ a i X十G和耳x + b2 y = c2b, b| a? C2y -x -的图象的交点.b2b2(2)一次函数与二元一次方程(组)的应用在实际生活中,如何应用函数知识解决实际问题,关键是建立函数模型,即列出符合题意的函数解析式,再利用方程(组)求解.三、一元二次方程1•一元二次方程的概念方程的两边都是关于未知数的整式,这样的方程叫做整式方程.含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.一般形式:ax2bx c 二0(a = 0)其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.2•一元二次方程的解法(1)直接开平方法形如(x a)^ b的一元二次方程当b 一0时,x • a二.b , x二-a -、b,当b <0时,方程没有实数根.(2)配方法通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.用配方法解一元二次方程ax2 bx c 0的一般步骤:①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项和一次项,右边为常数项;③配方:方程两边都加上一次项系数一半的平方,把原方程化为(X • m)2二n的形式;④用直接开平方法解变形后的方程.2 b c小2丄b cax bx c = 0 =x x 0= x x 二a a a a2 b , b 、2 c , b、2/ b、2b2「4ac一x x ()() =(x )二a 2a a 2a a4a(3)公式法用求根公式解一元二次方程的方法称为公式法.对于一元二次方程ax2bx c = 0(a = 0),当b2 -4ac _ 0时,它的根是:f b2_4acx =2a用公式法解一元二次方程的一般步骤:①把方程化为一般形式,确定a,b,c的值;②求出b2 -4ac的值;③若b2 -4ac _0,则把a,b,c及b2 -4ac的值代入一元二次方程的求根公式:「b 二、b2—4ac 2x ,求出X i, X2;若b -4ac:::0,则方程没有实数根.2a(4)分解因式法当一元二次方程的一边为0时,将另一边分解成两个一次因式的乘积,这种解一元二次方程的方法称为因式分解法.用因式分解法解一元二次方程的一般步骤:①将方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;一④解这两个二元一次方程,它们的解就是原方程的解. ___________ ________ _________ ______ i 补判别式、韦达定理;:1 .一元二次方程根的判别式[: 我们就把b2 -4ac叫做一元二次方程ax2 bx 0的根的判别式,通常用“丄”; 来表示,即—c. I I '元二次方程根的情况与判别式 的关系:厶>0=方程有两个不相等的实数根;二=0:=方程有两个相等的实数根;匚<0:=方程没有实数根; / _0:=方程有两个实数根.2 •一元二次方程根与系数的关系(韦达定理)如果方程ax 2 • bx • c = 0(a = 0)的两个实数根是 X i ,X 2,那么两根之和,等于方程i 的一次项系数除以二次项系数所得的商的相反数;两根之积,等于常数项除以二次项系数[I 所得的商,即为+x 2 =—b , X r X 2 =c .;a a:韦达定理的两个重要推论::I I推论1:如果方程x 2 px ■ q = 0的两个根是x 1, x 2,那么x 1 x 2 - - p , x/2二q .I I推论2 :以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是I2x -(为 x 2)x x 1 x 2 = 0.一元二次方程的根与系数的关系的应用:(1) 验根,不解方程,利用韦达定理可以检验两个数是不是一元二次方程的两个根. (2) 由已知方程的一个根,求出另一个根及未知系数. ⑶不解方程,可以利用韦达定理求关于x 1,x 2的对称式的值,X 1,X 2互换,代数式不变,那么,我们就称这类代数;式为关于x 1,x 2的对称式.i: (4)已知方程的两根,求作这个一元二次方程. : (5)已知两数的和与积,求这两个数.; (6)已知方程两个根满足某种关系,确定方程中字母系数的值. i (7)证明方程系数之间的特殊关系.: (8)解决其它问题,如讨论根的范围,判定三角形的形状等. :根的符号的讨论:I2X1X 2 ,2X 1 x 2X 1X 22 %「x 2 X 1 x 2说明:如果把含x 1, x 2的代数式中;利用韦达定理,还可进一步讨论根的符号,设一元二次方程ax2• bx • c = 0 (a = 0)III的两根为x1,x2,则II■⑴A >0,且X j X2 >0二两根同号.IIII二0,且X1X2 0, x i x2・0:=两根同正;II! 二0,且x1x2 0, x.) x2:::0二两根同数.II»(2)也a 0,且x1 x2■< 0 二ac v 0二两根异号.II;ac c0,且为+x2=0二两根异号且正根的绝对值较大;II: ac c0,且%+x2 £0二两根异号且负根的绝对值较大.;补二元二次方程组i ;含有两个未知数,并且含未知数的项的最高次数是2的整式方程叫做二元二次方程.关;I I 于x, y的二元二次方程的一般形式为:ax2■ bxy cy2dx e^ f = 0( a,b,c至少有[2 2一个不为0). ax ,bxy,cy叫做二次项,a,b,c叫做二次项系数;dx , ey叫做一次项,d,e : 叫做一次项系数;f叫做常数项. [ ;由一个二元一次方程和一个二元二次方程组成的方程组,或由两个二元二次方程组成[ 的方程组都叫做二元二次方程组. 1 : 二元二次方程组的解法:: :1.由一个二元一次方程和一个二元二次方程组成的方程组的解法:: :(1)代入法[ : ①把二元一次方程中的一个未知数用含有另一个未知数的代数式表示;: : ②把这个代数式代入二元二次方程,得到一个一元方程;1 ; ③解这个一元方程,求得一个未知数的值;[ ;④把所求得的这个未知数的值代入二元一次方程,求得另一个未知数的值,否则,如1果代入二元二次方程求另一个未知数,就会出现增解的问题;; ; ⑤所得的一个未知数的值和相应的另一个未知数的值分别组合在一起,就是原方程组[ 的解. : :(2)逆用韦达定理法[ X :卜y 二ai 对型如y 的方程组,可以根据一元二次方程根与系数的关系,把x, y看做一:: \Xy=b i元二次方程一_z2一二az…b 一二0 的两个根,一解这个方程'…求得的一z t,_z2的.值,就是一x, y .的值.所_:% = z 2;i 2 •由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组的解法:;一般步骤:! ①先把方程组中的一个方程分解降次,化为两个一次方程;: ②将这两个一次方程分别与原方程组中的另一个方程联立, 方程和一个二元二次方程组成的方程组;一③解这两个新的方程组,所得的解都是原方程组的解:四、分式方程新课标要求:会解可化为一元一次方程的分式方程(方程中的分式不超过两个) (1) 分式方程的概念分母里含有未知数的方程叫分式方程. (2) 分式方程的解法解分式方程的思想是将“分式方程”转化为“整式方程” •它的一般解法是:① 去分母,方程两边都乘以最简公分母; ② 解所得的整式方程;③ 验根:将所得的根代入最简公分母,若等于 0就是增根,应该舍去;若不等于 0就是原方程的根. _______________________________________________________________________________' 补分式分式方程的特殊解法 换元法; 换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种 [特别形式,一般的去分母不易解决时,可考虑换元法. :用换元法解分式方程的一般步骤:;(1)设辅助的未知数,并用含辅助未知数的代数式去表示方程中另外的代数式; ■ (2)解所得的关于辅助未知数的新方程,求出辅助未知数的值; ;(3)把辅助未知数的值代入原式中,求出原未知数的值; :(4)检验做答.以原方程的解是两组对称解:h组成两个由一个二元一次。

