【小初高学习]2018年秋九年级数学上册 第二十二章 二次函数 22.1 二次函数的图象和性质 22

合集下载

2018-2019学年度九年级数学上册第二十二章二次函数22.1.1二次函数同步练习 新人教版

2018-2019学年度九年级数学上册第二十二章二次函数22.1.1二次函数同步练习 新人教版

22.1.1二次函数学校:___________姓名:___________班级:___________ 一.选择题(共15小题)1.下列函数中,二次函数是()A.y=﹣4x+5 B.y=x(2x﹣3) C.y=(x+4)2﹣x2D.y=2.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C. D.y=(x﹣1)2﹣x23.下列函数中,其中是以x为自变量的二次函数是()A.y=x(x﹣3)B.y=(x+2)(x﹣2)﹣(x﹣1)2C.y=x2+ D.y=4.函数y=(a﹣1)x+x﹣3是二次函数时,则a的值是()A.1 B.﹣1 C.±1 D.05.若关于x的函数y=(2﹣a)x2﹣x是二次函数,则a的取值范围是()A.a≠0 B.a≠2 C.a<2 D.a>26.对于任意实数m,下列函数一定是二次函数的是()A.y=(m﹣1)2x2 B.y=(m+1)2x2C.y=(m2+1)x2D.y=(m2﹣1)x27.下列函数中,是二次函数的有()①y=1﹣x2②y=③y=x(1﹣x)④y=(1﹣2x)(1+2x)A.1个B.2个C.3个D.4个8.在下列y关于x的函数中,一定是二次函数的是()A.y=2x2B.y=2x﹣2 C.y=ax2D.9.对于y=ax2+bx+c,有以下四种说法,其中正确的是()A.当b=0时,二次函数是y=ax2+cB.当c=0时,二次函数是y=ax2+bxC.当a=0时,一次函数是y=bx+cD.以上说法都不对10.圆的面积公式S=πR2中,S与R之间的关系是()A.S是R的正比例函数B.S是R的一次函数C.S是R的二次函数D.以上答案都不对11.若y=(3﹣m)是二次函数,则m的值是()A.±3 B.3 C.﹣3 D.912.已知关于x的函数y=(m﹣1)x m+(3m+2)x+1是二次函数,则此解析式的一次项系数是()A.﹣1 B.8 C.﹣2 D.113.关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数B.二次项系数是﹣10C.一次项是100 D.常数项是2000014.已知函数:①y=ax2;②y=3(x﹣1)2+2;③y=(x+3)2﹣2x2;④y=+x.其中,二次函数的个数为()A.1个B.2个C.3个D.4个15.设y=y1﹣y2,y1与x成正比例,y2与x2成正比例,则y与x的函数关系是()A.正比例函数B.一次函数 C.二次函数 D.以上均不正确二.填空题(共5小题)16.若关于x的函数y=(2﹣a)x2﹣x是二次函数,则a的取值范围是.17.函数的图象是抛物线,则m= .18.若函数y=(m﹣1)x+mx﹣xx是二次函数,则m= .19.二次函数y=3x﹣5x2+1的二次项系数、一次项系数、常数项分别为.20.已知y=(a﹣2)x是关于x的二次函数,则a的值为.三.解答题(共2小题)21.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?22.已知函数y=(m2﹣m)x2+(m﹣1)x+2﹣2m.(1)若这个函数是二次函数,求m的取值范围.(2)若这个函数是一次函数,求m的值.(3)这个函数可能是正比例函数吗?为什么?参考答案与试题解析一.选择题(共15小题)1.解:A、y=﹣4x+5为一次函数;B、y=x(2x﹣3)=2x2﹣3x为二次函数;C、y=(x+4)2﹣x2=8x+16为一次函数;D、y=不是二次函数.