1.1.勾股定理
1.1勾股定理PPT课件(沪科版)
O.若点 O 是 AC 的中点,
则 CD 的长为( A )
A.2 2
B.4
C.3
D. 10
11.[中考·益阳]在△ABC 中,AB=15,BC=14,AC=13,求△ABC 的面积. 某学习小组经过合作交流,给出了下面的解题思路.请你按 照他们的解题思路,写出解答过程.
解:作 AD⊥BC 于 D,设 BD=x,则 CD=14-x, 根据勾股定理,得 AD2=AB2-BD2=152-x2,AD2=AC2-CD2 =132-(14-x)2,∴152-x2=132-(14-x)2,解得 x=9. ∴AD2=AB2-BD2=152-92=144. ∴AD=12. ∴S△ABC=12BC·AD=12×14×12=84.
证明:如图①,连接 DB,过点 D 作 BC 边上的高 DF 交 BC
的延长线于点 F,则 DF=EC=b-a. ∵S 四边形 ADCB=S△ACD+S△ABC=12b2+12ab=S△ADB+S△DCB=12c2 +12a(b-a), ∴12b2+12ab=12c2+12a(b-a), ∴a2+b2=c2.
4.[合肥寿春中学期中]在 Rt△ABC 中,斜边 AB=2,则 AB2+ BC2+AC2=____8____.
5.在 Rt△ABC 中,∠C=90°,S△ABC=30,AB=13,且 BC< AC,则 BC=____5____,AC=____1_2___.
6.如图,点 E 在正方形 ABCD 内,满足∠AEB=90°,AE=6, BE=8,则阴影部分的面积是( C ) A.48 B.60 C.76 D.80
12.[2019·合肥蜀山区校级期中]勾股定理神秘而美妙,它的证法 多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感, 他惊喜地发现,当两个全等的直角三角形如图①或图②摆放 时,都可以用“面积法”来证明,下面是小聪利用图①证明勾 股定理的过程: 将 两个全 等的直 角三角 形按图 ①所示 摆放, 其中 ∠ DAB= 90°.求证:a2+b2=c2.
北师大版八年级数学上册1.1 第1课时 勾股定理的认识 课件(共23张PPT)
探究新知
1.在纸上画若干个直角三角形,分别测量它们的
三条边,看看三边长的平方之间有怎么样的关系?
c
a
b
直角三角形的两直角边的平方和等于斜边的平方,这就是
著名的“勾股定理”。
如果直角三角形的两条直角边为a、b,斜边为c,那么有
a2+b2=c2.
数学小知识
我国古代称直角三角形的较短的直角边为勾,较长的直角
求 的长.
解:因为 ⊥ ,
所以 ∠ = ∠ = 90∘ .
在 Rt △ 中, 2 = 2 − 2 = 102 − 82 = 36 ,
所以 = 6 .
设 = = ,则 = − 6 .
在 Rt △ 中, 2 = 2 + 2 ,
所以 △ =
1
2
1
2
⋅ = × 25 × 12 = 150 .
6. 如图,直线 上有三个正方形 , , .若 , 的面积分别
为 5 和 11 ,则 的面积为( C )
A. 4
B. 6
C. 16
D. 55
7. 如图,在 △ 中, = , = 10 , ⊥ ,垂足为 , = 8 .
(2) 已知 = 12 , = 16 ,求 .
【解】在 Rt △ 中, ∠ = 90∘ , = 12 , = 16 ,
所以 2 = 2 + 2 = 122 + 162 = 400 .
所以 = 20 .
例2 如图,在 △ 中, ⊥ 于点 ,且 + = 32 ,
因为 ∠ = 90∘ ,所以 2 + 2 = 2 .
1.1探索勾股定理+课件+2023—2024学年北师大版数学八年级上册
4.求直角三角形的一边的关键?
A
B
C
A
B
B
(图中每个小方格代表一个单位面积)
二、勾股定理证明
活动三:直角三角形的两直角边分别为, ,斜边长为,上述猜想
成立吗?请证明
三、勾股定理
话动四:经过刚才的猜想与验证,请用文字语言叙术上述结论.
符号语言如何表示?
四、勾股定理应用
课堂小结
1.勾股定理是么?
2.勾股定理对于锐角三角形、钝角三角形成立吗?
北师大版八年级上册数学
1.1探索勾股定理
1
勾股定理
2
勾股定理证明
3
勾股定理应用
学习目标
1.掌握勾股定理的内容 (运算能力)
ห้องสมุดไป่ตู้
2.会通过测量、数格子、拼图等验证勾股定理 (几何直观)(推理
能力)
3.能从实际问题中抽象出直角三角形模型,能运用勾股定理解决
简单的实际问题(模型观念) (应用意识)
实例引入
门框尺寸:6 × 8木板尺寸: 9 × 12,长方形薄木板能否从门框内通
过?为什么?
判断木板能否通过门框的依据是什么?
请将实际问题转化为数学问题.
一、勾股定理猜想
二、勾股定理验证
活动二:观察如下网格图,直角三角形三边的平方分别是多少?
满足上述猜想吗?
如何计算斜边的平方?
分割法
补图法
C
C
A
北师大版八年级数学上册《1.1.1勾股定理》教学课件(共19张PPT)
例1 高为2.5 m的木梯,架在高为2.4 m的墙上(如图),
这时梯脚与墙的距离是多少?
A
解:在Rt△ABC中,根据勾股定理,得:
BC2=AB2-AC2=2.52-2.42=0.49,
所以BC=0.7.
即梯脚与墙的距离是0.7 m.
C
B
例2 求斜边长为17 cm、一条直角边长为15 cm的直角三 角形的另一边长.
正方形C的面积应该怎么计算呢?
C A
B
图①
➢ 分“割”成若干个直角边为整数的三角形 SC=12×2×3×4+1×1=13;
➢ 把C“补”成边长为5的正方形 SC=5×5-12×2×3×4=13.
观察:
C A
B
图①
正方形A中含有__4__个小正方形,即A的 面积是___4__. 正方形B中含有__9__个小正方形,即B的 面积是___9__. 正方形C中含有_1_3__个小正方形,即C的 面积是__1_3__.