中考数学中的函数与方程组解题技巧总结

中考数学中的函数与方程组解题技巧总结

中考数学中的函数与方程组解题技巧总结中考数学中,函数与方程组是较为重要的考点,掌握相应的解题技巧对于取得好成绩至关重要。

本文将对中考数学中的函数与方程组解题技巧进行总结,希望能够帮助同学们提高解题能力。

一、函数的解题技巧在解题过程中,有时需要对函数的图象进行分析,进而求解一些相关问题。

下面是几个常见的函数解题技巧:1. 确定定义域和值域:对于给定的函数,首先要明确函数的定义域和值域,这是理解和分析函数的关键。

可以通过观察函数的图象、查看函数的表达式或者进行变量的替换等方式来确定。

2. 确定函数的性质:了解函数的基本性质有助于解题。

例如,判断函数的奇偶性、单调性、周期性等,可以通过求导、分析函数的对称性等方法来确定。

3. 利用函数的图象解题:函数的图象可以提供一些有用的信息。

可以根据图象对函数值、函数的最大值最小值、函数的增减区间等进行分析,从而解决与函数相关的问题。

4. 运用函数的性质求解方程:有时可以利用函数的性质将方程转化为易于解决的形式。

比如,利用奇偶性判断方程有几个实数解,或者通过函数之间的关系将方程组化简为一个方程等。

二、方程组的解题技巧方程组的解题过程中,也有一些常见的技巧可以帮助我们解决问题。

下面是几个常见的方程组解题技巧:1. 利用加减消元法:对于含有两个未知数的线性方程组,可以通过加减消元法将其化简为一个方程,从而求解未知数的值。

这需要灵活运用加减法与倍数运算,将方程组转化为更简单的形式。

2. 利用替换法:有时,可以通过将一个未知数用另一个未知数表示,进而化简方程组的求解过程。

这需要适当选择合适的替换关系,并将其代入方程组中,从而得到更简单的方程。

3. 运用两个方程的关系求解:有时,可以利用方程组中两个方程的关系,从而得到一个更简单的方程。

比如,通过两个方程的相减或相加,消去一个未知数,从而求解另一个未知数。

4. 运用方程组的特殊性质求解:有些特殊的方程组可以通过运用其特殊性质来求解。

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。

中考数学复习重要知识点专项总结—方程和方程组

中考数学复习重要知识点专项总结—方程和方程组

中考数学复习重要知识点专项总结—方程和方程组一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

(4)一元一次方程有唯一的一个解。

2、一元二次方程(1)一元二次方程的一般形式:(其中x是未知数,a、b、c 是已知数,a≠0)(2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:当Δ>0时方程有两个不相等的实数根;当Δ=0时方程有两个相等的实数根;当Δ<0时方程没有实数根,无解;当Δ≥0时方程有两个实数根(5)一元二次方程根与系数的关系:若是一元二次方程的两个根,那么:,(6)以两个数为根的一元二次方程(二次项系数为1)是:三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。

(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

四、方程组1、方程组的解:方程组中各方程的公共解叫做方程组的解。

2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组3、一次方程组:(1)二元一次方程组:一般形式:(不全为0)解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。

2024年九年级中考数学专题复习+课件++含参方程(组)、不等式(组)+

2024年九年级中考数学专题复习+课件++含参方程(组)、不等式(组)+
1
C.m>
3
3
1
D.m≥
3
变式
1.(2021·南充)已知关于x的一元二次方程x2-(2k+1)x+k²+h=0.
(1)求证:无论k取何值,方程都有两个不相等的实数根;
1
(2)如果方程的两个实数根为x1,x2,且k与 都为整数,求K所有可能的值.
2
2.若关于x的方程mx2-2(m+2)x+m+5=0无实数根,则关于x方程
8m + 9n = 10.
(1)试选择其中一名同学的思路,解答此题.
x + 3y
=4−α
(2)试说明在关于x,y的方程组
中,不论a取什么实数,x+y的值始终不
x − 5y = 3a
变,
变式:
mx − y = 47
1.如果关于x,y的二元一次方程组
的解是
nx + 3y = −39
x=5
,不求 m,n.的值,你能否求关于x,y的二元一次方程组
y=3
m(x + y) − (x − y) = 47
的解?如果能,请求出方程组的解.
n(x + y) + 3(x − y) = −39
2.若相异的实数a,b满足
则 ab =
.

22−1

= 2
2 −1
,
类型三 分式方程的解的问题

例3:若关于x的分式方程
2
−1
=
3
无解,则m=
2
−1
3
2或2
件的所有整数a.
2
− 2
4−
+
=

江苏省南通市2001-2012年中考数学试题分类解析 专题3 方程(组)和不等式(组)

江苏省南通市2001-2012年中考数学试题分类解析 专题3 方程(组)和不等式(组)

2001-2012年江苏南通中考数学试题分类解析汇编(12专题)专题3:方程(组)和不等式(组)一、选择题1. (江苏省南通市2002年3分)用换元法解方程2220x 3x 8x 3x=+-+,若设x 2+3x=y ,则原方程可化为【 】A .20y 2+8y -1=0 B .8y 2-20y +1=0 C .y 2+8y -20=0 D .y 2-8y -20=0 【答案】D 。

【考点】换元法解分式方程。

【分析】根据原方程的特点,把x 2+3x 看作整体,用y 代替,转化为关于y 的分式方程20y 8y=-,去分母并整理得一元二次方程y 2-8y -20=0。

故选D 。

2. (江苏省南通市2002年3分)某厂今年3月份的产值为50万元,5月份上升到72万元,这两个月平均每月上升的百分率是多少?若设4、5月份平均每月上升的百分率为x ,则列出的方程是【 】A .50(1+x )=72B .50(1+x )+50(1+x )2 = 72C .50(1+x )×2=72 D.50(1+x )2 = 72【答案】D 。