故选:B.2.解:A、当a=0时,y=bx+c不是二次函数;B、y=x(x﹣1)=x2﹣x是二次函数;C、y=不是二次函数;D、y=(x﹣1)2﹣x2=﹣2x+1为一次函数.故选:B.3.解:A、y=x(x﹣3)=x2﹣x,是以x为自变量的二次函数,故本选项正确;B、y=(x+2)(x﹣2)﹣(x﹣1)2=x2﹣4﹣x2+2x﹣1=2x﹣5,是以x为自变量的一次函数,故本选项错误;C、分母上有自变量x,不是以x为自变量的二次函数,故本选项错误;D、二次三项式是被开方数,不是以x为自变量的二次函数,故本选项错误.故选:A.4.解:依题意得:a2+1=2且a﹣1≠0,解得a=﹣1.故选:B.5.解:∵函数y=(2﹣a)x2﹣x是二次函数,∴2﹣a≠0,即a≠2,故选:B.6.解:A、当m=1时,不是二次函数,故错误;B、当m=﹣1时,二次项系数等于0,不是二次函数,故错误;C、是二次函数,故正确;D、当m=1或﹣1时,二次项系数等于0,不是二次函数,故错误.故选:C.7.解:①y=1﹣x2=﹣x2+1,是二次函数;②y=,分母中含有自变量,不是二次函数;③y=x(1﹣x)=﹣x2+x,是二次函数;④y=(1﹣2x)(1+2x)=﹣4x2+1,是二次函数.二次函数共三个,故选C.8.解:A、是二次函数,故A符合题意;B、是一次函数,故B错误;C、a=0时,不是二次函数,故C错误;D、a≠0时是分式方程,故D错误;故选:A.9.解:A、当b=0,a≠0时.二次函数是y=ax2+c,故此选项错误;B、当c=0,a≠0时,二次函数是y=ax2+bx,故此选项错误;C、当a=0,b≠0时.一次函数是y=bx+c,故此选项错误;D、以上说法都不对,故此选项正确;故选:D.10.解:圆的面积公式S=πr2中,S和r之间的关系是二次函数关系,故选:C.11.解:由题意,得m2﹣7=2,且3﹣m≠0,解得m=﹣3,故选:C.12.解:∵关于x的函数y=(m﹣1)x m+(3m+2)x+1是二次函数,∴m=2,则3m+2=8,故此解析式的一次项系数是:8.故选:B.13.解:y=﹣10x2+400x+20000,A、y是x的二次函数,故A正确;B、二次项系数是﹣10,故B正确;C、一次项是100x,故C正确;D、常数项是20000,故D正确;故选:C.14.解:根据定义②y=3(x﹣1)2+2;③y=(x+3)2﹣2x2是二次函数故选:B.15.解:设y1=k1x,y2=k2x2,则y=k1x﹣k2x2,所以y是关于x的二次函数,故选:C.二.填空题(共5小题)16.解:∵函数y=(2﹣a)x2﹣x是二次函数,∴2﹣a≠0,即a≠2,故答案为:a≠2.17.解:根据二次函数的定义,m2+1=2且m﹣1≠0,解得m=±1且m≠1,所以,m=﹣1.故答案为:﹣1.18.解:∵函数y=(m﹣1)x+mx﹣xx是二次函数,∴m2+1=2且m﹣1≠0,解得:m=﹣1.故答案为:m=﹣1.19.解:二次函数y=3x﹣5x2+1的二次项系数、一次项系数、常数项分别为﹣5、3、1.故答案为:﹣5、3、1.20.解:∵y=(a﹣2)x是关于x的二次函数,∴a﹣2≠0,a2+a﹣4=2,∴a≠2,a2+a﹣6=0,解得:a=﹣3.故答案为:﹣3.三.解答题(共2小题)21.解:依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.22.解:(1)函数y=(m2﹣m)x2+(m﹣1)x+2﹣2m,若这个函数是二次函数,则m2﹣m≠0,解得:m≠0且m≠1;(2)若这个函数是一次函数,则m2﹣m=0,m﹣1≠0,解得m=0;(3)这个函数不可能是正比例函数,∵当此函数是一次函数时,m=0,而此时2﹣2m≠0.。

