积分计算表
“无羽伦比”羽毛球比赛计分表
“无羽伦比”羽毛球比赛计分表无羽伦比羽毛球比赛计分表一、比赛场地及时间安排1.1 比赛场地:(填写比赛场地的具体名称或地质)1.2 比赛时间:(填写比赛开始和结束的时间)二、比赛规则2.1 比赛方式:(填写比赛采用的是单打、双打或混合双打)2.2 比赛积分规则:(填写比赛积分计算方式)2.3 比赛时间限制:(填写比赛每局限时的时间)2.4 比赛裁判:(填写比赛裁判的姓名或团队名称)三、比赛阶段及轮次安排3.1 小组赛阶段3.1.1 小组赛轮次安排:(填写小组赛的轮次安排)3.1.2 小组赛积分计算:(填写小组赛的积分计算方式)3.2 淘汰赛阶段3.2.1 淘汰赛轮次安排:(填写淘汰赛的轮次安排)3.2.2 淘汰赛积分计算:(填写淘汰赛的积分计算方式)四、比赛计分表4.1 小组赛计分表4.1.1 小组赛队伍名称及成绩:(填写各队伍名称及其在小组赛中的成绩)4.1.2 小组赛排名:(填写小组赛的排名情况)4.2 淘汰赛计分表4.2.1 淘汰赛队伍名称及成绩:(填写各队伍名称及其在淘汰赛中的成绩)4.2.2 淘汰赛排名:(填写淘汰赛的排名情况)五、比赛结果5.1 小组赛结果:(填写小组赛的比赛结果)5.2 淘汰赛结果:(填写淘汰赛的比赛结果)5.3 决赛结果:(填写决赛的比赛结果)六、附件本文档包含以下附件:(列出文档所涉及的附件,如参赛队伍名单、比赛场地平面图等)七、法律名词及注释7.1 法律名词1:(填写法律名词1的解释)7.2 法律名词2:(填写法律名词2的解释)(如有更多的法律名词,可继续添加)以上法律名词及注释仅供参考,请根据实际情况酌情修改。
曲面积分
1 2 2 = − ∫− 1 1 − x dx − 2 1 − x
+ arcsin x 1 −1
=−
π
2
+π =
π
2
,
⎛ x xdS = ∫∫ x 1 + ⎜ ∫∫ ⎜ 2 S 32 D ⎝ 1− x
所以 从而 2.计算
S3 S S31
⎞ x π ⎟ + 0dxdz = ∫∫ dxdz = , ⎟ 2 2 1 − x D ⎠
S32
2
∫∫ xdS = ∫∫ xdS + ∫∫ xdS = π
I = ∫∫ xdS = ∫∫ xdS + ∫∫ xdS + ∫∫ xdS = π
S1 S2 S3
2 2 2 2 ∫∫ f ( x, y, z )dS ,其中 S 为球面 x + y + z = a ,
S
1
⎧ z < x2 + y2 ⎪ 0, f ( x, y , z ) = ⎨ 2 2 2 2 ⎪ ⎩x + y , z ≥ x + y
x 2 + y 2 = 1 介于平面 z = 0 与 z = x + 2 之间的部分。根据第一型曲面积分的计算公式,并
利用二重积分的性质,得
S1
∫∫ xdS = ∫∫ x 1 + 0 + 0dxdy = 0 , ∫∫ xdS = ∫∫ x 1 + 1 + 0dxdy = 0
D S3 D
2 2
对于 S 3 ,由于其方程为 x + y = 1 ,所以不能写成 z = z ( x, y ) 的形式,故只能考虑 其在 xOz 或 yOz 坐标面上的投影。为了简单起见,考虑 S 3 在 xOz 坐标面上的投影域 D , 根据题中条件易知 D = {( x, z ) − 1 ≤ x ≤ 1, 0 ≤ z ≤ x + 2} ,且 S 3 可以分成 S 31 与 S 32 两部 分,其中 S 31:y = 1 − x , ( x, z ) ∈ D ; S 32:y = − 1 − x , ( x, z ) ∈ D ,因为
积分公式
2.基本积分公式表(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=-cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=-cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C注.(1)不是在m=-1的特例.(2)=ln|x|+C,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.事实上,对x>0,(ln|x|)' =1/x;若x<0,则(ln|x|)' =(ln(-x))' =.(3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分.下面我们要学习不定积分的计算方法,首先是四则运算.3.不定积分的四则运算根据微分运算公式d(f(x)±g(x))=d f(x)±d g(x)d(kf(x))=k d f(x)我们得不定积分的线性运算公式(1)∫[f(x)±g(x)]d x=∫f(x)d x±∫g(x)d x(2)∫kf(x)d x=k∫f(x)d x,k是非零常数.现在可利用这两个公式与基本积分公式来计算简单不定积分.例2.5.4求∫(x3+3x++5sin x-4cos x)d x解.原式=∫x3d x+∫3x d x+7∫d x+5∫sin x d x-4∫cos x d x=+7ln|x|-5cos x-4sin x+C .注.此例中化为五个积分,应出现五个任意常数,它们的任意性使其可合并成一个任意常数C,因此在最后写出C即可.例2.5.5求∫(1+)3d x解.原式=∫(1+3+3x+)d x=∫d x+3∫d x+3∫x d x+∫d x=x+3+C=x+2x++C .注.∫d x与∫1d x是相同的,其中1可省略.例2.5.6求解.原式===-x+arctan x+C .注.被积函数是分子次数不低于分母次数的分式,称为有理假分式.先将其分出一个整式x2-1,余下的分式为有理真分式,其分子次数低于分母的次数.例2.5.7求.解.原式==∫csc2x d x-∫sec2x d x=-cot x-tan x+C .注.利用三角函数公式将被积函数化简成简单函数以便使用基本积分公式.例2.5.8求.解.原式==+C .为了得到进一步的不定积分计算方法,我们先用微分的链锁法则导出不定积分的重要计算方法−−换元法.思考题.被积函数是有理假分式时,积分之前应先分出一个整式,再加上一个有理真分式,一般情形怎样实施这一步骤?4.第一换元法(凑微分法)我们先看一个例子:例2.5.9求.解.