【考点】由实际问题抽象出一元二次方程(增长率问题)【分析】设4、5月份平均每月上升的百分率为x ,4月份的产值为50(1+x),则5月份的产值为50(1+x) (1+x) =50(1+x)2。

据此列出方程50(1+x)2=72。

故选D 。

3. (江苏省南通市2004年3分)一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时, 现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是【 】A 、126312312=--x x B 、131226312=-+x xC 、126312312=+-x xD 、131226312=--xx【答案】C 。

【考点】由实际问题抽象出分式方程【分析】关键描述语为:“现在该列车从甲站到乙站用的时间比原来减少了1h .”;等量关系为:提速前所用的时间-提速后用的时间=1。

中考总复习:《一次方程及方程组》知识网络及经典例题解析

中考总复习:《一次方程及方程组》知识网络及经典例题解析

中考总复习:《一次方程及方程组》知识网络及经典例题解析【考纲要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程;2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组;3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思想.【知识网络】【考点梳理】考点一、一元一次方程 1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式. (2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式. 2.方程的概念(1)含有未知数的等式叫做方程.(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根). (3)求方程的解的过程,叫做解方程. 3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程.(2)一元一次方程的一般形式:0(0)ax b a +=≠.(3)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来). 要点诠释:解一元一次方程的一般步骤 步骤名 称 方 法依 据注 意 事 项1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)等式性质21、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来.2 去括号 去括号法则(可先分配再去括号)乘法分配律 注意正确的去掉括号前带负数的括号3移项把未知项移到方程的一边(左边),常数项移到另一边等式性质1移项一定要改变符号说明:(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法;(3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解.考点二、二元一次方程组 1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组. 要点诠释:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组. 2.二元一次方程组的一般形式111222a xb yc a x b y c +=⎧⎨+=⎩ 要点诠释:a 1、a 2不同时为0,b 1、b 2不同时为0,a 1、b 1不同时为0,a 2、b 2不同时为0. 3. 二元一次方程组的解法(1) 代入消元法; (2) 加减消元法. 要点诠释:(1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.(2)一元一次方程与一次函数、一元一次不等式之间的关系:当二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围,由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y =0时,求x 的值.从图象上看,这相当于已知纵坐标,确定横坐标的值.考点三、一次方程(组)的应用列方程(组)解应用题的一般步骤:1.审:分析题意,找出已知、未知之间的数量关系和相等关系;2.设:选择恰当的未知数(直接或间接设元),注意单位的统一和语言完整;3.列:根据数量和相等关系,正确列出代数式和方程(组);4.解:解所列的方程(组);5.验: (有三次检验 ①是否是所列方程(组)的解;②是否使代数式有意义;③是否满足实际意义);6.答:注意单位和语言完整.要点诠释:列方程应注意:(1)方程两边表示同类量;(2)方程两边单位一定要统一;(3)方程两边的数值相等.【典型例题】类型一、一元一次方程及其应用1.如果方程2n 731x 157--=是关于x 的一元一次方程,则n 的值为( ). A.2 B.4 C.3 D.1 【思路点拨】未知数x 的指数是1即可. 【答案】B ;【解析】由题意可知2n-7=1,∴n=4.【总结升华】根据一元一次方程的定义求解. 举一反三:【变式1】已知关于x 的方程4x-3m=2的解是x=5,则m 的值为 . 【答案】由题意可知4×5-3m =2,∴m=6.【变式2】若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,求a ,b 的值.【答案】a=0,b=11.2.一收割机收割一块麦田,上午收割了麦田的25%,下午收割了剩下麦田的20%,结果还剩下6公顷麦田未收割.这块麦田一共有多少公顷?【思路点拨】设这块麦田一共有x 公顷,根据上午收割了麦田的25%,则剩余x (1﹣25%)公顷,再利用下午收割了剩下麦田的20%,则剩余x (1﹣25%)(1﹣20%)公顷,进而求出即可. 【答案与解析】解:设这块麦田一共有x 公顷, 根据题意得出:x (1﹣25%)(1﹣20%)=6, 解得:x=10,答:这块麦田一共有10公顷.【总结升华】此题主要考查了一元一次方程的应用,正确表示出两次剩余小麦的亩数是解题关键.举一反三:【变式】“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .()130%80%2080x +⨯= B . 30%80%2080x ⋅⋅= C . 208030%80%x ⨯⨯= D . 30%208080%x ⋅=⨯【答案】成本价提高30%后标价为()130%x +,打8折后的售价为()130%80%x +⨯.根据题意,列方程得()130%80%2080x +⨯=,故选A .类型二、二元一次方程组及其应用3.解下列方程组. (1)(2).【思路点拨】代入消元法或加减消元法均可. 【答案与解析】 解:(1),将②代入①得:2(﹣2y+3)+3y=7, 去括号得:﹣4y+6+3y=7, 解得:y=﹣1,将y=﹣1代入②得:x=2+3=5, 则方程组的解;(2),①×4+②×3得:17m=34, 解得:m=2,将m=2代入①得:4+3n=13, 解得:n=3, 则方程组的解为.【总结升华】解方程组要善于观察方程组的特点,灵活选用适当的方法,提高解题速度.举一反三:① ②【变式1解方程组【答案】方程②化为,再用加减法解,答案:【变式2】解方程组⎩⎨⎧=++=.36,5:4:3::c b a c b a【答案】a=9,b=12,c=15.4.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)写出用含x 、y 的代数式表示的地面总面积;(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?【思路点拨】根据题意找出等量关系式,列出方程或方程组解题. 【答案与解析】(1)地面总面积为:(6x +2y +18)m 2; (2)由题意,得6221,6218152.x y x y y -=⎧⎨++=⨯⎩解之,得4,3.2x y =⎧⎪⎨=⎪⎩∴地面总面积为:6x +2y +18=6×4+2×32+18=45(m 2). ∵铺1m 2地砖的平均费用为80元,∴铺地砖的总费用为:45×80=3600(元). 【总结升华】注意不要丢掉题中的单位. 举一反三:【变式】利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A.73cm B.74cm C.75cm D.76cm【答案】设桌子高度为acm,木块竖放为bcm,木块横放为ccm.则80,a=7570a b ca c b+-=⎧⎨+-=⎩解得.故选C.类型三、一次方程(组)的综合运用5.某县为鼓励失地农民自主创业,在2012年对60位自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【思路点拨】根据失地农民自主创业连续经营一年以上的给予1000元奖励:自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励列方程求解.【答案与解析】方法一:设失地农民中自主创业连续经营一年以上的有x人,则根据题意列出方程 1000x+(60–x)(1000+2000)=100000,解得:x=40,∴60-x =60-40=20答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.方法二:设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民有分别有x,y人,根据题意列出方程组:601000(10002000)100000 x yx y+=⎧⎨++=⎩解得:2040 yx=⎧⎨=⎩答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.【总结升华】本题考查理解题意的能力,关键是找到人数和钱数作为等量关系.举一反三:【变式】某公园的门票价格如下表所示:购票人数1~50人51~100人100人以上票价10元/人8元/人5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人? 【答案】设甲班有x 人,乙班有y 人,由题意得:8109205()515x y x y +=⎧⎨+=⎩ 解得:5548x y =⎧⎨=⎩. 答:甲班有55人,乙班有48人.6.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”; 乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”; 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少? 【思路点拨】根据甲、乙、丙三位同学提供的信息找出等量关系列出方程组求解. 【答案与解析】设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:解得答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. 【总结升华】通过甲、乙、丙三位同学调查结果找到车流量的等量关系式是解题的关键.。