第一章 勾股定理
1.1 探索勾股定理
第1课时 勾股定理
学习目标
1.经历探索勾股定理的过程,了解勾股定理的探 究方法;
2.掌握勾股定理,并能运用勾股定理解决一些简 单问题.
新知引入
一个直角三角形的两条直角边长分别是3和4,你 知道它的第三边长吗?
实际上,利用勾股定理我们可以很容易地解决这个问题. 勾股定理是一个古老的定理,人类很早就发现了这个定理.
观察:
A'
C'
B'
图②
正方形A'中含有__1_6_个小正方形,即 A'的面积是__1_6__.
正方形B'中含有__9__个小正方形,即 B'的面积是__9___.
正方形C'中含有__2_5_个小正方形,即 C'的面积是__2_5__.
2022年八年级数学上册第一章勾股定理1.1探索勾股定理第2课时验证勾股定理教案新版北师大版
1.1探索勾股定理第2课时验证勾股定理教学目标【知识与能力】1.掌握勾股定理,理解和利用拼图验证勾股定理的方法.2.能运用勾股定理解决一些简单的实际问题.【过程与方法】通过拼图法验证勾股定理,使学生经历观察、猜想、验证的过程,进一步体会数形结合的思想.【情感态度价值观】培养学生大胆探索,不怕失败的精神.教学重难点【教学重点】经历勾股定理的验证过程,能利用勾股定理解决实际问题.【教学难点】用拼图法验证勾股定理.课前准备【教师准备】教材图1 - 4,1 - 5,1 - 6,1 - 7的图片.【学生准备】4个全等的直角三角形纸片.教学过程第一环节:引入新课导入一:【提问】直角三角形的三边有怎样的关系?在研究直角三角形三边关系时,我们是通过测量、数格子的方法发现了勾股定理,那么,我们怎样用科学的方法去证明勾股定理的正确性呢?请跟我一起去探索吧!导入二:上节课我们用什么方法探索发现了勾股定理?学生思考(测量、数格子).第二环节:新知构建1.勾股定理的验证思路一【师生活动】师:投影教材P4图1 - 4,分别以直角三角形的三条边的长度为边长向外作正方形,你能利用这个图说明勾股定理的正确性吗?你是如何做的?与同伴进行交流.生:割补法进行验证.师:出示教材P5图1 - 5和图1 - 6,想一想:小明是怎样对大正方形进行割补的?生:讨论交流.师总结:图1 - 5是在大正方形的四周补上四个边长为a,b,c的直角三角形;图1 - 6是把大正方形分割成四个边长为a,b,c的直角三角形和一个小正方形.图1 -5采用的是“补”的方法,而图1 - 6采用的是“割”的方法,请同学们将所有三角形和正方形的面积用a,b,c 的关系式表示出来.(1)动笔操作,独立完成.师:图1 - 5中正方形ABCD的面积是多少?你们有哪些方法求?与同伴进行交流.(2)分组讨论面积的不同表示方法.ab+c2两种方法.生:得出(a+b)2,4×12(3)板书学生讨论的结果.【提问】你能利用图1 - 5验证勾股定理吗?生:根据刚才讨论的情况列出等式进行化简.师:化简之后能得到勾股定理吗?生:得到a2+b2=c2,即两直角边的平方和等于斜边的平方,验证了勾股定理.师:你能用图1 - 6也证明一下勾股定理吗?独立完成.师:(强调)割补法是几何证明中常用的方法,要注意这种方法的运用.思路二教师出示教材图1 - 4及“做一做”,让学生观察图1 - 5和图1 - 6.【提问】小明是怎样拼的?你来试一试.(学生以小组为单位展开拼图尝试,同伴之间讨论、争辩、互相启发,将拼好的图形画下来)【思考】“做一做”的三个问题.教师讲评验证勾股定理的方法.2.勾股定理的简单应用思路一:出示教材P5例题,教师分析并抽象出几何图形.【问题】(1)图中三角形的三边长是否满足AB2=AC2+BC2?(2)要想求敌方汽车的速度,应先求什么?你能利用勾股定理完成这道题吗?(学生独立完成,教师指名板演)出示教材P8图1 - 8.【提问】 判断图中三角形的三边长是否满足a 2+b 2=c 2.(学生以组为单位合作完成,分别计算出每个正方形的面积.独立完成,有困难的可以合作完成)思路二我方侦察员小王在距离东西向公路400 m 处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s 后,汽车与他相距500 m,你能帮小王计算敌方汽车的速度吗?〔解析〕 根据题意,可以画出右图,其中点A 表示小王所在位置,点C ,点B 表示两个时刻敌方汽车的位置.由于小王距离公路400 m,因此∠C 是直角,这样就可以由勾股定理来解决这个问题了.解:由勾股定理,可以得到AB 2=BC 2+AC 2,也就是5002=BC 2+4002,所以BC =300.敌方汽车10 s 行驶了300 m,那么它1 h 行驶的距离为300×6×60=108000(m),即它行驶的速度为108 km/h .[知识拓展] 利用面积相等来验证勾股定理,关键是利用不同的方法表示图形的面积,一要注意部分面积和等于整体面积的思想,二要注意拼接时要做到不重不漏.曾任美国总统的伽菲尔德在《新英格兰教育日志》上发表了他提出的一个勾股定理证明,如图所示,这就是他拼出的图形.它的面积有两种表示方法,既可以表示为12(a +b )(a +b ),又可以表示为12(2ab +c 2),所以可得12(a +b )(a +b )=12(2ab +c 2),化简可得a 2+b 2=c 2.第三环节:课堂小结1.勾股定理的验证方法{测量法数格子法面积法2.在实际问题中,首先要找到直角三角形,然后再应用勾股定理解题. 第四环节:检测反馈1.下列选项中,不能用来证明勾股定理的是 ( )解析:A,B,C 都可以利用图形面积得出a ,b ,c 的关系,即可证明勾股定理,故A,B,C 选项不符合题意;D,不能利用图形面积证明勾股定理,故此选项正确.故选D .2.用四个边长均为a ,b ,c 的直角三角板,拼成如图所示的图形,则下列结论中正确的是( )A.c 2=a 2+b 2B.c 2=a 2+2ab +b 2C .c 2=a 2-2ab +b 2D .c 2=(a +b )2解析:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c ,里面的小四边形也为正方形,边长为b-a ,则有c 2=12ab ×4+(b-a )2,整理得c 2=a 2+b 2.故选A .3.