线性代数线性方程组基本概念
(完整版)线性代数第四章线性方程组试题及答案
第四章 线性方程组1.线性方程组的基本概念(1)线性方程组的一般形式为:其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足当每个方程中的未知数x 用k i 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解. b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只有零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. (2) 线性方程组的其他形式 线性方程组除了通常的写法外,还常用两种简化形式: 向量式 x 1α1+x 2α2+…+n x n α= β, (齐次方程组x 1α1+x 2α2+…+n x n α=0).即[]n a a ,,a 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21=β 全部按列分块,其中β,,21n a a a 如下⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=121111m a a a α ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=222122m a a a α,………,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n n a a a 21α, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β 显然方程组有解的充要条件是向量β可由向量组n ααα,,21 线性表示。
矩阵式 AX =β,(齐次方程组AX =0).⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β其中A 为m n ⨯矩阵,则:① m 与方程的个数相同,即方程组AX =β有m 个方程; ② n 与方程组的未知数个数相同,方程组AX =β为n 元方程。
高等数学线性代数线性方程组教学ppt(4)
1.2 高斯消元法
对线性方程组消元的三种变换(统称为线性方程组 的初等变换):
(1)交换方程组中某两个方程的位置; (2)以非零常数k乘以方程组中某个方程; (3)用数k乘以方程组中某个方程后加到另一个方程 上去.
定理1 线性方程组经过初等变换后得到的新方程组 与原方程组同解.
例1
解线性方程组
R( A) n;
(2)若R(A) n 1,则 A 0, AA* A E O,
由例5知:R( A) R( A*) n, R( A*) n R( A) n (n 1) 1, 即R( A*) 1.
另一方面,由于R(A) n 1, 因此A存在n 1阶非零子式,即A* O, 从而R( A*) 1.
R( A*) 1;
任一解都可以表示为
x 0 k11 knrnr ,
其中k1, , knr R. 即,当R(A) R(A | b)时,有
Ax b的通解
Ax b的一个特解 Ax 0的通解.
行阶梯形矩阵对应的方程组,叫行阶梯 形方程组;
行阶梯形方程组中,每个方程的第一个 未知量称为主未知量(主变量),其余变量叫 自由未知量(自由变量);
用消元法解线性方程组,就是用初等行 变换将方程组的增广矩阵化为行阶最简形, 得到的行阶梯方程组与原方程组同解.
例2 求解非齐次方程组的通解
x1 x1
3.设0是Ax b的某个解(称为特解),则Ax b 的任一个解向量都可表示成0与对应的 Ax 0的解之和,即有
0 .
证 :由于 0 ( 0 ),记 0,由性质1知 是导出组Ax 0的解,则 0 .
故只要 取遍Ax 0的全部解, 0 就取遍了 Ax b的所有解.
三、Ax b解的结构定理 定理4 若Ax b有解,1, ,nr是对应的Ax 0 的基础解系,0是Ax b的一个特解,则Ax b的
线性方程组的解法教案
线性方程组的解法教案一、引言线性方程组是数学中常见的一个重要概念,解决线性方程组问题是解析几何、线性代数等学科的核心内容。
本文将介绍线性方程组的基本概念和解法,帮助读者更好地理解和应用线性方程组。
二、线性方程组的基本概念1. 定义:线性方程组由一组线性方程组成,每个方程中的未知数的最高次数都为1,且系数皆为实数或复数。
线性方程组可以表示为以下形式:a₁x₁ + a₂x₂ + ... + aₙxₙ = b₁a₁x₁ + a₂x₂ + ... + aₙxₙ = b₂...a₁x₁ + a₂x₂ + ... + aₙxₙ = bₙ其中,a₁、a₂、...、aₙ分别为系数,x₁、x₂、...、xₙ为未知数,b₁、b₂、...、bₙ为常数项。
2. 解的概念:对于线性方程组,找到一组使得所有方程都成立的值,即为其解。
如果线性方程组存在解,则称其为相容的;如果不存在解,则称其为不相容的。
三、线性方程组的解法1. 列主元消去法列主元消去法是解决线性方程组的常用方法之一。
具体步骤如下:(1) 将线性方程组化为增广矩阵形式,写成增广矩阵[A|B]的形式。
(2) 对增广矩阵进行初等行变换,化简成上三角形矩阵[U|C]的形式,即上面的元素都为0。
(3) 从最后一行开始,按列主元所在的列进行回代求解,得到每个未知数的值。
2. 矩阵的逆和逆的应用矩阵的逆是解决线性方程组的另一种有效方法。
具体步骤如下:(1) 将线性方程组化为矩阵形式,即AX = B。
(2) 若矩阵A可逆,即存在逆矩阵A⁻¹,则方程组的解可以表示为X = A⁻¹B。
3. 克拉默法则克拉默法则是解决线性方程组的另一种方法,适用于方程组的系数矩阵为方阵的情况。
具体步骤如下:(1) 将方程组的系数矩阵记为A,常数项矩阵记为B。
(2) 分别计算方程组系数矩阵的行列式D和将常数项矩阵替换为方程组系数矩阵第i列后的新矩阵Di的行列式Di,并计算比值di = Di / D。
线性方程组与矩阵
线性方程组与矩阵线性方程组和矩阵是线性代数中重要的概念和工具,在数学和工程领域都有广泛的应用。
本文将介绍线性方程组和矩阵的基本定义、解法和应用。
一、线性方程组线性方程组是由一组线性方程构成的方程组,其中每个方程都是由未知数的线性项和常数项构成。
一般地,一个包含n个未知数的线性方程组可以表示为:a11*x1 + a12*x2 + a13*x3 + ... + a1n*xn = b1a21*x1 + a22*x2 + a23*x3 + ... + a2n*xn = b2a31*x1 + a32*x2 + a33*x3 + ... + a3n*xn = b3...an1*x1 + an2*x2 + an3*x3 + ... + ann*xn = bn其中,a11, a12, ..., ann是系数矩阵的元素,x1, x2, ..., xn是未知数,b1, b2, ..., bn是常数项。
这个方程组可以用矩阵和向量的形式更简洁地表示为Ax=b,其中A是系数矩阵,x和b分别是未知数和常数项的向量。
二、矩阵矩阵是线性代数中的基本工具,是由m行n列的数按一定规律排列的数表。
一个常见的表示形式是使用方括号将元素括起来,并按行或列排列。
例如:A = [a11 a12 a13a21 a22 a23a31 a32 a33]其中, A是一个3行3列的矩阵,a11、a12等是矩阵的元素。
矩阵可以进行加法、乘法和数乘等运算,符合相应的运算规则和性质。
矩阵的乘法特别有用,可以用于表示线性方程组的系数矩阵与未知数向量之间的关系。
三、线性方程组的解法解线性方程组的方法有很多,包括高斯消元法、LU分解法、矩阵逆法等。
其中高斯消元法是最常用的解法,可以将线性方程组化为一个等价的三角形式方程组,从而求得解。
高斯消元法的基本步骤如下:1. 将线性方程组写成增广矩阵的形式,即将系数矩阵A和常数项向量b合并为一个矩阵[B]。
2. 利用初等行变换将系数矩阵化为上三角矩阵。
线性代数第二版 主编 吴传生 第一章 线性方程组的消元法和矩阵的初等变换)
a22 x2 a2 n xn b2
am 2 x2 am n xn bm
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
考查方程组 (1) 分析系数
a11 x1 a12 x2 a1n xn b1
a21 x1 a22 x2 a2n xn b2
am1 x1 am2 x2 amn xn bm
两边同乘以已知常数 ,得到一个新的线性方程:
a1 x1 a2 x2 L an xn b.