精品 中考数学一轮综合复习 第03课 方程与不等式(一元一次方程、二元一次方程组)

精品 中考数学一轮综合复习 第03课 方程与不等式(一元一次方程、二元一次方程组)

9.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置, 按图②方式放置.测量的数据如图,则桌子的高度是( A.73cm B.74cm C.75cm ) D.76cm
10.已知 x=-2 是方程 mx-6=15+m 的解,则 m= ______ 11.已知方程 (n 1) x
36.有一个水池,用两个水管注水.如果单开甲管,2 小时 30 分注满水池,如果单开乙管,5 小时注满水池. (1)如果甲、乙两管先同时注水 20 分钟,然后由乙单独注水.问还需要多少时间才能把水池注满? (2)假设在水池下面安装了排水管丙管,单开丙管 3 小时可以把一满池水放完.如果三管同时开放,多少 小时才能把一空池注满水?
37.张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说: “如果老师买全票一张,则学 生可享受半价优惠。 ”乙旅行社说: “包括老师在内按全票价的 6 折优惠。 ”若全票价为 240 元,当学生 从数为多少人时,两家旅行社的收费一样多?
38.去年秋季以来,我市某镇遭受百年一遇的特大干旱,为支援该镇抗旱,上级下拨专项抗旱资金 80 万元 用于打井.已知用这 80 万元打灌溉用井和生活用井共 58 口, 每口灌溉用井和生活用井分别需要资金 4 万 元和 0.2 万元,求这两种井各打多少口?
39.小华从家里到学校的路是一段平路 和一段下坡路 .假设他始终保持平路每分钟走 60 米,下坡路每分 .... ..... 钟走 80 米,上坡路每分钟走 40 米,从家里到学校需 10 分钟,从学校到家里需 15 分钟.请问小华家离学校 多远?
第 5 页 共 8 页
40.在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价 13%的财政补贴.村 民小李购买了一台 A 型洗衣机,小王购买了一台 B 型洗衣机,两人一共得到财政补贴 351 元,又知 B 型洗 衣机售价比 A 型洗衣机售价多 500 元.求:(1)A 型洗衣机和 B 型洗衣机的售价各是多少元? (2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?