如图所示,大正方形的面积是 ,另一种方法计算大正方形的面积是 ,两种结果相等,推得勾股定理是.ab+c2,即(a+b)2=4×解析:如图所示,大正方形的面积是(a+b)2,另一种计算方法是4×121ab+c2,化简得a2+b2=c2.2ab+c2a2+b2=c2答案:(a+b)24×124.操作:剪若干个大小形状完全相同的直角三角形,三边长分别记为a,b,c(如图(1)所示),分别用4张这样的直角三角形纸片拼成如图(2)(3)所示的形状,图(2)中的两个小正方形的面积S2,S3与图(3)中小正方形的面积S1有什么关系?你能得到a,b,c之间有什么关系?解析:根据已知图形的形状得出面积关系,进一步证明勾股定理即可求解.解:分别用4张直角三角形纸片,拼成如图(2)(3)所示的形状,观察图(2)(3)可发现,图(2)中的两个小正方形的面积之和等于图(3)中的小正方形的面积,即S2+S3=S1,这个结论用关系式可表示为a2+b2=c2.第五环节:布置作业1.教材作业【必做题】教材第6页随堂练习.【选做题】教材第7页习题1.2第3题.2.课后作业【基础巩固】1.我国古代数学家赵爽的《勾股圆方图》是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是()A.1B.2C.12D.132.历史上对勾股定理的一种证法采用了如图所示的图形,其中两个全等的直角三角形边AE,EB在一条直线上.证明中用到的面积相等的关系是()A.SΔEDA =SΔCEBB.SΔEDA+SΔCEB=SΔCDEC.S四边形CDAE =S四边形CDEBD.SΔEDA+SΔCDE+SΔCEB=S四边形ABCD3.北京召开的第24届国际数学家大会会标的图案如图所示.(1)它可以看做是由四个边长分别为a,b,c的直角三角形拼成的,请从面积关系出发,写出一个关于a,b,c的等式.(要有过程)(2)请用四个这样的直角三角形再拼出另一个几何图形,也能验证(1)中所写的等式.(不用写出验证过程)(3)如果a2+b2=100,a+b=14,求此直角三角形的面积.【能力提升】4.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图(1)所示的是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(2)是由图(1)放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为.5.在北京召开的国际数学家大会的会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则a4+b4的值为()A.35B.43C.89D.976.据传当年毕达哥拉斯借助如图所示的两个图验证了勾股定理,你能说说其中的道理吗?7.如图所示,在平面内,把矩形ABCD绕点B按顺时针方向旋转90°得到矩形A'BC'D'.设AB=a,BC=b,BD=c.请利用该图验证勾股定理.【拓展探究】8.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)所示).图(2)是由弦图变化得到的,它是用八个全等的直角三角形拼接而成的.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=16,则S2的值是.9.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图(1)或图(2)摆放时,都可以用“面积法”来证明,下面是小聪利用图(1)证明勾股定理的过程.将两个全等的直角三角形按图(1)所示摆放,连接DC ,其中∠DAB =90°,求证a 2+b 2=c 2. 证明:连接DB ,过点D 作BC 边上的高DF ,则DF =EC =b-a. ∵S 四边形ADCB=S ΔACD+S ΔABC=12b 2+12ab , 又∵S 四边形ADCB=S ΔADB+S ΔDCB=12c 2+12a (b-a ),∴12b 2+12ab =12c 2+12a (b-a ),∴a 2+b 2=c 2.请参照上述证法,利用图(2)完成下面的验证过程.将两个全等的直角三角形按图(2)所示摆放,其中∠DAB =90°,连接BE.验证a 2+b 2=c 2.证明:连接 , ∵S 五边形ACBED= , 又∵S 五边形ACBED= ,∴ , ∴a 2+b 2=c 2.【答案与解析】1.A(解析:根据勾股定理可得a 2+b 2=13,四个直角三角形的面积和是12ab ×4=13-1=12,即2ab =12,则(a-b )2=a 2-2ab +b 2=13-12=1.故选A.) 2.D(解析:由S ΔEDA+S ΔCDE+S ΔCEB=S 四边形ABCD,可知12ab +12c 2+12ab =12(a +b )2,∴c 2+2ab =a 2+2ab +b 2,整理得a 2+b 2=c 2,∴证明中用到的面积相等的关系是S ΔEDA+S ΔCDE+S ΔCEB=S 四边形ABCD.故选D .)3.解:(1)大正方形的面积=4个三角形的面积+小正方形的面积,即c 2=4×12ab +(a-b )2=a 2+b 2. (2)如图所示. (3)∵2ab =(a +b )2-(a 2+b 2)=196-100=96,∴ab =48,∴S =12ab =12×48=24.4.440(解析:如图所示,延长AB 交KL 于P ,延长AC 交LM 于Q ,则ΔABC ≌ΔPFB ≌ΔQCG ,∴PB =AC =8,CQ =AB =6,∵图(2)是由图(1)放入矩形内得到的,∴IP =8+6+8=22,DQ =6+8+6=20,∴矩形KLMJ 的面积=22×20=440.故答案为440.)5.D(解析:依题意有:a 2+b 2=大正方形的面积=13,2ab =四个直角三角形的面积和=13-1=12,ab =6,则a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab )2=132-2×62=169-72=97.故选D .)6.解:根据题意,第一个图形中间空白小正方形的面积是c 2;第二个图形中空白的两个小正方形的面积的和是a 2+b 2,∵它们的面积都等于边长为a +b 的正方形的面积-4个直角边分别为a ,b 的直角三角形的面积和,∴a 2+b 2=c 2,即在直角三角形中斜边的平方等于两直角边的平方和.7.