线性方程与常数相乘,也称为方程的数乘。
线性方程的线性组合
将线性方程(1)和(2)分别称两个已知常数 1, 2
再将所得的两个方程相加,得到新方程:
1a11 2a21 x1 1a12 2a22 x2 L
方程组转换成 x2 , ,xn 的方程组来解 ,
若 x1 的系数不全为0,则利用变换(1),使 a11 0 . (2) 化简:利用初等变换(3),分别把第一个方程的 ai1 倍
a11 加到第 i 个方程,则方程组可以变成:
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
考查方程组
a11 x1 a12 x2 a1n xn b1
c11 x1 c12 x2 c1n xn d1
c22 x2 c2n xn d2
crr xr crn xn dr
0 dr1
00
00
(II)当 dr1 0 或方程组中根本没有0 0 的方程,分两种情形:
ii)r n . 这时阶梯型方程组为:
c11 x1 c12 x2 c1r xr c1,r1 xr1 c1n xn d1
定理1 线性方程组的初等变换总是把方程组变成 同解方程组 .
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
线性代数-线性方程组
同理可得
2 2 D1 1 0 1 D3 2 1 1 1 1 1
1
1
2 1 0
1 3 10, 1
3 5, D2 2 1 1 1 5, 0
2 2
故方程组的唯一解为: D1 D2 x1 1, x2 2, D D
D3 x3 1. D
b1 D1 b2 a12 , a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
a11 b1 D2 . a21 b2
ห้องสมุดไป่ตู้
则二元线性方程组的解为
b1
a12
a11
b1
D1 b2 a22 x1 , D a11 a12 a21 a22
注意
D2 a21 b2 x2 . D a11 a12 a21 a22
的系数行列式必为零.
例 5 问 取何值时,齐次方程组
1 x1 2 x2 4 x3 0, 2 x1 3 x2 x3 0, x x 1 x 0, 1 2 3
有非零解? 解
1 D 2 1 2 3 1 4 1 1
分母都为原方程组的系数行列式.
例1 求解二元线性方程组
3 x1 2 x2 12, 2 x1 x2 1.
解
D
3 2 2 1 1
3 ( 4) 7 0,
D1
12 2 1
14, D2
3 12 2 1
21,
D1 14 D2 21 x1 2, x 2 3. D 7 D 7
1 2 1
3 1 0
4 1 1
线性代数Ⅳ—线性方程组
c1 , c2 为任意常数
其中
1 1 1 0 ξ = c1 + c2 为对应齐次线性方程组的通解 0 2 1 0 1 2 0 η = 1 为非齐次线性方程组的特解 2 0
16
例 已知 α1 = (1, 4, 0, 2)T α 2 = ( 2, 7,1, 3)T α 3 = ( 0,1, 1, a)T β = ( 3,10, b, 4)T 问:(1) a,b为何值时,β 不能由 α1 , α 2 , α 3 线性表示 (2) a,b为何值时,β 可以由 α1 , α 2 , α 3 线性表示,并写出 表达式 例 设线性方程组
x1 = 0 , x2 = 0 , , xn = 0 即 x = (0 , 0 , , 0)T 必为方程组的一个解向量
称零解.
有时,齐次线性方程组还有非零解.
4
2 求解齐次线性方程组
2.1 齐次线性方程组有非零解的条件
定理一: 定理一:n 元齐次线性方程组 Ax = 0 有非零解(仅有零解) A 的列向量 α1 , α 2 , , α n 线性相关(无关)
x = η + k1ξ1 + k 2ξ 2 + + k n rξ n r (k1 , k 2 , , k n r为任意常数)
~
即 非齐次线性方程组的通解=非齐次线性方程组的一个特解 +对应齐次线性方程组的通解
14
3.3 求解非齐次线性方程组 求解非齐次线性方程组——消元法 消元法
通过例题理解 例:求解线性方程组
11
3 求解非齐次线性方程组
3.1 非齐次线性方程组的讨论
非齐次线性方程组 Ax = b ( b ≠ 0 ) 解的情况有三种 (1)无解 (2)有唯一解 (3)有无穷多组解
线性代数基础
线性代数基础线性代数是数学的一个分支,它研究包括向量空间在内的线性相关概念。
线性代数广泛应用于各个领域,如物理学、工程学、计算机科学以及经济学等。
在本文中,我们将介绍线性代数的基础概念和应用。
1. 向量和向量空间在线性代数中,向量是指具有大小和方向的量。
我们通常表示向量为箭头,其长度表示向量大小,方向表示向量的方向。
一个向量可以在坐标系中表示,坐标系是由基向量组成的。
任意一个向量都可以通过基向量的线性组合来表示。
向量空间是一个包含向量的集合,它满足一定的条件,包括加法和数乘运算。
向量空间包括了所有可以用基向量表示的向量,例如二维平面上的向量空间可以由两个基向量来表示。
2. 矩阵和矩阵运算矩阵是一个由数值组成的矩形数组。
一个矩阵可以表示为一个$m\times n$的矩阵,其中$m$表示矩阵的行数,$n$表示矩阵的列数。
矩阵和向量之间可以进行乘法运算。
向量和矩阵的乘法及矩阵和矩阵的乘法分别称为矩阵向量乘积和矩阵乘积。
矩阵乘积是矩阵运算中最基本也是最重要的运算之一,有着广泛的应用。
3. 线性方程组线性方程组是形如$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n =b_1$的方程组,其中$x_1,x_2,...,x_n$是未知数,$a_{11},a_{12},...,a_{1n},b_1$是已知数。
线性方程组的解是指满足所有方程的解,可以用行列式、矩阵、向量等方式表示。
4. 特征值和特征向量在矩阵中,特征向量是指任意非零向量$V$,当被某个矩阵$A$线性变换时,$V$仅被缩放而不改变方向。
特征值是指对于某个矩阵$A$的特定向量,通过线性变换后与原向量方向相同但长度发生改变的倍数。
特征向量和特征值有着广泛的应用。
例如,在图像处理中,特征向量和特征值可以用于图像压缩和模式识别。
5. 应用案例线性代数的应用非常广泛。
下面我们列举一些实际应用案例。
(1)平面几何。
向量通常用于二维平面上的几何中,例如用于描述线段的位置和方向。
线性代数 4-1线性方程组
导出组
γ 1,γ 2 ⇒ γ 1 − γ 2
γ ,η ⇒ γ + η
机动 目录 上页 下页 返回 结束
2) (1) 的一解与其 导出组 的一解之和仍是 (1) 的解 2)(1) (1)的一解与其 的一解与其导出组 导出组的一解之和仍是 的一解之和仍是(1) (1)的解
(2)
(2)通常称为(1)的导出方程组
机动 目录 上页 下页 返回 结束
(1) 的系数矩阵与增广矩阵记为: 方程组 方程组(1) (1)的系数矩阵与增广矩阵记为: ⎛ a11 a12 ⋯ a1n ⎞ ⎜ ⎟ a a ⋯ a 2n ⎟ A = ⎜ 21 22 ⎜ ⋮ ⋮ ⎟ ⎜ ⎟ ⎝ am1 am2 ⋯ amn ⎠
结束
一、线性方程组的概念
⎧ a11 x1 + a12 x2 + ⋯ + a1n xn = b1 ⎪ a x + a x +⋯ + a x = b ⎪ 21 1 22 2 2n n 2 非齐次 ⎨ ⋮ ⎪ ⎪ ⎩am 1 x1 + am 2 x2 + ⋯ + amn xn = bm
(1)
齐次
⎧ a11 x1 + a12 x2 + ⋯ + a1n xn = 0 ⎪ a x + a x +⋯ + a x = 0 ⎪ 21 1 22 2 2n n ⎨ ⋮ ⎪ ⎪ ⎩am 1 x1 + am 2 x2 + ⋯ + amn xn = 0
