20导数的概念及其运算

合集下载

导数的概念及其运算

导数的概念及其运算

导数的概念及其运算考试要求 1.导数概念及其实际背景,A 级要求;2.导数的几何意义,B 级要求;3.根据导数定义求函数y =c ,y =x ,y =1x ,y =x 2,y =x 3,y =x 的导数,A 级要求;4.利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,B 级要求; 【知 识 梳 理】 1.导数的概念(1)函数y =f (x )在x =x 0处的导数①定义:设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数,记f ′(x 0). ②几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). (2)称函数f ′(x )=f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 【诊 断 自 测】1.思考辨析(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.(×) (2)曲线的切线不一定与曲线只有一个公共点.(√) (3)若f (x )=a 3+2ax -x 2,则f ′(x )=3a 2+2x .(×)(4)物体的运动方程是s =-4t 2+16t ,在某一时刻的速度为0,则相应时刻t =2.( ×) 2.(2015·镇江调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为________.解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e .3.直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于______.解析 依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a +b =33×12+a =k ,k +1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1.4.设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. 解析 设e x =t ,则x =ln t (t >0),∴f (t )=ln t +t ,∴f ′(t )=1t+1,∴f ′(1)=2.5.若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. 解析 令f (x )=x ln x ,则f ′(x )=ln x +1,设P (x 0,y 0),则f ′(x 0)=ln x 0+1=2,∴x 0=e ,此时y 0=x 0ln x 0=eln e =e ,∴点P 的坐标为(e ,e). 【考点突破】考点一 利用定义求函数的导数【例1】 利用导数的定义求函数f (x )=x 3的导数.解 Δy =f (x +Δx )-f (x )=(x +Δx )3-x 3=x 3+3x ·(Δx )2+3x 2·Δx +(Δx )3-x 3=Δx [3x 2+3x ·Δx +(Δx )2], ∴Δy Δx =3x 2+3x ·Δx +(Δx )2,∴f ′(x )= ΔyΔx= [3x 2+3x ·Δx +(Δx )2]=3x 2. 规律方法 定义法求函数的导数的三个步骤 一差:求函数的改变量Δy =f (x +Δx )-f (x ). 二比:求平均变化率Δy Δx =f (x +Δx )-f (x )Δx .三极限:取极限,得导数y ′=f ′(x )=ΔyΔx.【训练1】 函数y =x +1x 在[x ,x +Δx ]上的平均变化率ΔyΔx =________;该函数在x =1处的导数是________.答案 1-1x (x +Δx ) 0考点二 导数的计算【例2】分别求下列函数的导数:(1)(2015·苏州调研)已知f (x )=12x 2+2xf ′(2 014)+2 014ln x ,则f ′(2 014)=________.解析 由题意得f ′(x )=x +2f ′(2 014)+2 014x ,所以f ′(2 014)=2 014+2f ′(2 014)+2 0142 014, 即f ′(2 014)=-(2 014+1)=-2 015. (2)分别求下列函数的导数:①y =e x ·cos x ;②y =x ⎝⎛⎭⎫x 2+1x +1x 3;③y =x -sin x 2cos x 2;④y =ln x ex解 ①y ′=(e x )′cos x +e x (cos x )′=e x cos x -e x sin x . ②∵y =x 3+1+1x 2,∴y ′=3x 2-2x3.③∵y =x -sin x 2cos x 2=x -12sin x , y ′=⎝⎛⎭⎫x -12sin x ′=1-12cos x . ④y ′==1x -ln x e x=1-x ln xx e x. 规律方法 求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.【训练2】 分别求下列函数的导数:(1)y =11+x +11-x ;(2)y =sin 2x2;(3)y =(x +1)(x +2)(x +3).解 (1)∵y =11+x +11-x =21-x ,∴y ′=0-2(1-x )′(1-x )2=2(1-x )2. (2)∵y =sin 2x 2=12(1-cos x ),∴y ′=-12(cos x )′=-12·(-sin x )=12sin x .(3)法一 ∵y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=3x 2+12x +11. 法二 y ′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′ =[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2) =3x 2+12x +11.考点三 导数的几何意义【例3】已知曲线C :y =ln xx .(1)求曲线C 在点(1,0)处的切线l 1的方程;(2)求过原点与曲线C 相切的直线l 2的方程. 解 设f (x )=ln xx ,则f ′(x )=1-ln x x 2.(1)∴f ′(1)=1-ln 112=1,即切线l 1的斜率k =1.由l 1过点(1,0),得l 1的方程为y =x -1.(2)设l 2与曲线C 切于点P ⎝⎛⎭⎫x 0,ln x 0x 0,则切线l 2方程为 y -ln x 0x 0=1-ln x 0x 20(x -x 0),∵l 2过原点.∴-ln x 0x 0=1-ln x 0x 20·(-x 0), 化简得ln x 0=12,∴x 0=e ,∴l 2:y -12e =12e(x -e),整理得y =12e x .即为l 2的方程.规律方法 求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.【训练3】 (1)(2015·南京调研)曲线y =x +sin x 在点(0,0)处的切线方程是________.(2)已知f (x )=x 3-3x ,若过点A (0,16)且与曲线y =f (x )相切的切线方程为y =ax +16,则实数a 的值是____. 解析 (1)∵y =x +sin x ,∴y ′=1+cos x ,当x =0时,y ′=1+cos 0=2,故曲线y =x +sin x 在点(0,0)处的切线方程是y -0=2(x -0),即2x -y =0.(2)先设切点为M (x 0,y 0),则切点在曲线y 0=x 30-3x 0上.① 求导数得到切线的斜率k =f ′(x 0)=3x 20-3,又切线l 过点A 、M 两点,所以k =y 0-16x 0,则3x 20-3=y 0-16x 0②联立①、②可解得x 0=-2,y 0=-2,从而实数a 的值为a =k =-2-16-2=9.【课堂总结】 [思想方法]1.f ′(x 0)代表函数f (x )在x =x 0处的导数值,即f ′(x )在x =x 0处的函数值.(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常量,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误. [易错防范]1.利用公式求导时要特别注意不要将幂函数的求导公式(x n )′=nx n -1与指数函数的求导公式(a x )′=a x lnx 混淆.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者. 3.曲线与直线相切并不一定只有一个公共点.例如,y =x 3在(1,1)处的切线l 与y =x 3的图象还有一个交点(-2,-8). 【巩固练习】1.(2014·苏北四市模拟)曲线y =x e x +2x -1在点(0,-1)处的切线方程为________.解析 由导数运算法则可得y ′=e x +x e x +2=(x +1)e x +2,则曲线y =x e x +2x -1在点(0,-1)处的切线斜率为y ′|x =0=1+2=3.故曲线y =x e x +2x -1在点(0,-1)处的切线方程为y +1=3x ,即3x -y -1=0. 2.已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 解析 ∵f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x ,∴f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4sin π4+cos π4,∴f ′⎝⎛⎭⎫π4=2-1, ∴f ⎝⎛⎭⎫π4=(2-1)cos π4+sin π4=1. 3.已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点横坐标为________.解析 设切点坐标为(x 0,y 0)(x 0>0),∵y ′=12x -3x ,∴y ′|x =x 0=12x 0-3x 0=-12,即x 20+x 0-6=0,解得x 0=2或-3(舍).4.(2014·武汉中学月考)已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________. 解析 f ′(x )=(n +1)x n ,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =n n +1,∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015=log 2 016(x 1x 2…x 2 015)=-1. 5.已知f (x )=x (x -1)(x -2)(x -3)(x -4)(x -5),则f ′(0)=________.解析 令g (x )=(x -1)(x -2)(x -3)(x -4)(x -5),则f (x )=xg (x ),∴f ′(x )=g (x )+x ·g ′(x ). ∴f ′(0)=g (0)=(-1)·(-2)·(-3)·(-4)·(-5)=-120.6.(2014·江苏卷)在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.解析 y =ax 2+b x 的导数为y ′=2ax -b x 2,直线7x +2y +3=0的斜率为-72.由题意得⎩⎨⎧4a +b2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2,则a +b =-3.7如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=________. 解析 如图可知,f (5)=3,f ′(5)=-1,因此f (5)+f ′(5)=2.8.(2015·扬州调研)若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x . ∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,∴x +1x -a =0有解,∴a =x +1x≥2(x >0).答案 [2,+∞)9.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f ′2(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 015(x )=________.解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )是以4为周期的函数,∴f 2 015(x )=f 3(x )=-sin x -cos x 10.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20. ∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43, 即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0. 11.设抛物线C: y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限. (1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.解 (1)设点P 的坐标为(x 1,y 1),则y 1=kx 1,①y 1=-x 21+92x 1-4,②①代入②得x 21+⎝⎛⎭⎫k -92x 1+4=0.∵P 为切点,∴Δ=⎝⎛⎭⎫k -922-16=0得k =172或k =12.当k =172时,x 1=-2,y 1=-17. 当k =12时,x 1=2,y 1=1. ∵P 在第一象限,∴所求的斜率k =12.(2)过P 点作切线的垂线,其方程为y =-2x +5.③ 将③代入抛物线方程得x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),即2x 2=9,∴x 2=92,y 2=-4.∴Q 点的坐标为⎝⎛⎭⎫92,-4. 12.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.(1)解 方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx 2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,且此定值为6.。

导数的定义与性质解析

导数的定义与性质解析

导数的定义与性质解析导数是微积分中的重要概念,它描述了函数的变化率。

在本文中,我们将探讨导数的定义、性质以及其在数学中的重要应用。

1. 导数的定义导数表示函数在某一点上的变化率。

对于函数y = f(x),它在点x处的导数记作f'(x)或dy/dx。

导数的定义可以通过极限表示:f'(x) = lim(h->0) [f(x+h)-f(x)]/h。

2. 导数的性质导数具有以下几个重要的性质:- 导数存在性:函数在某一点上导数存在的充分必要条件是函数在该点可导。

- 导数与函数图像:函数在某一点导数存在,则函数在该点的图像有切线。

切线的斜率即为导数的值。

- 导数与连续性:若函数在某点可导,则函数在该点连续。

- 导数的四则运算:若f(x)和g(x)在某点可导,则[f(x) ± g(x)]' = f'(x) ± g'(x);[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x);[f(x)/g(x)]' = [f'(x)g(x) -f(x)g'(x)]/g^2(x)(其中g(x) ≠ 0)。

