负载二氧化钛复合材料的制备及性能研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
负载二氧化钛复合材料的制备及性能研究
摘要
由于光催化技术的效率高、节约能源、工艺简单、不产生二次污染等优点,因而在开发新能源和环境污染治理等方面具有广阔的应用前景。而二氧化钛光催化剂更是具有无毒、光催化性能强的优点。因此,在参考了大量文献的基础上,本文中主要研究二氧化钛光催化剂,其中涉及到二氧化钛光催化剂在国内外的研究进展、最高效先进的改性方法、国内外优秀的催化剂制备方法、全球对于二氧化钛催化剂的应用和二氧化钛光催化性能的对比研究。
1 TiO2光催化剂国内外研究进展
1.1 引言
能源与环境问题是人类社会可持续发展所面临的两大重要问题。以煤炭、石油等为主要能源的中国,面临着严重的环境污染问题。加上化石燃料有限储备量的快速减少的双重影响,利用和开发清洁性可再生能源,减少温室气体排放,改善人类赖以生存的环境,已经成为目前我国可持续发展的战略的重要组成部分。在2014 年“第九届中国循环经济发展论坛”上,孟伟院士指出我国环境容量承受力大约为740 万t / a,但是实际污染排放量达3000 万t / a,排污量超环境容量数倍[1]。污染物浓度高、毒性大且可生化性较差,对人类具有致畸、致癌和致突变等毒害作用。因此,研发新型的污染深度处理方法有非常重要的意义。
二氧化钛光催化氧化技术是一种新兴的水处理技术,与其他技术相比具有反应条件温和、能耗低、操作简便、能矿化绝大多数有机、无二次污染及可以用太阳光作为反应光源等突出优点[2-5]。1976 年Carey 等[6]首次将光催化的技术应用在降解污染物上,这揭示了光催化技术在环保领域的应用前景。目前,光催化技术是新型污水深度处理方法的一类高新技术,光催化综合性能较好的TiO2是使用最广泛的光催化剂。将清洁无污染、取之不尽的太阳光能与污染治理与保护相结合,利用二氧化钛光催化氧化反应来开展去除污染物的研究具有深远的战略意义。
1.2 TiO2光催化机理
1995年,Hoffmann等人[7]提出了TiO2光催化的一般机理,奠定了光催化反应研究与应用的理论基础。TiO2是一种n型(电子导电型)半导体氧化物,其光催化原理可用半导体的能带理论来解释。
半导体具有能带结构,一般是由填满电子的低能价带(valence band, VB)和空的高能导带(conduction band ,CB)共同构成,能带之间存在禁带,禁带中不允许有电子存在。电子在填充时要优先从能带低的价带填起。当用光照射半导体化合物时,并不是任何波长的光都能被吸收和产生激发作用,只有当光子能量等于或大于TiO2禁带宽度能量的光才能发挥作用。
二氧化钛是一种半导体粒子,羟基自由基是光催化反应的一种主要活性物质,对光催化氧化起决定作用,吸附于催化剂表面的氧及水合悬浮液中的OH-, H2O 等均可产生该物质,当TiO2在紫外光照射下,可以产生氧化性很强的羟基自由基,活泼的·OH可以把许多难降解的有机物氧化成CO2和H2O等无机物。而吸附在TiO2表面的O2易与具有还原性的光致电子((e-)生成过氧化物自由基如O2-, HOO-, OH-等,此类物质对有机分子也有良好的降解效果.