(r = n) α1 α2 αn 重要结论:行变换不改变列向量间的线性关系 . 重要结论:行变换不改变列向量间的线性关系.
线性代数概念
第一讲 基本概念1.线性方程组的基本概念 线性方程组的一般形式为:其中未知数的个数n 和方程式的个数m 不必相等.线性方程组的解是一个n 维向量()n k k k ,,21 〔称为解向量〕,它满足:当每个方程中的未知数i x 都用i k 替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解. 对线性方程组讨论的主要问题有两个:〔1〕判断解的情况.〔2〕求解,特别是在有无穷多解时求通解.021====m b b b 的线性方程组称为齐次线性方程组.n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解〔即只要零解〕和无穷多解〔即有非零解〕.把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. 2.矩阵和向量 〔1〕基本概念矩阵和向量都是描写事物形态的数量形式的发展.由n m ⨯个数排列成的一个m 行n 列的表格,两边界以圆括号或方括号,就成为一个n m ⨯型矩阵.例如是一个54⨯矩阵,对于上面的线性方程组,称矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A212222111211 和()⎪⎪⎪⎪⎪⎭⎫⎝⎛=m mn m m n n b b b a a a a a a a a a A 21212222111211|β 为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i 行第j 列的数称为()j i ,位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A 和B 相等〔记作B A =〕,是指它的行数相等,列数也相等〔即它们的类型相同〕,并且对应的元素都相等.由n 个数构成的有序数组称为一个n 维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是n a a a ,,,21 的向量可表示成()n a a a ,,,21 或⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 21,请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样〔左边是n ⨯1矩阵,右边是1⨯n 矩阵〕.习惯上把它们分别称为行向量和列向量.〔请注意与下面规定的矩阵的行向量和列向量概念的区别.〕一个n m ⨯的矩阵的每一行是一个n 维向量,称为它的行向量;每一列是一个m 维向量,称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为n ααα,,,21 时〔它们都是表示为列的形式!〕可记()n A ααα,,,21 =.矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量α和β相等〔记作βα=〕,是指它的维数相等,并且对应的分量都相等. 〔2〕线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加〔减〕法:两个n m ⨯的矩阵A 和B 可以相加〔减〕,得到的和〔差〕仍是n m ⨯矩阵,记作()B A B A -+,法则为对应元素相加〔减〕.数乘:一个n m ⨯的矩阵A 与一个数c 可以相乘,乘积仍为n m ⨯的矩阵,记作cA ,法则为A 的每个元素乘c .这两种运算统称为线性运算,它们满足以下规律:① 加法交换律:A B B A +=+. ② 加法结合律:()()C B A C B A ++=++. ③ 加乘分配律:()cB cA B A c +=+.()dA cA A d c +=+. ④ 数乘结合律:()()A cd A d c =. ⑤00=⇔=c cA 或0=A .转置:把一个n m ⨯的矩阵A 行和列互换,得到的m n ⨯的矩阵称为A 的转置,记作TA 〔或A '〕. 有以下规律:①()A A TT=. ②()T T TB A B A +=+. ③()T TcA cA =.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当α是列向量时,Tα表示行向量,当α是行向量时,Tα表示列向量.向量组的线性组合:设s ααα,,,21 是一组n 维向量,s c c c ,,,21 是一组数,则称s s c c c ααα+++ 2211为s ααα,,,21 的〔以s c c c ,,,21 为系数的〕线性组合.n 维向量组的线性组合也是n 维向量. 〔3〕n 阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n 的矩阵也常常叫做n 阶矩阵.把n 阶矩阵的从左上到右下的对角线称为它对角线.〔其上的元素行号与列号相等.〕 下面列出几类常用的n 阶矩阵,它们都是考试大纲中要求掌握的. 对角矩阵:对角线外的元素都为0的n 阶矩阵.单位矩阵:对角线上的元素都为1的对角矩阵,记作E 〔或I 〕.数量矩阵:对角线上的元素都等于一个常数c 的对角矩阵,它就是cE . 上三角矩阵:对角线下的元素都为0的n 阶矩阵. 下三角矩阵:对角线上的元素都为0的n 阶矩阵.对称矩阵:满足A A T =矩阵.也就是对任何()j i j i ,,,位的元素和()i j ,位的元素总是相等的n 阶矩阵.〔反对称矩阵:满足A A T -=矩阵.也就是对任何()j i j i ,,,位的元素和()i j ,位的元素之和总等于0的n 阶矩阵.反对称矩阵对角线上的元素一定都是0.〕 3.矩阵的初等变换和阶梯形矩阵 矩阵有以下三种初等行变换: ①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.<称这类变换为倍加变换>类似地,矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了.初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足: ①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增. 把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角. 简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为: ③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意:1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2.一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的. 4.线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组〔即增广矩阵为阶梯形矩阵的方程组〕. 线性方程组的同解变换有三种: ①交换两个方程的上下位置. ②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法. 对非齐次线性方程组步骤如下:〔1〕写出方程组的增广矩阵()β|A ,用初等行变换把它化为阶梯形矩阵()γ|B . 〔2〕用()γ|B 判别解的情况:如果最下面的非零行为()d |0,,0,0 ,则无解,否则有解.