- 链式法则:若y = f(g(x)),其中f(u)和g(x)分别可导,则y' = f'(g(x)) * g'(x)。

3. 导数的应用导数在数学和实际问题中都有广泛的应用,其中包括:- 切线与法线:导数可以求得函数曲线在某点的切线和法线,从而帮助我们研究函数图像的特性。

- 极值与拐点:函数在极值点导数为零,通过导数可以判断函数的最大值、最小值和拐点。

- 函数图像的草图:通过导数可确定函数图像的趋势、拐点以及关键点,有助于绘制函数的草图。

- 物理学应用:导数在物理学中常用于描述速度、加速度以及变化率等问题。

综上所述,导数是函数变化率的重要工具,通过导数的定义与性质,我们可以深入理解函数的特性与行为。

导数的概念及其意义、导数的运算

导数的概念及其意义、导数的运算

§3.1 导数的概念及其意义、导数的运算学习目标了解导数的概念、掌握基本初等函数的导数. 2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如f (ax +b ))的导数.知识梳理 1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作f ′(x 0)或0'|x x y =.f ′(x 0)=lim Δx →0 ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)函数y =f (x )的导函数 f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln_a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); [cf (x )]′=cf ′(x ).5.复合函数的定义及其导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (3)f ′(x 0)=[f (x 0)]′.( × )(4)若f (x )=sin (-x ),则f ′(x )=cos (-x ).( × ) 教材改编题1.函数f (x )=e x +1x 在x =1处的切线方程为________.答案 y =(e -1)x +2 解析 f ′(x )=e x -1x 2,∴f ′(1)=e -1, 又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1, 即切线方程为y -(e +1)=(e -1)(x -1), 即y =(e -1)x +2.2.已知函数f (x )=x ln x +ax 2+2,若f ′(e)=0,则a =________. 答案 -1e解析 f ′(x )=1+ln x +2ax , ∴f ′(e)=2a e +2=0,∴a =-1e.3.若f (x )=ln(1-x )+e 1-x ,则f ′(x )=________. 答案1x -1-e 1-x题型一 导数的运算例1 (1)(多选)(2022·济南质检)下列求导运算正确的是( ) A.⎝⎛⎭⎫1ln x ′=-1x ln 2x B .(x 2e x )′=2x +e xC.⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-sin ⎝⎛⎭⎫2x -π3 D.⎝⎛⎭⎫x -1x ′=1+1x 2 答案 AD解析 ⎝⎛⎭⎫1ln x ′=-1ln 2x ·(ln x )′=-1x ln 2x , 故A 正确;(x 2e x )′=(x 2+2x )e x ,故B 错误;⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-2sin ⎝⎛⎭⎫2x -π3,故C 错误;⎝⎛⎭⎫x -1x ′=1+1x 2,故D 正确.(2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝⎛⎭⎫π3sin x ,则f ⎝⎛⎭⎫π6=________. 答案 π236+2π3解析 f ′(x )=2x +f ′⎝⎛⎭⎫π3cos x , ∴f ′⎝⎛⎭⎫π3=2π3+12f ′⎝⎛⎭⎫π3, ∴f ′⎝⎛⎭⎫π3=4π3, ∴f ⎝⎛⎭⎫π6=π236+2π3.教师备选1.函数y =sin 2x -cos 2x 的导数y ′等于( )A .22cos ⎝⎛⎭⎫2x -π4B .cos 2x +sin xC .cos 2x -sin 2xD .22cos ⎝⎛⎭⎫2x +π4 答案 A解析 y ′=2cos 2x +2sin 2x =22cos ⎝⎛⎭⎫2x -π4. 2.(2022·济南模拟)已知函数f ′(x )=e x sin x +e x cos x ,则f (2 021)-f (0)等于( ) A .e 2 021cos 2 021 B .e 2 021sin 2 021 C.e2 D .e答案 B解析 因为f ′(x )=e x sin x +e x cos x , 所以f (x )=e x sin x +k (k 为常数), 所以f (2 021)-f (0)=e 2 021sin 2 021.思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解. (3)复合函数求导,应由外到内逐层求导,必要时要进行换元.跟踪训练1 (1)若函数f (x ),g (x )满足f (x )+xg (x )=x 2-1,且f (1)=1,则f ′(1)+g ′(1)等于( )A .1B .2C .3D .4 答案 C解析 当x =1时,f (1)+g (1)=0, ∵f (1)=1,得g (1)=-1,原式两边求导,得f ′(x )+g (x )+xg ′(x )=2x , 当x =1时,f ′(1)+g (1)+g ′(1)=2, 得f ′(1)+g ′(1)=2-g (1)=2-(-1)=3.(2)已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a =________. 答案 e 2解析 f ′(x )=12x -3·(2x -3)′+a e -x +ax ·(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为__________.答案 5x -y +2=0 解析 y ′=⎝⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为__________. 答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2 求参数的值(范围)例3 (1)(2022·青岛模拟)直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于( )A .4B .3C .2D .1 答案 A解析 ∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵ f (x )=a ln x +b ,∴ f ′(x )=a x ,由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln 1+b =2,解得b =2,故2a +b =2+2=4.(2)(2022·广州模拟)过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________. 答案 (1,+∞)解析 由y ′=a e x ,若切点为(x 0,0e x a ), 则切线方程的斜率k =0'|x x y =0e x a >0,∴切线方程为y =0e x a (x -x 0+1), 又P (1,e)在切线上, ∴0e x a (2-x 0)=e ,即ea =0e x (2-x 0)有两个不同的解, 令φ(x )=e x (2-x ), ∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0; 当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=e , 又x →-∞时,φ(x )→0; x →+∞时,φ(x )→-∞, ∴0<ea<e ,解得a >1,即实数a 的取值范围是(1,+∞). 教师备选1.已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)或(-1,3) D .(1,-3)答案 C解析 设切点P (x 0,y 0), f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1=2,∴x 20=1, ∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上, ∴y 0=x 30-x 0+3, ∴当x 0=1时,y 0=3;当x 0=-1时,y 0=3. ∴切点P 为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M 是曲线y =ln x +12x 2+(1-a )x 上的任一点,若曲线在M 点处的切线的倾斜角均是不小于π4的锐角,则实数a 的取值范围是( )A .[2,+∞)B .[4,+∞)C .(-∞,2]D .(-∞,4]答案 C解析 因为y =ln x +12x 2+(1-a )x ,所以y ′=1x +x +1-a ,因为曲线在M 点处的切线的倾斜角均是不小于π4的锐角,所以y ′≥tan π4=1对于任意的x >0恒成立,即1x +x +1-a ≥1对任意x >0恒成立, 所以x +1x ≥a ,又x +1x≥2,当且仅当x =1x ,即x =1时,等号成立,故a ≤2,所以a 的取值范围是(-∞,2].思维升华 (1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 处的切线”. 跟踪训练2 (1)(2022·南平模拟)若直线y =x +m 与曲线y =e x -2n相切,则( )A .m +n 为定值 B.12m +n 为定值 C .m +12n 为定值D .m +13n 为定值答案 B解析 设直线y =x +m 与曲线y =e x -2n切于点(x 0,02e x n -),因为y ′=e x-2n,所以02e x n -=1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m , 即12m +n =12. (2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是______. 答案 [2,+∞)解析 直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线, ∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0.又4x +1x≥24x ·1x=4, 当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). 题型三 两曲线的公切线例4 (1)(2022·邯郸模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( ) A .0 B .-1 C .3 D .-1或3 答案 D解析 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g (x )=x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.(2)(2022·韶关模拟)若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,则a 的取值范围为________. 答案 ⎣⎡⎭⎫e24,+∞ 解析 由y =ax 2(a >0),得y ′=2ax , 由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线, 设公切线与曲线C 1切于点(x 1,ax 21), 与曲线C 2切于点(x 2,2e x ),则2ax 1=222121e e ,x x ax x x -=-可得2x 2=x 1+2,∴a =1121e2x x +, 记f (x )=12e2x x +, 则f ′(x )=122e(2)4x x x+-, 当x ∈(0,2)时,f ′(x )<0,f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增. ∴当x =2时,f (x )min =e 24.∴a 的取值范围是⎣⎡⎭⎫e 24,+∞.延伸探究 在本例(2)中,把“存在公共切线”改为“存在两条公共切线”,则a 的取值范围为________. 答案 ⎝⎛⎭⎫e 24,+∞ 解析 由本例(2)知,∵两曲线C 1与C 2存在两条公共切线,∴a =1121e2x x +有两个不同的解. ∵函数f (x )=12e2x x+在(0,2)上单调递减, 在(2,+∞)上单调递增,且f (x )min =f (2)=e 24,又x →0时,f (x )→+∞, x →+∞时,f (x )→+∞, ∴a >e 24.教师备选1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于( )A .1B .2C .3D .3或-1 答案 D解析 设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x =1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切, 故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3. 2.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)等于( )A .-1B .-2C .1D .2 答案 B解析 已知曲线y =e x 在点(x 1,1e x )处的切线方程为 y -1e x =1e x (x -x 1),即1111e e e ,xxxy x x =-+曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得1112121e ,e e 1ln ,x x x x x x ⎧=⎪⎨⎪-=-+⎩ 得x 2=11ex , 1e x -1e x x 1=-1+ln x 2=-1+11lnex =-1-x 1, 则1e x =x 1+1x 1-1.又x 2=11e x ,所以x 2=x 1-1x 1+1,所以x 2-1=x 1-1x 1+1-1=-2x 1+1,所以(x 1+1)(x 2-1)=-2.思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)(2022·青岛模拟)已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为( ) A .2 B .5 C .1 D .0答案 C解析 根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0, 由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a , 由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a -1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a -1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f (x )=-2x 2+m , 可得m =1.(2)已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为____________________. 答案 y =e x 或y =x +1解析 设直线l 与f (x )=e x 的切点为(x 1,y 1), 则y 1=1e x ,f ′(x )=e x , ∴f ′(x 1)=1e x , ∴切点为(x 1,1e x ), 切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1), 即y =1e x ·x -x 11e x +1e x ,①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2), ∴y 2=ln x 2+2, g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2), 切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1,②由题意知,①与②相同,∴111121221e e ,e e ln 1,x x x x x x x x -⎧=⎪⎨⎪-+==+⇒⎩③④ 把③代入④有111e e x x x -+=-x 1+1, 即(1-x 1)(1e x -1)=0, 解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ; 当x 1=0时,切线方程为y =x +1, 综上,直线l 的方程为y =e x 或y =x +1.课时精练1.(2022·营口模拟)下列函数的求导正确的是( ) A .(x -2)′=-2xB .(x cos x )′=cos x -x sin xC .(ln 10)′=110D .(e 2x )′=2e x 答案 B解析 (x -2)′=-2x -3,∴A 错; (x cos x )′=cos x -x sin x ,∴B 对; (ln 10)′=0,∴C 错; (e 2x )′=2e 2x ,∴D 错.2.(2022·黑龙江哈师大附中月考)曲线y =2cos x +sin x 在(π,-2)处的切线方程为( ) A .x -y +π-2=0 B .x -y -π+2=0 C .x +y +π-2=0 D .x +y -π+2=0答案 D解析 y ′=-2sin x +cos x ,当x =π时,k =-2sin π+cos π=-1,所以在点(π,-2)处的切线方程,由点斜式可得y +2=-1×(x -π),化简可得x +y -π+2=0.3.(2022·长治模拟)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 4.已知点A 是函数f (x )=x 2-ln x +2图象上的点,点B 是直线y =x 上的点,则|AB |的最小值为( ) A. 2 B .2 C.433 D.163答案 A解析 当与直线y =x 平行的直线与f (x )的图象相切时,切点到直线y =x 的距离为|AB |的最小值.f ′(x )=2x -1x =1,解得x =1或x =-12(舍去),又f (1)=3,所以切点C (1,3)到直线y =x 的距离即为|AB |的最小值,即|AB |min =|1-3|12+12= 2.5.设曲线f (x )=a e x +b 和曲线g (x )=cos πx2+c 在它们的公共点M (0,2)处有相同的切线,则b+c -a 的值为( ) A .0 B .π C .-2 D .3 答案 D解析 ∵f ′(x )=a e x ,g ′(x )=-π2sin πx2,∴f ′(0)=a ,g ′(0)=0,∴a =0,又M (0,2)为f (x )与g (x )的公共点,∴f (0)=b =2,g (0)=1+c =2,解得c =1, ∴b +c -a =2+1-0=3.6.(2022·邢台模拟)设点P 是函数f (x )=2e x -f ′(0)x +f ′(1)图象上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是( ) A.⎣⎡⎭⎫0,3π4 B.⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π C.⎝⎛⎭⎫π2,3π4 D.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 答案 B解析 ∵f (x )=2e x -f ′(0)x +f ′(1), ∴f ′(x )=2e x -f ′(0),∴f ′(0)=2-f ′(0),f ′(0)=1, ∴f (x )=2e x -x +f ′(1), ∴f ′(x )=2e x -1>-1.∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α, ∴tan α>-1. ∵α∈[0,π), ∴α∈⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π. 7.(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .f ′(3)>f ′(2)B .f ′(3)<f ′(2)C .f (3)-f (2)>f ′(3)D .f (3)-f (2)<f ′(2) 答案 BCD解析 f ′(x 0)的几何意义是f (x )在x =x 0处的切线的斜率.由图知f ′(2)>f ′(3)>0, 故A 错误,B 正确. 设A (2,f (2)),B (3,f (3)), 则f (3)-f (2)=f (3)-f (2)3-2=k AB ,由图知f ′(3)<k AB <f ′(2),即f ′(3)<f (3)-f (2)<f ′(2),故C ,D 正确.8.(多选)(2022·重庆沙坪坝区模拟)若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=[f ′(x )]′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,3π4上是凸函数的是( ) A .f (x )=-x 3+3x +4 B .f (x )=ln x +2x C .f (x )=sin x +cos x D .f (x )=x e x 答案 ABC解析 对A ,f (x )=-x 3+3x +4, f ′(x )=-3x 2+3, f ″(x )=-6x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故A 为凸函数; 对B ,f (x )=ln x +2x ,f ′(x )=1x +2,f ″(x )=-1x2,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故B 为凸函数; 对C ,f (x )=sin x +cos x , f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝⎛⎭⎫x +π4, 当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故C 为凸函数; 对D ,f (x )=x e x ,f ′(x )=(x +1)e x , f ″(x )=(x +2)e x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )>0,故D 不是凸函数. 9.(2022·马鞍山模拟)若曲线f (x )=x cos x 在x =π处的切线与直线ax -y +1=0平行,则实数a =________. 答案 -1解析 因为f (x )=x cos x , 所以f ′(x )=cos x -x sin x , f ′(π)=cos π-π·sin π=-1,因为函数在x =π处的切线与直线ax -y +1=0平行,所以a =f ′(π)=-1.10.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a =________.答案 2解析 f ′(x )=-(ax -1)′(ax -1)2+e xcos x -e xsin x =-a(ax -1)2+e x cos x -e x sin x , ∴f ′(0)=-a +1=-1,则a =2.11.(2022·宁波镇海中学质检)我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=2e x,则f ′(x )=________,其在点(0,1)处的切线方程为________.答案 22e xx y =1 解析 ∵f (x )=2e x ,故f ′(x )=(x 2)′2e x =22e x x ,则f ′(0)=0.故曲线y =f (x )在点(0,1)处的切线方程为y =1.12.已知函数f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),若曲线y =f (x )存在两条垂直于y 轴的切线,则a 的取值范围为____________________. 答案 (-∞,-1)∪(3,+∞)解析 因为f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),所以f ′(x )=3x 2-2ax +23a +1,因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2-2ax +23a +1=0有两个不等的实根,则Δ=4a 2-12⎝⎛⎭⎫23a +1>0,即a 2-2a -3>0, 解得a >3或a <-1,所以a 的取值范围是(-∞,-1)∪(3,+∞).13.拉格朗日中值定理又称拉氏定理,是微积分学中的基本定理之一,它反映了函数在闭区间上的整体平均变化率与区间某点的局部变化率的关系,其具体内容如下:若f (x )在[a ,b ]上满足以下条件:①在[a ,b ]上图象连续,②在(a ,b )内导数存在,则在(a ,b )内至少存在一点c ,使得f (b )-f (a )=f ′(c )(b -a )(f ′(x )为f (x )的导函数).则函数f (x )=x e x -1在[0,1]上这样的c 点的个数为( ) A .1 B .2 C .3 D .4 答案 A解析 函数f (x )=x e x -1, 则f ′(x )=(x +1)e x -1, 由题意可知,存在点c ∈[0,1], 使得f ′(c )=f (1)-f (0)1-0=1,即(1+c )e c -1=1,所以e c -1=11+c ,c ∈[0,1],作出函数y =e c -1和y =11+c的图象,如图所示,由图象可知,函数y =e c-1和y =11+c的图象只有一个交点,所以e c -1=11+c ,c ∈[0,1]只有一个解,即函数f (x )=x e x -1在[0,1]上c 点的个数为1.14.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( ) A .e b <a B .e a <b C .0<a <e b D .0<b <e a答案 D解析 方法一 设切点(x 0,y 0),y 0>0, 则切线方程为y -b =0e x (x -a ),由⎩⎨⎧y 0-b =0e x (x 0-a ),y 0=0e x ,得0e x (1-x 0+a )=b ,则由题意知关于x 0的方程0e x (1-x 0+a )=b 有两个不同的解. 设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ), 由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增, 当x >a 时,f ′(x )<0,f (x )单调递减, 所以f (x )max =f (a )=e a (1-a +a )=e a , 当x <a 时,a -x >0,所以f (x )>0,当x →-∞时,f (x )→0, 当x →+∞时,f (x )→-∞,函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a .方法二 (用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线 ,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方, 得0<b <e a .15.若曲线y =14sin 2x +32cos 2x 在A (x 1,y 1),B (x 2,y 2)两点处的切线互相垂直,则|x 1-x 2|的最小值为( ) A.π3 B.π2 C.2π3 D .π 答案 B解析 ∵y =14sin 2x +32cos 2x=14sin 2x +32×1+cos 2x2 =12sin ⎝⎛⎭⎫2x +π3+34, ∴y ′=cos ⎝⎛⎭⎫2x +π3, ∴曲线的切线斜率在[-1,1]范围内, 又曲线在两点处的切线互相垂直,故在A (x 1,y 1),B (x 2,y 2)两点处的切线斜率必须一个是1,一个是-1.不妨设在A 点处切线的斜率为1, 则有2x 1+π3=2k 1π(k 1∈Z ),2x 2+π3=2k 2π+π(k 2∈Z ),则可得x 1-x 2=(k 1-k 2)π-π2=k π-π2(k ∈Z ),∴|x 1-x 2|min =π2.16.(2022·南昌模拟)已知曲线C 1:y =e x +m ,C 2:y =x 2,若恰好存在两条直线l 1,l 2与C 1,C 2都相切,则实数m 的取值范围是____________. 答案 (-∞,2ln 2-2)解析 由题意知,l 1,l 2的斜率存在,设直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,设l 1与C 1,C 2的切点坐标分别为(x 1,y 1),(x 2,y 2), 则⎩⎨⎧k 1=1e x m+=2x 2(k 1>0),k 1x 1+b 1=1e x m+,k 1x 2+b 1=x 22,可得⎩⎪⎨⎪⎧x 1=ln k 1-m ,x 2=k 12,k 1(x 2-x 1)=x 22-1ex m+,故k 1⎝⎛⎭⎫k 12-ln k 1+m =k 214-k 1, 整理得m =ln k 1-k 14-1,同理可得,当直线l 2:y =k 2x +b 2与C 1,C 2都相切时, 有m =ln k 2-k 24-1,综上所述,只需m =ln k -k4-1(k >0)有两解,令f (k )=ln k -k4-1,则f ′(k )=1k -14=4-k4k ,故当f ′(k )>0时,0<k <4, 当f ′(k )<0时,k >4,所以f (k )在(0,4)上单调递增,在(4,+∞)上单调递减, 故f (k )max =f (4)=ln 4-44-1=2ln 2-2,所以只需满足m <2ln 2-2即可.。