解:连接D'D ,依题意,图中的四边形DAC'D'为直角梯形,ΔDBD'为等腰直角三角形,Rt ΔDAB 和Rt ΔBC'D'的形状和大小完全一样,设梯形DAC'D'的面积为S ,则S =12(a +b )(a +b )=12(a 2+b 2)+ab ,又S =S Rt ΔDBD'+2S Rt ΔABD =12c 2+2×12ab =12c 2+ab ,∴12(a 2+b 2)+ab =12c 2+ab ,因此a 2+b 2=c 2.8.163(解析:∵八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,∴CG =NG ,CF =DG =NF =GK ,∴S 1=(CG +DG )2=CG 2+DG 2+2CG ·DG =GF 2+2CG ·DG ,S 2=GF 2,S 3=(NG-NF )2=NG 2+NF 2-2NG ·NF ,∴S 1+S 2+S 3=GF 2+2CG ·DG +GF 2+NG 2+NF 2-2NG ·NF =3GF 2=16,∴GF 2=163,∴S 2=163.故答案为163.)9.证明:连接BD ,过点B 作DE 边上的高BF ,则BF =b-a ,∵S 五边形ACBED=S ΔACB +S ΔABE+S ΔADE=12ab +12b 2+12ab ,又∵S五边形ACBED=SΔACB+SΔABD+SΔBDE=12ab +12c 2+12a (b-a ),∴12ab +12b 2+12ab =12ab +12c 2+12a (b-a ),∴a 2+b 2=c 2.板书设计1.1.21.勾股定理的验证.2.勾股定理的简单应用.教学反思成功之处在课堂教学中,始终注意了调动学生的积极性.兴趣是最好的老师,所以无论是引入、拼图,还是历史回顾,都注意去调动学生,让学生满怀激情地投入到活动中.勾股定理作为“千古第一定理”,其魅力在于其历史价值和应用价值,因此充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生的积极性,既加深了对勾股定理文化的理解,又培养了学生收集、整理资料的能力.不足之处在教学过程中,过于让学生发散思维,而导致课堂秩序略有松散. 再教设计勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,可以设计拼图活动,先让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究,最后由学生独立探究,这样学生较容易突破本节课的难点.备课资源古诗中的数学题请你先欣赏下面一首诗:平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边; 渔人观看忙向前,花离原位两尺远; 能算诸君请解题,湖水如何知深浅?你能用所学的数学知识解决上述诗中的问题吗? 〔解析〕 要解决诗中提出的问题,关键是将实际问题转化为数学问题,画出符合题意的图形,如图所示.在Rt ΔBCD 中,由勾股定理建立方程求线段的长.解:如图所示,AD 表示莲花的高度,CD 是水的深度,CB 是莲花吹倒后离原位的距离.欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!设CD =x 尺,则AD =BD =(x +12)尺. 在Rt ΔBCD 中,∠BCD =90°,由勾股定理得BD 2=CD 2+BC 2,即(x +12)2=22+x 2.解得x =3.75.所以所求的湖水深度为3.75尺.[方法总结] 建立数学模型是解决实际问题的常用方法.本例是利用莲花无风时与水面垂直构造直角三角形这一几何模型.在直角三角形中常用勾股定理建立方程求线段的长.。
1.1.1 认识勾股定理 北师大版八年级数学上册教学课件
1.1 探索勾股定理 第1课时 认识勾股定理
勾股定理 勾股定理与图形的面积
相传2500年前,一次毕达哥拉斯去朋友家作客, 发现朋友家用砖铺成的地 面反映直角三角形三边的 某种数量关系,同学们, 我们也来观察下面的图案, 看看你能发现什么?
A,B,C的面积有什么关系? 直角三角形三边有什么关系?
1 若一个直角三角形的两直角边的长分别为a,b,
斜边长为c,则下列关于a,b,c的关系式中不正
确的是( C )
A.b2=c2-a2
B.a2=c2-b2
C.b2=a2-c2
D.c2=a2+b2
2 (中考·淮安)如图,在边长为1个单位长度的小正 方形组成的网格中,点A,B都是格点,则线段 AB的长度为( A ) A.5 B.6 C.7 D.25
(3)你能发现图2-1中三个正方 形A,B,C的面积之间有 什么关系吗?
SA+SB=SC
即:两条直角边上 的正方形面积之和等于 斜边上的正方形的面积.
观察所得到的各组数据,你有什么发现?
A a
Bb c
C
SA+SB=SC
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
勾股定理 (毕达哥拉斯定理)
知识点 2 勾股定理与图形的面积
例2 〈新疆〉如图,分别以直角三角形的三边为直径
作半圆,其中两个半圆的面积S1=
9
25 8
π,
S2
=
2π,则S3=____8__π__.
导引:如图,由圆的面积公式得
S1
1 2
π
c 2 2
25 8
π,
S2
1 2
所以c2=25,a2=16.
北师大版八年级数学上册第一章全部课件
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-练
1 用四个边长均为a,b,c的直角三角板,拼成如
(来自《典中点》)
知2-导
知识点 2 勾股定理的应用
例2 我方侦察员小王在距离东西向公路400m处侦察,发现一 辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得 汽车与他相距400m,10s后,汽车与他相距500m,你能 帮小王计算敌方汽车的速度吗?
分析:根据题意,可以画出右图, 其中点A表示小王所在位置, 点C、点B表示两个时刻敌方 汽车的位置.