有解时看非零行数r 〔r 不会大于未知数个数n 〕,n r =时唯一解;n r <时无穷多解. 〔推论:当方程的个数n m <时,不可能唯一解.〕 〔3〕有唯一解时求解的初等变换法:去掉()γ|B 的零行,得到一个()1+⨯n n 矩阵()00|γB ,并用初等行变换把它化为简单阶梯形矩阵()η|E ,则η就是解.对齐次线性方程组:〔1〕写出方程组的系数矩阵A ,用初等行变换把它化为阶梯形矩阵B .〔2〕用B 判别解的情况:非零行数n r =时只有零解:n r <时有非零解〔求解方法在第五章讲〕.〔推论:当方程的个数n m <时,有非零解.〕 讨论题1.设A 是n 阶矩阵,则〔A 〕A 是上三角矩阵⇒A 是阶梯形矩阵. 〔B 〕A 是上三角矩阵⇐A 是阶梯形矩阵. 〔C 〕A 是上三角矩阵⇔A 是阶梯形矩阵.〔D 〕A 是上三角矩阵与A 是阶梯形矩阵没有直接的因果关系. 2.下列命题中哪几个成立?〔1〕如果A 是阶梯形矩阵,则A 去掉任何一行还是阶梯形矩阵. 〔2〕如果A 是阶梯形矩阵,则A 去掉任何一列还是阶梯形矩阵. 〔3〕如果()B A |是阶梯形矩阵,则A 也是阶梯形矩阵. 〔4〕如果()B A |是阶梯形矩阵,则B 也是阶梯形矩阵. 〔5〕如果⎪⎪⎭⎫⎝⎛B A 是阶梯形矩阵,则A 和B 都是阶梯形矩阵.第二讲 行列式一.概念复习 1.形式和意义形式:用2n 个数排列成的一个n 行n 列的表格,两边界以竖线,就成为一个n 阶行列式: 如果行列式的列向量组为n ααα,,,21 ,则此行列式可表示为n ααα,,,21 .意义:是一个算式,把这2n 个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号!〔不必形式一样,甚至阶数可不同.〕 每个n 阶矩阵A 对应一个n 阶行列式,记作A .行列式这一讲的核心问题是值的计算,以与判断一个行列式的值是否为0.2.定义〔完全展开式〕2阶和3阶行列式的计算公式: 2112221122211211a a a a a a a a -=.一般地,一个n 阶行列式的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:nnj j j ααα 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标n j j j 21构成n ,,2,1 的一个全排列〔称为一个n 元排列〕,共有!n 个n 元排列,每个n 元排列对应一项,因此共有!n 个项. 所谓代数和是在求总和时每项先要乘1+或1-.规定()n j j j 21τ为全排列n j j j 21的逆序数〔意义见下面〕,则项n nj j j a 2121αα所乘的是()()n j j j 211τ-.全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:()10002323436512,215634002323=+++++=τ.至此我们可以写出n 阶行列式的值:()()∑-=nnn j j j nj j j j j j nnn n nna a a a a a a a a a a 212121212122221112111ατ.这里∑nj j j 21表示对所有n 元排列求和,称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上〔下〕三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0. 3.化零降阶法把n 阶行列式的第i 行和第j 列划去后所得到的1-n 阶行列式称为()j i ,位元素ij a 的余子式,记作ij M .称()ij ji ij M A +-=1为元素ij a 的代数余子式.定理〔对某一行或列的展开〕行列式的值等于该行〔列〕的各元素与其代数余子式乘积之和.命题第三类初等变换〔倍加变换〕不改变行列式的值.化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为0,再用定理,于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握. 4.其它性质行列式还有以下性质:① 把行列式转置值不变,即A A T =.② 某一行〔列〕的公因子可提出.于是,A c cA n =. ③ 对一行或一列可分解,即如果某个行〔列〕向量γβα+=,则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行〔列〕向量α换为β或γ所得到的行列式.例如γβαγβαγββα,,,,,,2121+=+.④ 把两个行〔列〕向量交换,行列式的值变号.⑤ 如果一个行〔列〕向量是另一个行〔列〕向量的倍数,则行列式的值为0. ⑥某一行〔列〕的各元素与另一行〔列〕的对应元素的代数余子式乘积之和0=. ⑦如果A 与B 都是方阵〔不必同阶〕,则B A A A B*0 B0* ==.X 德蒙行列式:形如 in ni n i n i n n na a a a a a a a a a a a ----32122322213211111 的行列式〔或其转置〕.它由n a a a a ,,,,321 所决定,它的值等于()∏-ji i jαα.因此X 德蒙行列式不等于n a a a a ,,,,0321 ⇔两两不同.对于元素有规律的行列式〔包括n 阶行列式〕,常常可利用性质简化计算,例如直接化为三角行列式等. 5.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n 〔即系数矩阵为n 阶矩阵〕的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为()D D D D D D n / , ,/ ,/21 ,这里D 是系数行列式的值,i D 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够.法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵()β|A 作初等行变换,使得A 变为单位矩阵:()()ηβ||E A →,η就是解.用在齐次方程组上:如果齐次方程组的系数矩阵A 是方阵,则它只有零解的充分必要条件是0≠A .第三讲 矩阵一.概念复习1.矩阵乘法的定义和性质定义2.1 当矩阵A 的列数和B 的行数相等时,和A 和B 可以相乘,乘积记作AB .AB 的行数和A 相等,列数和B 相等.AB 的()j i ,位元素等于A 的第i 个行向量和B 的第j 个列向量〔维数相同〕对应分量乘积之和. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mn m m n n a a a a a a a a a A 212222111211,⎪⎪⎪⎪⎪⎭⎫⎝⎛=ns n n s s b b b b b b b b b B 212222111211,⎪⎪⎪⎪⎪⎭⎫⎝⎛==ms m m s s c c c c c c c c c AB C 212222111211,则nj in j i j i ij b a b a b a c +++= 2211.矩阵的乘法在规则上与数的乘法有不同:① 矩阵乘法有条件. ② 矩阵乘法无交换律.③ 矩阵乘法无消去律,即一般地由0=AB 推不出0=A 或0=B .由AC AB =和0≠A 推不出C B =.〔无左消去律〕 由CA BA =和0≠A 推不出C B =.〔无右消去律〕请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来. 