因(1+x2)' =2x,与被积函数的分子只差常数倍数2,如果将分子补成2x,即可将原式变形:原式=(令u=1+x2)=(代回u=1+x2).注.此例解法的关键是凑了微分d(1+x2).一般地在F'(u)=f(u),u=ϕ(x)可导,且ϕ' (x)连续的条件下,我们有第一换元公式(凑微分):u=ϕ (x) 积分代回u=ϕ (x)∫f[ϕ(x)]ϕ' (x)d x=∫f[ϕ(x)]dϕ(x)=∫f(u)d u=F(u)+C=F[ϕ(x)]+C其中函数ϕ(x)是可导的,且F(u)是f(u)的一个原函数.从上述公式可看出凑微分法的步骤:凑微分————→换元————→积分————→再换元ϕ' (x)d x=dϕ(x) u=ϕ(x) 得F(u)+C得F[ϕ(x)]+C注.凑微分法的过程实质上是复合函数求导的链锁法则的逆过程.事实上,在F'(u)=f(u)的前提下,上述公式右端经求导即得:[F[ϕ(x)]+C]' =F '[ϕ(x)]ϕ' (x)=f[ϕ(x)]ϕ' (x)这就验证了公式的正确性.例2.5.10求∫(ax+b)m d x.(m≠-1,a≠0)解.原式=(凑微分d(ax+b))=(换元u=ax+b)=(积分)=. (代回u=ax+b)例2.5.11求.解.原式=(凑微分d(-x3)=-3x2d x)===(换元u=-x3).注.你熟练掌握凑微分法之后,中间换元u=ϕ(x)可省略不写,显得计算过程更简练,但要做到心中有数.例2.5.12求∫tan x d x.解.原式==-ln|cos x|+C .同理可得∫cot x d x=ln|sin x|+C .例2.5.13求(a>0).解.原式==.例2.5.14求(a>0).解.原式==.例2.5.15求.解.原式====.例2.5.16∫sec x d x.解.原式=(换元u=sin x)===(代回u=sin x)===ln|sec x+tan x|+C .公式:∫sec x d x=ln|sec x+tan x|+C .例.2.5.17求∫csc x d x .解.原式===ln|csc x-cot x|+C .公式:∫csc x d x=ln|csc x-cot x|+C .凑微分法是不定积分换元法的第一种形式,其另一种形式是下面的第二换元法.5.第二换元法不定积分第一换元法的公式中核心部分是∫f[ϕ(x)]ϕ'(x)d x=∫f(u)d u我们从公式的左边演算到右边,即换元:u=ϕ(x).与此相反,如果我们从公式的右边演算到左边,那么就是换元的另一种形式,称为第二换元法.即若f(u),u=ϕ(x),ϕ'(x)均连续,u=ϕ(x)的反函数x=ϕ-1(u)存在且可导,F(x)是f[ϕ(x)]ϕ'(x)的一个原函数,则有∫f(u)d u=∫f[ϕ(x)]ϕ'(x)d x=F(x)+C=F[ϕ-1(u)]+C .第二换元法常用于被积函数含有根式的情况.例2.5.18求解.令(此处ϕ(t)=t2).于是原式===(代回t= -1(x)=) 注.你能看到,换元=t的目的在于将被积函数中的无理式转换成有理式,然后积分.第二换元法除处理形似上例这种根式以外,还常处理含有根式,,(a>0)的被积函数的积分.被积函数含根式换元方法运用的三角公式x=a sec t sec2t-1=tan2tx=a tan t tan2t+1=sec2tx=a sin t1-sin2t=cos2t例2.5.19求. (a>0)解.令x=a sec t,则d x=a sec t tan t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .到此需将t代回原积分变量x,用到反函数t=arcsec,但这种做法较繁.下面介绍一种直观的便于实施的图解法:作直角三角形,其一锐角为t及三边a,x,满足:sec t=由此,原式=ln|sec t+tan t|+C1==.注.C1是任意常数,-ln a是常数,由此C=C1-ln a仍是任意常数.(a>0)例2.5.20求.解.令x=a tan t,则d x=a sec2t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .图解换元得原式=ln|sec t+tan t|+C1=.公式:.例2.5.21求(a>0).解.令x=a sin t,则d x=a cos t d t,于是原式===+C.图解换元得:原式=+C=+C .除了换元法积分外,还有一个重要的积分公式,即分部积分公式.思考题.在第二换元法公式中,请你注意加了一个条件“u=ϕ(x)的反函数x=ϕ1-(u)存在且可导”,你能否作出解释,为什么要加此条件?6.分部积分公式我们从微分公式d(uv)=v d u+u d v两边积分,即∫d(uv)=∫v d u+∫u d v由此导出不定积分的分部积分公式∫u d v=uv -∫v d u下面通过例子说明公式的用法.例2.5.22求∫x2ln x d x解.∫x2ln x d x=(将微分dln x算出)==.例2.5.23求∫x2sin x d x.解.原式=∫x2d(-cos x) (凑微分)=-x2cos x-∫(-cos x)d(x2) (用分部积分公式)=-x2cos x+∫2x cos x d x=-x2cos x+2∫x dsin x(第二次凑微分)=-x2cos x+2[x sin x-∫sin x d x] (第二次用分部积分公式)=-x2cos x+2x sin x+2cos x+C .例2.5.24求∫e x sin x d x.解.∫e x sin x d x=∫sin x d e x (凑微分)=e x sin x-∫e x dsin x(用分部积分公式)=e x sin x-∫e x cos x d x(算出微分)=e x sin x-∫cos x d e x(第二次凑微分)=e x sin x-[e x cos x-∫e x dcos x] (第二次用分部积分公式)=e x(sin x-cos x)-∫e x sin x d x(第二次算出微分)由此得:2∫e x sin x d x=e x(sin x-cos x)+2C因此∫e x sin x d x=(sin x-cos x)+C .注.(1)此例中在第二次凑微分时,必须与第一次凑的微分形式相同.否则若将∫e x cos x d x凑成∫e x dsin x,那将产生恶性循环,你可试试.(2)积分常数C可写在积分号∫一旦消失之后.