浙江专用2020版高考数学复习第四章导数及其应用第1节导数的概念与导数的计算习题含解析

浙江专用2020版高考数学复习第四章导数及其应用第1节导数的概念与导数的计算习题含解析

第1节 导数的概念与导数的计算考试要求 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =,y =1x,y =2,y =3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (a +b )的复合函数)的导数.知 识 梳 理1.函数y =f ()在=0处的导数(1)定义:称函数y =f ()在=0处的瞬时变化率f (x 0+Δx )-f (x 0)Δx=ΔyΔx为函数y =f ()在=0处的导数,记作f ′(0)或y ′|=0,即f ′(0)= Δy Δx=f (x 0+Δx )-f (x 0)Δx.(2)几何意义:函数f ()在点0处的导数f ′(0)的几何意义是在曲线y =f ()上点(0,f (0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(0)(-0). 2.函数y =f ()的导函数如果函数y =f ()在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f ()在开区间内的导函数.记作f ′()或y ′. 3.基本初等函数的导数公式4.若f ′(),g ′()存在,则有: (1)[f ()±g ()]′=f ′()±g ′(); (2)[f ()·g ()]′=f ′()g ()+f ()g ′(); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g x (g ()≠0). 5.复合函数的导数复合函数y =f (g ())的导数和函数y =f (u ),u =g ()的导数间的关系为y ′=y u ′·u ′,即y 对的导数等于y 对u 的导数与u 对的导数的乘积. [常用结论与易错提醒]1.f ′(0)与0的值有关,不同的0,其导数值一般也不同.2.f ′(0)不一定为0,但[f (0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.4.函数y =f ()的导数f ′()反映了函数f ()的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′()|反映了变化的快慢,|f ′()|越大,曲线在这点处的切线越“陡”.基 础 自 测1.思考辨析(在括号内打“√”或“×”) (1)f ′(0)与(f (0))′表示的意义相同.( )(2)曲线的切线与曲线不一定只有一个公共点.( ) (3)(2)′=·2-1.( )(4)若f ()=e 2,则f ′()=e 2.( )解析 (1)f ′(0)是函数f ()在0处的导数,(f (0))′是常数f (0)的导数即(f (0))′=0;(3)(2)′=2ln 2;(4)(e 2)′=2e 2.答案 (1)× (2)√ (3)× (4)× 2.函数y =cos -sin 的导数为( ) A.sin B.-sin C.cosD.-cos解析 y ′=(cos )′-(sin )′=cos -sin -cos =-sin . 答案 B3.(2018·全国Ⅱ卷)曲线y =2ln(+1)在点(0,0)处的切线方程为________________. 解析 ∵y =2ln(+1),∴y ′=2x +1.当=0时,y ′=2,∴曲线y =2ln(+1)在点(0,0)处的切线方程为y -0=2(-0),即y =2. 答案 y =24.(2019·南通一调)若曲线y =ln 在=1与=t 处的切线互相垂直,则正数t 的值为________. 解析 因为y ′=ln +1, 所以(ln 1+1)(ln t +1)=-1, ∴ln t =-2,t =e -2. 答案 e -25.定义在R 上的函数f ()满足f ()=12f ′(1)e 2-2+2-2f (0),则f (0)=________;f ()=________.解析 ∵f ()=12f ′(1)e 2-2+2-2f (0),∴f ′()=f ′(1)e 2-2+2-2f (0), ∴f ′(1)=f ′(1)+2-2f (0),∴f (0)=1, 即1=12f ′(1)e -2,∴f ′(1)=2e 2,∴f ()=e 2+2-2. 答案 1 e 2+2-26.已知曲线y =e -,则其图象上各点处的切线斜率的取值范围为________;该曲线在点(0,1)处的切线方程为________.解析 由题意得y ′=-e -,则由指数函数的性质易得y ′=-e -∈(-∞,0),即曲线y =e -的图象上各点处的切线斜率的取值范围为(-∞,0).当=0时,y ′=-e -0=-1,则曲线y =e -在(0,1)处的切线的斜率为-1,则切线的方程为y -1=-1·(-0),即+y -1=0. 答案 (-∞,0) +y -1=0考点一 导数的运算【例1】 求下列函数的导数:(1)y =2sin ; (2)y =cos x ex ;(3)y =sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2;(4)y =ln(2-5).解 (1)y ′=(2)′sin +2(sin )′=2sin +2cos .(2)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x .(3)∵y =sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12sin(4+π)=-12sin 4, ∴y ′=-12sin 4-12·4cos 4=-12sin 4-2cos 4.(4)令u =2-5,y =ln u .则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.规律方法 求导一般对函数式先化简再求导,这样可以减少运算量,提高运算速度,减少差错,常用求导技巧有:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【训练1】 分别求下列函数的导数: (1)y =eln ;(2)y =⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)y =-sin x 2cos x2;(4)y =ln 1+2x .解 (1)y ′=(e)′ln +e(ln )′=eln +e ·1x=⎝⎛⎭⎪⎫ln x +1x e.(2)∵y =3+1+1x 2,∴y ′=32-2x3.(3)∵y =-12sin ,∴y ′=1-12cos .(4)∵y =ln 1+2x =12ln(1+2),∴y ′=12·11+2x ·(1+2)′=11+2x .考点二 导数的几何意义多维探究角度1 求切线的方程【例2-1】 (1)(2019·绍兴一中模拟)已知函数f ()=e +2sin ,则f ()在点(0,f (0))处的切线方程为( ) A.+y -1=0 B.+y +1=0 C.3-y +1=0D.3-y -1=0(2)已知曲线y =133上一点P ⎝ ⎛⎭⎪⎫2,83,则过点P 的切线方程为________.解析 (1)因为f ()=e +2sin ,所以f ′()=e +2cos .所以f ′(0)=3,f (0)=1.由导数的几何意义可知,函数f ()在点(0,f (0))处的切线方程为y -1=3,即为3-y +1=0,故选C. (2)设切点坐标为⎝ ⎛⎭⎪⎫x 0,13x 30,由y ′=⎝ ⎛⎭⎪⎫13x 3′=2,得y ′|=0=20,即过点P 的切线的斜率为20,又切线过点P ⎝ ⎛⎭⎪⎫2,83,若0≠2,则20=13x 30-83x 0-2, 解得0=-1,此时切线的斜率为1;若0=2,则切线的斜率为4. 故所求的切线方程是y -83=-2或y -83=4(-2),即3-3y +2=0或12-3y -16=0.答案 (1)C (2)3-3y +2=0或12-3y -16=0 角度2 求参数的值【例2-2】 (1)(2019·嘉兴检测)函数y =3-的图象与直线y =a +2相切,则实数a =( ) A.-1 B.1 C.2D.4(2)(2019·杭州质检)若直线y =与曲线y =e +m (m ∈R ,e 为自然对数的底数)相切,则m =( ) A.1 B.2 C.-1D.-2解析 (1)由题意得⎩⎨⎧y ′=3x 2-1=a ①,y =x 3-x =ax +2 ②,将①代入②,消去a 得3-=(32-1)+2,解得=-1,则a =2,故选C.(2)设切点坐标为(0,e 0+m ).由y =e +m ,得y ′=e +m ,则切线的方程为y -e 0+m =e 0+m (-0) ①,又因为切线y =过点(0,0),代入①得0=1,则切点坐标为(1,1),将(1,1)代入y =e +m 中,解得m =-1,故选C. 答案 (1)C (2)C 角度3 公切线问题【例2-3】 (一题多解)已知曲线y =+ln 在点(1,1)处的切线与曲线y =a 2+(a +2)+1相切,则a =________.解析 法一 ∵y =+ln , ∴y ′=1+1x,y ′|=1=2.∴曲线y =+ln 在点(1,1)处的切线方程为y -1=2(-1),即y =2-1.∵y =2-1与曲线y =a 2+(a +2)+1相切,∴a ≠0(当a =0时曲线变为y =2+1与已知直线平行).由⎩⎨⎧y =2x -1,y =ax 2+(a +2)x +1消去y ,得a 2+a +2=0. 由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2-1.设y =2-1与曲线y =a 2+(a +2)+1相切于点(0,a 20+(a +2)0+1).∵y ′=2a +(a +2),∴y ′|=0=2a 0+(a +2). 由⎩⎨⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎨⎧x 0=-12,a =8.答案 8规律方法 (1)求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·苏州调研)已知曲线f ()=a 3+ln 在(1,f (1))处的切线的斜率为2,则实数a 的值是________.(2)若存在过点(1,0)的直线与曲线y =3和y =a 2+154-9(a ≠0)都相切,则a 的值为( )A.-1或-2564B.-1或214C.-74或-2564D.-74或7解析 (1)f ′()=3a 2+1x,则f ′(1)=3a +1=2,解得a =13.(2)由y =3得y ′=32,设曲线y =3上任意一点(0,30)处的切线方程为y -30=320(-0),将(1,0)代入得0=0或0=32.①当0=0时,切线方程为y =0,由⎩⎨⎧y =0,y =ax 2+154x -9得a 2+154-9=0,Δ=⎝ ⎛⎭⎪⎫1542+4·a ·9=0得a =-2564. ②当0=32时,切线方程为y =274-274,由⎩⎪⎨⎪⎧y =274x -274,y =ax 2+154x -9得a 2-3-94=0,Δ=32+4·a ·94=0得a =-1.综上①②知,a =-1或a =-2564.答案 (1)13(2)A基础巩固题组一、选择题1.若f ()=2f ′(1)+2,则f ′(0)等于( ) A.2 B.0 C.-2D.-4解析 ∵f ′()=2f ′(1)+2,∴令=1,得f ′(1)=-2, ∴f ′(0)=2f ′(1)=-4. 答案 D2.设曲线y =e a -ln(+1)在=0处的切线方程为2-y +1=0,则a =( ) A.0 B.1 C.2D.3解析 ∵y =e a -ln(+1),∴y ′=a e a -1x +1,∴当=0时,y ′=a -1.∵曲线y =e a -ln(+1)在=0处的切线方程为2-y +1=0,∴a -1=2,即a =3.故选D. 答案 D3.曲线f ()=3-+3在点P 处的切线平行于直线y =2-1,则P 点的坐标为( ) A.(1,3)B.(-1,3)C.(1,3)或(-1,3)D.(1,-3)解析 f ′()=32-1,令f ′()=2,则32-1=2,解得=1或=-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2-1上,故选C. 答案 C4.(2019·诸暨统考)已知f ()的导函数为f ′(),若满足f ′()-f ()=2+,且f (1)≥1,则f ()的解析式可能是( ) A.2-ln + B.2-ln - C.2+ln +D.2+2ln +解析 由选项知f ()的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎢⎡⎦⎥⎤f (x )x ′=1+1x ,故f (x )x=+ln +c (c 为待定常数),即f ()=2+(ln +c ).