1.3 TiO2基半导体催化剂的研究进展
TiO2基半导体材料具有光催化活性高、耐光腐蚀性、化学稳定性强、无毒、成本低等优点,目前主要应用于光催化降解有机物(空气、水处理)、光解水产氢、传感器、染料敏化电池等新能源研究领域,以及杀菌、抑制癌细胞等生物医药研究领域[8, 9]。TiO2作为光催化剂主要面临两大问题:首先是TiO2半导体禁带宽度决定其仅能吸收波长小于387nm的光源,对可见光的吸收率很差,对太阳能的利用率低;其次就是如何有效提高其光生电子的利用率,抑制光生电子-空穴对的复合。
TiO2具有三种主要的晶型结构,即锐钛矿(Anatase)、金红石(Ruble)以及板钛矿(Brookite)[10, 11],组成这三种结构的基本单元均为TiO6八面体,三种晶型的主要区别在于TiO6八面体是通过共边还是共用顶点组成的结构骨架,锐钛矿和金红石两种晶型结构的原子结构示意图如图2所示。三种晶型结构的不同导致其光催化性能也有很大的差距,其中锐钛矿晶型对有机反应物具有较高的吸附能力,并且其光生电子一空穴对的再复合能力更低,因此光催化反应活性更高。通常情况下,为了提高锐钛矿的催化性能,一般都会通过降低TiO2的粒子尺寸以获得更高的比表面积,进而提高反应物与催化剂之间的接触机率。
为了提高TiO2纳米材料的光电催化活性,并且满足其在不同研究领域中的物理形态需求,研究者通过溶胶凝胶法、化学气相沉积法、超临界合成法、电化学氧化法、静电纺丝法以及悬涂法等制备了具有不同结构的TiO2基半导体催化剂[12-16],如TiO2纳米颗粒、TiO2纳米管、TiO2纳米线以及壳核结构的TiO2纳米
材料等。
1.4 选题思路
纳米TiO2因其是一种稳定性高、廉价、无毒的光催化剂被广泛应用于空气净化、污水治理、抗菌等多个领域。但是,无法逃避的事实是TiO2自身有两个瓶颈因素限制了其进一步应用的范围。首先,二氧化钛被光子激发会产生大量的电子空穴对,而多数的载流子会在很短的时间内复合掉,光量子效率很低,限制光催化性能;其次,TiO2的带隙宽度决定了他只能吸收紫外光,而太阳光谱中紫外光仅占5%,大部分集中在可见光及近红外区,光利用率较低。因此,改善载流子分离效率、提高太阳光利用率对提高二氧化钛的光催化效率就变得十分重要。
为了让二氧化钛可以吸收长波长光子,目前最常用的改性方法是通过非金属或金属元素的掺杂来改变其带隙结构,使光响应红移至可见光区。掺杂电负性较低的非金属元素或者金属元素,均在二氧化钛的禁带中引入杂质能级,拓展其可见光响应。但是通常采用的金属掺杂剂和非金属掺杂剂会带来诸如稳定性的降低、杂质元素的引入、掺杂剂的析出、形成新的电荷捕获中心等。
本论文从影响二氧化钛光催化剂的两个主要的瓶颈因素出发,即一定程度的提高了载流子的有效分离效率,又使二氧化钛的可见光利用效率增强。通过大量查阅文献对比研究,用溶胶-凝胶法制备出稀土元素Nd掺杂的二氧化钛光催化剂并对其性能表征,测试器光催化活性,为设计合成高性能的二氧化钛基光催化剂提供新的理论和实践依据。
2 TiO2光催化剂改性方法进展
尽管TiO2光催化技术取得了累累硕果,然而还是有很多难题有待解决,还有些条件有待优化。TiO2作为半导体光催化中优先选择的材料仍旧待改善,如其量子产率较低(约为4%-10% );光谱响应范围窄(只能吸收日光中约4%的紫外光部分);此外,因为制备的多为粉末状,所以回收利用和负载技术也存在一定的难度。近期科学家们为了拓展TiO2光谱响应的范围,增大在可见光下及紫外光下的活性,同时也为了解决光生载流子(或者说“空穴一电子”)复合率高等问题经过了不懈探索,针对这些难题提出了一系列的改性手段:金属与非金属的掺杂,贵金属沉积,半导体复合及光敏化等,增强催化剂的可见光利用率,提高催化剂的吸附能力,从而合理有效的提高TiO2的光催化性能。
2.1金属离子的掺杂
金属离子掺杂是利用物理法或者化学法,将金属离子引入晶格里面,或者在