例2.5.25求∫arctan x d x解.此题被积函数可看作x0arctan x,x0d x=d x,即适合分部积分公式中u=arctan x,v=x.故原式=x arctan x - ∫x d(arctan x) (用分部积分公式)=x arctan x - d x(算出微分)=x arctan x - (凑微分)=x arctan x - ln(1+x2)+C .小结.(1)分部积分公式常用于被积函数是两种不同类型初等函数之积的情形,例如x3arctan x,x3ln x 幂函数与反正切或对数函数x2sin x,x2cos x幂函数与正弦,余弦x2e x幂函数与指数函数e x sin x,e x cos x 指数函数与正弦,余弦等等.(2)在用分部积分公式计算不定积分时,将哪类函数凑成微分d v,一般应选择容易凑的那个.例如被积函数凑微分d vx3arctan x,x3ln x arctan x d,ln x dx2sin x,x2cos x,x2e x x2d(-cos x),x2dsin x,x2d e xe x sin x,e x cos x sin x d e x,cos x d e x我们已学习了不定积分的几种常用方法,除了熟练运用这些方法外,在许多数学手册中往往列举了几百个不定积分公式,它们不是基本的,不需要熟记,但可以作为备查之用,称为积分表.思考题.你仔细观察分部积分公式,掌握其中使用的规律,特别是第一步凑微分时如何选择微分.7.积分表的使用除了基本积分公式之外,在许多数学手册中往往列举了几百个补充的积分公式,构成了积分表.下面列出本节已得到的基本积分公式.(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=- cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=- cot x+C(10)∫sec x tan x d x=sec x +C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C(14)∫tan x d x=-ln|cos x|+C(15)∫cot x d x=ln |sin x|+C(16)=(a >0)(17)=(a>0)(18)(a>0)(19)=(a>0)(20)∫sec x d x=ln|sec x+tan x|+C(21)∫csc x d x=ln|csc x-cot x|+C利用积分表中的公式,可使积分计算大大简化.积分表的使用方法比较简单,现举一例说明之.例2.5.26求解.从积分表中查得公式则将a=3,b=-1,c=4代入上式并添上积分常数C即得解答:=.。
乘法积分
乘法的积分在传统教科书上形如⎰dx)(的积分一般采用分部积分法,这种方(xxgf)法过于抽象,过于逻辑化,不适合电大学生,这里介绍乘法的表格算法,它直观,机械,易学,是积分学理论的重大贡献。
一.乘法积分的表格形式乘法积分的表格形式固定为三列,三列的次序固定,不能随便更改,第一列为符号列,第二列为求导列,第三列为积分列。
二.乘法积分的计算步骤1.列表第一步:在⎰dx((中选择f(x)准备求导,选择g(x)准备积)f)xgx分,作表格如下:符号列求导列积分列f (x)g (x)f /(x) ⎰dx(xg)第二步:添箭头:从求导列到积分列添箭头,相邻两行间用左上右下的斜箭头,最后一行用横箭头,形成如下的形状:符号列求导列积分列f (x)g (x)f /(x) ⎰dxx(g)第三步:添符号:符号正负相间,第一行添“+”号,第二行添“-”号,如此类推….. 形成如下的形状符号列 求导列 积分列+ f (x) g (x)- f /(x) ⎰dx x g )(2. 写结果,规律如下:①每个箭头表示一项,所有项相加②斜箭头表示积分计算的部分结果,由箭头右端函数,箭头左端函数以及前面的符号三部分相乘得到;横箭头表示积分,被积函数由箭头右端函数,箭头左端函数以及前面的符号三部分相乘得到三. 例题例1. 计算dx e x x ⎰2解:[第一步] 选择x 2用于求导,x e 用于积分,列表 符号列 求导列 积分列x 2 x e[第二步] 按横栏提示逐行计算,成如下形状:符号列 求导列 积分列x 2 x e2x x e2 x ex e …………………..(*)[第三步],添箭头,添符号成如下形状:符号列求导列积分列 + x2x e- 2x x e+ 2 x e- 0 x e[第四步] 写结果∴dx⎰2= x2x e+(-2x x e)+2x e+⎰dx0x xe= x2x e+-2x x e+2x e+c你不应该像看小说那样看以上过程,而是应该拿起笔和我们一起运算,,边算边想,你也许注意到[第二步] (*)处多少让你不踏实,应为0还可以求导,x e还可以积分,没完没了,奈何?三种刹车机制乘法积分中出现下列三种情形之一时,[第二步] (*)运算停止1.求导数到0时2.横乘为基本函数时3.横乘与原积分同形时。
高数-专题二 积分计算的基本公式
第四章
积分计算的基本公式
一、基本积分表 二、积分上限的函数及其导数 三、牛顿 – 莱布尼茨公式
目录 上页 下页 返回 结束
一、 基本积分表
(1) kdx kxC ( k 为常数)
(2) xdx11x1C (1)
(3) dxx lnx C
(4)
dx 1x2
目录 上页 下页 返回 结束
例3. 求 tan2xdx. 解: 原式 = (se2xc1)dx
se2xcdxdx ta x x n C
例4. 求
1 x x2 x (1 x2)
dx
.
解: 原式 =
x (1 x2) x(1 x2)
dx
1 1 x2
(x)
x
f(t)dt
a
是f(x)在[a,b]上的一个原. 函数
说明: 1) 定理 1 证明了连续函数的原函数是存在的. 同时为
通过原函数计算定积分开辟了道路 .
目录 上页 下页 返回 结束
2) 其他变限积分求导:
d dx
b
x
f
(t)dt
f(x)
d (x)
dx a
f
(t)dt
f[(x) ](x)
d
dx
(x)
f (t)dt
(x)
d d x a(x)f(t)dta (x)f(t)dt
f [( x ) ( ] x ) f [( x ) ( ] x )
目录 上页 下页 返回 结束
例7. 求 lim
1 et2 dt
cosx
0