中考数学专题05一元一次方程与二元一次方程组-三年(2019-2021)中考真题数学分项汇编

中考数学专题05一元一次方程与二元一次方程组-三年(2019-2021)中考真题数学分项汇编

专题05.一元一次方程与二元一次方程组一、单选题1.(2021·湖南株洲市·中考真题)方程122x -=的解是( ) A .2x = B .3x = C .5x = D .6x =2.(2021·浙江杭州市·中考真题)某景点今年四月接待游客25万人次,五月接待游客60.5万人次,设该景点今年四月到五月接待游客人次的增长率为x (0x >),则( )A .()60.5125x -=B .()25160.5x -=C .()60.5125x +=D .()25160.5x += 3.(2021·浙江温州市·中考真题)解方程()221x x -+=,以下去括号正确的是( )A .41x x -+=-B .42x x -+=-C .41x x --=D .42x x --=4.(2021·安徽中考真题)设a ,b ,c 为互不相等的实数,且4155b a c =+,则下列结论正确的是( ) A .a b c >> B .c b a >> C .4()a b b c -=- D .5()a c a b -=-5.(2021·湖北武汉市·中考真题)我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( ) A .()()8374x x -=+ B .8374x x +=- C .3487y y -+= D .3487y y +-= 6.(2021·湖南株洲市·中考真题)《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十……”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米……”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得粝米为( )A .1.8升B .16升C .18升D .50升7.(2021·湖南中考真题)已知二元一次方程组2521x y x y -=⎧⎨-=⎩,则x y -的值为( ) A .2 B .6 C .2-D .6- 8.(2021·新疆中考真题)某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是( )A .26216x y x y +=⎧⎨+=⎩B .26216x y x y +=⎧⎨+=⎩C .16226x y x y +=⎧⎨+=⎩D .16226x y x y +=⎧⎨+=⎩ 9.(2021·湖北宜昌市·中考真题)我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x 人,物价为y 钱,下列方程组正确的是( )A .8374y x y x =-⎧⎨=+⎩B .8374y x y x =+⎧⎨=+⎩C .8374y x y x =-⎧⎨=-⎩D .8374y x y x =+⎧⎨=-⎩10.(2021·江苏苏州市·中考真题)某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,乙种型号无人机y 架.根据题意可列出的方程组是( )A .()()111,3122x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩B .()()111.3122x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩C .()()111,2123x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩D .()()111,2123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩11.(2021·天津中考真题)方程组234x y x y +=⎧⎨+=⎩的解是( )A .02x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .22x y =⎧⎨=-⎩D .33x y =⎧⎨=-⎩ 12.(2021·浙江宁波市·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A .510330x y x y +=⎧⎨+=⎩B .531030x y x y +=⎧⎨+=⎩C .305103x y x y +=⎧⎪⎨+=⎪⎩D .305310x y x y +=⎧⎪⎨+=⎪⎩ 13.(2020·湖南益阳市·中考真题)同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( )A.45xy=⎧⎨=-⎩B.45xy=-⎧⎨=⎩C.23xy=-⎧⎨=⎩D.36xy=⎧⎨=-⎩14.(2020·辽宁铁岭市·)我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,所列方程组正确的是()A.2 23400 x yx y=-⎧⎨+=⎩B.223()40050x yx x y=-⎧⎨++=-⎩C.22340050x yx y=+⎧⎨+=-⎩D.223()40050x yx x y=+⎧⎨++=-⎩15.(2020·黑龙江齐齐哈尔市·中考真题)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种16.(2020·黑龙江牡丹江市·朝鲜族学校中考真题)若21ab=⎧⎨=⎩是二元一次方程组3522ax byax by⎧+=⎪⎨⎪-=⎩的解,则x+2y的算术平方根为()A.3B.3,-3CD17.(2020·天津中考真题)方程组241x yx y+=⎧⎨-=-⎩的解是()A.12xy=⎧⎨=⎩B.32xy=-⎧⎨=-⎩C.2xy=⎧⎨=⎩D.31xy=⎧⎨=-⎩18.(2020·浙江绍兴市·中考真题)同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km19.(2020·浙江嘉兴市·中考真题)用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是( )A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×320.(2020·贵州毕节市·中考真题)由于换季,超市准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元;而按原售价的九折出售,将盈利20元,则该商品的原售价为( )A .300元B .270元C .250元D .230元21.(2020·广西玉林市·中考真题)观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…;若最后三个数之和是3000,则n 等于( )A .499B .500C .501D .100222.(2020·湖北恩施土家族苗族自治州·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ). A .1- B .1 C .0 D .223.(2020·江苏盐城市·中考真题)把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .624.(2020·青海中考真题)根据图中给出的信息,可得正确的方程是( )A .2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭B .2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯- ⎪ ⎪⎝⎭⎝⎭ C .2286(5)x x ππ⨯=⨯⨯+ D .22865x ππ⨯=⨯⨯ 25.(2019·内蒙古赤峰市·中考真题)如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉; ②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为( ).A .20192B .201812 C .201912 D .20201226.(2019·四川南充市·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8 C .5 D .427.(2019·辽宁朝阳市·中考真题)关于x ,y 的二元一次方程组2mx y n x ny m +=⎧⎨-=⎩的解是02x y =⎧⎨=⎩,则m n +的值为( )A .4B .2C .1D .028.(2019·广西柳州市·中考真题)阅读(资料),完成下面小题.(资料):如图,这是根据公开资料整理绘制而成的2004﹣2018年中美两国国内生产总值(GDP )的直方图及发展趋势线.(注:趋势线由Excel 系统根据数据自动生成,趋势线中的y 表示GDP ,x 表示年数)依据(资料)中所提供的信息,可以推算出中国的GDP 要超过美国,至少要到( )A.2052年B.2038年C.2037年D.2034年29.(2019·江苏南通市·中考真题)已知a、b满足方程组324236a ba b+=⎧⎨+=⎩,则a+b的值为( )A.2B.4C.-2D.-430.(2019·广西贺州市·中考真题)已知方程组2325x yx y+=⎧⎨-=⎩,则26x y+的值是()A.﹣2B.2C.﹣4D.431.(2019·湖南永州市·中考真题)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁32.(2019·湖北荆门市·)已知实数,x y满足方程组3212x yx y-=⎧⎨+=⎩,则222x y-的值为()A.1-B.1C.3D.3-33.(2019·山东菏泽市·中考真题)已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则+a b的值是()A.﹣1B.1C.﹣5D.5二、填空题目34.(2021·湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.35.(2021·江苏扬州市·中考真题)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.36.(2021·重庆中考真题)若关于x 的方程442x a -+=的解是2x =,则a 的值为__________. 37.(2021·重庆中考真题)盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A ,B ,C 三种盲盒各一个,其中A 盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B 盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C 盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A 盒的成本为145元,B 盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C 盒的成本为__________元.38.(2021·重庆中考真题)方程2(3)6x -=的解是__________.39.(2021·四川广安市·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______. 40.(2021·浙江金华市·中考真题)已知2x y m=⎧⎨=⎩是方程3210x y +=的一个解,则m 的值是____________. 41.(2021·四川凉山彝族自治州·中考真题)已知13x y =⎧⎨=⎩是方程2ax y +=的解,则a 的值为___________. 42.(2021·浙江嘉兴市·中考真题)已知二元一次方程314+=x y ,请写出该方程的一组整数解_________.43.(2021·四川遂宁市·中考真题)已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____.44.(2021·山东泰安市·中考真题)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己23的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱数为x ,乙持钱数为y ,可列方程组为________.45.(2020·辽宁朝阳市·中考真题)已知关于x 、y 的方程221255x y a x y a +=+⎧⎨+=-⎩的解满足3x y +=-,则a 的值为__________. 46.(2020·重庆中考真题)为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.47.(2020·甘肃天水市·中考真题)已知1023a b +=,16343a b +=,则+a b 的值为_________. 48.(2020·浙江绍兴市·中考真题)若关于x ,y 的二元一次方程组20x y A +=⎧⎨=⎩的解为11x y =⎧⎨=⎩,则多项式A 可以是_____(写出一个即可). 49.(2020·湖北中考真题)对于实数,m n ,定义运算2*(2)2m n m n =+-.若2*4*(3)a =-,则a =_____.50.(2020·湖北随州市·中考真题)幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方---九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为______.51.(2020·江苏无锡市·中考真题)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是___________尺.52.(2019·河北中考真题)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数. 示例:即4+3=7则(1)用含x 的式子表示m =_____;(2)当y =﹣2时,n 的值为_____.53.(2019·内蒙古呼和浩特市·中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.54.(2019·湖北鄂州市·中考真题)若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是____.55.(2019·四川眉山市·中考真题)已知关于x ,y 的方程组21254x y k x y k +=-⎧⎨+=+⎩的解满足x +y =5,则k 的值为_____. 56.(2019·四川内江市·中考真题)若,,x y z 为实数,且2421x y z x y z +-=⎧⎨-+=⎩,则代数式2223x y z -+的最大值是_____. 57.(2019·湖北中考真题)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为______和______.三、解答题58.(2021·湖南邵阳市·中考真题)为庆祝中国共产党成立100周年,某校计划举行“学党史·感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.59.(2021·江苏扬州市·中考真题)已知方程组271x yx y+=⎧⎨=-⎩的解也是关于x、y的方程4ax y+=的一个解,求a的值.60.(2021·四川泸州市·中考真题)某运输公司有A 、B 两种货车,3辆A 货车与2辆B 货车一次可以运货90吨,5辆A 货车与4辆B 货车一次可以运货160吨.(1)请问1辆A 货车和1辆B 货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A 、B 两种货车将全部货物一次运完(A 、B 两种货车均满载),其中每辆A 货车一次运货花费500元,每辆B 货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.61.(2021·重庆中考真题)对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:3507m =,因为372(50)+=⨯+,所以3507是“共生数”:4135m =,因为452(13)+≠⨯+,所以4135不是“共生数”; (1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记()3nF n =.求满足()F n 各数位上的数字之和是偶数的所有n .62.(2021·四川眉山市·中考真题)解方程组3220021530x y x y -+=⎧⎨+-=⎩63.(2021·浙江台州市·中考真题)解方程组:241 x yx y+=⎧⎨-=-⎩64.(2021·江苏苏州市·中考真题)解方程组:3423 x yx y-=-⎧⎨-=-⎩.65.(2020·辽宁大连市·中考真题)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?66.(2020·江苏镇江市·中考真题)(算一算)如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为,AC长等于;(找一找)如图②,点M、N、P、Q中的一点是数轴的原点,点A、B﹣1,Q 是AB的中点,则点是这个数轴的原点;(画一画)如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);(用一用)学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;②写出a、m的数量关系:.67.(2020·湖北黄石市·中考真题)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子,问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.68.(2020·四川凉山彝族自治州·中考真题)解方程:221123x xx---=-69.(2020·山西中考真题)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张)某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.70.(2020·浙江杭州市·中考真题)以下是圆圆解方程1323+--x x=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.71.(2019·湖南娄底市·中考真题)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?72.(2019·吉林中考真题)问题解决:糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?反思归纳: 现有a 根竹签,b 个山楂.若每根竹签串c 个山楂,还剩余d 个山楂,则下列等式成立的是________(填写序号)⑴bc d a +=;⑵ac d b +=;⑶ac d b -=.73.(2019·湖南张家界市·中考真题)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为1a ,排在第二位的数称为第二项,记为2a ,依此类推,排在第n 位的数称为第n 项,记为n a .所以,数列的一般形式可以写成:1a ,2a ,3a ,…,n a .一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中1a 1=,2a 3=,公差为3a 2=.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为______,第5项是______.(2)如果一个数列1a ,2a ,3a ,…,n a …,是等差数列,且公差为d ,那么根据定义可得到:21a a =d -,32a a d -=,43a a d -=,…,n n 1a a d --=,….所以21a =a +d ,()3211a a d a d d a 2d =+=++=+,()4311a a d a 2d d a 3d =+=++=+,……, 由此,请你填空完成等差数列的通项公式:n 1a =a +(______)d . (3)4041-是不是等差数列5-,7-,9-…的项?如果是,是第几项?祝你考试成功!祝你考试成功!。