弦 勾
股 图1
北师大版八年级数学上册
C A
B C
图2-1
A
B
图2-2
(图中每个小方格代表一个单位面积)
知1-导
(1)观察图2-1 正方形A中含有 9 个 小方格,即A的面积 是 9 个单位面积. 正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
北师大版八年级数学上册
C A
B C
(来自《点拨》)
知1-讲
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-讲
1 课堂讲解 2 课时流程
1.1勾股定理(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在本次勾股定理的教学过程中,我发现学生们对于定理的理解和应用存在一些问题。首先,部分学生在理解勾股定理的表达式时,对a² + b² = c²中的平方概念不够清晰,导致在具体计算时出现错误。在今后的教学中,我需要更加关注这一细节,通过具体示例和直观图形,帮助学生加深对平方概念的理解。
其次,在勾股定理的证明方法上,学生们对于几何证明和代数证明的掌握程度不同。有些学生能迅速理解几何证明的思路,而另一些学生则对代数证明感到困惑。针对这一问题,我在课堂上进行了针对性的解答和指导,但未来可以考虑在课前预习阶段就让学生接触这些证明方法,以便课堂上能有更多时间进行深入讨论和练习。
另外,实践活动中的分组讨论和实验操作环节,学生们表现得非常积极。他们通过合作解决问题,不仅加深了对勾股定理的理解,还提高了团队协作能力。但在这一过程中,我也发现部分学生在讨论中过于依赖同伴,缺乏独立思考。因此,在接下来的教学中,我要注意引导学生独立思考,培养他们的问题解决能力。
在学生小组讨论环节,我发现学生们对于勾股定理在实际生活中的应用有着丰富的想象力。他们能够提出许多有趣的问题和解决方案,这让我感到很欣慰。但同时,我也注意到学生在分享讨论成果时,语言表达和逻辑思维能力有待提高。为了改善这一状况,我计划在今后的教学中增加一些口头表达和逻辑思维训练的环节。
人教版八年级数学下册课件:17.1勾股定理--1.1 勾股定理
两直角边长分别为a和b, 斜边长为c,则:
9
知识点一:勾股定理
新知归纳
命题1的证明方法有很多,我们先 来看看我国古人赵爽的证法.
10
知识点一:勾股定理
新知归纳
c ba
b a
a
勾股定理
11
知识点一:勾股定理
新知归纳
在Rt∆ABC中,∠C=90º, 由勾股定理得:
12
知识点一:勾股定理
利用勾股定 理求出AD的 长,再计算 三角形面积.
22
知识点二:勾股定理与图形的面积
学以致用
5.如图,在四边形ABCD中,∠B=∠D=90°,AB=20m, BC=15m,CD=7m,求四边形ABCD的面积.
23
知识点二:勾股定理与图形的面积
合作探究
先独立完成导学案互动探究3、4,再同桌相互 交流,最后小组交流;
重点难点 重点:探索并证明勾股定理.
难点:用勾股定理解决一些简单问题.
3
知识点一:勾股定理
情景引入
相传2500年前,毕达哥拉斯在一次朋友家做客时,发现 朋友家用砖铺成的地面中反映了直角三角形三边的某种数量 关系.我们也来观察一下地面的图案, 看看能从中发现什么数量关系.
古希腊著名的哲学家、 数学家、天文学家.
证法举例
a
c
b
cb a
美国总统的证明
伽菲尔德 ——美国 第二十任 总统
13
知识点一:勾股定理
学以致用
1.已知如图S1=1,S2=3, S3=2,S4=4 ,
则S5 =
,S6 =
,S7 =
.
14
知识点一:勾股定理
学以致用
1.1 探索勾股定理 课件 2024-2025学年北师大版数学八年级上册
拨
[答案] B
行分类讨论.
1.1 探索勾股定理
返回目录
方 ■方法:利用勾股定理解决面积问题
法
如图,由直角三角形的三边向外作正方形、半圆或等边
技
巧 三角形,则有 S =S +S (S ,S ,S 分别代表三个图形的
1
2
3
1
2
3
点
拨 面积,其中 S1 代表以斜边为一边的图形的面积).
1.1 探索勾股定理
返回目录
例 如图,正方形 ABGF 和正方形 CDBE 的面积分别是
[解题思路]设 AC=b,BC=a,AB=c,易得 AB⊥DE,所
考
点
清 以四边形 ACBE 的面积=S△ACB+S△ABE= AB·DG+ AB·EG=
单
解
2
读 AB·(DG+EG)= AB·DE= c , 四边形 ACBE 的面积
=S
梯形 ACFE
)b+
+S△EFB=
返回目录
[答案] 解:如图,过点 A 作 AD⊥BC,垂足为 D,
所以∠ADB=∠ADC=90°.
设 BD=x,则 CD=21-x,
在 Rt△ABD 中,AD2=102-x2,
在 Rt△ADC 中,AD2=172-(21-x)2,
解得 x=6,所以 AD2=102-62=64,
所以 AD=8,即 BC 边上的高为 8.
(1)已知∠C=90°,a=6,b=8,求 c;
(2)已知∠B=90°,a=15,b=25,求 c.
1.1 探索勾股定理
考
点
清
【初二】第三章勾股定理讲义
勾股定理1.1 勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么222a b c +=.即直角三角形中两直角边的平方和等于斜边的平方。
1.2勾股定理的证明:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
即 222,,ABC AC BC AB ABC ∆+=∆在中如果那么是直角三角形。
1.4勾股数:满足222a b c +=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
【例1】 下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【例2】 若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为( )CABcb aDCGFE Hcb a cba ED CBA【例3】 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为______.【例4】 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定【例5】 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5 C【例6】 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A. 1倍B. 2倍C. 3倍D. 4倍【例7】 在Rt ABC ∆中, 90C ∠=︒,(1)如果34a b ==,,则c =_______; (2)如果68a b ==,,则c =_______; (3)如果512a b ==,,则c =________; (4)如果1520a b ==,,则c =________.(5)若c =41,a =40,则b =______; (6)若∠A =30°,a =1,则c =______;(7)若∠A =45°,a =1,则b =______.【例8】 如图所示,在ABC ∆中,三边a b c ,,的大小关系是( )A. a b c <<B. c a b <<C. c b a <<D. b a c <<【例9】 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. 【例10】已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,•如果8cm AB =,10cm BC =,EC 的长为 . 【例11】一个矩形的抽屉长为24cm ,宽为7cm,在里面放一根铁条,那么铁条最长可以是 . 