又f (1)≥1,则c ≥0,故选C. 答案 C5.(一题多解)(2018·全国Ⅰ卷)设函数f ()=3+(a -1)2+a .若f ()为奇函数,则曲线y =f ()在点(0,0)处的切线方程为( ) A.y =-2 B.y =- C.y =2D.y =解析 法一 因为函数f ()=3+(a -1)2+a 为奇函数,所以f (-)=-f (),所以(-)3+(a -1)(-)2+a (-)=-[3+(a -1)2+a ],所以2(a -1)2=0.因为∈R ,所以a =1,所以f ()=3+,所以f ′()=32+1,所以f ′(0)=1,所以曲线y =f ()在点(0,0)处的切线方程为y =.故选D. 法二 因为函数f ()=3+(a -1)2+a 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,此时f ()=3+(经检验,f ()为奇函数),所以f ′()=32+1,所以f ′(0)=1,所以曲线y =f ()在点(0,0)处的切线方程为y =.故选D. 法三 易知f ()=3+(a -1)2+a =[2+(a -1)+a ],因为f ()为奇函数,所以函数g ()=2+(a -1)+a 为偶函数,所以a -1=0,解得a =1,所以f ()=3+,所以f ′()=32+1,所以f ′(0)=1,所以曲线y =f ()在点(0,0)处的切线方程为y =.故选D. 答案 D6.已知y =f ()是可导函数,如图,直线y =+2是曲线y =f ()在=3处的切线,令g ()=f (),g ′()是g ()的导函数,则g ′(3)=( )A.-1B.0C.2D.4解析 由题图可知曲线y =f ()在=3处切线的斜率等于-13,∴f ′(3)=-13.∵g ()=f (),∴g ′()=f ()+f ′(),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0. 答案 B 二、填空题7.(2018·天津卷)已知函数f ()=eln ,f ′()为f ()的导函数,则f ′(1)的值为________. 解析 由题意得f ′()=eln +e ·1x,则f ′(1)=e.答案 e8.(2018·全国Ⅲ卷)曲线y =(a +1)e 在点(0,1)处的切线的斜率为-2,则a =________. 解析 y ′=(a +1+a )e ,由曲线在点(0,1)处的切线的斜率为-2,得y ′|=0=(a +1+a )e|=0=1+a =-2,所以a =-3.答案 -39.(2018·台州调考)已知函数f ()=a ln ,∈(0,+∞),其中a 为实数,f ′()为f ()的导函数,若f ′(1)=3,则a 的值为__________;f ()在=1处的切线方程为________.解析 f ′()=a ⎝⎛⎭⎪⎫ln x +x ·1x =a (1+ln ),由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.f ()=3ln ,f (1)=0,∴f ()在=1处的切线方程为y =3(-1),即为3-y -3=0. 答案 3 3-y -3=010.设曲线y =e 在点(0,1)处的切线与曲线y =1x(>0)在点P 处的切线垂直,则P 的坐标为________.解析 y ′=e ,曲线y =e 在点(0,1) 处的切线的斜率1=e 0=1.设P (m ,n ),y =1x(>0)的导数为y ′=-1x 2(>0),曲线y =1x (>0)在点P 处的切线斜率2=-1m2(m >0),因为两切线垂直,所以12=-1,所以m =1,n =1,则点P 的坐标为(1,1). 答案 (1,1) 三、解答题11.已知点M 是曲线y =133-22+3+1上任意一点,曲线在M 处的切线为l ,求: (1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解 (1)y ′=2-4+3=(-2)2-1≥-1,∴当=2时,y ′min =-1,y =53, ∴斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率=-1, ∴切线方程为3+3y -11=0.(2)由(1)得≥-1,∴tan α≥-1,又∵α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 故α的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 12.已知曲线y =133+43. (1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =133+43上,且y ′=2, ∴在点P (2,4)处的切线的斜率为y ′|=2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(-2),即4-y -4=0.(2)设曲线y =133+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率为y ′|=0=20.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=20(-0),即y =20·-2330+43.∵点P (2,4)在切线上,∴4=220-2330+43,即30-320+4=0,∴30+20-420+4=0, ∴20(0+1)-4(0+1)(0-1)=0,∴(0+1)(0-2)2=0,解得0=-1或0=2,故所求的切线方程为-y +2=0或4-y -4=0.能力提升题组13.(2018·萧山月考)已知f 1()=sin +cos ,f n +1()是f n ()的导函数,即f 2()=f 1′(),f 3()=f ′2(),…,f n +1()=f n ′(),n ∈N *,则f 2 018()等于( )A.-sin -cosB.sin -cosC.-sin +cosD.sin +cos解析 ∵f 1()=sin +cos ,∴f 2()=f 1′()=cos -sin ,∴f 3()=f 2′()=-sin -cos ,∴f 4()=f 3′()=-cos +sin ,∴f 5()=f 4′()=sin +cos ,∴f n ()是以4为周期的函数,∴f 2 018()=f 2()=-sin +cos ,故选C.答案 C14.(2019·无锡模拟)关于的方程2|+a |=e 有3个不同的实数解,则实数a 的取值范围为________.解析 由题意,临界情况为y =2(+a )与y =e 相切的情况,y ′=e =2,则=ln 2,所以切点坐标为(ln 2,2),则此时a =1-ln 2,所以只要y =2|+a |图象向左移动,都会产生3个交点,所以a >1-ln 2,即a ∈(1-ln 2,+∞).答案 (1-ln 2,+∞)15.若直线y =+b 是曲线y =ln +2的切线,也是曲线y =ln(+1)的切线,则b =________. 解析 y =ln +2的切线为:y =1x 1·+ln 1+1(设切点横坐标为1). y =ln(+1)的切线为:y =1x 2+1+ln(2+1)-x 2x 2+1(设切点横坐标为2).∴⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1, 解得1=12,2=-12,∴b =ln 1+1=1-ln 2. 答案 1-ln 216.(2019·湖州适应性考试)已知函数f ()=|3+a +b |(a ,b ∈R ),若对任意的1,2∈[0,1],f (1)-f (2)≤2|1-2|恒成立,则实数a 的取值范围是________.解析 当1=2时,f (1)-f (2)≤2|1-2|恒成立;当1≠2时,由f (1)-f (2)≤2|1-2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f ()在(0,1)上的导函数f ′()满足|f ′()|≤2,函数y =3+a +b 的导函数为y ′=32+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎨⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1].答案 [-2,-1]17.设函数f ()=a -b x,曲线y =f ()在点(2,f (2))处的切线方程为7-4y -12=0. (1)求f ()的解析式;(2)证明曲线f ()上任一点处的切线与直线=0和直线y =所围成的三角形面积为定值,并求此定值.解 (1)方程7-4y -12=0可化为y =74-3, 当=2时,y =12.又f ′()=a +b x 2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎨⎧a =1,b =3.故f ()=-3x . (2)设P (0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(-0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(-0).令=0,得y =-6x 0,从而得切线与直线=0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =,得y ==20,从而得切线与直线y =的交点坐标为(20,20).所以点P (0,y 0)处的切线与直线=0,y =所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|20|=6. 故曲线y =f ()上任一点处的切线与直线=0,y =所围成的三角形面积为定值,且此定值为6.18.如图,从点P 1(0,0)作轴的垂线交曲线y =e 于点Q 1(0,1),曲线在Q 1点处的切线与轴交于点P 2.再从P 2作轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P 点的坐标为(,0)(=1,2,…,n ).(1)试求与-1的关系(=2,…,n );(2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |.解 (1)设点P -1的坐标是(-1,0),∵y =e ,∴y ′=e ,∴Q -1(-1,e -1),在点Q -1(-1,e -1)处的切线方程是y -e -1=e -11(--1),令y =0,则=-1-1(=2,…,n ).(2)∵1=0,--1=-1,∴=-(-1),∴|PQ |=e =e -(-1),于是有|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=1+e -1+e -2+…+e -(n -1)=1-e -n 1-e -1=e -e 1-ne -1, 即|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=e -e 1-ne -1.。

导数的概念及运算

导数的概念及运算
y0+1=1+ln x0x0, 解得x0=1,y0=0. ∴切点为(1,0),∴f′(1)=1+ln 1=1. ∴直线l的方程为y=x-1,即x-y-1=0.
解析答案
命题点3 和切线有关的参数问题
例 4 已知 f(x)=ln x,g(x)=12x2+mx+72(m<0),直线 l 与函数 f(x), g(x)的图象都相切,且与 f(x)图象的切点为(1,f(1)),则 m=_-__2_. 解析 ∵f′(x)=1x, ∴直线l的斜率为k=f′(1)=1.
跟踪训练1
解析答案
(2)若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=-__2__. 解析 f′(x)=4ax3+2bx, ∵f′(x)为奇函数,且f′(1)=2, ∴f′(-1)=-2.
解析答案
题型二 导数的几何意义
命题点1 已知切点的切线方程问题
例2
(1)函数
ln f(x)=
解析答案
返回
易错警示系列
易错警示系列 4.求曲线的切线方程条件审视不准致误
典例 (14分)若存在过点O(0,0)的直线l与曲线y=x3-3x2+2x和y=x2+a 都相切,求a的值.
易错分析 由于题目中没有指明点O(0,0)的位置情况,容易忽略点O在
曲线y=x3-3x2+2x上这个隐含条件,进而不考虑O点为切点的情况.
温馨提醒
易错分析
解析答案
返回
思想方法 感悟提高
方法与技巧
1.f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数, 而函数值f(x0)是一个常数,其导数一定为0,即(f(x0))′=0. 2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时, 首先必须注意变换的等价性,避免不必要的运算失误. 3.未知切点的曲线切线问题,一定要先设切点,利用导数的几何意义 表示切线的斜率建立方程.