F(x)在 ( 0, )内为单调.增函数
积分累计表格
积分累计表格模板
表格说明:
1.序号:用于标识记录的序号,方便查看和管理。
2.姓名:记录参与者的姓名。
3.初始积分:记录参与者的初始积分,一般为0或根据具体情况设定。
4.积分变动1、积分变动2、积分变动3:记录参与者的积分变动情况,可以根据实际
情况增加或减少积分变动的列数。
5.总积分:根据初始积分和积分变动计算得到的参与者的总积分。
使用方法:
1.根据实际需要,可以添加或删除表格中的列,比如增加“积分变动4”列来记录更
多的积分变动情况。
2.在表格中填入参与者的姓名和初始积分。
3.根据参与者的表现或活动规则,在相应的“积分变动”列中填入积分变动数值。
4.在“总积分”列中计算并填入参与者的总积分。
可以使用公式或手动计算,比如张
三的总积分=初始积分0+积分变动1 10+积分变动2 (-5)+积分变动3 8=13。
5.根据需要对表格进行排序、筛选等操作,以方便查看和管理数据。
常见积分公式表
常见积分公式表常见积分公式表在微积分中,积分是一个重要的概念,它可以用来求解曲线下的面积、求解函数的原函数等。
而积分公式则是在求解积分过程中经常使用的一些公式,它们可以帮助我们简化计算,提高效率。
下面是一些常见的积分公式表:1. 基本积分公式:- ∫x^n dx = (1/(n+1)) * x^(n+1) + C,其中n不等于-1- ∫e^x dx = e^x + C- ∫a^x dx = (1/ln(a)) * a^x + C,其中a为常数且不等于1- ∫sin(x) dx = -cos(x) + C- ∫cos(x) dx = sin(x) + C- ∫sec^2(x) dx = tan(x) + C- ∫csc^2(x) dx = -cot(x) + C- ∫sec(x)tan(x) dx = sec(x) + C- ∫csc(x)cot(x) dx = -csc(x) + C2. 特殊函数积分公式:- ∫1/(1+x^2) dx = arctan(x) + C- ∫1/(√(1-x^2)) dx = arcsin(x) + C- ∫1/(√(x^2+1)) dx = ln(x + √(x^2+1)) + C- ∫e^x/(1+e^x) dx = ln(1+e^x) + C- ∫sinh(x) dx = cosh(x) + C- ∫cosh(x) dx = sinh(x) + C3. 三角函数积分公式:- ∫sin^n(x) dx = (-1/(n-1)) * sin^(n-1)(x) * cos(x) + (n-2)/(n-1) *∫sin^(n-2)(x) dx,其中n不等于1- ∫cos^n(x) dx = (1/(n-1)) * cos^(n-1)(x) * sin(x) + (n-2)/(n-1) *∫cos^(n-2)(x) dx,其中n不等于14. 指数函数积分公式:- ∫a^x ln(a) dx = (1/(ln(a))^2) * a^x + C,其中a为常数且不等于15. 分部积分公式:- ∫u dv = uv - ∫v du6. 替换积分公式:- ∫f(g(x)) g'(x) dx = ∫f(u) du,其中u = g(x)这些是常见的积分公式,掌握它们可以在求解积分时事半功倍。
不定积分乘法
不定积分乘法
在求不定积分时,有时需要使用乘积的性质进行计算。
以下是常见的不定积分乘法的公式和应用。
1. 乘积法则:
若函数G(x)是f(x)和h(x)的乘积,则有:
∫[f(x) * h(x)]dx = ∫f(x) * h(x)dx = F(x) * h(x) - ∫F(x) * h'(x)dx,
其中F(x)是f(x)的一个原函数。
这个公式也被称为莱布尼茨
法则。
2. 特殊的乘积法则:
当f(x)和g(x)的乘积具有特殊形式时,可以直接进行积分,
而不需要使用乘积法则进行计算。
例如:
- ∫e^x * f(x)dx = e^x * ∫f(x)dx,
- ∫x^n * f(x)dx = (x^(n+1) / (n+1)) * ∫f(x)dx,其中n不等于-1, - ∫sin(x) * cos(x)dx = (sin(x))^2/2 + C。
3. 积分表:
对于一些常见的乘积形式,存在一些已知的积分公式,可以
直接查表进行计算。
需要注意的是,不同的乘积形式求积分的方法可能有所不同,具体的计算方法需要根据具体问题来确定。
在实际应用中,可以根据乘积的特点来选择相应的方法进行计算。
常用积分表完整
常用积分表(可以直接使用,可编辑实用优秀文档,欢迎下载)常 用 积 分 公 式(一)含有ax b +的积分(0a ≠)1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-) 3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()x x ax b +⎰=1ln ax b C b x +-+6.2d ()x x ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()x x ax b +⎰=211ln ()ax b C b ax b b x +-++的积分10.x C +11.x ⎰=22(3215ax b C a-12.x x ⎰=22232(15128105a x abx b C a -+13.x⎰=22(23ax b C a -14.2x⎰=22232(34815a x abx b C a -+15.⎰(0)(0)C b C b ⎧+>< 16.⎰2a bx b -- 17.x ⎰=b ⎰18.2d x x ⎰=2a + (三)含有22x a ±的积分19.22d x x a +⎰=1arctan x C a a+ 20.