【例12】如图,将一根30㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和24㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?CBA“路”4m3m【例13】 将一根长为24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外边的长度为cm h ,则h 的取值范围为( ) 【例14】如图,以一个直角三角形的三边为边长分别向外作三个正方形,如果两个较大正方形的面积分别是576和676,那么最小的正方形的面积为( ) 【例15】在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)若a ∶b =3∶4,c =75cm ,求a 、b ; (2)若a ∶c =15∶17,b =24,求△ABC 的面积; (3)若c -a =4,b =16,求a 、c ; (4)若a 、b 、c 为连续整数,求a +b +c .2 勾股定理的逆定理【例1】 分别以下列四组数为一个三角形的边长:(1)6、8、10;(2)5、12、13;(3)8、15、17; (4)4、5、6,其中能构成直角三角形的有____________.(填序号)【例2】 下列线段不能组成直角三角形的是( ).A .a =6,b =8,c =10B .3,2,1===c b aC .43,1,45===c b a D .6,3,2===c b a【例3】 已知ABC △的三边长分别为5,13,12,则ABC △的面积为( )A .30B .60C .78D .不能确定【例4】 在ABC △中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________; ②若a 2+b 2=c 2,则∠c 为____________; ③若a 2+b 2<c 2,则∠c 为____________.【例5】 若ABC △中,()()2b a b a c -+=,则B ∠=____________; 【例6】 如图,正方形网格中,每个小正方形的边长为1,则网格上的ABC△是______三角形.【例7】 下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).A .1∶1∶2B .1∶3∶4C .9∶25∶26D .25∶144∶169【例8】 已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).A .一定是等边三角B .一定是等腰三角形C .一定是直角三角D .形状无法确定【例9】 若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以22a a a -+、、为边的三角形的面积为______.【例10】 ABC △的两边a b ,分别为512,,另一边c 为奇数,且a b c ++是3的倍数,则c 应为______,此三角形为______.【例11】 如图,ABC △中,90C ∠=︒,330AC B =∠=︒,,点P 是BC 边上的动点,则AP 长不可能是( )A .B .C .D .7【例12】 如图,在△ABC 中,已知AB =AC =2a ,∠ABC =15°,CD 是腰AB 上的高,求CD 的长.DCBA【例13】 如图所示,已知∠1=∠2,AD =BD =4,CE ⊥AD ,2CE =AC ,那么CD 的长是( )【例14】 如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.【例15】 如图,在ABC △中,CD AB ⊥于D ,9435AC BC DB ===,,.(1)求CD AD ,的值;(2)判断ABC △的形状,并说明理由.【例16】 已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.【例17】 如图所示,在四边形ABCD 中,已知:AB :BC :CD :DA =2:2:3:1,且∠B =90°,求∠DAB 的度数.【例18】 如图,已知CA ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD .(1)试猜想线段CE 与DE 的大小与位置关系,并说明你的结论; (2)若AC =5,BD =12,求CE 的长.【例19】 阅读理解题:(1)如图所示,在ABC △中,AD 是BC 边上的中线,且PBCA21EBDCADCBAABDCD CBACDBE AA12AD BC =.求证:90BAC ∠=︒(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.(3)直接运用这个结论解答下列题目:一个三角形一边长为5,这边上的中线长为,另两边之和为7,求这个三角形的面积.【例20】 已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .【例21】 已知∠MAN ,AC 平分∠MAN .(1)在图1中,若∠MAN =120°,∠ABC =∠ADC =90°,求证:AB +AD =AC ;(2)在图2中,若∠MAN =120°,∠ABC +∠ADC =180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;BCDN AM MAND CB【例22】 在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?. 1.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.2.如图,一根高8米的旗杆被风吹断倒地,旗杆顶端A 触地处到旗杆CB A底部B 的距离为6米,则折断点C 到旗杆底部B 的距离为3.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于 .4. Rt △ABC 中,斜边BC =2,则222AB AC BC ++的值为( ).5.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,则CD 的长为 .6.在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 7.如图,已知正方形ABED 与正方形BCFE ,现从A ,B ,C ,D ,E ,F 六个点中任取三个点,使得这三个点能作为直角三角形的三个顶点,则这样的直角三角形共有( )A .10B .12C .14D .168.如图,在Rt ABC △中,已知,90ACB ∠=︒,15B ∠=︒,AB 边的垂直平分线交AB 于E ,交BC 于D ,且13BD =,则AC 的长是 .9. 如图所示,在ABC △中,::3:4:5AB BC CA =,且周长为36,点P 从点A 开始沿AB 边向B 点以每秒1cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2cm 的速度移动,如果同时出发,则过3秒时,BPQ △的面积为( )2cm .10. 如图所示的一块地,已知AD =4m ,CD =3m ,AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.DCBAFECBDAE DBC AQCA。
八年级上册数学教案人教版全册
八年级上册数学教案人教版全册第一章:勾股定理1.1 勾股定理的发现【学习目标】1. 了解勾股定理的背景和意义。
2. 掌握勾股定理的表述和证明。
【教学内容】1. 引导学生通过实际问题,探索勾股定理。