高考数学复习讲义:导数的概念及运算、定积分

高考数学复习讲义:导数的概念及运算、定积分
处的切线垂直于 x 轴,则此时导数 f′(x0)不存在,由切线定义 可知,切线方程为 x=x0.
返回
[基本能力]
一、判断题(对的打“√”,错的打“×”) (1)曲线的切线与曲线不一定只有一个公共点. ( ) (2)求曲线过点 P 的切线时 P 点一定是切点. ( ) 答案:(1)√ (2)×
返回
看成常数,再求导 复合函数 确定复合关系,由外向内逐层求导
返回
[针对训练]
1.设 f(x)=x(2 019+ln x),若 f′(x0)=2 020,则 x0 等于( )
A.e2
B.1
C.ln 2
D.e
解析:f′(x)=2 019+ln x+1=2 020+ln x,由 f′(x0)= 2 020,得 2 020+ln x0=2 020,则 ln x0=0,解得 x0=1. 答案:B
返回
2.曲线 y=log2x 在点(1,0)处的切线与坐标轴所围成三角形的 面积等于________. 解析:∵y′=xln1 2,∴切线的斜率 k=ln12,∴切线方程为 y=ln12(x-1),∴所求三角形的面积 S=12×1×ln12=2ln1 2= 1 2log2e. 答案:12log2e
二、填空题 1.已知函数 f(x)=axln x+b(a,b∈R),若 f(x)的图象在 x=1
处的切线方程为 2x-y=0,则 a+b=________. 解析:由题意,得 f′(x)=aln x+a,所以 f′(1)=a,因为函 数 f(x)的图象在 x=1 处的切线方程为 2x-y=0,所以 a=2, 又 f(1)=b,则 2×1-b=0,所以 b=2,故 a+b=4. 答案:4
答案:-xsin x 2.已知 f(x)=13-8x+2x2,f′(x0)=4,则 x0=________.

导数的概念几何意义及其运算

导数的概念几何意义及其运算

导数的概念几何意义及其运算导数是微积分中的重要概念,用于描述函数在其中一点上的变化率。

它的几何意义可以通过切线来进行解释,并且有一些运算规则可以用来求解导数。

首先,我们来看一下导数的定义和几何意义。

给定一个函数f(x),如果x的变化引起f(x)的变化,那么这个变化率可以用导数来表示。

导数的定义如下:如果函数f(x)在点x上有定义,那么它在这一点的导数可以表示为:f'(x) = lim(h->0) (f(x+h) - f(x))/h这个定义表示的是在x点附近,当x的增量趋近于0时,f(x)的增量与x的增量之比的极限。

换句话说,导数描述了函数在x点附近的平均而微小的变化率。

几何上,导数表示了函数曲线在一个点上的切线的斜率。

切线是曲线在其中一点附近与曲线最为接近的直线,所以导数就是曲线在这一点上的斜率。

如果导数为正,曲线向上倾斜,而如果导数为负,曲线向下倾斜。

导数的运算有一些规则可以用来求导。

下面是一些常用的导数运算规则:1. 常数规则: 对于常数k,导函数为0,即d/dx (k) = 0。

2. 幂规则: 如果f(x) = x^n,其中n是任意实数,那么导数为f'(x) = nx^(n-1)。

3.和、差、积法则:如果函数f(x)和g(x)都可导,那么它们的和、差和积的导数可以通过以下规则得到:d/dx (f(x) + g(x)) = f'(x) + g'(x)d/dx (f(x) - g(x)) = f'(x) - g'(x)d/dx (f(x) * g(x)) = f'(x) * g(x) + f(x) * g'(x)4.商法则:如果函数f(x)和g(x)都可导,并且g(x)在其中一点x上的值不为0,那么它们的商的导数可以通过以下规则求得:d/dx (f(x) / g(x)) = (f'(x) * g(x) - f(x) * g'(x)) / g(x)^2这些运算规则可以帮助我们快速求解导数,从而帮助我们更好地理解函数的变化率。

导数的概念及其意义、导数的运算

导数的概念及其意义、导数的运算

B.(x2ex)′=x(x+2)ex D.x-1x′=1-x12
答案:BC
解析:A 项ln1x′=-ln12x·(ln x)′=-xln12x; D 项x-1x′=1+x12.
2.已知 f(x)=coesx x,则 f′(x)=________.
答案:-sin
x+cos ex
x
解析:f′(x)=coesx
答案:C 解析:由题意可知 y′=2cos x-sin x,则 y′|x=π=-2.所以曲线 y =2sin x+cos x 在点(π,-1)处的切线方程为 y+1=-2(x-π),即 2x +y+1-2π=0,故选 C.
6.[2019·全国Ⅰ卷]曲线 y=3(x2+x)ex 在点(0,0)处的切线方程为 ________.
答案:C 解析:∵f(x)=2xf′(1)+ln x,∴f′(x)=2f′(1)+1x, ∴f′(1)=2f′(1)+1,∴f′(1)=-1.
2.[选修二·P18 A 组 T6]曲线 y=1-x+2 2在点(-1,-1)处的切线 方程为________.
答案:2x-y+1=0 解析:∵y′=x+222,∴y′|x=-1=2.∴所求切线方程为 2x-y+1 =0.
4.设 f(x)=ln(3-2x)+cos 2x,则 f′(0)=________.
答案:-23 解析:因为 f′(x)=-3-22x-2sin 2x,所以 f′(0)=-23.
三、走进高考 5.[2019·全国Ⅱ卷]曲线 y=2sin x+cos x 在点(π,-1)处的切线方 程为( ) A.x-y-π-1=0 B.2x-y-2π-1=0 C.2x+y-2π+1=0 D.x+y-π+1=0
微点 2 未知切点求切线方程 [例 2] 已知函数 f(x)=xln x,若直线 l 过点(0,-1),并且与曲线 y=f(x)相切,则直线 l 的方程为________.

导数的概念及运算、几何意义

导数的概念及运算、几何意义

导数的概念及运算、几何意义1.导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或,即f′(x0)==.y′|x=x(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)·(x-x0).(3)函数f(x)的导函数称函数f′(x)=为f(x)的导函数.2.导数公式及运算法则(1)基本初等函数的导数公式(2)导数的运算法则①[f (x )±g (x )]′=)(x f '±g ′(x );②[f (x )·g (x )]′=)(x f 'g (x )+f (x )g ′(x ); ③])()(['x g x f =f ′(x )g (x )-f (x )g ′(x ) [g (x )]2(g (x )≠0). 特殊情况[c ·f (x )]′=c ·)(x f '.(3)复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1))(0x f '与[f (x 0)]′表示的意义相同.(×)(2))(0x f '是导函数)(x f '在x =x 0处的函数值.(√)(3)曲线的切线不一定与曲线只有一个公共点.(√) (4))3sin('π=cos π3.(×)(5)若(ln x )′=1x ,则)1('x =ln x .(×)(6)函数f (x )=sin(-x )的导数为f ′(x )=cos x .(×)(7)函数f (x )=,由于f ′(0)无意义,则说明f (x )=在x =0处无切线.(×)(8)与曲线只有一个公共点的直线一定是曲线的切线.(×)(9)若f (a )=-x 2+2ax +a 3,则f ′(a )=2x +3a 2.(√)(10)过点P 作y =f (x )的切线,且P 在y =f (x )上,则P 一定为切点.(×)考点一 导数的运算[例1] (1)函数y =(1-x ))1(x +,则y ′=________.解析:∵y =(1-x ))11(x +=1x -x =2121x x --,='y 21232121----x x答案:21232121----x x (2)函数y =ln x x ,则y ′=________.解析:y ′=)ln ('xx =(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. 答案:1-ln x x 2(3)y =ln(2x +5),则y ′=________.解析:设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x ,因此y ′=12x +5·(2x +5)′=22x +5. 答案:22x +5 (4)已知函数f (x )的导函数f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________.解析:f ′(x )=2f ′(1)+1x令x =1,得f ′(1)=2f ′(1)+1,∴f ′(1)=-1.答案:-1 [方法引航] (1)总原则:先化简解析式,再求导.(2)具体方法:①连乘积的形式:先展开化为多项式形式,再求导.②根式形式:先化为分数指数幂,再求导.③复杂分式:化为简单分式的和、差,再求导.(3)区分f ′(x )与f ′(x 0)f ′(x )表示导函数,f ′(x 0)是导函数值.1.若函数y =tan x ,则y ′=________.解析:y ′=)cos sin ('xx =(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x . 答案:1cos 2x2.设f (x )=x ln x ,若)(0x f '=2,则x 0的值为( )A .e 2B .e C.ln 22 D .ln 2 解析:选B.由f (x )=x ln x 得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e.考点二 导数的几何意义[例2] (1)求曲线f (x )在点(2,f (2))处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.解:∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0.[方法引航] 导数几何意义的应用,需注意以下两点:(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0;(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f(x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.1.在本例中,若f (x )在P 点处的切线平行x 轴,求P 点坐标.解:∵f ′(x )=3x 2-8x +5,令3x 2-8x +5=0得x =1或x =53,∴f (1)=1-4+5-4=-2,f (53)=-5827,∴P (1,-2)或P )2758,35(-. 2.在本例中,若f (x )不变,求f (x )过点(1,-2)的切线方程.解:设过点P (1,-2)的直线与y =f (x )切于点M (x 0,y 0),∴其切线斜率k =f ′(x 0)=3x 20-8x 0+5,y 0=x 30-4x 20+5x 0-4,其切线方程为y -(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(x -x 0)过点(1,-2),即-2-(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(1-x 0),即(x 0-1)2(2x 0-3)=0∴x 0=1或x 0=32.∴切点为(1,-2)或)817,23(-,∴k 1=0或k 2=-14. ∴所求切线方程分别为y =-2.或y +178=-14)23(-x ,即y =-14x -74.[易错警示]借问“切点”何处有——求曲线的切线方程时切点易错[典例] (2017·浙江杭州模拟)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[正解] 设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又点(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x-9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1,所以选A.[答案] A[易误] (1)审题不仔细,未对点(1,0)的位置进行判断,误认为(1,0)是切点;(2)当所给点不是切点时,无法与导数的几何意义联系.[警示] ①“曲线y =f (x )在P 点处的切线”与“曲线过P 点的切线”不同,前者P 为切点,后者P 不一定为切点.②此类题首先确定点是否为曲线的切点.当不是切点时.应先设出切点.[高考真题体验]1.(2016·高考全国丙卷)已知f (x )为偶函数,当x ≤0时,x e x f x -=--1)(,则曲线y =f (x )在点(1,2)处的切线方程是________.解析:当x >0时,-x <0,f (-x )=e x -1+x ,而f (-x )=f (x ),所以f (x )=e x -1+x (x >0),点(1,2)在曲线y =f (x )上,易知f ′(1)=2, 故曲线y =f (x )在点(1,2)处的切线方程是y -2=f ′(1)·(x -1),即y =2x .答案:y =2x2.(2015·高考课标卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:由题意可得f ′(x )=3ax 2+1,∴f ′(1)=3a +1,又f (1)=a +2,∴f (x )=ax 3+x +1的图象在点(1,f (1))处的切线方程为y -(a +2)=(3a +1)(x -1),又此切线过点(2,7),∴7-(a +2)=(3a +1)(2-1),解得a =1.答案:13.(2012·高考课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.解析:y ′=3ln x +1+x ·3x =3ln x +4,k =y ′|x =1=4,切线方程为y -1=4(x -1),即y =4x -3.答案:y =4x -34.(2016·高考天津卷)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则)0(f '的值为________.解析:∵f ′(x )=2e x +(2x +1)e x =(2x +3)·e x ,∴f ′(0)=3.答案:35.(2015·高考天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,)(x f '为f (x )的导函数.若)1(f '=3,则a 的值为________.解析:∵f ′(x )=a ln x +a ,∴f ′(1)=a ln 1+a =3,解得a =3.答案:36.(2016·高考山东卷)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析:选A.对于A ,y ′=cos x ,存在x 1,x 2,若cos x 1cos x 2=-1,如x 1=π,x 2=2π,可满足,对于B ,其导数为f ′(x )=1x ,f ′(x 1)·f ′(x 2)=1x 1x 2>0,故B 不满足;y =f (x )=e x 的导函数为f ′(x )=e x ,f ′(x 1)·f ′(x 2)=e x 1+x 2>0,故C 不满足;y =f (x )=x 3的导函数为f ′(x )=3x 2,f ′(x 1)·f ′(x 2)=9x 21x 22≥0,故D 不满足.故选A.课时规范训练A 组 基础演练1.若函数f (x )=ax 4+bx 2+c 满足2)1(='f ,则)1(-'f 等于( )A .-1B .-2C .2D .0解析:选B.f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且2)1(='f ,∴)1(-'f =-2.2.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0解析:选A.切线l 的斜率k =4,设y =x 4的切点的坐标为(x 0,y 0),则k =4x 30=4,∴x 0=1,∴切点为(1,1),即y -1=4(x -1),整理得l 的方程为4x -y -3=0.3.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( ) A .2 B .ln 2+1 C .ln 2-1 D .ln 2解析:选C.∵y =ln x 的导数为y ′=1x ,∴1x =12,解得x =2,∴切点为(2,ln 2).将其代入直线y =12x +b ,得b =ln 2-1.4.曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( )A .(0,1)B .(1,-1)C .(1,3)D .(1,0)解析:选C.y ′=3x+1,令y ′=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3).5.直线y =kx +b 与曲线y =ax 2+2+ln x 相切于点P (1,4),则b 的值为( )A .3B .1C .-1D .-3解析:选C.由点P (1,4)在曲线上可得a ×12+2+ln 1=4,解得a =2,故y =2x 2+2+ln x ,所以y ′=4x +1x ,所以曲线在点P 处切线的斜率1|='=x y k =4×1+11=5.所以直线的方程为y =5x +b .由点P 在直线上得4=5×1+b ,解得b =-1,故选C.6.曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1解析:选C.y ′=e x -1+x e x -1=(x +1)e x -1,故曲线在点(1,1)处的切线斜率为2|1='==x y k7.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2解析:选C.依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,于是有f ′(0)=g ′(0),即-a sin 0=2×0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1.8.在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是( )A .0B .1C .2D .3解析:选A.依题意得,y ′=3x 2-9,令0≤y '<1得3≤x 2<103,显然满足该不等式的整数x不存在,因此在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是0,选A.9.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选C.依题意,记g (x )=(x -a 1)(x -a 2)…(x -a 8),则f (x )=xg (x ),)(x f '=g (x )+xg ′(x ),f ′(0)=g (0)=a 1a 2…a 8=(a 1a 8)4=212,故选C.10.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=)(1x f ',f 3(x )=)(2x f ',…,f n +1(x )=)(x f n ',n ∈N *,则f 2 019(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选A.∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )是以4为周期的函数,∴f 2 019(x )=f 3(x )=-sin x -cos x ,故选A.B 组 能力突破1.已知函数f (x )在R 上满足f (2-x )=2x 2-7x +6,则曲线y =f (x )在(1,f (1))处的切线方程是( )A .y =2x -1B .y =xC .y =3x -2D .y =-2x +3解析:选C.法一:令x =1得f (1)=1,令2-x =t ,可得x =2-t ,代入f (2-x )=2x 2-7x +6得f (t )=2(2-t )2-7(2-t )+6,化简整理得f (t )=2t 2-t ,即f (x )=2x 2-x ,∴f ′(x )=4x -1,∴f ′(1)=3.∴所求切线方程为y -1=3(x -1),即y =3x -2.法二:令x =1得f (1)=1, 由f (2-x )=2x 2-7x +6,两边求导可得f ′(2-x )·(2-x )′=4x -7,令x =1可得-f ′(1)=-3,即f ′(1)=3.∴所求切线方程为y-1=3(x-1),即y=3x-2.2.已知函数f(x)=a sin x+bx3+4(a∈R,b∈R),)(xf'为f(x)的导函数,则f(2 017)+f(-2 017)+)2018(f'-)2018(-'f=()A.0 B.2 017 C.2 018 D.8解析:选D.设g(x)=a sin x+bx3,∴f(x)=g(x)+4,且g(-x)=-g(x),所以f(2 017)+f(-2 017)=g(2 017)+4+g(-2 017)+4=8,又因为f′(x)=a cos x+3bx2,所以f′(x)为R上的偶函数,则f′(2 018)-f′(-2 018)=0,所以f(2 017)+f(-2 017)+f′(2 018)-f′(-2 018)=8,故选D.3.已知函数y=f(x)及其导函数y=)(xf'的图象如图所示,则曲线y=f(x)在点P处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y=f(x)在点P处的切线的斜率k=f′(2)=1,又过点P(2,0),所以切线方程为x-y-2=0.答案:x-y-2=04.已知函数f(x)的导函数为)(xf',且满足f(x)=3x2+2x·)2(f',则)5(f'=________.解析:对f(x)=3x2+2x)2(f'求导,得f′(x)=6x+2)2(f'.令x=2,得)2(f'=-12.再令x=5,得f′(5)=6×5+2)2(f'=6.答案:65.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.解析:设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=1t+1,∴f′(1)=2.答案:26.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析:∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x.∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,x+1x-a=0,∴a=x+1x≥2.答案:[2,+∞)。