人教版2021中考数学总复习 专题8 计算题(3)——解方程(组)和不等式(组)

人教版2021中考数学总复习  专题8  计算题(3)——解方程(组)和不等式(组)

3. 解方程组: x-y=3, 3x-y=1.
x-y=3,① 解:
3x-y=1.② ②-①,得2x=-2.
解得x=-1, 把x=-1代入①,得-1-y=3. 解得y=-4.
x=-1, ∴原方程组的解为 y=-4.
4.
解方程组:
3x+5y=50, 2x+3y=31.
解: 3x+5y=50,① 2x+3y=31.②
专题训练
专题8 计算题(3)——解方程(组)和不等式(组)
1. 解方程:x-2(x-4)=3(1-x).
解:去括号,得x-2x+8=3-3x. 移项、合并同类项,得2x=-5. 系数化为1,得x=
2. 解方程:
解:去分母,得4-3x+1=6+2x. 移项、合并同类项得,-5x=1. 系数化为1,得x=
3x-4>2(x- 12. 解不等式组
3), 3x-4>2(x-3),①≥x, 解:
≥x.②
解不等式①,得x>-2.
并写出它的所有非负整数解.
解不等式②,得x≤2. ∴原不等式组的解集为-2<x≤2. ∴原不等式组的所有非负整数解为0,1,2.
谢谢
7. 解不等式3(x+2)+1<13,并把它的解集在数轴上表示出来. 解:去括号,得3x+6+1<13. 移项、合并同类项,得3x<6. 系数化为1,得x<2. 这个不等式的解集在数轴上表示如答图ZT8-1.
8. 解不等式x-3< +1,并把它的解集在数轴上表示出来.
解:去分母,得2x-6<x-5+2. 移项、合并同类项,得x<3. 这个不等式的解集在数轴上表示如答图ZT8-2.

【数学中考一轮复习】一次方程(组) (含答案)

【数学中考一轮复习】一次方程(组)  (含答案)