九年级数学上第22章二次函数22.1二次函数的图象和性质5二次函数y=a2k的图象和性质课人教

九年级数学上第22章二次函数22.1二次函数的图象和性质5二次函数y=a2k的图象和性质课人教

课后训练 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月11日星期五2022/3/112022/3/112022/3/11
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/112022/3/112022/3/113/11/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/112022/3/11March 11, 2022 4、享受阅读快乐,提高生活质量。2022/3/112022/3/112022/3/112022/3/11
7.(2020·甘孜州)如图,二次函数y=a(x+1)2+k的图象与x轴 交于A(-3,0),B两点,下列说法错·误·的是( D )
A.a<0 B.图象的对称轴为直线x=-1 C.点B的坐标为(1,0) D.当x<0时,y随x的增大而增大
*8.(2020·杭州)设函数y=a(x-h)2+k(a,h,k是实数,a≠0), 当x=1时,y=1;当x=8时,y=8,( C )
解:①当 MA=MB 时,M(0,0); ②当 AB=AM 时,M(0,-3); ③当 AB=BM 时,M(0,3+3 2)或 M(0,3-3 2). 所以点 M 的坐标为(0,0),(0,-3),(0,3+3 2)或(0,3-3 2).
14.(2020·金华)如图,在平面直角坐标系中,已知二次函数 y= -12(x-m)2+4 图象的顶点为 A,与 y 轴交于点 B,异于顶点 A 的点 C(1,n)在该函数图象上.
(1)求抛物线对应的函数解析式; 解:由题意可知 h=1,则 y=a(x-1)2+k. 将点(3,0),(0,3)的坐标分别代入上式, 得4aa++kk==30,,解得ak==-4. 1, 故抛物线对应的函数解析式为 y=-(x-1)2+4.

人教版九年级上册 22.1 《二次函数y=ax2的图象和性质》教学设计

人教版九年级上册 22.1 《二次函数y=ax2的图象和性质》教学设计

人教版九年级上册22.1 《二次函数y=ax2的图象和性质》教学设计《二次函数y=ax2的图象和性质》教学设计一、教学内容分析二次函数y=ax2的图像和性质是人教版九年级数学上册第二十二章第一节第二课时的内容,是在学生学习了二次函数的基本概念之后引入的新内容,也是后面研究坐标形式和一般形式的二次函数图像性质的基础。

所以,学习本节内容我们既要对前段的内容进行升华,又要对后段内容进行启发。

二、教学对象分析九年级的学生在前面的学习过程中已经接触过一次函数和反比例函数图象和性质等内容,从学习情况看,他们对函数的理解和掌握情况并不理想。

通过课下的了解,学生们对二次函数有一定的恐惧心理,对学习非常的不利。

所以我们在教学过程中,要想方设法的调动学生的积极性,多与前面的的函数联系,帮助他们突破难点。

三、教学目标(一)知识与技能:能够准确绘制二次函数图像;通过图像发现和研究y=ax2二次函数的性质。

(二)过程与方法:经历探索和发现二次函数图像的特点和性质的过程;体会数形结合的数学思想在数学中的应用。

(三)情感、态度与价值观:经历观察,推理和交流等过程,获得研究问题与合作交流的方法x … -3 -2 -1 0 1 2 3 … y…941149…(2)描点和连线在直角坐标系中描点,然后用光滑的曲线顺次(按x 由小到大)连结各点(连线),得到函数y =x 2的图象,如图所示.提问:通过画图和观察图象,你能发现图象有什么特征? 像这样的曲线通常叫做抛物线.(二次函数的图象←→抛物线) 它有一条对称轴,(对称轴是y 轴或直线x=0) 抛物线与它的对称轴的交点叫做抛物线的顶点.(抛物线上最高或最低点←→二次函数的最大值或最小值)做一做:在同一直角坐标系中,再画出函数 和y=2x 2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?归纳:当a>0时,抛物线y=ax 2的开口向上,对称轴是y 轴,顶xy 0-4 --2 -1 1234 10 8 6 4 2-y =x 2212y x点是原点,顶点是抛物线的最低点,a 越大,抛物线的开口越小。