导数的概念及其意义、导数的运算(精讲)2024年高考数学高频考点题型归纳与方法总结(新高考通用)

导数的概念及其意义、导数的运算(精讲)2024年高考数学高频考点题型归纳与方法总结(新高考通用)

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第14讲 导数的概念及其意义、导数的运算(精讲)题型目录一览一、导数的概念和几何性质1.概念 函数()f x 在0x x =处瞬时变化率是0000()()lim limx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.注:增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;2.几何意义 函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.二、导数的运算1.求导的基本公式2.导数的四则运算法则(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为 x u x y y u '''=: 【常用结论】1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩. 2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线) 题型一 导数的定义策略方法 对所给函数式经过添项、拆项等恒等变形与导数定义结构相同,然后根据导数定义直接写出.【题型训练】一、单选题二、填空题题型二导数的运算策略方法对所给函数求导,其方法是利用和、差、积、商及复合函数求导法则,直接转化为基本函数求导问题.【题型训练】一、解答题题型三 导数中的切线问题①-求在曲线上一点的切线方程策略方法 已知切点A (x 0,f (x 0))求切线方程,可先求该点处的导数值f ′(x 0),再根据y -f (x 0)=f ′(x 0)(x -x 0)求解.【题型训练】一、单选题二、填空题4.(2023·全国·高三专题练习)已知曲线2y x 在点()2,4处的切线与曲线()e xf x x =-在点()()00,x f x 处的7.(2023·湖北·黄冈中学校联考模拟预测)已知函数()|ln |f x x =,直线1l ,2l 是()f x 的两条切线,1l ,2l 相交于点Q ,若12l l ⊥,则Q 点横坐标的取值范围是________. 三、解答题题型四 导数中的切线问题①-求过一点的切线方程策略方法设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-, 又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值【题型训练】一、单选题二、填空题题型五 导数中的切线问题①-求参数的值(范围)策略方法 1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围. (2)谨记切点既在切线上又在曲线上.【典例1】已知函数()2ln f x ax b x =-在点()()1,1f 处的切线为1y =,则a b +的值为( )A .1B .2C .3D .4【题型训练】一、单选题的横坐标为( ) A .1B .1-C .2D .2-2.(2023·全国·高三专题练习)已知函数()xf x xe =与()()2g x x ax a =+∈R 的图象在()0,0A 处有相同的切线,则=a ( ) A .0B .1-C .1D .1-或13.(2023春·宁夏银川·高三银川一中校考阶段练习)若点P 是函数()2ln f x x x =-任意一点,则点P 到直线二、填空题点()1,0处的切线与直线10x by -+=垂直,则a b +=__________.7.(2023春·云南·高三校联考开学考试)已知直线y ax b =+与曲线ln 2y a x =+相切,则223a b +的最小值为____________.。

导数定义与计算方法

导数定义与计算方法

导数定义与计算方法导数是微积分中非常重要的概念之一,它与函数的变化率以及切线有着密切的关系。

本文将介绍导数的定义及其计算方法,以帮助读者更好地理解和应用导数。

一、导数的定义导数是函数在某一点上的变化率,它可以用极限的概念来定义。

对于给定函数f(x),如果存在一个极限lim┬(Δx→0)⁡〖(f(x+Δx)-f(x))/Δx 〗,则称该极限为函数f(x)在点x处的导数,记作f'(x),也可以表示为dy/dx 或y'。

二、导数的计算方法导数的计算方法主要包括以下几种常见的情况:1. 基本函数的导数- 常数函数的导数为0,即d/dx(c) = 0,其中c为常数。

- 幂函数的导数可以通过幂函数的求导公式来计算,即d/dx(x^n) = nx^(n-1),其中n为常数。

- 指数函数e^x的导数为e^x。

- 对数函数ln(x)的导数为1/x。

2. 基本运算法则- 和差法则:导数的和等于导数的和,即d/dx(f(x)+g(x)) = f'(x) +g'(x)。

- 常数倍法则:导数的常数倍等于常数倍的导数,即d/dx(c*f(x)) = c*f'(x),其中c为常数。

- 乘法法则:导数的乘积等于函数一的导数乘以函数二加上函数一乘以函数二的导数,即d/dx(f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)。

- 除法法则:导数的商等于分子的导数乘以分母减去分子乘以分母的导数再除以分母的平方,即d/dx(f(x)/g(x)) = (f'(x)*g(x) -f(x)*g'(x))/g^2 (x)。

3. 高阶导数- 导数的导数称为高阶导数,可通过对导数再次求导来计算。

例如f''(x)表示f'(x)的导数,f'''(x)表示f''(x)的导数,以此类推。

4. 链式法则- 当函数具有复合形式时,可以使用链式法则来计算导数。

导数公式及其运算法则

导数公式及其运算法则

导数公式及其运算法则导数是微积分中的重要概念,它描述了函数在特定点处的变化率。

导数的公式及其运算法则包括如下几类:基本导数公式、常数倍法则、和差法则、乘法法则、除法法则、复合函数法则、反函数法则和链式法则。

一、基本导数公式:1.常数函数:对于常数函数f(x)=c,其导数为f'(x)=0。

例如,f(x)=7的导数为f'(x)=0。

2.幂函数:对于幂函数f(x)=x^n,其中n是任意实数,其导数为f'(x)=n*x^(n-1)。

例如,f(x)=x^3的导数为f'(x)=3*x^23. 指数函数:对于指数函数 f(x) = a^x,其中 a 是任意正常数且a≠1,其导数为 f'(x) = ln(a)*a^x。

例如,f(x) = 2^x 的导数为 f'(x) = ln(2)*2^x。

4. 对数函数:对于对数函数 f(x) = log_a(x),其中 a 是任意正常数且a≠1,其导数为 f'(x) = 1/(x*ln(a))。

例如,f(x) = log_2(x)的导数为 f'(x) = 1/(x*ln(2))。

5. 三角函数:对于三角函数 f(x) = sin(x),其导数为 f'(x) =cos(x)。

同样地,cos(x) 的导数为 -sin(x),tan(x) 的导数为sec^2(x),cot(x) 的导数为 -csc^2(x)。

二、常数倍法则:若函数 f(x) 和 g(x) 都是可导函数,c 是常数,则 (cf(x))' =cf'(x)。

三、和差法则:若函数f(x)和g(x)都是可导函数,则(f(x)+g(x))'=f'(x)+g'(x)和(f(x)-g(x))'=f'(x)-g'(x)。

四、乘法法则:若函数f(x)和g(x)都是可导函数,则(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。

导数的概念及其计算

导数的概念及其计算
y′ | x x0 , 即 f ′(x0)=
x 0
lim
f ( x0 x) f ( x0 ) . x
(2)导数的几何意义:函数 y=f(x)在点 x0 处的导数 f′(x0),就是曲线 y=f(x)在点 P(x0,y0)处的切线的 斜率 . (3)导数的物理意义:函数 s=s(t)在点 t0 处的导数 s′(t0),就是物体的运动方程为 s=s(t)在时刻 t0 时的 瞬时 速度 v.即 v=s′(t0).
x 0
探究提高 由导数的定义可知,求函数 y=f(x)的导数的 一般方法是: (1)求函数的改变量 Δy=f(x+Δx)-f(x); Δy f(x+Δx)-f(x) (2)求平均变化率Δx= ; Δx Δy y (3)取极限,得导数 lim Δx.
x0
变式训练 1 过曲线 y= f (x)= x3 上两点 P(1,1)和 Q(1+ Δ x,1+Δ y)作曲线的割线, 求出当 Δ x= 0.1 时割线的 斜率,并求曲线在点 P 处切线的斜率.
2.曲线 y=f(x)“在点 P(x0,y0)处的切线”与“过点 P(x0,y0)的切线”的区别与联系 (1)曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点, 切线斜率为 k=f′(x0)的切线,是唯一的一条切线. (2)曲线 y=f(x)过点 P(x0,y0)的切线,是指切线经过 P 点.点 P 可以是切点,也可以不是切点,而且这样的 直线可能有多条.
基础自测 1. 已知函数 f ( x) =13-8 x+ 2 x , 且 f ' ( x0 ) =
2
3 2 4,则 x0 的值为________.
解析
f ' ( x) =-8+2 2x,
f ' ( x0 ) =-8+2 2 x0 =4,∴ x0 =3 2.