2. 讲解勾股定理的证明方法。
【教学活动】1. 引入勾股定理的背景知识,如古代数学家赵爽的《周髀算经》中的证明。
2. 通过几何画图软件或实际测量,让学生验证勾股定理。
【作业布置】1. 请学生运用勾股定理解决实际问题。
1.2 勾股定理的应用【学习目标】1. 掌握运用勾股定理解决直角三角形相关问题的方法。
2. 能够运用勾股定理解决实际生活中的问题。
【教学内容】1. 讲解勾股定理在直角三角形中的应用。
2. 举例说明勾股定理在实际生活中的应用。
【教学活动】1. 通过例题,讲解勾股定理在直角三角形中的应用。
2. 分组讨论,让学生尝试解决实际生活中的问题。
【作业布置】1. 请学生运用勾股定理解决实际问题。
第二章:二次根式2.1 二次根式的定义及性质【学习目标】1. 了解二次根式的概念。
2. 掌握二次根式的性质。
【教学内容】1. 讲解二次根式的定义和性质。
2. 举例说明二次根式的性质的应用。
【教学活动】1. 通过几何画图软件或实际测量,让学生直观地理解二次根式。
2. 引导学生探索二次根式的性质。
【作业布置】1. 请学生运用二次根式的性质解决问题。
2.2 二次根式的运算【学习目标】1. 掌握二次根式的加减乘除运算方法。
2. 能够运用二次根式解决实际问题。
【教学内容】2. 举例说明二次根式在实际问题中的应用。
【教学活动】1. 通过例题,讲解二次根式的加减乘除运算方法。
2. 分组讨论,让学生尝试解决实际问题。
【作业布置】1. 请学生运用二次根式解决实际问题。
第三章:实数3.1 实数的概念及分类【学习目标】1. 了解实数的概念和分类。
2. 掌握实数间的运算规律。
【教学内容】1. 讲解实数的概念和分类。
2. 举例说明实数间的运算规律。
北师大版八年级数学上册第一章1.1探索勾股定理(教案)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,两条直角边的平方和等于斜边的平方。它是解决直角三角形相关问题的重要工具,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个实际直角三角形的边长,展示勾股定理在实际中的应用,以及它如何帮助我们解决问题。
5.激发学生的创新意识,鼓励学生在探索勾股定理的过程中,提出不同的观点和证明方法,培养创新思维。
这些核心素养目标旨在帮助学生全面发展,将所学知识内化为自身能力,为新教材要求下的数学学习奠定坚实基础。
三、教学难点与重点
1.教学重点
(1)掌握勾股定理的表达式:直角三角形两条直角边的平方和等于斜边的平方。
北师大版八年级数学上册第一章1.1探索勾股定理(教案)
一、教学内容
本节内容选自北师大版八年级数学上册第一章1.1节,主要探索勾股定理。内容包括:
1.了解勾股定理的起源,通过探究活动引导学生发现直角三角形三边的关系。
2.掌握勾股定理的表达式:直角三角形两条直角边的平方和等于斜边的平方。
3.学会运用勾股定理解决实际问题,如计算直角三角形中未知边的长度。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
(1)理解勾股定理背后的数学原理,如平方概念、直角三角形的性质等。
八年级数学上册1.1探索勾股定理第2课时验证勾股定理教案 新版北师大版
八年级数学上册1.1探索勾股定理第2课时验证勾股定理教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第一章“探索勾股定理”的目的是让学生了解勾股定理的发现过程,理解勾股定理的内涵,并能够运用勾股定理解决实际问题。
本节课是该章节的第一课时,主要让学生验证勾股定理。
二. 学情分析八年级的学生已经学习了平面几何的基本知识,对三角形、直角三角形等概念有一定的理解。
但他们对勾股定理的发现过程和证明方法可能还不够深入了解,因此需要通过本节课的教学,让学生从实践中感受勾股定理的真理,提高他们的数学思维能力。
三. 教学目标1.让学生了解勾股定理的发现过程,理解勾股定理的内涵。
2.培养学生运用几何图形进行推理和验证的能力。
3.提高学生对数学的兴趣和探索精神。
四. 教学重难点1.教学重点:让学生通过实际操作,验证勾股定理。
2.教学难点:引导学生理解并证明勾股定理。
五. 教学方法1.实践教学法:让学生通过实际操作,发现并验证勾股定理。
2.问题驱动法:教师提出问题,引导学生思考和探索。
3.小组合作学习:学生分组讨论,共同完成验证勾股定理的任务。
六. 教学准备1.准备三角形模型、直尺、圆规等教具。
2.制作课件,展示勾股定理的发现过程和证明方法。
七. 教学过程1.导入(5分钟)教师通过引入古希腊数学家毕达哥拉斯的故事,让学生了解勾股定理的发现过程,激发学生的学习兴趣。
2.呈现(10分钟)教师展示勾股定理的表述:直角三角形两条直角边的平方和等于斜边的平方。
然后提出问题:如何验证这个定理呢?3.操练(10分钟)学生分组讨论,运用教具和直尺,尝试构造直角三角形,并测量两条直角边和斜边的长度。
每组学生将自己的测量结果填入表格中。
4.巩固(5分钟)教师邀请几组学生汇报自己的测量结果,引导学生发现:不论直角三角形的直角边和斜边的长度如何变化,两条直角边的平方和总是等于斜边的平方。
5.拓展(5分钟)教师提出挑战性问题:如何证明这个结论对所有的直角三角形都成立呢?引导学生进一步思考和探索。
初中数学超纲却超级好用的定理
初中数学超纲却超级好用的定理在我们初中的数学学习中,常常会觉得有些定理看似复杂,实际上却能在生活中大显身手。
这就像是那些深藏不露的宝藏,挖掘出来后,哦,简直是美滋滋!今天,我们就来聊聊那些超纲却超级好用的定理,让你在课堂上轻松掌握,在生活中游刃有余。
1. 勾股定理1.1 什么是勾股定理?勾股定理,听起来高大上,其实说白了就是一个三角形的“秘密武器”。
它告诉我们,直角三角形的两条直角边的平方和,等于斜边的平方。
简单来说,如果你把直角三角形的两条短边分别叫做a和b,斜边叫做c,那么就有这个公式:a² + b² = c²。
听起来是不是很简单?1.2 勾股定理的日常应用那么,这个定理在生活中有什么用呢?首先,想象一下你在公园里,看到一条漂亮的直角滑梯,底边是3米,高边是4米,怎么才能知道滑梯的长度呢?没错,咱们用勾股定理来解决!3² + 4² = 9 + 16 = 25,斜边c就是√25 = 5米。
这样一来,玩滑梯时就知道自己不需要担心它的安全性啦,哈哈!2. 平行线的性质2.1 平行线的奥秘平行线的性质,听起来很简单,但它的用处可是相当广泛的。
比如,若两条平行线被一条横线截断,那么就会产生一些特定的角。
这些角之间的关系,可谓是千丝万缕。
我们常见的有同位角、内错角等,它们可都是数学世界里的“好朋友”!2.2 在生活中的运用我们在生活中随处可见平行线,比如铁路、马路的两旁。
在建筑设计中,建筑师们总是要用到这些性质,确保房屋的稳固和美观。
而且,大家知道吗?如果你想在家里挂画,画的上边和下边要保持平行,这样看起来才不会让人觉得晕乎乎的哦!所以说,平行线的性质不单在书本上用,实际上也随时随地影响着我们的生活。
3. 中点定理3.1 中点定理是啥?中点定理,这名字听起来像是个复杂的数学概念,但其实它很简单。
它告诉我们,如果在一条线段上找到中点,然后把它连到另一个点,形成的两个小三角形就会有一些相同的性质,比如面积、形状等。
衡水市第五中学八年级数学上册 第一章 勾股定理 1.1 探勾股定理第2课时 验证勾股定理教学课件 新
9.(9分)利用完全平方公式计算 : (1)2012 ; 解 : 原式=(200+1)2 =40 000+2×200+1 =40 000+401 =40 401 (2)99.82 ; 解 : 原式=(100-0.22) =10 000-0.4×100+0.22=9 960.04
根据勾股定理得
92122 x2,
解得x=15, 15+9=24(m).