九年级数学人教版第二十二章二次函数22.1.1二次函数定义(同步课本知识图文结合例题详解)

九年级数学人教版第二十二章二次函数22.1.1二次函数定义(同步课本知识图文结合例题详解)

九年级数学第22章二次函数
问题3: 某工厂一种产品现在的年产量是20件,计划今后两
年增加产量.如果每年都比上一年的产量增加x倍,那么两
年后这种产品的产量y将随计划所定的x的值而确定,y与x
之间的关系应怎样表示?
这种产品的原产量是20件,一年后的产量是_2_0_(_1_+_x_)件,
再经过一年后的产量是_____2_0_(_1_+_x_)_(_1件+x,) 即两年后的
2
是二次函数关系.
九年级数学第22章二次函数
4.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长 和宽相等,高比长多0.5m. (1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积 S(m2)如何表示? (2)如果涂漆每平米所需要的费用是5元,涂漆每个长方体所需 要费用用y(元)表示,那么y的表达式是什么? 解析:(1)S=2x2+x(x+0.5)×4=6x2+2x (2)y=5S=5×(6x2+2x)
2.如果函数y=(k-3)xk2 3k 2 +kx+1是二次函数,则k的值
一定是__0____.
九年级数学第22章二次函数
3.用总长为60m的篱笆围成矩形场地,场地面积S(m²)与矩 形一边长a(m)之间的关系是什么?是函数关系吗?是哪一 种函数? 解析:S=a( 60 -a)=a(30-a)=30a-a²=-a²+30a.
函 数
关系Leabharlann 一次函数y=kx+b(k≠0)
正比例函数 y=kx(k≠0)
反比例函数
y= k (k≠0)
x
二次函数
九年级数学第22章二次函数
问题1:
正方体六个面是全等的正方形,设正方体棱长为 x ,表 面积为 y ,则 y 关于x 的关系式为_y_=6_x2____.

九年级数学 第二十二章 二次函数 22.1 二次函数的图像和性质 22.1.1 二次函数

九年级数学 第二十二章 二次函数 22.1 二次函数的图像和性质 22.1.1 二次函数
(1)求 S 与 x 之间的函数关系式,并写出自变量 x 的取值范围. (2)设计费能达到 24 000 元吗?为什么? (3)估计当 x 是多少米时,设计费最多?最多是多少元? 解:(1)∵矩形一边长为 x m,周长为 16 m, ∴另一边长为(8-x)m, ∴S=x(8-x)=-x2+8x,其中,0<x<8.
注 意:(1)在二次函数 y=ax2+bx+c 中,a≠0 是必要条件,不可忽视; (2)b,c 可以为任何实数; (3)定义中的二次函数是关于 x 的二次整式,切不可把类似“y=x2+1x+3”的 式子也当成二次函数.
12/7/2021
第五页,共二十四页。
归类探究
类型之一 二次函数的识别和应用
12/7/2021
第十九页,共二十四页。
(2)能,理由是: ∵设计费为 2 000 元/m2, ∴当设计费为 24 000 元时,面积为 24 000÷2 000=12(m2),即-x2+8x=12, 解得 x1=2,x2=6, ∴设计费能达到 24 000 元.
12/7/2021
第二十页,共二十四页。
A.2
B.-2
C.-1
D.-4
3.把一根长为 50 cm 的铁丝弯成一个矩形,设这个矩形的一边长为 x cm,它
的面积为 y cm2,则 y 与 x 之间的函数关系式为( C )
A.y=-x2+50x
B.y=x2-50x
C.y=-x2+25x
D.y=-2x2+25
4.二次函数 y=2(x+2)2-3 的二次项系数是 2 ,一次项系数是 8 ,常数
12/7/2021
第九页,共二十四页。
(3)根据上面得到的表达式填写下表: x 5 10 15 20 25 30 35 y 175 300 375 400 375 300 175