矩阵乘法适合以下法则:① 加乘分配律 ()AC AB C B A +=+,()BC AC C B A +=+. ② 数乘性质()()AB c B cA =.③ 结合律 ()()BC A C AB =.④()TT TA B AB =.2.n 阶矩阵的方幂和多项式任何两个n 阶矩阵A 和B 都可以相乘,乘积AB 仍是n 阶矩阵.并且有行列式性质:B A AB =.如果BA AB =,则说A 和B 可交换.方幂 设k 是正整数,n 阶矩阵A 的k 次方幂kA 即k 个A 的连乘积.规定E A =0.显然A 的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①h k h k A A A +=.②()kh hkA A =. 但是一般地()kAB 和k k B A 不一定相等!n 阶矩阵的多项式设()0111a x a xa x a x f m m m m ++++=-- ,对n 阶矩阵A 规定 ()E a A a A a A a A f m m m m 0111++++=-- .称为A 的一个多项式.请特别注意在常数项上加单位矩阵E .乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有:()2222B AB A B A +±=±;()()()()B A B A B A B A B A -+=-+=-22.二项展开式成立:()∑=-=+mi i i m i mmB A CB A 1等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的.一个n 阶矩阵的多项式可以因式分解. 3.分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵〔一切A 的纵向切割和B 的横向切割一致!〕,再用它们来作乘法.〔1〕两种常见的矩阵乘法的分块法则〔2〕⎪⎪⎭⎫⎝⎛++++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛222212212122112122121211211211112221121122211211B A B A B A B A B A B A B A B A B B B B A AA A要求ij A 的列数jk B 和的行数相等. 准对角矩阵的乘法:形如的矩阵称为准对角矩阵,其中k A A A ,,,21 都是方阵. 两个准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=k A A A A00000021, ⎪⎪⎪⎪⎪⎭⎫⎝⎛=k B B B B00000021如果类型相同,即i A 和i B 阶数相等,则⎪⎪⎪⎪⎪⎭⎫⎝⎛=k k B A B A B A AB000002211. 〔2〕乘积矩阵的列向量组和行向量组设A 是n m ⨯矩阵B 是s n ⨯矩阵.A 的列向量组为n ααα,,,21 ,B 的列向量组为s βββ,,,21 ,AB 的列向量组为s γγγ,,,21 ,则根据矩阵乘法的定义容易看出〔也是分块法则的特殊情形〕:①AB 的每个列向量为:i i A βγ=,s i ,,2,1 =. 即()()s s A A A A ββββββ,,,,,,2121 =. ②()Tn b b b ,,,21 =β,则n n b b b A αααβ+++= 2211.应用这两个性质可以得到:如果()Tni i i i b b b ,,,21 =β,则n ni i i i b b b A αααβγ+++== 22111.类似地,乘积矩阵AB 的第i 个行向量是B 的行向量组的线性组合,组合系数就是A 的第i 个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的. 〔1〕当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.〔2〕利用以上规律容易得到下面几个简单推论:用对角矩阵Λ从左侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各行向量;用对角矩阵Λ从右侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵kE 乘一个矩阵相当于用k 乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵. 两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘. 求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.〔3〕矩阵分解:当一个矩阵C 的每个列向量都是另一个A 的列向量组的线性组合时,可以构造一个矩阵B ,使得AB C =.例如设()γβα,,=A ,()γαγβαγβα2,3,2++--+=C ,令⎪⎪⎪⎭⎫ ⎝⎛--=211012131B ,则AB C =.〔4〕初等矩阵与其在乘法中的作用对单位矩阵E 作一次初等〔行或列〕交换,所得到的矩阵称为初等矩阵. 有三类初等矩阵: ()j i E ,:交换E 的i ,j 两行〔或列〕所得到的矩阵.()()c i E :用非0数c 乘E 的第i 行〔或列〕所得到的矩阵,也就是把E 的对角线上的第i 个元素改为c .()()c j i E ,()j i ≠:把E 的第j 行的c 倍加到第i 行上〔或把第i 列的c 倍加到第j 列上〕所得到的矩阵,也就是把E 的()j i ,位的元素改为c .命题 对矩阵作一次初等行〔列〕变换相当于用一个相应的初等矩阵从左〔右〕乘它. 4.矩阵方程和可逆矩阵〔伴随矩阵〕 〔1〕矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程: 〔I 〕B AX =. 〔II 〕B XA =.这里假定A 是行列式不为0的n 阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.〔否则解的情况比较复杂.〕当B 只有一列时,〔I 〕就是一个线性方程组.由克莱姆法则知它有唯一解.如果B 有s 列,设()s B βββ,,,21 =,则X 也应该有s 列,记()s X X X X ,,,21 =,则有i i AX β=,s i ,,2,1 =,这是s 个线性方程组.由克莱姆法则,它们都有唯一解,从而BAX =有唯一解.这些方程组系数矩阵都是A ,可同时求解,即得 〔I 〕的解法:将A 和B 并列作矩阵)B A ,对它作初等行变换,使得A 变为单位矩阵,此时B 变为解X .〔II 〕的解法:对两边转置化为〔I 〕的形式:B X A =.再用解〔I 〕的方法求出T X ,转置得X .矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成〔I 〕或〔II 〕的形式,要用恒等变形简化为以上基本形式再求解. 〔2〕可逆矩阵的定义与意义定义设A 是n 阶矩阵,如果存在n 阶矩阵B ,使得E AB =,E BA =,则称A 为可逆矩阵.此时B 是唯一的,称为A 的逆矩阵,通常记作1-A . 如果A 可逆,则A 在乘法中有消去律:00=⇒=B AB ;C B AC AB =⇒=.〔左消去律〕;00=⇒=B BA ;C B CA BA =⇒=.〔右消去律〕如果A 可逆,则A 在乘法中可移动〔化为逆矩阵移到等号另一边〕:C A B C AB 1-=⇔=.1-=⇔=CA B C BA .由此得到基本矩阵方程的逆矩阵解法:〔I 〕B AX =的解B A X 1-=. 〔II 〕B XA =的解1-=BA X .这种解法想法自然,好记忆,但是计算量比初等变换法大〔多了一次矩阵乘积运算〕.