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+⎰21.22d x x a -⎰=1ln 2x a C a x a -++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+< 23.2d x x ax b +⎰=21ln 2ax b C a++ 24.22d x x ax b +⎰=2d x b x a a ax b-+⎰ 25.2d ()x x ax b +⎰=221ln 2x C b ax b++ 26.22d ()x x ax b +⎰=21d a x bx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx +-+28.22d ()x ax b +⎰=221d 2()2xxb ax b b ax b +++⎰(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)Cb ac Cb ac +<+> 30.2d x x ax bx c ++⎰=221d ln 22b xax bx c a a ax bx c++-++⎰(0)a >的积分31.⎰=1arsh xC a +=ln(x C ++32.C +33.x ⎰C34.x=C +35.2x2ln(2a x C +36.2x=ln(x C +++37.⎰1ln aC a x -+38.⎰C +39.x2ln(2a x C ++40.x =2243(25ln(88x x a a x C ++41.x ⎰C +42.x x ⎰=422(2ln(88x a x a x C +++43.x ⎰a C +44.x ⎰=ln(x C +++(0)a >的积分45.⎰=1arch x x C x a+=ln x C ++ 46.C +47.x ⎰C48.x =C +49.2x 2ln 2a x C +++50.2x =ln x C +++ 51.⎰1arccos a C a x +52.⎰C +53.x 2ln 2a x C -++54.x =2243(25ln 88x x a a x C -++55.x ⎰C56.x x ⎰=422(2ln 88x a x a x C -+57.x ⎰arccos a a C x -+58.x ⎰=ln x C +++(0)a >的积分59.⎰=arcsin x C a+ 60.C +61.x ⎰=C +62.x C +63.2x =2arcsin 2a x C a + 64.2x arcsin x C a -+65.⎰1C a +66.⎰2C a x -+67.x 2arcsin 2a x C a +68.x =2243(52arcsin 88x x a x a C a-+69.x ⎰=C70.x x ⎰=422(2arcsin 88x a x x a C a -+71.x ⎰a C +72.x ⎰=arcsin x C a -+(0)a >的积分73.⎰2ax b C +++74.x 22ax b C +++75.x ⎰2ax b C +++ 76.⎰=C +77.x 2C +78.x ⎰=C ++79.x ⎰=((x b b a C --+80.x ⎰=((x b b a C -+-81.⎰=C ()a b <82.x 2()arcsin 4b a C -+()a b <(十一)含有三角函数的积分83.sin d x x ⎰=cos x C -+84.cos d x x ⎰=sin x C +85.tan d x x ⎰=ln cos x C -+86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42x C π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan 2x C +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C +90.2csc d x x ⎰=cot x C -+91.sec tan d x x x ⎰=sec x C +92.csc cot d x x x ⎰=csc x C -+ 93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++ 95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n x n x n x----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n x n x n x---⋅+--⎰ 99.cos sin d m n x x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n-+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n +----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++- 101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++- 103.d sin x a b x +⎰tan x a b C ++22()a b >104.d sin x a b x +⎰C +22()a b < 105.d cos x a b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b < 107.2222d cos sin x a x b x +⎰=1arctan(tan )b x C ab a+ 108.2222d cos sin x a x b x -⎰=1tan ln 2tan b x a C ab b x a ++- 109.sin d x ax x ⎰=211sin cos ax x ax C a a-+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a-+++ 111.cos d x ax x ⎰=211cos sin ax x ax C a a++ 112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+ (十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin x x C a ++ 114.arcsin d x x x a⎰=22()arcsin 24x a x C a -+ 115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a ++ 116.arccos d xx a ⎰=arccos x x C a117.arccos d x x x a⎰=22()arccos 24x a x C a -118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -+ 119.arctand x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+ 121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d xa x ⎰=1ln x a C a+ 123.e d ax x ⎰=1e ax C a+ 124.e d ax x x ⎰=21(1)e ax ax C a-+ 125.e d n ax x x ⎰=11e e d n ax n ax n x x x a a --⎰ 126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x n x a x a x a a--⎰ 128.e sin d ax bx x ⎰=221e (sin cos )ax a bx b bx C a b-++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b+++ 130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n --+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d ax n n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x ⎰=ln ln x C +134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++135.(ln )d nx x ⎰=1(ln )(ln )d n nx x n x x --⎰136.(ln )d m nx x x ⎰=111(ln )(ln )d 11m n m n nx x x x x m m +--++⎰ (十五)含有双曲函数的积分 137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=lnch x C +140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++(十六)定积分 142.cos d nx x π-π⎰=sin d nx x π-π⎰=0143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m nm n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m n m n≠⎧⎨π=⎩ 146.sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩147. =20sin d nx x π⎰=20cos d n x x π⎰=21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (为大于1的正奇数),=113312422n n n I n n --π=⋅⋅⋅⋅⋅-(为正偶数),=2π换元积分法一、第一换元积分法(凑微分法).二、常用凑微分公式注: 以上使用的多为三角代换, 三角代换的目的是化掉根式, 其一般规律如下: 当被积函数中含有a) 可令b) 可令c) 可令当有理分式函数中分母的阶较高时, 常采用倒代换.三、第二换元积分法,例题:凑微分法例1求不定积分.例2 求不定分例3计算不定积分.例4 计算不定积分例5求不定积分.例6 求下列不定积分(1) (2)例7 求下列不定积分:(1) ; (2)例8 求下列不定积分:(1) ; (2)例9求不定积分.例10 求下列不定积分:(1) ; (2)例11求下列不定积分(1) (2)例12求不定积分.例13求不定积分.例14求下列不定积分:(1) (2)例15 求下列不定积分:(1) (2)例16求不定积分.例17求.例18 用换元法求不定积分例19 试用换元法求不定积分例20试用换元法求不定积分例21求不定积分.例22 求不定积分第二换元法例23求不定积分例24求不定积分例25计算.例26 求不定积分例27求不定积分例28求不定积分.例29求不定积分例30求不定积分.例31求不定积分. 练习:求下列不定积分2.设, 求基本积分表1、⎰+=c kx kdx2、⎰++=+c a x dx x a a113、⎰+=c x dx x ln 14、⎰+=+c x dx x arctan 1125、⎰+=-c x dx xarcsin 1126、⎰+=c x xdx sin cos7、⎰+-=c x xdx cos sin8、⎰⎰+==c x xdx dx xtan sec cos 1229、⎰⎰+-==c x xdx dx xcot csc sin 122 10、⎰+=c x xdx x sec tan sec11、⎰+-=c x xdx x csc cot csc12、⎰+=c edx e xx13、⎰+=c aa dx a x xln 14、⎰+=c chx shxdx 其中2xx e e shx --=为双曲正弦函数15、⎰+=c shx chxdx 其中2xx e e chx -+=为双曲余弦函数基本积分表的扩充16、⎰+-=c x xdx cos ln tan17、⎰+=c x xdx sin ln cot18、⎰++=c x x xdx tan sec ln sec19、c xc x x xdx +=+-=⎰2tan ln cot csc ln csc20、⎰+=+c a xa dx xa arctan 1122 21、⎰++-=-c a x a x a dx ax ln 2112222、⎰+-+=-c xa x a a dx x a ln 2112223、⎰+=-c a xdx x a arcsin 12224、⎰+++=+c a x x dx a x 2222ln 1 25、⎰+-+=-c a x x dx a x 2222ln 1sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】cosαcosβ=[cos(α+β)+cos(α-β)]/2 sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】三角函数公式大全同角三角函数的基本关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1一个特殊公式(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin (a+θ)*sin(a-θ)锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a) 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+ cosαsinβsin(α-β)=sinαcosβ -cosαsinβ积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan (π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -c osα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容诱导公式sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=ta nα 诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²]其它公式(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-Ctan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC 得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC 其他非重点三角函数csc(a) = 1/sin(a) sec(a) =1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
高等数学常用积分表
高等数学常用积分表【最新版】目录一、高等数学与中学数学的区别二、高等数学中的积分概念三、积分表的作用与意义四、如何运用积分表五、总结正文一、高等数学与中学数学的区别高等数学与中学数学有很大的区别,主要体现在以下几个方面:1.概念的深入与拓展:高等数学对中学数学中的概念进行了更深入的研究和拓展,比如函数、极限、导数、积分等概念。
2.方法的严谨与多样:高等数学采用了更严谨的数学方法,包括推理、证明等,并且引入了更多的数学工具,如微分方程、矩阵、向量等。
3.应用的广泛与实际:高等数学的知识广泛应用于自然科学、工程技术、经济学等领域,更加贴近实际生活。
二、高等数学中的积分概念积分是高等数学中的一个重要概念,它是一种求解面积、体积等物理量的方法。
积分可分为一元函数积分和多元函数积分。
一元函数积分主要是求解函数在某一区间内的累积值,而多元函数积分则涉及到多个变量的函数,如二元函数、三元函数等。
三、积分表的作用与意义积分表是高等数学中的一个重要工具,它主要用于查找一元函数和多元函数在不同区间内的积分值。
使用积分表可以大大简化积分的计算过程,提高计算效率。
积分表的作用主要体现在以下几个方面:1.提高计算效率:通过查询积分表,可以快速得到函数在某一区间内的积分值,无需进行复杂的积分运算。
2.便于对照学习:积分表将大量的积分计算结果整理在一起,便于学生对照学习,加深对积分概念的理解。
3.辅助教学:教师在教学过程中,可以利用积分表进行课堂演示,帮助学生更好地理解积分原理。
四、如何运用积分表运用积分表进行积分计算时,需要注意以下几点:1.确定积分区间:首先需要确定函数的积分区间,即找出函数在哪个区间内需要进行积分。
2.查找积分表:将积分区间和被积函数对应到积分表中,查找相应的积分值。
3.进行积分计算:根据积分表中的结果,进行积分计算,得出最终结果。
五、总结高等数学中的积分表是一个非常实用的工具,它可以帮助学生快速计算积分值,提高学习效率。
积分基本公式
2。
基本积分公式表(1)∫0d x=C(2)=ln|x|+C(3)(m≠—1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=-cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=-cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C注.(1)不是在m=—1的特例.(2)=ln|x|+C ,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.事实上,对x〉0,(ln|x|)' =1/x;若x<0,则(ln|x|)’ =(ln(-x))' =.(3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分.下面我们要学习不定积分的计算方法,首先是四则运算.6。
复合函数的导数与微分大量初等函数含有复合函数的成分,它们的导数与微分计算法则具有特别重要的意义.定理。
(链锁法则)设z=f(y),y=j(x)分别在点y0=j(x0)与x0可导,则复合函数z=f[j(x)]在x可导,且或(f o j)' (x0)=f '(y0)×j'(x0).证.对应于自变量x0处的改变量D x,有中间变量y在y0=j(x0)处的改变量D y及因变量z在z0=f (y0)处的改变量D z,(注意D y可能为0).现D z=f¢(y0)D×y+v,D y=¢j(x0)D x+u,且令,则v=Da y,(注意,当D y=0时,v=Da y仍成立).y在x0可导又蕴含y在x0连续,即D y=0.于是=f ’(y0)×j '(x0)+0×j'(x0)=f’(y0)×j’(x0)为理解与记忆链锁法则,我们作几点说明:(1)略去法则中的x=x0与y=y0,法则成为公式,其右端似乎约去d y后即得左端,事实上,由前面定理的证明可知,这里并不是一个简单的约分过程.(2) 计算复合函数的过程:x®¾y ®¾z复合函数求导的过程:z®¾y ®¾x:各导数相乘例2。