九年级数学上册22二次函数22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质

九年级数学上册22二次函数22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质

4.函数y=ax2与y=-ax+b图象可能是(
)
B
第8页
5.下列函数中,当 x>0 时,y 随着 x 的增大而增大的是( D )
A.y=-x+1
B.y=-x-1
C.y=-x2
D.y=x2
*6.已知 m 为实数,下列各点中:A(m,-am2),B(m,-m),C(m2,
-m),D(-m,am2),抛物线 y=-ax2 一定不经过的点是____D_______.
22.1 二次函数图象和性质
22.1.2 二次函数y=ax2图象和性质
第1页
1.二次函数y=ax2图象 二次函数y=ax2图象是一条抛物线,它含有以下特点: (1)顶点在__原__点___、对称轴为__y_轴____; (2)当a>0时,抛物线开口____向__上_,a越大,抛物线开口越______小; 当a<0时,抛物线开口____向__下_,a越小,抛物线开口越_______小_. 2.二次函数y=ax2性质 (1)假如a>0,则: 当x<0时,y随x增大而_____减__小_; 当x>0时,y随x增大而_____增__大_; 当x=0时,y取最___小___值0,即y最小=__0____. (2)假如a<0,则: 当x<0时,y随x增大而_____增__大_; 当x>0时,y随x增大而_____减__小_; 当x=0时,y取最___大___值0,即y最大=__0__.
*7.如图,正方形的边长为 4,以正方形中心为原点建立平面直角 坐标系,作出函数 y=13x2 与 y=-13x2 的图象,则阴影部分的面积是
__8____.
*8.已知 a<-1,点(a-1,y1),(a,y2),(a+1,y3)都在函数 y
=x2 的图象上,则 y1,y2,y3 的大小关系是_y_1_1>__y_2_>__y__3__.

人教版初中数学九年级上册第二十二章22.1.2二次函数的图象与性质

人教版初中数学九年级上册第二十二章22.1.2二次函数的图象与性质
增减性:y 轴左侧,y随x增大而减小
y 轴右侧,y随x增大而增大
y x2
8 6
y 2x2
不同点:a 值越大,抛物线的开 口越小.
4 2 -4 -2
y 1 x2 2
24
探究
画出函数的图象.
y x2, y 1 x2, y 2x2 2
对比抛物线, y=x2和y=-x2.它 们关于x轴对称吗? 一般地,抛物线 y=ax2和y=-ax2呢?
函数y的值最小,最小值是 0 ,抛物线y=2x2在x轴
的 上 方(除顶点外)。
(2)抛物线
y
2 3
x2
在x轴的
下 方(除顶点外),
当 x〈 0 时,y随着x的 增大而增大 ;
当 x 〉0 时,y随着x的 增大而减小 ,
当 x = 0 时,函数y的值最大,最大值是 0 ,
当 x
0 时,y<0.
6、若抛物线 y 6x2上点P的坐标为
当x>0时,

y随着x的增大而增大。
y随着x的增大而减小。
极值
x=0时,y最小=0
x=0时,y最大=0
抛物线y=ax2 (a≠0)的形状是由|a|来确定的,一般说来, |a|越大,
抛物线的开口就越小. |a|越小, 抛物线的开口就越大.
耐心填一填
1、函数y=4x2的图象的开口向上,对称轴是 y轴 ,顶点是 (0; ,0) 2、函数y=-3x2的图象的开口向下 ,对称轴 是 y轴 ,顶点是 _(_0_,0)
y x2
y x2
在同一坐标系内,抛物线 y ax2与抛物线 y ax2 是关 于x轴对称的.
y=ax2 (a≠0)
a>0
a<0