答 : 旗杆原来高24 m.
9m
12 m
4.如下图 , 某住宅小区在施工过程中留下了一块空地〔图中的四边形ABCD〕 , 经测量 , 在四边形ABCD中 , AB=3m , BC=4m , AD=13m , ∠B=∠ACD=90°.小区为美化环境 , 欲在空地上铺草坪 , 已知草坪每平方米 100元 , 试问铺满这块空地共需花费多少元 ?
按照前面的规律 , 那么(a+b)5=a_5_+__5_a_4_b_+__1__0_a_3b__2+__1__0_a_2_b_3_+__5_a_b_4_+__b_5__.
(三)解答题(共44分) 14.(12分)计算 : (1)(a-1)(a+1)(a2-1) ; 解 : 原式=(a2-1)(a2-1) =(a2)2-2a2+1=a4-2a2+1
∴ a2+b2=c2
; (a+b)2
b
ac
c
b a
a
cb ca
b
方式小结 : 我们利用拼图的方式 , 将形的问题与数的问题结合起来 , 再进行整式 运算 , 从理论上验证了勾股定理.
1.1 勾股定理 吕恒富
E
B
E
B
17厘米
D
C 15厘米
AD
6、一个边长为4的正方形剪去 一个角后,剩下的梯形如图所 示,求这个梯形的周长。
C A1 D 4
B F4
A E
C
7、如图,强大的台风使得一根旗杆在 离地面9米处断裂,旗杆顶部落在离旗 杆底部12米处,旗杆折断之前有多高?
9米 12米
1
1
美丽的勾股树
A
C
B
运用勾股定理
可解决直角三角形中边的计算或证明
例题 7
已知:如图,等腰△ABC 的
周长是32cm,底边长是12cm。
A
(1)求高AD的长;
(2)求S△ABC。.
B
D
C
运用勾股定理
可解决直角三角形中边的计算或证明
例8
已知:四边形ABCD中,∠DAB= ∠DBC=90º
D
AD=3,AB=4,BC=12
小明的妈妈买了一部29英寸(74厘 米)的电视机。小明量了电视机的屏 幕后,发现屏幕只有58厘米长和46厘 米宽,他觉得一定是售货员搞错了。 你能解释这是为什么吗?
我们通常所说的29 英寸或74厘米的电视 机,是指其荧屏对角 线的长度
2.1探索勾股定理
ac b
a2+b2=c2
吕恒富
中国最早的一部数学著作——《周髀算经》的开 头,记载着一段周公向商高请教数学知识的对话 --“勾股术”,并且还记载了勾股定理的一般 形式。
x 6
8
x
5 13
解:由勾股定理得:
x2=62+82 x2 =36+64 x2 =100 ∵x>0 ∴ x=10
∵ x2+52=132 ∴ x2=132-52
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从而利用图1验证了勾股定理.
活动3: 自主探究,完成验证二.
教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?
(一)知识与技能
掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.
(二)过程与方法
经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.
(三)情感、态度与价值观
在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.
第二环节:预习反馈、点拨质疑
预习反馈
第三环节:分组合作、探究解疑
活动1: 教师导入,小组拼图.
教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.
活动2:层层设问,完成验证一.
展示其中两个图形:
图1图2
在此基础上教师提问:
(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);
(1)观察下面两幅图:
(2)填表:
A的面积
(单位面积)
B的面积
(单位面积)
C的面积
(单位面积)
左图
右图
(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)
图1 图2 图3
(4)分析填表的数据,你发现为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
2、进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.
(三)情感、态度与价值观
在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.
教学重点
了解勾股定理的由来并能用它解决一些简单问题。
教学难点
大保当初级中学八年级数学集体教案
课题
第一章勾股定理
1.探索勾股定理(1)
主备人
使用人
审核人
教学目 标
(一)知识与技能
用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.
(二)过程与方法
1、让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.
第五环节:当堂检测、全面达标
随堂练习
第六环节:课堂小结
内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.
第七环节:布置作业
A:1、2、3B:1、2 C:1
教学反 思
数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)
第五环节:当堂检测、全面达标
随堂练习
第六环节:课堂小结
师生共同总结:
1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用 , , 分别表示直角三角形的两直角边和斜边,那么 .
2.方法:(1)观察—探索—猜想—验证—归纳—应用;
(2)“割、补、拼、接”法.
3.思想:(1)特殊—一般—特殊;
(2)数形结合思想.
第七环节:布置作业
A:1、2、4B:1、2 C1、2
教学反思
大保当初级中学八年级数学集体教案
课题
第一章勾股定理
1.探索勾股定理(2)
主备人
柳美玲、刘志飞
使用人
审核人
教学目 标
(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)
第四环节:展示分享、点评升华
1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c2
2.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长。
例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?
教学重 点
用面积法验证勾股定理,应用勾股定理解决简单的实际问题
教学难 点
教学程 序
集体备课内容
个案补 充
第一环节:导入新课、明确目标
(1)勾股定理的内容是什么?
(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.
第四环节:展示分享、点评升华
议一议
内容:(1)你能用直角三角形的边长 , , 来表示上图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?
勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用 , , 分别表示直角三角形的两直角边和斜边,那么 .
勾股定理的发现。
教学程序
集体备课内容
个案补充
第一环节:导入新课、明确目标
2002年世界数学家大会在我国北京召开,显示本届世界数学家大会的会标: 会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)
第二环节:预习反馈、点拨质疑
预习反馈
第三环节:分组合作、探究解疑
1.探究活动一
内容:显示如下地板砖示意图,引导学生从面积角度观察图形:
问:你能发现各图中三个正方形的面积之间有何关系吗?
归纳发现:
结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
2.探究活动二
内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?