定积分公式
二、基本积分表(188页1—15,205页16—24) (1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰(1)u ≠-(3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰ (16)2211tan xdx arc C a x a a=++⎰(17)2211ln ||2x adx C x a a x a-=+-+⎰(18)sinxarc C a=+(19)ln(x C =+(20)ln |x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)—(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数.3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=, 21cos 2sin 2xx -=。
不定积分表
Yz.Liu.2013.09之阿布丰王创作卷终公式表注解四基本不定积分表序言:微积分创立之初,牛顿与莱布尼茨分享荣誉。
虽其间发生很多在优先权上的争论,但最终依然走向了发展之正轨。
在微积分公式体系上,莱布尼茨对之要求甚严,并总结其基本微分表和基本积分表。
如今随微积分之发展,公式表逐渐全面,分类亦几乎覆盖各种不定积分。
积分表的编订对于积分运算可以说是需要,亦是数学发展之需要结果。
本表给出经常使用不定积分的计算公式和运算方法,以及每个积分的简要推演方法,其中引入了除一般之换元法,凑微分法,分部积分法之外,亦引入虚数单位,并使用虚数单位推演某些复杂的不定积分运算。
而对于简单的不定积分运算和基本的微分公式之反用,或均不在此给出推演方法,或仅以推演步调简要之说明。
本表收录公式16组,151式。
公式一基本初等函数的不定积分18式:三角函数反三角函数上述公式均为基本初等函数之不定积分,其中部分公式均可以由分部积分公式给出,特此外,对于正切函数,余切函数,正割函数与余割函数的不定积分,使用了诸多三角变换完成。
公式二 含ax b +的积分(要指出a 非零)10式:对于其中的第二式,是利用换元积分完成的。
对于第一者,可以利用凑的方式,我们考虑分式11x b ax b a ax b ⎛⎫=- ⎪++⎝⎭,则得其积分是显的:111()ln ||x b b dx x d ax x ax b aC ax b a a ax b a a ⎛⎫⎛⎫=-=-++ ⎪ ⎪++⎝⎭⎝⎭⎰⎰。
而第二式依然采纳类似的方式,可借由带余多项式除法算得:22211()2x x ax b ab b ax b a ax b ax b ⎡⎤=+-+⎢⎥+++⎣⎦,然后利用第一个积分式即可得到结论。
对于分母是二次多项式或者更高者,经常分成多个低次多项式之和,这两个积分即是沿用了此结论所得到的。
我们注意第一式中有111111()(/)/b x ax b a x x b a a x x b a a⎛⎫==- ⎪+++⎝⎭,积分即得。
不定积分表
Y z .L i u .2013.09 卷终 公式表注解四基本不定积分表序言:微积分创立之初,牛顿与莱布尼茨分享荣誉。
虽其间发生很多在优先权上的争论,但最终依然走向了发展之正轨。
在微积分公式体系上,莱布尼茨对之要求甚严,并总结其基本微分表和基本积分表。
如今随微积分之发展,公式表逐渐全面,分类亦几乎覆盖各种不定积分。
积分表的编订对于积分运算可以说是必要,亦是数学发展之必要结果。
本表给出常用不定积分的计算公式和运算方法,以及每个积分的简要推演方法,其中引入了除一般之换元法,凑微分法,分部积分法之外,亦引入虚数单位,并使用虚数单位推演某些复杂的不定积分运算。
而对于简单的不定积分运算和基本的微分公式之反用,或均不在此给出推演方法,或仅以推演步骤简要之说明。
本表收录公式16组,151式。
公式一 基本初等函数的不定积分18式:反三角函数上述公式均为基本初等函数之不定积分,其中部分公式均可以由分部积分公式给出,特别的,对于正切函数,余切函数,正割函数与余割函数的不定积分,使用了诸多三角变换完成。
公式二 含ax b +的积分(要指出a 非零)10式:对于其中的第二式,是利用换元积分完成的。
对于第一者,可以利用凑的方式,我们考虑分式11x b ax b a ax b ⎛⎫=- ⎪++⎝⎭,则得其积分是显的:111()ln ||x b b dx x d ax x ax b aC ax b a a ax b a a ⎛⎫⎛⎫=-=-++ ⎪ ⎪++⎝⎭⎝⎭⎰⎰。
而第二式依然采取类似的方式,可借由带余多项式除法算得:22211()2x x ax b ab b ax b a ax b ax b ⎡⎤=+-+⎢⎥+++⎣⎦,然后利用第一个积分式即可得到结论。
对于分母是二次多项式或者更高者,常常分成多个低次多项式之和,这两个积分便是沿用了此结论所得到的。
我们注意第一式中有111111()(/)/b x ax b a x x b a a x x b a a⎛⎫==- ⎪+++⎝⎭,积分即得。
定积分表格计算法
定积分表格计算法
在求积分[公式]时,很简单,一次分部积分就好了。
但如果让你求的是[公式]甚至[公式],分部积分就相当麻烦了。
于是诞生出了一个公式(方法)---表格法。
表格法的使用:以[公式]为例。
①画两行表格,[公式]放第一行首位,[公式]第二行首位。
然后第一行依次求导,第二行依次积分,如下,直到把[公式]求导到0为止。
②以[公式]为起点,左上、右下错位相乘,各项符号依次为“+”“-”“+”“-”
然后各项加起来就完事了。
即[公式]整理后答案为[公式]
有了这种方法我们得以秒杀一些简单积分。
如
此方法的推导很简单,用分部积分算下[公式]就可以退出来了。
其厉害之处在于,把积分式拆开,两者分别求导,积分,简便性大大提高。
连开头提到的[公式]都可以用表格法一步到位。
当然,该方法局限性是只能求带多项式[公式]的不定积分,如[公式],[公式],[公式]等。
但这已经够了,如果遇到sinx乘e^x这类积分,老实分部积分就好了,当然这类也有普遍公式,但形式过于复杂,就不再考虑。