九年级数学上册第22章二次函数22.1二次函数的图象和性

九年级数学上册第22章二次函数22.1二次函数的图象和性

10. 在同一平面直角坐标系内, 将抛物线 y=(x-1) +3 先向左 平移 1 个单位长度,再向下平移 3 个单位长度后所得抛物线的顶点 坐标为( D ) A.(2,0) B.(2,6) C.(0,6) D.(0,0)
2
第3课时 二次函数y=a(x-h)2+k的图象和性质
B 规律方法综合练
1 11.2017·盐城 如图 22-1-13,将函数 y= (x-2)2+1 的图象沿 2
3.2017·金华 对于二次函数 y=-(x-1) +2 的图象与性质, 下列说法正确的是( B ) A.对称轴是直线 x=1,最小值是 2 B.对称轴是直线 x=1,最大值是 2 C.对称轴是直线 x=-1,最小值是 2 D.对称轴是直线 x=-1,最大值是 2
【解析】二次函数 y=-(x-1)2+2 的图象的对称轴是直线 x=1.∵-1<0, ∴抛物线开口向下,有最大值,最大值是 2.
第3课时 二次函数y=a(x-h)2+k的图象和性质
解:(1)列表: x … -3
1 2 y=- x 2 … -4.5
-2 -2-1 -0.5ຫໍສະໝຸດ 0 01 -0.5
2
3
4 …
… …
-2 -4.5
1 y =- (x 2 … -1)2+2

-2.5
0
1.5
2
1.5
0
-2.5

第3课时 二次函数y=a(x-h)2+k的图象和性质
描点、连线,如图所示:
(2)①下 x=0 ③右 1 上
(0,0)
②下
x=1 (1,2)
1)
2(或上
2 右
第3课时 二次函数y=a(x-h)2+k的图象和性质

九年级数学上册第二十二章二次函数22.1二次函数的图像和性质22.1.3第1课时二次函数y=ax2k的图象和性质分层

九年级数学上册第二十二章二次函数22.1二次函数的图像和性质22.1.3第1课时二次函数y=ax2k的图象和性质分层

第1课时 二次函数y =ax 2+k 的图象和性质1.[2017·宜兴市一模]关于二次函数y =2x 2+3,下列说法正确的是( ) A .它的开口方向是向下B .当x <-1时,y 随x 的增大而减小C .它的顶点坐标是(2,3)D .当x =0时,y 有最大值是32.将二次函数y =2x 2-1的图象沿y 轴向上平移2个单位长度,所得图象对应的函数解析式为_________________________________.3.(1)填表:(2)(3)它们三者的图象有什么异同?它们的开口方向、对称轴、顶点坐标分别是什么? (4)由抛物线y =-2x 2怎样平移得到抛物线y =-2x 2+1与y =-2x 2-1?4.如图22­1­8,两条抛物线y 1=-12x 2+1,y 2=-12x 2-1与分别经过点(-2,-1),(2,-3),且平行于y 轴的两条平行线围成的阴影部分的面积为( )图22­1­8A.8 B.6C.10 D.45.[2018·玉环市一模]小迪同学以二次函数y=2x2+8的图象为灵感设计了一款杯子,如图22­1­9为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为________.图22­1­96.某水渠的横截面的形状呈抛物线,水面的宽度为AB,现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图22­1­10的平面直角坐标系,设坐标原点为O.已知AB=8 m,设抛物线的解析式为y=ax2-4.(1)求a的值;(2)点C(-1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.图22­1­10参考答案22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质【分层作业】1.B 2.y=2x2+1 3.(1)-8 -2 0 -2 -8 -7 -1 1 -1 -7 -9 -3 -1 -3 -9(2)略.(3)它们三者图象的形状相同,但位置不同,开口均向下,对称轴均为y轴,顶点不同,分别为(0,0),(0,1),(0,-1).(4)抛物线y =-2x 2+1可由抛物线y =-2x 2向上平移1个单位长度得到;抛物线y =-2x 2-1可由抛物线y =-2x 2向下平移1个单位长度得到.4.A 5.116.(1)a =14. (2)S △BCD =15 m 2.。

人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时教学设计

人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时教学设计

人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时教学设计一. 教材分析人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时,主要介绍了二次函数的图象和性质。