(完整版)导数的概念、导数公式与应用

(完整版)导数的概念、导数公式与应用

导数的观点及运算知识点一:函数的均匀变化率( 1)观点:函数中,假如自变量在处有增量,那么函数值y 也相应的有增量△y=f(x 0+△ x)-f(x0),其比值叫做函数从到+△ x 的均匀变化率,即。

若,,则均匀变化率可表示为,称为函数从到的均匀变化率。

注意:①事物的变化率是有关的两个量的“增量的比值” 。

如气球的均匀膨胀率是半径的增量与体积增量的比值;②函数的均匀变化率表现函数的变化趋向,当取值越小,越能正确表现函数的变化状况。

③是自变量在处的改变量,;而是函数值的改变量,能够是0。

函数的均匀变化率是0,其实不必定说明函数没有变化,应取更小考虑。

( 2)均匀变化率的几何意义函数的均匀变化率的几何意义是表示连结函数图像上两点割线的斜率。

如下图,函数的均匀变化率的几何意义是:直线AB的斜率。

事实上,。

作用:依据均匀变化率的几何意义,可求解有关曲线割线的斜率。

知识点二:导数的观点:1.导数的定义:对函数,在点处给自变量x 以增量,函数y相应有增量。

若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。

即:(或)注意:①增量能够是正数,也能够是负数;②导数的实质就是函数的均匀变化率在某点处的极限,即刹时变化率。

2.导函数:假如函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确立的导数,进而组成了一个新的函数,称这个函数为函数在开区间内的导函数,简称导数。

注意:函数的导数与在点处的导数不是同一观点,是常数,是函数在处的函数值,反应函数在邻近的变化状况。

3.导数几何意义:(1)曲线的切线曲线上一点 P(x 0,y0) 及其邻近一点 Q(x0 +△ x,y 0+△ y) ,经过点 P、 Q作曲线的割线 PQ,其倾斜角为当点 Q(x0+△x,y 0+△y) 沿曲线无穷靠近于点P(x 0,y0) ,即△ x→0 时,割线 PQ的极限地点直线PT叫做曲线在点 P 处的切线。

若切线的倾斜角为,则当△ x→0 时,割线 PQ斜率的极限,就是切线的斜率。

(完整版)导数的概念、几何意义及其运算

(完整版)导数的概念、几何意义及其运算

导数的概念、几何意义及其运算常见基本初等函数的导数公式和常用导数运算公式 :+-∈==N n nx x C C n n ,)(;)(01''为常数;;sin )(cos ;cos )(sin ''x x x x -== a a a e e xx x x ln )(;)(''==;e x x x x a a log 1)(log ;1)(ln ''==法则1: )()()]()(['''x v x u x v x u ±=± 法则2: )()()()()]()(['''x v x u x v x u x v x u +=法则3: )0)(()()()()()(])()([2'''≠-=x v x v x v x u x v x u x v x u (一)基础知识回顾:1.导数的定义:函数)(x f y =在0x 处的瞬时变化率xx f x x f x y o x x ∆-∆+=∆∆→∆→∆)()(limlim 000称为函数)(x f y =在0x x =处的导数,记作)(0/x f 或0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f 。

称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/y ,即)(/x f =/y =xx f x x f x ∆-∆+→∆)()(lim0 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数)(x f y =在0x 处的导数0/x x y =,就是导函数)(/x f 在0x 处的函数值,即0/x x y ==)(0/x f 。

导数的概念及运算、定积分 倒数及其应用 教学PPT课件

导数的概念及运算、定积分 倒数及其应用 教学PPT课件

(2)函数 y=(x-1)3 的导数为 y′=3(x-1)2, 设过原点的切线的切点坐标为(x0,(x0-1)3), 则切线的斜率为 k=y′|x=x0=3(x0-1)2, ∵切线过原点(0,0), ∴k=3(x0-1)2=x0-x0-130-0, 解得 x0=1 或 x0=-12, 则切点坐标为(1,0)或-12,-287, 对应的斜率 k=0 或 k=247,
谨记结论·谨防易错 (1)f′(x0)代表函数 f(x)在 x=x0 处的导数值;(f(x0))′是函数值 f(x0)的导 数,且(f(x0))′=0. (2)奇函数的导数是偶函数,偶函数的导数是奇函数.周期函数的导数还是 周期函数. (3)f1x′=-f[′fxx]2. (4)曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线 相切只有一个公共点.
(3)y′=coesx
x′=cos
x′ex-cos ex2
xex′=-sin
x+cos ex
x .
(4)∵y=xsin2x+π2cos2x+π2 =12xsin(4x+π)=-12xsin 4x,
∴y′=-12sin 4x-12x·4cos 4x
=-12sin 4x-2xcos 4x.
[一“点”就过] 1.求函数导数的总原则:先化简解析式,再求导. 2.常见形式及具体求导的几种方法
命题点二 导数的几何意义及应用(多角探明) [逐点例析]
题点(一) 求切线方程 [例 1] (1)(2020·全国卷Ⅰ)曲线 y=ln x+x+1 的一条切线的斜率为 2,则
该切线的方程为________. (2)过原点与曲线 y=(x-1)3 相切的切线方程为________.
[解析] (1)设切点坐标为(x0,ln x0+x0+1). 由题意得 y′=1x+1,则该切线的斜率为x10+1=2, 解得 x0=1,所以切点坐标为(1,2), 所以该切线的方程为 y-2=2(x-1),即 2x-y=0.

导数的概念及其运算(解析版)

导数的概念及其运算(解析版)