〔3〕矩阵可逆性的判别与性质定理 n 阶矩阵A 可逆0≠⇔A .证明 "⇒〞对E AA =-1两边取行列式,得11=-A A ,从而0≠A .〔并且11--=A A .〕"⇐〞因为0≠A ,矩阵方程E AX =和E XA =都有唯一解.设B ,C 分别是它们的解,即E AB =,E CA =.事实上()C CE CAB EB B C B =====,于是从定义得到A 可逆. 推论如果A 和B 都是n 阶矩阵,则E BA E AB =⇔=.于是只要E AB =〔或E BA =〕一式成立,则A 和B 都可逆并且互为逆矩阵. 可逆矩阵有以下性质:①如果A 可逆,则1-A 也可逆,并且()A A =--11.T A 也可逆,并且()()T T A A 11--=.0≠c 时,cA 也可逆,并且()111---=A c cA .对任何正整数k ,k A 也可逆,并且()()k k A A 11--=.〔规定可逆矩阵A 的负整数次方幂()()k k k A A A 11---==.〕②如果A 和B 可逆,则AB 也可逆,并且()111---=A B AB .〔请自己推广到多个可逆矩阵乘积的情形.〕初等矩阵都是可逆矩阵,并且()()j i E j i E ,,1=-,()()()()11--=c i E c i E ,()()()()c j i E c j i E -=-,,1. 〔4〕逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A 可逆时,1-A 是矩阵方程E AX =的解,于是可用初等行变换求1-A :这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多. ②伴随矩阵若A 是n 阶矩阵,记ij A 是A 的()j i ,位元素的代数余子式,规定A 的伴随矩阵为()T ij mn n nn n A A A A A A A A A A A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛= 212221212111*. 请注意,规定n 阶矩阵A 的伴随矩阵并没有要求A 可逆,但是在A 可逆时,*A 和1-A 有密切关系. 基本公式:E A A A AA ==**.于是对于可逆矩阵A ,有A A A /*1=-,即1*-A A A .因此可通过求*A 来计算1-A .这就是求逆矩阵的伴随矩阵法.和初等变换法比较,伴随矩阵法的计算量要大得多,除非2=n ,一般不用它来求逆矩阵.对于2阶矩阵⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛a c b d d c b a *, 因此当0≠-bc ad 时,()bc ad a c b d d c b a -⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-1.伴随矩阵的其它性质:①如果A 是可逆矩阵,则*A 也可逆,并且()()*/*11--==A A A A . ②1*-=n A A .③()()T T A A **=. ④()**1A c cA n -=.⑤()***A B AB =;()()k k A A **=.⑥当2>n 时,()A A A n 2**-=;2=n 时,()A A =**.。
线性代数中的线性方程组的基本解
线性代数中的线性方程组的基本解在线性代数中,线性方程组是一个非常重要的概念。
解线性方程组可以帮助我们找到未知数的取值,从而解决实际生活中的问题。
本文将介绍线性代数中线性方程组的基本解,并探讨一些相关的概念和理论。
一、线性方程组的定义与形式线性方程组是由一组线性方程组成的方程组。
一个线性方程组可以表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,aᵢₙ表示系数,xₙ表示未知数,bᵢ表示常数项,m表示方程组的行数,n表示方程组的列数。
二、线性方程组的解线性方程组的解指的是使得所有方程都成立的未知数取值。
一个线性方程组可以有三种解的情况:1. 无解的情况:线性方程组不存在可行解的情况称为无解。
2. 唯一解的情况:线性方程组存在唯一的解的情况称为唯一解。
这种情况下,线性方程组的解是一个由实数构成的向量。
3. 无穷多解的情况:线性方程组存在无穷多个解的情况称为无穷多解。
这种情况下,线性方程组的解是一个由自由变量决定的参数化表示。
三、线性方程组的基本解在线性方程组的解中,基本解是其中最基础的解。
基本解可以通过高斯消元法或矩阵运算得到。
具体步骤如下:1. 将线性方程组表示为增广矩阵的形式。
2. 对增广矩阵进行初等行变换,将其转化为行简化阶梯形。
3. 找到基础变量和自由变量。
基础变量是主导方程的未知数,自由变量是非主导方程的未知数。
4. 将自由变量表示为参数的形式,得到基本解。
5. 可以通过改变参数的值,得到线性方程组的无穷多解。
四、线性方程组的应用线性方程组的理论和方法在各个领域都有广泛的应用。
下面举几个例子来说明线性方程组的应用:1. 物理学中的力学问题:通过解线性方程组,可以确定多个物体受力的大小和方向。
2. 经济学中的投资问题:通过解线性方程组,可以确定不同投资项目的收益和投资金额。
宋浩线代辅导讲义
宋浩线代辅导讲义【实用版】目录1.宋浩线代辅导讲义概述2.线性代数基本概念3.线性方程组的解法4.特征值与特征向量5.矩阵的秩与逆矩阵6.空间解析几何与线性变换7.总结与建议正文【宋浩线代辅导讲义概述】线性代数是数学的一个重要分支,广泛应用于物理、化学、计算机科学、经济学等众多领域。
宋浩线代辅导讲义针对线性代数的基本概念、理论和方法进行了系统阐述,旨在帮助学生更好地理解和掌握线性代数的知识体系。
【线性代数基本概念】线性代数主要涉及向量、矩阵、线性方程组等基本概念。
向量是线性代数的基本对象,具有加法和数乘运算。
矩阵是多维向量的一种表示形式,可以进行加法、数乘和乘法运算。
线性方程组是线性代数的核心问题,主要研究如何求解线性方程组。
【线性方程组的解法】线性方程组的解法主要包括高斯消元法、克莱姆法则等。
高斯消元法是一种基于矩阵操作的解法,通过消元逐步求解线性方程组。
克莱姆法则是一种基于行列式的解法,可以求解具有唯一解的线性方程组。
【特征值与特征向量】特征值与特征向量是矩阵理论的重要概念。
特征值是矩阵乘以特征向量后的标量值,特征向量是满足线性方程组的非零向量。
特征值与特征向量可以用于矩阵的对角化,从而简化矩阵运算。
【矩阵的秩与逆矩阵】矩阵的秩是指矩阵中线性无关向量的最大数目。
矩阵的逆矩阵是指与矩阵乘积为单位矩阵的矩阵。
矩阵的秩与逆矩阵是矩阵理论的重要概念,广泛应用于线性方程组的解法、矩阵的求逆等。
【空间解析几何与线性变换】空间解析几何主要研究空间中点的表示、直线和平面的方程等。
线性变换是指将一个向量空间映射到另一个向量空间的运算。
空间解析几何与线性变换密切相关,可以借助线性变换解决空间几何问题。
【总结与建议】宋浩线代辅导讲义系统地阐述了线性代数的基本概念、理论和方法,对于学生掌握线性代数知识体系具有很好的辅导作用。
在学习过程中,建议学生注重理论与实践相结合,多做习题巩固所学知识。
《线性代数》 线性方程组
A 2
5
3
③+①(-3) 0
1
1
3 8
0 1 6
③+②(-1)
1
0
3 1
2
1
0 0 5
对于齐次线性方程组,要使其有非零解,
则要求: 秩r(A)n 3
故 5 = , 0 , = 5 时 当 即 r A 2 , 3
此时方程组有非零解。 这时系数矩阵变为:
1 3 2
如果常数项 b1,b2,,bm不全为0,则 称为:非齐次线性方程组。
5、方程组的解:
方程组的解是满足方程组的未知量的
一组取值: x 1 c 1 ,x 2 c 2 , ,x n c n .