本节课的内容是学生对二次函数知识的深入理解,也是对之前学习的函数知识的巩固。

教材通过生动的实例和丰富的练习,帮助学生掌握二次函数的图象和性质,提高他们解决实际问题的能力。

二. 学情分析学生在之前的学习中,已经掌握了函数的基本概念和一次函数的知识,具备了一定的数学思维能力。

但是,对于二次函数的图象和性质,学生可能还存在一些困惑和误解。

因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。

三. 教学目标1.知识与技能:使学生了解二次函数的图象和性质,能够运用二次函数解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,培养学生研究函数问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:二次函数的图象和性质。

2.难点:二次函数的图象和性质的内在联系和运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考,提高他们解决实际问题的能力。

六. 教学准备1.教师准备:熟读教材,了解学生的学习情况,准备相关教学资源和案例。

2.学生准备:预习教材,了解二次函数的基本概念,准备参与课堂讨论。

七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生对二次函数的图象和性质的思考。

例如:有一块长方形土地,欲将其分割成一个面积为100平方米的矩形和两个面积相等的圆形,如何设计分割方案?2.呈现(15分钟)呈现二次函数的图象和性质,引导学生观察、分析,发现其中的规律。

例如,通过展示二次函数y=x^2的图象,让学生观察其在不同象限的取值情况,总结其性质。

3.操练(15分钟)让学生通过实际操作,加深对二次函数图象和性质的理解。

2018年秋九年级数学上册 第二十二章 二次函数 22.1 二次函数的图象和性质 22.1.3 二次

2018年秋九年级数学上册 第二十二章 二次函数 22.1 二次函数的图象和性质 22.1.3 二次

22.1.3 二次函数y=a(x-h)²的图象和性质第2课时一、学习目标:1、会画二次函数y=a(x-h)2的图象;2、掌握二次函数y=a(x-h)2的性质并会应用;3、理解y=ax2与 y=a(x-h)2之间的联系.二、学习重难点:重点:会画二次函数y=a(x-h)2的图象;难点:掌握二次函数y=a(x-h)2的性质并会应用.探究案三、教学过程(一)复习巩固说说二次函数y=ax2+c(a≠0)的图象的特征.活动内容1: 活动1:小组合作 情景问题:问题1 二次函数 y =ax 2+k (a ≠0)与 y =ax 2(a ≠ 0)的图象有何关系?问题2 函数21(2)2y x =-的图象,能否也可以由函数212y x =平移得到?活动2:探究归纳在同一直角坐标系中,画出下列函数的图象:y=x 2,y=(x+2)2,y=(x-2)2,并指出它们的开口方向、对称轴和顶点坐标.归纳总结:二次函数y=a(x-h)2(a≠ 0)的性质练习:若抛物线y=3(x+)2的图象上的三个点,A(,y1),B(-1,y2),C(0,y3),则y1,y2,y3的大小关系为________________.思考:抛物线,与抛物线有什么关系?归纳总结:二次函数y=a(x-h)2的图象与y=ax2 的图象的关系y=ax2当向_______平移︱h︱个单位长度时得到_______________y=ax2当向_______平移︱h︱个单位长度时得到_______________左右平移规律:括号内左_______右_______;括号外不变.活动内容2:例题解析例1:在直角坐标系中画出函数y=12(x+3)2的图象.①指出函数图象的对称轴和顶点坐标;②根据图象回答:当x取何值时,y随x的增大而减小?当x取何值时,y随x的增大而增大?当x取何值时,y取最大值或最小值?③怎样平移函数y=12x2的图象得到函数y=12(x+3)2的图象?例2. 抛物线y=x2向右平移3个单位后经过点(-1,4),求的值和平移后的函数关系式.变式训练将二次函数y=-2x2的图象平移后,可得到二次函数y=-2(x+1)2的图象,平移的方法是( )A.向上平移1个单位B.向下平移1个单位C.向左平移1个单位D.向右平移1个单位随堂检测1.把抛物线y=-x2沿着x轴方向平移3个单位长度,那么平移后抛物线的解析式是 .2.二次函数y=2(x- 32)2图象的对称轴是直线__ __,顶点是________.3 .若(-134,y1)(-54,y2)(14,y3)为二次函数y=(x-2)2图象上的三点,则y1,y2,y3的大小关系为_______________.4. 若抛物线y=a(x-h)²的顶点是(-3,0),它是由抛物线y=-2x²通过平移而得到的,则a= _______, h= _______.5.指出下列函数图象的开口方向,对称轴和顶点坐标.6.在同一坐标系中,画出函数y=2x2与y=2(x-2)2的图象,分别指出两个图象之间的相互关系.课堂小结通过本节课的学习在小组内谈一谈你的收获,并记录下来:我的收获______________________________________________________________________________________________________________________________________________________参考答案复习巩固问题1当k >0时二次函数 y=ax 2+k (a ≠0)是由y=ax 2(a ≠ 0)的图象向上平移k 个单位长度当k <0时二次函数 y=ax 2+k (a ≠0)是由y=ax 2(a ≠ 0)的图象向下平移| k | 个单位长度问题2 函数21(2)2y x =-的图象是由函数212y x =向右平移2个单位长度得到归纳总结:练习:y 2<y 3<y 1 思考:抛物线向左平移1个单位得到抛物线;抛物线向右平移1个单位得到抛物线归纳总结: 右 y =a (x -h )2左 y =a (x +h )2加 减 例题解析 例1解:①对称轴是直线x=-3,顶点坐标为(-3,0);②当x<-3时,y 随x 的增大而减小;当x>-3时,y 随x 的的 增大而增大;当x=-3时,y 有最小值.③将函数212y x =的图象沿x 轴向左平移3个单位得到函数21(3)2y x =+的图象. 例2解:二次函数y =x 2的图象向右平移3个单位后的二次函数关系式可表示为y =(x -3)2,把x =-1,y =4代入,得4=(-1-3)2,,∴平移后二次函数关系式为y = (x-3)2.变式训练:C随堂检测1. y =-(x +3)2或y =-(x -3)22.32x ,3(,0)23.y1〉y2〉y34.-2 -35.6.解:图象如图.函数y=2(x-2)2的图象由函数y=2x2的图象向右平移2个单位得到.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.1.4 用待定系数法求二次函
数的解析式
第2课时
1.如图,平面直角坐标系中,函数图象的表达式应是
2.过点(2,4),且当x=1时,y有最值为6,则其解析式是。