第三章 方程(组)与不等式(组)3.1 一次方程(组)考点突破考点一 一元一次方程及其解法 典例1 解方程:131223=+--x x . 思路导引方程两边每一项都要乘各分母的最小公倍数6,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.规律总结解一元一次方程的一般步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化1.注意:在去分母时,应该将分子用括号括上.切勿漏乘不含有分母的项. 跟踪训练11.一元一次方程2x +1=3的解是x =___________.2.解方程:312122-+=--x x x .3.以下是圆圆解方程13321=--+x x 的解答过程. 解:去分母,得3(x +1)-2(x-3)=1. 去括号,得3x +1-2x +3=1. 移项,合并同类项,得x =-3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.考点二 一元一次方程的应用典例2为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?思路导引设甲工程队每天掘进x米,则乙工程队每天掘进x-2米.根据“甲工程队独立工作2天的工作量+甲乙合作1天的工作量=26米”列出方程,然后求工作时间.规律总结本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 跟踪训练21.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250元C.270元D.300元2.暑假期间,亮视眼镜店开展学生配镜优惠活动,某款式眼镜的广告如图所示,请你为广告牌填上原价.原价:___________元.3.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?考点三二元一次方程组的解法典例3 解二元一次方程组:⎩⎨⎧=+=+.93822y x y x ,思路导引方程组利用加减消元法或代入消元法求出解即可.规律总结此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 跟踪训练3解方程组⎩⎨⎧7.=y +3x ,1=y -x考点四 二元一次方程组的应用典例4 某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天? 思路导引设改进加工方法前用了x 天,改进加工方法后用了y 天,根据6天共加工竹笋22吨,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.规律总结本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 跟踪训练41.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳长y 尺,那么可列方程组为( )A.⎩⎨⎧-=+=15.05.4x y x yB.⎩⎨⎧-=+=125.4x y x yC.⎩⎨⎧-=-=15.05.4x y x yD.⎩⎨⎧-=-=125.4x y x y 2.某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有_________名. 3.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?中考真题1.(2020·重庆)解一元一次方程x x 311)1(21-=+时,去分母正确的是( )A.3(x +1)=1-2xB.2(x +1)=1-3xC.2(x +1)=6-3xD.3(x +1)=6-2x2.(2020·嘉兴)用加减消元法解二元一次方程组⎩⎨⎧②1=y -2x ①,4=3y +x 时,下列方法中无法消元的是( )A.①×2-②B.②×(-3)-①C.①×(-2)+②D.①-②×3 3.(2020·内江)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子去量竿,却比竿子短一托”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( ) A.21x =(x-5)-5 B.21x =(x +5)+5 C.2x =(x-5)-5 D.2x =(x +5)+54.(2020·鸡西)若⎩⎨⎧1=b 2=a 是二元一次方程组⎪⎩⎪⎨⎧=-=+2523by ax by ax 的解,则x +2y 的算术平方根为( )A.3B.3,-3C.3D.3,-35.(2020·齐齐哈尔)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有( )A.3种B.4种C.5种D.6种6.(2020·绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210 km ,它们各自单独行驶并返回的最远距离是105 km.现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A. 120 km B. 140 km C. 160 km D.180 km7.(2020·株洲)关于x 的方程3x-8=x 的解为x =___________.8.(2020·北京)方程组⎩⎨⎧7=y +3x ,1=y -x 的解为___________.9.(2020·沈阳)二元一次方程组⎩⎨⎧1=y -2x 5,=y +x 的解是__________.10.(2020·南京)已知x ,y 满足方程组⎩⎨⎧,3=y +2x ,1-=3y +x 则x +y 的值为__________.11.(2020·绍兴)若关于x ,y 的二元一次方程组⎩⎨⎧0=A 2=y +x 的解为⎩⎨⎧,1=y ,1=x 则多项式A 可以是______________(写出一个即可).12.(2020·江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,右下图符号表示一个两位数,则这个两位数是____________.13.(2020·常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是__________次.14.(2020·湖北)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.15.(2020·淄博)解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+.22128213y x y x ,16.(2020·广东)已知关于x ,y 的方程组⎩⎨⎧=+-=+431032y x y ax 与⎩⎨⎧=+=-152by x y x ,的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.17.(2020·山西)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.18.(2020·黄冈)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?参考答案考点突破典例1 解:去分母得:3(x—3)—2(2x+1)=6,去括号得:3x-9-4x-2-6,移项得:-x=17,系数化为1得:x=-17.跟踪训练11.12.解:去分母,得:6-3(x-2)=6+2(2x-1),去括号,得:6x-3x+6=6+4x-2,移项,得:63.x-4x-6-6-2,合并同类项,得:-x=-2,系数化为1,得:x-2.3.解:圆圆的解答过程有错误, 正确的解答过程如下:去分母,得3(x +1)-2(x-3)=6. 去括号,得3x +3-2x +6=6. 移项,合并同类项,得x =-3.典例2 解:设甲工程队每天掘进x 米,则乙工程队每天掘进(x-2)米, 由题意,得2x +(x +x-2)=26,解得:x-7. 所以乙工程队每天掘进5米,5726146+-=10(天), 答:甲乙两个工程队还需联合工作10天. 跟踪训练 2 1. D 2. 2003,解:设这些学生共有x 人,根据题意得286=-xx ,解得x =48.答:这些学生共有48人.典例3 解:⎩⎨⎧=+=+,②,①93822y x y x ,法1:②-①×3,得2x =3,解得:23=x ,把23=x 代入①,得y =-1, ∴原方程组的解为⎪⎩⎪⎨⎧-==123y x .法2:由②得:2x +3(2.x-y )=9, 把①代入上式,解得:23=x .把23=x 代入①,得y =-1, ∴原方程组的解为⎪⎩⎪⎨⎧-==123y x .跟踪训练 3解:⎩⎨⎧,②7=y +3x ,①1=y -x①+②得:4x =8,解得:x =2, 把x =2代入①得:y =1,则该方程组的解为⎩⎨⎧1=y 2=x .典例4 解:设改进加工方法前用了x 天,改进加工方法后用了y 天,依题意,得:⎩⎨⎧,22=5y +3x ,6=y +x 解得:⎩⎨⎧ 2.=y ,4=x答:该合作社改进加工方法前用了4天,改进加工方法后用了2天. 跟踪训练4 1.A 2. 233.解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:⎩⎨⎧==,90)y -x )4+6,90)y +6x ((解得:⎩⎨⎧ 3.=y ,12=x答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时. (2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,依题意,得:31290312--=+a a ,解得:a =4225. 答:甲、丙两地相距4225千米.中考真题1.D2.D3.A4.C5. B6. B7.4 8. ⎩⎨⎧==12y x 9.⎩⎨⎧==32y x 10.1 11,答案不唯一,如x-y12. 25 13.4 14. 915.解:⎪⎪⎩⎪⎪⎨⎧=-=+②,①.22128213y x y x①+②,得:5x-10,解得x=2,把x =2代入①,得:6+21y =8,解得y =4, 所以原方程组的解为⎩⎨⎧==42y x .16.解:(1)由题意列方程组;⎩⎨⎧=-=+24y x y x ,解得⎩⎨⎧==13y x .将x =3,y =1分别代入31032-=+y ax 和x +by =15,解得34-=a ,b =12, ∴34-=a ,b =12.(2)012342=+-x x ,解得322484834=-±=x .这个三角形是等腰直角三角形. 理由如下:∵(23)2+(23)2=(26)2, ∴该三角形是等腰直角三角形. 17.解:设该电饭煲的进价为x 元.根据题意,得(1+50%)x ·80%-128=568.解得 =580. 答:该电饭煲的进价为580元.18.解:设每盒羊角春牌绿茶需要 元,每盒九孔牌藕粉需要y 元,依题意,得: ⎩⎨⎧,300=3y +x ,960=4y +6x 解得:⎩⎨⎧60.=y ,120=x答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.。

中考数学方程和方程式基础知识

中考数学方程和方程式基础知识

中考数学方程和方程式基础知识基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)(2)一玩一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

(4)一元一次方程有唯一的一个解。

2、一元二次方程(1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:ac b 42-=∆ 当Δ>0时⇔方程有两个不相等的实数根;当Δ=0时⇔方程有两个相等的实数根;当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根(5)一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a bx x -=+21,a cx x =⋅21(6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。

(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

中考复习--方程--3

中考复习--方程--3
解:∵实数 a 是一元二次方程 x2-2 020x+1=0 的一个根, ∴a2-2 020a+1=0, ∴a2-2 019a=a-1,a2+1=2 020a, ∴a2-2 019a+a220+201=a-1+22002200a=a-1+1a=a2+a 1-1=2 020-1=2 019.
2.如果关于 x 的一元二次方程 kx2-3x-1=0 有两个不相等的实根,那么 k 的取值范 围是________.
半的平方
理,得x+2ba2=b2-4a42 ac
若方程右边是非负数,则直接开平 方降次求出方程的解
x=-2ba±
b22-a 4ac(b2-4ac≥0)
知识点 2 列一元二次方程解应用题的常见题型
常见题型 传播问题
平均增长(或 降低)率问题
几何图形面 积问题
数量关系或公式
特别提醒
传播源数+第一轮被传播数+第二轮
ቤተ መጻሕፍቲ ባይዱ
)
A.1
1 B.2
C.25
D.不能确定
A 把 x=m 代入方程得 m2-m-1=0,∵m≠0,
方程的两边同时除以 m 得 m-1-m1 =0,∴m-m1 =1.故选 A.
15.已知实数 a 是一元二次方程 x2-2 020x+1=0 的一个根,求代数式 a2-2 019a+ a220+201的值.
10.(2019·四川宜宾中考)若关于 x 的不等式组x-4 2<x-3 1, 有且只有两个整数 2x-m≤2-x
解,则 m 的取值范围是__-__2_≤_m_<__1___.
类型 3 根据含未知数的式子的范围确定待定字母的取值范围 11.(2019·湖北鄂州中考)若关于 x,y 的二元一次方程组xx-+35yy==45m+3,的解满 足 x+y≤0,则 m 的取值范围是___m_≤_-__2_____.

2012中考数学总复习知识点总结:003 方程(组)

2012中考数学总复习知识点总结:003 方程(组)

第三章 方程(组)考点一、一元一次方程的概念 (6分)1、方程含有未知数的等式叫做方程。

2、方程的解能使方程两边相等的未知数的值叫做方程的解。

3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。

考点二、一元二次方程 (6分)1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

考点三、一元二次方程的解法 (10分)1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。

(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。

对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。

注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 分式方程
一级训练
1.(2012年浙江丽水)把分式方程2x +4=1x 转化为一元一次方程时,方程两边需同时乘以( )
A .x
B .2x
C .x +4
D .x (x +4)
2.(2012年四川成都)分式方程32x =1x -1
的解为( ) A .x =1 B .x =2 C .x =3 D .x =4
3.解分式方程:1-x x -2+2=12-x
,可知方程的( ) A .解为x =2 B .解为x =4 C .解为x =3 D .无解
4.解关于x 的方程x -3x -1=m x -1
会产生增根,则常数m 的值等于( ) A .-2 B .-1 C .1 D .2
5.(2012年江苏无锡)方程4x -3x -2
=0的解为________. 6.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为______________.
7.解方程:3-x x -4+14-x
=1.
8.解方程:1x 2-x =2x 2-2x +1
.
X k B 1 . c o m
9.如图2-1-1,海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降.请你根据两位经理的对话,计算出该公司在实现“三通”前从台湾采购苹果的成本价格.
图2-1-1
二级训练 10.(2011年湖北荆州)对于非零的两个实数a ,b ,规定a ⊗b =1b -1a
,若1⊗(x +1)=1,则x
的值为( )
A.32
B.13
C.12 D .-12
新课 标第 一 网 11.在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约800千米,南线的路程约80千米,走南线的车队在西线车队出发18小时后立刻启程,结果两车队同时到达.已知两车队的行驶速度相同,求车队走南线所用的时间.
12.已知||a -1+b +2=0,求方程a x
+bx =1的解.
13.(2011年广东茂名)解分式方程:3x 2-12x +2
=2x .
三级训练
14.关于x 的分式方程m x -5
=1,下列说法正确的是( ) A .方程的解是x =m +5 B .m >-5时,方程的解是正数
C .m <-5时,方程的解为负数
D .无法确定
15.(2012年贵州安顺)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?
第2课时 分式方程
【分层训练】
1.D 2.C 3.D 4.A
5.x =8
6.90x =120x +20
7.解:方程两边同时乘以(x -4),
得(3-x )-1=x -4,解得x =3.
经检验,x =3是原方程的解.xK b1 .Com
8.解:原方程变形为1x (x -1)=2(x -1)2
, 方程两边都乘以x (x -1)2,去分母,得x -1=2x ,
解得x =-1.
经检验,x =-1是原方程的解.
9.解:设该公司今年从台湾采购苹果的成本价格为x 元/千克,则“三通”前苹果的成本价格为2x 元/千克,根据题意列方程,得
100 000x -100 0002x
=20 000, 解得x =2.5.
经检验,x =2.5是原方程的解.
当x =2.5时,2x =5.
答:实现“三通”前该公司到台湾采购苹果的成本价格为5元/千克.
10.D
11.解:设车队走南线所用的时间为x 小时,则走西线所用的时间为(x +18)小时.
依题意,得80018+x =80x
, 解得x =2.
经检验,x =2是原方程的解.
答:车队走南线所用的时间为2小时.
12.解:由|a -1|+b +2=0,得a -1=0,b +2=0,
即a =1,b =-2.
由方程1x
-2x =1,得2x 2+x -1=0. 解得x 1=-1,x 2=12
. X k B 1 . c o m 经检验,x 1=-1,x 2=12
是原方程的解. 13.解:去分母3x 2-12=2x (x +2),移项得3x 2-2x 2=4x +12,得x 2-4x -12=0,
分解因式得(x +2)(x -6)=0,
得x =-2或x =6.而当x =-2时,分母x +2=0.
故x =-2为增根,所以方程的解为x =6.
14.C 解析:两边乘以x -5,去分母得x =m +5.
∴当x -5≠0,把x =m +5代入得:m +5-5≠0,
即m ≠0,方程有解,故A 错;当x >0且x ≠5,
解得m >-5且m ≠0时方程的解为正数,B 错;
当x <0时,即m +5<0,解得:m <-5,
则m <-5时,方程的解为负数,C 对,显然D 错误.
15.解:设原计划每天铺设管道x 米,依题意,得120x +300-120(1+20%)x
=27,解得x =10. 经检验,x =10是原方程的根.
答:原计划每天铺设管道10米。

相关文档
最新文档