考点20 导数的概念及其运算【命题解读】从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等.除压轴题,同时在小题中也加以考查,难度控制在中等以上.应特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力.【基础知识回顾】1. 导数的概念设函数y=f(x)在区间(a,b)上有定义,且x0∈(a,b),若Δx无限趋近于0时,比值Δy Δx=f(x0+Δx)-f(x0)Δx无限趋近于一个常数A,则称f(x)在x=x0处可导,并称该常数A为函数f(x)在x=x0处的导数,记作f′(x0).若函数y=f(x)在区间(a,b)内任意一点都可导,则f(x)在各点的导数也随着x的变化而变化,因而是自变量x的函数,该函数称作f(x)的导函数,记作f′(x).2. 导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,过点P 的切线方程为y-y0=f′(x0)(x-x0).3. 基本初等函数的导数公式续表4. 导数的运算法则若f′(x),g′(x)存在,则有:(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)⎣⎢⎡⎦⎥⎤f (x )g (x )=f′(x )g (x )-f (x )g′(x )g 2(x )(g(x)≠0). 5. 复合函数的求导法则(1)一般地,对于两个函数y =f(u)和u =g(x),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f(u)和u =g(x)的复合函数,记作y =f(g(x)).(2)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为y′x =y′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1、下列求导结果正确的是( )A .()21'12x x -=-B .()cos30'sin30︒=-︒C .()1ln 2'2x x=⎡⎤⎣⎦ D .'=【答案】D【解析】对于A ,2(1)2x x -'=-,故A 错误; 对于B ,(cos30)0︒'=,故B 错误; 对于C ,11[(2)](2)2ln x x x x'=⨯'=,故C 错误;对于D 31223()2x x '===,故D 正确.故选:D .2、若()ln2x f x e x =,则()f x '=( )A .ln 22xx e e x x+B .ln 2xx e e x x-C .ln 2xxe e x x+D .12xe x⋅【答案】C【解析】()()ln2(ln2)x x f x e x e x =+⋅'⋅''ln 2xxe e x x=+.故选:C .3、(2020·广东肇庆市·高三月考)已知函数1()e ln x f x x x -=+,则()1f '=( )A .0B .1C .eD .2【答案】D【解析】因为1()e ln x f x x x -=+,所以111()e ln e 1ln x x f x x x x x--'=++⨯=++, 所以11(1)e 1ln12f -'=++=, 故选:D4、 设M 为曲线C :y =2x 2+3x +3上的点,且曲线C 在点M 处切线倾斜角的取值范围为⎣⎢⎡⎭⎪⎫3π4,π,则点M 横坐标的取值范围为(D )A . [)-1,+∞B . ⎝⎛⎭⎪⎫-∞,-34C . ⎝ ⎛⎦⎥⎤-1,-34D . ⎣⎢⎡⎭⎪⎫-1,-34 【答案】D【解析】、 由题意y ′=4x +3,切线倾斜角的范围是⎣⎢⎡⎭⎪⎫34π,π,则切线的斜率k 的范围是[)-1,0,∴-1≤4x +3<0,解得-1≤x<-34. 故选D . 5、下列求导过程正确的选项是( ) A.⎝⎛⎭⎫1x ′=1x 2 B .(x )′=12x C .(x a )′=ax a -1D .(log a x )′=⎝⎛⎭⎫ln x ln a ′=1x ln a 【答案】 BCD【解析】 根据题意,依次分析选项: 对于A ,⎝⎛⎭⎫1x ′=(x -1)′=-1x 2,A 错误;对于B ,(x )′=12()x '=12×12x -=12x ,B 正确;对于C ,(x a )′=ax a -1,C 正确;对于D ,(log a x )′=⎝⎛⎭⎫ln x ln a ′=1x ln a ,D 正确; 则B ,C ,D 正确.6、(江苏省南通市西亭高级中学2019-2020学年高三下学期学情调研)若曲线(1)x y ax e =+在(0,1)处的切线斜率为-1,则a =___________. 【答案】2-【解析】,((1)1)x x y y ax e ax a e '=+=++,011,2x y a a ='=+=-∴=-. 故答案为:-2.7、(江苏省如皋市2019-2020学年高三上学期10月调研)已知a R ∈,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为________ . 【答案】1 【解析】函数f (x )=ax −ln x ,可得()1'f x a x=-,切线的斜率为:()'11k f a ==-, 切点坐标(1,a ),切线方程l 为:y −a =(a −1)(x −1), l 在y 轴上的截距为:a +(a −1)(−1)=1. 故答案为1.考向一 基本函数的导数例1、求下列函数的导数(1)()2(34)21y x x x =-+; (2) 31yx x; (3) ln x ye x ;(4) tan yx ; (5)2ln 1x y x =+; (6)2ln(15)xyx .【解析】(1)∵y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,∴218104y x x '=--.(2) 322132y x x -'=-+;(3) 1ln x y e x x ⎛⎫'=+ ⎪⎝⎭;(4) 21cos y x'=;(5)y '=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln xx (x 2+1)2; (6) 52ln 251x y x '=+-.变式1、求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ; (3)y =cos x e x .【解析】、(1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x 2.(3)y ′=⎝⎛⎭⎫cosx e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x . 变式2、求下列函数的导数: (1)f (x )=x 2+xe x ;(2)f (x )=x 3+2x -x 2ln x -1x 2; (3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2.【解析】、(1)f ′(x )=(2x +1)e x -(x 2+x )e x (e x )2=1+x -x 2e x . (2)由已知f (x )=x -ln x +2x -1x 2. ∴f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3. (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12x sin 4x , ∴y ′=-12sin 4x -12x ·4cos 4x =-12sin 4x -2x cos 4x .方法总结:求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元考向二 求导数的切线方程例2、(1)函数ln 2()x xf x x-=的图象在点(1,2)P -处的切线方程为__________. (2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A .(-∞,-2] B .(-∞,2) C .(2,+∞)D .(0,+∞)【答案】 (1)x -y -3=0 (2)B【解析】 (1)f ′(x )=1-ln xx 2,则f ′(1)=1,故该切线方程为y -(-2)=x -1,即x -y -3=0.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2).变式1、(1)已知曲线S :y =-23x 3+x 2+4x 及点P(0,0),那么过点P 的曲线S 的切线方程为____.(2)已知函数f(x)=x ln x ,过点A(-1e 2,0)作函数y =f(x)图像的切线,那么切线的方程为____.【答案】(1)y =4x 或y =358x(2)x +y +1e 2=0【解析】 (1)设过点P 的切线与曲线S 切于点Q(x 0,y 0),则过点Q 的曲线S 的切线斜率为k =y ′|x =x 0=-2x 20+2x 0+4,又当x 0≠0时,k PQ =y 0x 0,∴-2x 20+2x 0+4=y 0x 0. ①∵点Q 在曲线S 上,∴y 0=-23x 30+x 20+4x 0.②将②代入①得-2x 20+2x 0+4=-23x 30+x 20+4x 0x 0,化简,得43x 30-x 20=0,∴x 0=34或x 0=0, 当x 0=34时,则k =358,过点P 的切线方程为y =358x.当x 0=0时,则k =4,过点P 的切线方程为y =4x ,故过点P 的曲线S 的切线方程为y =4x 或y =358x. (2)设切点为T(x 0,y 0),则k AT =f′(x 0), ∴x 0ln x 0x 0+1e 2=ln x 0+1,即e 2x 0+ln x 0+1=0. 设h(x)=e 2x +ln x +1,则h′(x)=e 2+1x ,当x>0时,h ′(x)>0,∴h(x)在(0,+∞)上是单调增函数,∴h(x)=0最多只有一个根. 又h ⎝⎛⎭⎫1e 2=e 2×1e 2+ln 1e 2+1=0,∴x 0=1e 2.由f′(x 0)=-1得切线方程是x +y +1e 2=0.变式2、已知函数f(x)=x 3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)若直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f(x)的某一切线与直线y =-14x +3垂直,求切点坐标与切线方程.【解析】 (1)由函数f(x)的解析式可知点(2,-6)在曲线y =f(x)上,∴f ′(x)=(x 3+x -16)′=3x 2+1, ∴在点(2,-6)处的切线的斜率为k =f′(2)=13, ∴切线的方程为y -(-6)=13(x -2), 即y =13x -32.(2)(方法1)设切点为(x 0,y 0), 则直线l 的斜率为f′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16. 又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16, 整理得x 30=-8,∴x 0=-2, ∴y 0=(-2)3+(-2)-16=-26, f ′(-2)=3×(-2)2+1=13,故直线l 的方程为y =13x ,切点坐标为(-2,-26).(方法2)设直线l 的方程为y =kx ,切点坐标为(x 0,y 0),则k =y 0-0x 0-0=x 30+x 0-16x 0. 又∵k =f′(x 0)=3x 20+1, ∴x 30+x 0-16x 0=3x 20+1,解得x 0=-2, ∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13,∴直线l 的方程为y =13x ,切点坐标为(-2,-26).(3)∵曲线f(x)的某一切线与直线y =-x4+3垂直,∴该切线的斜率k =4.设切点的坐标为(x 0,y 0), 则f′(x 0)=3x 20+1=4,∴x 0=±1,∴⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18.故切线方程为y -(-14)=4(x -1)或y -(-18)=4(x +1),即y =4x -18或y =4x -14.方法总结: 利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标. (2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.(3)曲线y =f(x)“在”点P(x 0,y 0)处的切线与“过”点P(x 0,y 0)的切线的区别:曲线y =f(x)在点P(x 0,y 0)处的切线是指点P 为切点,若切线斜率存在,切线斜率为k =f′(x 0),是唯一的一条切线;曲线y =f(x)过点P(x 0,y 0)的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.考向三 导数几何意义的应用例3、已知函数32()3611f x ax x ax =+--,2()3612g x x x =++和直线:9m y kx =+,且(1)0f '-=.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线()y f x =的切线,又是曲线()y g x =的切线?如果存在,求出k 的值;如果不存在,请说明理由.【解析】:(1)由已知得f ′(x )=3ax 2+6x -6a , ∵f ′(-1)=0,∵3a -6-6a =0,∵a =-2. (2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).∵g ′(x 0)=6x 0+6, ∵切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0),将(0,9)代入切线方程,解得x 0=±1.当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9.由(1)知f (x )=-2x 3+3x 2+12x -11, ∵由f ′(x )=0得-6x 2+6x +12=0,解得x =-1或x =2. 在x =-1处,y =f (x )的切线方程为y =-18;在x =2处,y =f (x )的切线方程为y =9,∵y =f (x )与y =g (x )的公切线是y =9. ∵由f ′(x )=12得-6x 2+6x +12=12,解得x =0或x =1. 在x =0处,y =f (x )的切线方程为y =12x -11; 在x =1处,y =f (x )的切线方程为y =12x -10; ∵y =f (x )与y =g (x )的公切线不是y =12x +9.综上所述,y =f (x )与y =g (x )的公切线是y =9,此时k =0.变式1、已知函数()()3cos2sin 2,,4f x x x x a f f x π⎛⎫''=++= ⎪⎝⎭是()f x 的导函数,则过曲线3y x =上一点(),P a b 的切线方程为__________________.变式2:若直线2y x m =+是曲线ln y x x =的切线,则实数m 的值为________. 【答案】:(1)3x -y -2=0或3x -4y +1=0 (2)-e【解析】:(1)由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x , 则a =f ′(π4)=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,当P 点为切点时,切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1). 故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0.当P 点不是切点时,设切点为(x 0,x 30),∵切线方程为y -x 30=3x 20(x -x 0), ∵P (a ,b )在曲线y =x 3上,且a =1,∵b =1.∵1-x 30=3x 20(1-x 0),∵2x 30-3x 20+1=0,∵2x 30-2x 20-x 20+1=0,∵(x 0-1)2(2x 0+1)=0,∵切点为11,28⎛⎫-- ⎪⎝⎭,∵此时的切线方程为131842y x ⎛⎫+=+ ⎪⎝⎭, 综上,满足题意的切线方程为3x -y -2=0或3x -4y +1=0. (2)设切点为(x 0,x 0ln x 0),由y ′=(x ln x )′=ln x +x ·1x =ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0),整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e. 变式3、(2019常州期末) 若直线kx -y -k =0与曲线y =e x (e 是自然对数的底数)相切,则实数k =________. 【答案】、 e 2【解析】、设切点A(x 0,e x 0),由(e x )′=e x,得切线方程为y -e x 0=e x 0(x -x 0),即y =e x 0x +(1-x 0)e x 0,所以⎩⎪⎨⎪⎧k =e x 0,-k =(1-x 0)e x 0,解得⎩⎪⎨⎪⎧x 0=2,k =e 2.方法总结:1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.1、【2020年高考全国Ⅰ卷理数】函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为 A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+【答案】B 【解析】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B .2、【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .3、【2018年高考全国Ⅰ卷理数】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D【解析】因为函数f(x)是奇函数,所以a −1=0,解得a =1,所以f(x)=x 3+x ,f′(x)=3x 2+1, 所以f′(0)=1,f(0)=0,所以曲线y =f(x)在点(0,0)处的切线方程为y −f(0)=f′(0)x ,化简可得y =x . 故选D.4、【2019年高考全国Ⅰ卷理数】曲线23()e x y x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=5、【2018年高考全国Ⅲ卷理数】曲线()1e xy ax =+在点()0,1处的切线的斜率为2-,则a =________.【答案】−3【解析】()e 1e xxy a ax =++',则0|12x y a ='=+=-,所以a =−3.6、【江苏省南通市2019-2020学年高三上学期期初】给出下列三个函数:①1y x=;②sin y x =;③e x y =,则直线12y x b =+(b R ∈)不能作为函数_______的图象的切线(填写所有符合条件的函数的序号). 【答案】①【解析】直线12y x b =+的斜率为k =12, 对于①1y x =,求导得:'21y x =-,对于任意x≠0,21x -=12无解,所以,直线12y x b =+不能作为切线;对于②sin y x =,求导得:'1cos 2y x ==有解,可得满足题意; 对于③x y e =,求导得:'12x y e ==有解,可得满足题意; 故答案为:①7、【江苏省南通市通州区2019-2020学年高三第一次调研抽测】已知函数()()x f x ax b e =+,若曲线y f x =()在点(0,(0))f 处的切线方程为310x y -+=,则(1)f 的值为_______.【答案】3e【解析】因为()()x f x ax b e =+,所以((()))++=++'=x x x ax b f x ae a e x b e a ,则(0)'=+f a b , 又曲线y f x =()在点(0,(0))f 处的切线方程为310x y -+=,当0x =时,1y =,即(0)1f =,所以有31a b b +=⎧⎨=⎩,解得2,1a b ==.因此()(21)x f x x e =+,所以(1)3f e =.故答案为3e8、【2020届江苏省南通市如皋市高三上学期教学质量调研(二)】如图,曲线2f x x =在点M t f t ,处的切线为l ,直线l 与x 轴和直线1x =分别交于点P 、Q ,点()1,0N ,则PQN 的面积取值范围为_____.【答案】80,]27( 【解析】2f x x =的导数为'2f x x ,在点M t f t ,处的切线斜率为2k t ,切点为2,t t ,切线方程为2201y t t x t t (), 令1x =可得22y t t ;令0y =,可得2t x =, 则PQN 的面积为()21112222t S PN QN t t ⎛⎫=⋅=-- ⎪⎝⎭, 由211384(2)(32)44S t t t t , 当203t < 时,0S > ,函数S 递增;当213t <<时,0S < ,函数S 递减, 可得23t = 处S 取得极大值,且为最大值827, 且0t =时,0S =;1t =时,14S , 可得PQN 的面积取值范围为80,]27(, 故答案为:80,]27(.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.(A层能力提升)已知函数 的图象过点P(0,2),且在点 处的切线方程为 (1)求函数 的解析式(2)求函数 的单调区间
(C) (D)
3.导数的基本运算
1基本初等函数的导数公式
为常数) =
; ; ;
②函数的和、差、积、商的求导法则
练习:求下列函数的导数(1) (2)
4.(理)复合函数的导数:一般地,设函数 在x处有导数 ,函数y=f(u)在x的对应点u处有导数 ,则复合函数 在点x处也有导数,则 .
练习:(1) (2)
A. 或 B. 或 C. 或 D. 或
6.与直线 垂直,且与曲线 相切的直线方程是
7.(2009江西卷理)设函数 ,曲线 在点 处的切线方程为 ,则曲线 在点 处切线的斜率为
8. 和 在它们交点处的两条切线与 轴所围成的三角形的面积是
9.半径为 的圆的面积 ,周长 ,若将 看作 上的变量,则 …………………①
①式可用自然语言叙述为:圆的面积函数的导数等于圆的周长的函数.
对于半径为 的球,若将 看作 上的变量,请你写出类似于①的式子___________,且用自然
语言叙述为____________.
10.已知曲线方程为 (1)求过 点且与曲线相切的直线方程;
(2)求过点 且与曲线相切的直线方程
11.(B层探究拓展)已知函数 的图象都过P(2,0),且在点P处有相同的切线(1)a,b,c的值(2) 求F(x)的单调区间
3.体会数学逼近过程,感受精确与近似的统一。
【重点难点】重点:导数的几何意义及运算;难点:四则运算法则及复合函数求导。
一、知识梳理:
1.函数在点 处的导数及导函数:
练习:设 若 ,则 ()A B eC D ln2
2.函数在点 处的导数的几何意义,就是曲线 在点 处.
练习:若曲线 的一条切线 与直线 垂直,则 的方程为()
⒈已知 若 则 的值等于()
⒉下列求导数运算正确的是()
3.已知使函数y=x 的导数为0的x值也使y值为0,则常数a的值为()
A.0 B. C.0或 D.非以上答案
4. 与 是定义在 上的两个可导函数,若 , 满足 则 与 满足()
为常数函数
为常数函数
5.(2009江西卷文)若存在过点 的直线与曲线 和 都相切,则 等于
⑵直线 为曲线 的切线,且经过原点,求直线 的方程及切点坐标;
⑶如果曲线 的某一切线与直线 垂直,求切点坐标与切线的方程。
【引申】(2010辽宁10)已知点P在曲线y= 上,a为曲线在点P处的切线的倾斜角,则a的取值范围是()(A)[0, ) (B) (D)
三、知识网络图:
训练学案二十:导数的概念及其运算(限时30分钟)
导学案二十:导数的概念及其运算使用时间:
【使用说明及学法指导】1.导学案30分钟独立、规范完成。2.积极探究、合作交流,大胆质疑。
【学习目标】
1.了解导数概念的实际背景,理解导数的几何意义。能利用基本初等函数的导数公式和导数的四则运算求简单函数的导数.。
2.通过合作、探究、展示、点评,培养学生的自主学习能力。
5.原函数ቤተ መጻሕፍቲ ባይዱ导函数的奇偶性有什么联系?
练习:(2010山东文)观察 , , ,由归纳推理可得:若定义在 上的函数 满足 ,记 的导函数,则 =()
(A) (B) (C) (D)
二、合作、探究、展示:
例1求下列函数的导数:
⑴ ⑵
(3) (理)(4)y= (理)
(5)设 ,求 及
例2.已知函数f(x)=x +x-16⑴求直线 在点 处的切线的方程;
相关文档
最新文档