3. 已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1).
求这个二次函数的表达式.
4.已知抛物线与x轴相交于点A(-1,0),B(1,0),且过点M(0,1),求此函数的表达式.
5.如图,抛物线y=x2+bx+c过点A(-4,-3),与y轴交于点B,对称轴是x=-3,请解答下列问题:
(1)求抛物线的表达式;
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.
参考答案 1. 234
y x =
2. y =-2(x -1)2+6
3. 解:设这个二次函数的表达式为y =ax 2+bx +c . 依题意得5,c 4a+b+c 1.a b c -+=-⎧⎪=-⎨⎪=⎩

解得2,b 3c 4.a =⎧⎪=⎨⎪=-⎩

∴这个二次函数的表达式为y =2x 2+3x -4.
4. 解:因为点A (-1,0),B (1,0)是图象与x 轴的交点,所以设二次函数的表达式为y =a (x +1)(x -1).
又因为抛物线过点M (0,1),
所以1=a (0+1)(0-1),解得a =-1,
所以所求抛物线的表达式为y =-(x +1)(x -1),
即y =-x 2+1.
5. 解:(1)把点A (-4,-3)代入y =x 2+bx +c
得16-4b +c =-3,c -4b =-19.
∵对称轴是x =-3,∴
=-3, ∴b =6,∴c =5,
∴抛物线的表达式是y =x 2+6x +5;
(2)∵CD ∥x 轴,∴点C 与点D 关于x =-3对称.
∵点C 在对称轴左侧,且CD =8,
∴点C 的横坐标为-7,
∴点C 的纵坐标为(-7)2+6×(-7)+5=12.
∵点B 的坐标为(0,5),
∴△BCD 中CD 边上的高为12-5=7,
∴△BCD 的面积=×8×7=28.。

相关文档
最新文档