也可记c1为 ,c2,: ,cn) (
例如:
显然,
5x1 x2 2x3 0 2x1 x2 x3 0 9x1 2x2 5x3 0
经济数学基础
《线性代数》
第三章 线性方程组
本章重点:
•线性方程组的解的判定和求法
本章难点:
•解的判定定理
一、线性方程组的有关概念
1、n元线性方程组为:
a11x1 a12x2 a1nxn b1,
a21x1 a12x2 a1nxn b2,
am1x1 am2x2 amnxn bm.
ai: j 第 i个方,第 程 j个未知 xj的量 系数;
1 1 0 x1 1
1
0
2x2
2
0 3 4 x3 3
由线性方程组可惟一确定增广矩阵;反之 由增广矩阵,也可以惟一确定线性方程组。
【例2】已知方程组的增广矩阵如下,试写出
它的线性方程组
1 1 0 1
A 1 0 2 2
【解】:x1x2 1
线性代数 线性方程组
变换 3: 第i 个方程 乘以 r 0
…… … … … … …
ai1 x1+ai2 x2+… +ain xn = bi …… … … … … …
aj1 x1+aj2 x2+…+ajn xn = bj …… … … … … …
第 i 个方程乘以 r−1 即返回
…… … … … … …
rai1 x1+rai2 x2+… +rain xn = rbi …… … … … … …
同解。
行阶梯形
y z =3
0=0
x = 2+z
y = 3+z
1 0 1 2
0 1 1 3 0000
行最简形
x z = 2 y z = 3
0=0
2. 行最简形矩阵:
• 首先是行阶梯形矩阵; • 其次首元所在的列除了这个首1 外其余元素都是0.
利用行最简形增广矩阵直接就可以写出解.
增广矩阵
初等行变换
行阶梯形
得到一个与原方程组有相同解集的新方程组, 它更容 易判别是否有解并方便求解. 这一过程称为等价变换 或同解变换.
消元法:
• 消元
• 回代
例5
2x y z 3
求解
x y
2
解
x y z 6
xy 2
①
②
2x y z 3
x y z 6
xy 2
y z 1 ③ +②×(- 2)
2 y z 4
② +①×(- 2) ③ +①×(- 1)
严格三角形方程组
xy 2
Байду номын сангаас
y z 1
线性代数的基本概念
线性代数的基本概念线性代数是数学的一个重要分支,研究向量空间和线性变换等代数结构及其应用。
在许多领域,如物理学、计算机科学、经济学等,线性代数都扮演着重要的角色。
本文将介绍线性代数的基本概念,包括向量、矩阵、线性变换和特征值等内容。
1. 向量向量是线性代数中的基本概念之一。
向量可以表示具有大小和方向的量,常用于描述力、速度和位移等物理量。
在数学上,向量通常用一组有序数列来表示,如 (x1, x2, ..., xn)。
向量具有加法和数乘的运算规则。
向量加法指的是将两个向量的对应分量相加,数乘是将向量的每个分量乘以一个数。
这些运算满足交换律、结合律和分配律等性质。
2. 矩阵矩阵是由一组数排成的矩形阵列。
矩阵的大小由行数和列数决定。
例如,一个 m×n 的矩阵有 m 行 n 列。
矩阵可以表示线性方程组,用于求解多个变量之间的关系。
通过矩阵的运算,可以进行加法、数乘和乘法等操作。
矩阵乘法是将一个矩阵的每一行与另一个矩阵的每一列进行对应元素相乘,并将结果相加得到新矩阵的元素。
3. 线性变换线性变换是指一个向量空间到另一个向量空间的映射,保持向量加法和数乘运算。
线性变换可以用矩阵来表示。
设有一个线性变换 T,向量 v 和矩阵 A,则有 T(v) = Av,其中 A 是线性变换的矩阵表示。
线性变换具有许多重要的性质,如保持零向量不变、保持向量长度比例不变等。
线性变换还可以进行复合和逆运算,这样可以构成一个线性变换的代数结构。
4. 特征值和特征向量特征值和特征向量是线性代数中重要的概念,常用于描述线性变换的性质。
对于一个线性变换 T,若存在一个非零向量 v 和一个实数λ,使得T(v) = λv,则λ 是 T 的特征值,v 是对应的特征向量。
特征值和特征向量可以帮助我们理解线性变换对向量空间的影响。
特征值表示了变换的缩放比例,特征向量表示了在变换中不变的方向。
通过求解特征值和特征向量,可以对线性变换进行分析和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明
由 r ( A) r ( A b) 知 A X = b 有解,
组
即存在 x~1, x~2 ,, x~n ,使得
x~1 A1 x~2 A2 x~n An b .
(1) 若 r n , 则 A1, A2 , , An 线性无关, 故 b 只能由 A1, A2 , , An 的惟一地线性表示, 即 A X = b 的解是惟一的。
即得 念
第 二、线性方程组解的存在性与惟一性
四 章
1. 线性方程组解的存在性
2. 线性方程组解的惟一性 P112 定理4.2 (2) 线
性 定理 设 r ( A) r ( A b) r , 则 r n A X = b 有惟一解。
方 程
P123
4
§4.1 线性方程组的基本概念
第 一、线性方程组的几种表示形式
四 章
1. 线性方程组的一般形式
2. 线性方程组的矩阵形式 P111 线
性
方
程
组
简记为 A X b ,
其中 A 称为系数矩阵, A~ ( A b) 称为增广矩阵。
5
§4.1 线性方程组的基本概念
第 一、线性方程组的几种表示形式
若 A X = b 有解,
组
则 b 可由 A1 , A2 , , An 线性表示,
故向量组 A1 , A2 , , An 与 A1 , A2 , , An , b 等价,
即得 r ( A) r ( A b).
7
§4.1 线性方程组的基本概念
第 二、线性方程组解的存在性与惟一性
四 章
1. 线性方程组解的存在性
线 定理 线性方程组 A X = b 有解的充要条件是 r ( A) r ( A b).
性 证明 充分性
方
程
若 r ( A) r ( A b),
组
则 A1 , A2 , , An 的极大线性无关组也是
A1 , A2 , , An , b 的极大线性无关组,
故 b 可由 A1 , A2 , , An 的线性表示,
四 章
1. 线性方程组的一般形式
2. 线性方程组的矩阵形式
线 性
3. 线性方程组的向量形式
P111
方 程
对于线性方程组 A X b , 令
组
A ( A1 , A2 , , An ) ,
x1
则得到向量形式为
( A1 ,
A2 , ,
An
)
x2
b,
即 x1 A1 x2 A2 xn An b .
第 四
第四章
线性方程组
章
线 §4.1 线性方程组的基本概念
性 方
§4.2 高斯(Gauss)消元法
程 组
§4.3 齐次线性方程组解的结构
§4.4 非齐次线性方程组解的结构
1
§4.1 线性方程组的基本概念
第 四
§4.1
线性方程组的基本概念
章
一、线性方程组的几种表示形式
线
性 二、线性方程组解的存在性与惟一性
性 方
(1) 一定有(零)解。 因为 r ( A) r ( A 0).
程
组
(2) 只有零解 r( A) n; 有非零解 r( A) n .
特别,若 m < n ,即方程的个数小于未知量的个数, 则必有非零解。
(3) 若 m = n ,即 A 为方阵,则 只有零解 | A| 0; 有非零解 | A| 0 .
故 A X = b 的解不惟一。
10
§4.1 线性方程组的基本概念
第 二、线性方程组解的存在性与惟一性
四 章
1. 线性方程组解的存在性
2. 线性方程组解的惟一性 线 性 综合 (线性方程组解的判定) 方
程
对于线性方程组 A X = b, 有
组
(1) 当 r( A) r( A~) n 时,方程组有无穷多解;
方 程
三、等价的线性方程组
组
2
§4.1 线性方程组的基本概念
第 一、线性方程组的几种表示形式
四
章
在第一章中,讨论了方程的个数与未知量的个数相等的
线 方程组,而实际问题中,方程组的方程个数与未知量的个数
性 方
不一定相等。
程
下面将讨论一般线性方程组。
组
需要探讨的问题
(1) 方程组是否有解? (2) 如果有解,是否惟一? (3) 如何求解?
性
方
则线性方程组 A X = b 与 B X = P b 同解(即解不变)。
程
组
称此为线性方程组同解变形 。
它是后面(高斯)消元法的基础。
思考 可否进行列初等变换?
14
§4.1 线性方程组的基本概念
第 四 章
线 性 方 程 组
轻松一下吧 ……
15
3
§4.1 线性方程组的基本概念
第 一、线性方程组的几种表示形式
四 章
1. 线性方程组的一般形式
线
性
方
程
组
其中 x1, x2 ,, xn 为未知量,
ai j 是第 i 个方程第 j 个未知量 xj 的系数,
b1, b2 ,, bm 为常数项。
定义 若常数项不全为 0,称为非齐次线性方程组; P109 否则称为齐次线性方程组 (或者导出组)。
由 B X P b; P1B X b , A X b .
故线性方程组 A X = b 与 B X = P b 等价。
13
§4.1 线性方程组的基本概念
第 三、等价的线性方程组
四 章 定理的重要意义
线
若 ( A b) 行初等变换 P ( A b) (P A Pb) (B Pb) ,
12
§4.1 线性方程组的基本概念
第 三、等价的线性方程组
四 章
定义
若两个线性方程组同解,则称它们等价。 P111 定义4.1
线 定理 若存在可逆矩阵 P ,使 PA = B ,则线性方程组
性 P111 方 定理
A X = b 与 B X = P b 等价(同解)。
程 4.1
组 证明 由 A X b , P A X P b , B X P b;
组
即存在不全为零的 k1, k2 ,, kn,使得
k1 A1 k2 A2 kn An 0 . ( x~1 k1 )A1 ( x~2 k2 )A2 ( x~n kn )An b .
可见 x~1 k1, x~2 k2 , , x~n kn 也是 A X = b 的解,
9
§4.1 线性方程组的基本概念
第 二、线性方程组解的存在性与惟一性
四 章
1. 线性方程组解的存在性
2. 线性方程组解的惟一性 线
性 定理 设 r ( A) r ( A b) r , 则 r n A X = b 有惟一解。
方 程
证明
(2) 若 r n, 则 r n ,
A1 , A2 , , An 线性相关,
xn
将右端项表示成系数阵的列向量的线性组合
6
§4.1 线性方程组的基本概念
第 二、线性方程组解的存在性与惟一性
四 章
1. 线性方程组解的存在性
P112 定理4.2 (1)
线 定理 线性方程组 A X = b 有解的充要条件是 r ( A) r ( A b).
性 证明 必要性
方
程
(2) 当 r( A) r( A~) n 时,方程组有唯一解;
(3) 当 r( A) r( A~) 时,方程组有无解。
其中 A~ ( A b).
11
§4.1 线性方程组的基本概念
第 二、线性方程组解的存在性与惟一性
四 章 3. 关于齐次线性方程组的一些结论 补
线
对于齐次线性方程组 Amn X 0 , 有如下结论: