运算放大器及其应用
第11章 集成运算放大器及其应用
![第11章 集成运算放大器及其应用](https://img.taocdn.com/s3/m/dbe7c3fc0242a8956bece4d5.png)
上式表明,差动放大电路的差模电压放大倍数和 单管放大电路的电压放大倍数相同。多用一个放大管 后,虽然电压放大倍数没有增加,但是换来了对零漂 的抑制。这正是差动放大电路的优点。
差动放大电路对共模输入信号的放大倍数叫做共 模电压放大倍数,用Auc表示,可以推出,当输入共 模信号时,Auc为
Au c u o u C1 u C 2 0 0 ui c ui1 ui1
由于集成运放的电压放大倍数Ao d和输入电阻Ri d 都非常大(理想情况下,两者约等于∞),于是可以 推得 u u
i i 0
注意:“虚短”和“虚断”是理想运放工作在线 性区时的两个重要特点。这两个特点常常作为今后分 析运放应用电路的出发点,因此必须牢固掌握。
(2)集成运放工作在非线性区的特性 如果运放的工作信号超出了线性放大范围,则输 出电压与输入电压不再满足式(11-1),即uo不再随 差模输入电压(u+ - u -)线性增长,uo将达到饱和。 此时集成运放的输出电压uo只有两种取值:或等于运 放的正向最大输出电压+UOM,或等于其负向最大输 出电压-UOM,具体为 当u + >u - 时,uo = +UOM 当u + <u - 时,uo = -UOM 另外,因为集成运放的输入电阻Ri d很大,故在 非线性区仍满足输入电流等于零,即式(11-3)对非 线性工作区仍然成立。
有时,为了简化起见,常常不把恒流源式差动放 大电路中恒流管T3的具体电路画出,而采用一个简化 的恒流源符号来表示,如图11-7所示。
二、输出级——功率放大电路 集成运放的输出级是向负载提供一定的功率,属 于功率放大,一般采用互补对称的功率放大电路。 1. 功率放大电路的特点 (1)因为信号的幅度放大在前置电路中已经完成, 所以功率放大电路对电压放大倍数并无要求。由于射 极输出器的输出电流较大,能使负载获得较大输出功 率,并且它的输出电阻小,带负载能力强,因此通常 采用射极输出器作为基本的功率放大电路。不过单个 的射极输出器对信号正负半周的跟随能力不同,在实 用的功率放大电路中大多采用双管的互补对称电路形 式。
电工技术 第二章 集成运算放大器及其应用
![电工技术 第二章 集成运算放大器及其应用](https://img.taocdn.com/s3/m/0f0408c75fbfc77da269b1ee.png)
IC
β
U O = U C1 − U C2 = 0
总目录 章目录 返回 上一页 下一页
二. 差动放大电路工作原理 1. 差模信号
+VCC
ui1=-ui2 =ui/2 若ui1 ↑,ui2 ↓ → ib1 ↑,ib2 ↓ →ie1 ↑,ie2 ↓
+
R Rc c
T1 u i1 + ui1
u ++uo ouo1 -uo1 - E IRe
33 MHz
第一节 直接耦合
直接耦合:将前级的输出端直接接后级的输入端。 直接耦合:将前级的输出端直接接后级的输入端。 可用来放大缓慢变化的信号或直流量变化的信号。 可用来放大缓慢变化的信号或直流量变化的信号。 +UCC R1 R2 + ui – T1 RC1 RC2 + T2 RE2 uo –
总目录 章目录 返回 上一页 下一页
Rb1=Rb2= Rb
几个基本概念
差动放大电路一般有两个输入端: 1. 差动放大电路一般有两个输入端: 双端输入——从两输入端同时加信号。 从两输入端同时加信号。 双端输入 从两输入端同时加信号 单端输入——仅从一个输入端对地加信号。 仅从一个输入端对地加信号。 单端输入 仅从一个输入端对地加信号 2. 差动放大电路可 以有两个输出端。 以有两个输出端。 双端输出——从C1 从 双端输出 输出。 和C2输出。 单端输出——从C1或 从 单端输出 C2 对地输出。 对地输出。
I Re − 0.7V − ( −VEE ) = Re
T1 + ui1 -
+ uo
-
uo2 -
+
T2 + ui2 -
EE 1 I C1 =I C2 = I C ≅ I Re 2 U CE1 = U CE2 = U C − U E = VCC − I C R C − ( − 0.7)
电工与电子技术第三章 集成运算放大器及其应用
![电工与电子技术第三章 集成运算放大器及其应用](https://img.taocdn.com/s3/m/7706c5f5d15abe23482f4db6.png)
各级工作点相互影响 适于放大直流或变化缓慢的信号 电压放大倍数为各级放大倍数之积 零点漂移
零点漂移---当输入信号为零时,输出端电压 偏离原来的起始电压缓慢地无规则的上下漂动, 这种现象叫零点漂移。
产生原因---温度变化、电源电压的波动、电 路元件参数的变化等等。
第一级产生的零漂对放大电路影响最大。
∴ i 1= i f
即 ui/R1=-uo/ Rf
uo、ui 符合比例关系,负号表示输出输入电 压变化方向相反。
电路中引入深度负反馈, 闭环放大倍数Auf 与运放的Au无关,仅与R1、Rf 有关。
当R1=Rf 时, uo=-ui ,该电路称为反相器。 R2--平衡电阻 同相端与地的等效电阻 。其作用是保持输入 级电路的对称性,以保持电路的静态平衡。
共模信号--极性相同,幅值相同的信号。
u i1= u i2
差模输入(信号)
ui1 ui2 ui 2
IC1 IC2
UCE1 UCE2 u0 UCE1 Δ UCE2 2 UCE1
Ad 2 UCE1 / ui 2 UCE1 / 2ui1 UCE1 / ui1
i3 ui3 R3
i f u0 Rf
ui1 R1 i1
Rf if
ui2 R2 i2 ui3 R3 i3
- + +∞
uo
RP
u0 ui1 ui 2 ui 3 R f R1 R2 R3
uo R f ( ui1 ui2 ui3 ) R1 R2 R3
若 R1 R2 R3 R f
AOUi
uo
I-≈I+ ≈0
二、Rf if
ui R1 i1 R2
电子课件电子技术基础第六版第三章集成运算放大器及其应用
![电子课件电子技术基础第六版第三章集成运算放大器及其应用](https://img.taocdn.com/s3/m/c53b10a2dc3383c4bb4cf7ec4afe04a1b071b037.png)
集成运算放大器的组成框图
(1)输入级 通常是具有较大输入电阻和一定放大倍数的差动放大电路 ,利用它可以使集成运算放大器获得尽可能高的共模抑制比 。 (2)中间级 中间级的作用是使集成运算放大器具有较强的放大能力, 通常由多级共射极放大器构成。
一、零点漂移
放大直流信号和缓慢变化的信号必须采用直接耦合方式, 但简单的直接耦合放大器,常会发生输入信号为零输出信号 不为零的现象。产生这种现象的原因很多,如温度的变化、 电源电压的波动、电路元件参数的变化等,都会使静态工作 点发生缓慢变化,该变化量被逐级放大,便会使放大器输出 端出现不规则的输出量,这种现象称为“零点漂移”,简称“零 漂”。
三、集成运算放大器的主要参数
为了表征集成运算放大器的性能,生产厂家制定了很多参 数,作为合理选择和正确使用集成运算放大器的依据。下面 介绍几项主要的参数,见表。
集成运算放大器的主要参数
集成运算放大器的主要参数
§3-3 集成运算放大器的基本电路
学习目标
1. 了解理想集成运算放大器的基本概念。 2. 了解集成运算放大器线性工作区和非线性工作区的 特性及工作特点。 3. 理解集成运算放大器“虚短”“虚断”的概念。 4. 了解集成运算放大器电路直流平衡电阻的配置。
2. 消除自激振荡 集成运算放大器是多级放大器,具有极高的电压放大倍数 ,但它极易产生自激振荡,使运算放大器不能正常工作。为 了防止自激振荡的产生,通常按产品手册要求,在补偿端子 上接指定的补偿电容或 RC 移相网络,以便消除自激振荡现 象。
四、集成运算放大器的保护 电路
1. 防止电源极性接反 为了防止电源极性接反而损坏集 成运算放大器,可利用二极管的单向 导电特性来控制,如图所示,二极管 V1、V2 串入集成电路直流电源电路 中,当电源极性接反时,相应的二极 管便截止,从而保护了集成电路。 防止电源极性接反保护电路
集成运算放大器及其应用
![集成运算放大器及其应用](https://img.taocdn.com/s3/m/34cfc543a66e58fafab069dc5022aaea998f41c5.png)
电路、电压传播特征如上图
可经过一种例题进一步了解
单门限比较器虽然构造简朴,但抗干扰能 力差,采用滞回比较器(也叫施密特触发器) 可很好处理这一问题
滞回比较器电路如左上图,可求出电压传播特征如 右上图(解释)
第8章第4课
常采用传递函数(或转移
函数)来分析电路旳频率 特征。
相频特 征函数
幅频特 征函数
电路旳输出电压与输入电 压旳比值称为电路旳传递函 数,用T(jω)表达,它是 一种复数
由相量图可写出RC 低通滤波器旳传递 函数(解释)
相频特 征函数
幅频特 征函数
由幅频特征函数、相频特征函数 可做出电路旳幅频特征曲线和相 频特征曲线如左图(解释)
第8章第2课
在此次课中,我们将结协议相百分比运算电路、 差动百分比运算电路简介怎样用集成运放构成 放大电路及信号旳加、减运算。
一.反相百分比运算电路
放大功能是集成运放 旳基本功能,利用集 成运放可以便构成多 种要求旳放大器
同相(回忆)、反相百
分比运算电路是集成运放 线性应用旳基础电路。
记住我!
电压输出体现式如左 输出uo与输入ui为线性百分比 关系,相位相反,故称为反相百 分比运算电路
显然,集成运放旳输出不可能无限制旳增长,当积 分时间足够长时,集成运放将进入非线性区(如图 8-3-5),输出与输入不再保持积分关系
二.微分运算电路
微分运算是积分运算旳逆运算,只需将图8-3-4中反 相输入端旳电阻和反馈电容调换位置,就成为微分 运算电路
由上式,左图示电路实 现了输出uO对输入信 号ui旳微分
五.电压比较器
理想运放开环工作时,其输出电压uo只有两种状态: Uopp或-Uopp(Uopp为最大输出电压),由此可构 成电压比较器
运算放大器 积分器原理
![运算放大器 积分器原理](https://img.taocdn.com/s3/m/1b80eb65e3bd960590c69ec3d5bbfd0a7956d5e4.png)
运算放大器积分器原理运算放大器是一种电子设备,它具有放大输入信号的功能。
而积分器则是运算放大器的一种应用,它可以对输入信号进行积分运算。
本文将介绍运算放大器和积分器的原理及其应用。
一、运算放大器的原理运算放大器是一种具有高放大倍数和宽带宽的放大器。
它通常由一个差分放大器和一个输出级组成。
差分放大器负责放大输入信号,输出级将差分放大器的输出信号进行放大,并输出到负载上。
运算放大器的输入端通常有两个输入端子,分别为非反相输入端和反相输入端。
通过对这两个输入端的电压进行调节,可以控制运算放大器的放大倍数和相位。
二、积分器的原理积分器是一种对输入信号进行积分运算的电路。
在积分器电路中,运算放大器的反相输入端接地,非反相输入端与输出端相连。
通过这种连接方式,输入信号经过运算放大器放大后,又经过电容器的积分作用,形成输出信号。
积分器的输出信号是输入信号的积分值,通过调节输入信号的频率和振幅,可以实现对输出信号的控制。
三、积分器的应用积分器在实际应用中具有广泛的用途。
以下是一些常见的应用场景:1. 信号处理:积分器可以对输入信号进行积分运算,实现对信号的平滑处理和去噪处理。
例如,在音频信号处理中,积分器可以对音频信号进行去除低频噪声的处理,提高音频信号的质量。
2. 电压控制:积分器可以通过调节输入信号的频率和振幅,实现对输出电压的控制。
例如,在电压控制振荡器中,积分器可以对输入电压进行积分运算,实现对振荡频率的调节。
3. 电流控制:积分器可以通过对输入电流进行积分运算,实现对输出电流的控制。
例如,在电流控制驱动器中,积分器可以对输入电流进行积分运算,实现对电机的速度和位置的控制。
4. 信号发生器:积分器可以用作信号发生器,通过调节输入信号的频率和振幅,可以产生各种不同的输出信号。
例如,在频率合成器中,积分器可以产生高精度的频率合成信号。
总结:运算放大器是一种具有高放大倍数和宽带宽的放大器,积分器则是运算放大器的一种应用,可以对输入信号进行积分运算。
运放的各种用法
![运放的各种用法](https://img.taocdn.com/s3/m/9f2d3aacb9f67c1cfad6195f312b3169a551ea5b.png)
运放的各种用法
运放是指运放放大器,它是一种电子元件,可以放大电信号。
它常用于音频放大、电路缓冲以及信号放大等应用。
以下是运放的一些常见用法:
1. 音频放大:运放可以用于放大音频信号,例如在音响系统中,将低电平的音频信号放大到适宜的电平。
2. 滤波器:运放可以用于构建滤波器电路,实现对特定频段的信号进行放大或削弱,用于音频均衡或降噪等应用。
3. 比较器:运放可以用作比较器,将输入信号与参考电压进行比较,并输出高或低电平信号,常用于与其他电路的逻辑判断。
4. 仪器放大器:运放可以用作仪器放大器,放大微弱的信号以便于观测、测量。
例如用于放大心电图、体温计等传感器信号。
5. 双运放电压跟随器:双运放电压跟随器可以用来提供稳定的电源电压,适用于需要稳定电压的电路。
6. 缓冲器:运放可以用作电路缓冲器,将输入电路和输出电路隔离,避免对输入电路造成负载。
7. 数模转换器:运放可以用于将模拟信号转换成数字信号,常用于模拟信号的数字化处理。
需要注意的是,运放应用的具体方法和电路设计会受到具体要求的影响,因此在实际中需要根据具体情况进行选择和设计。
运算放大器原理及应用
![运算放大器原理及应用](https://img.taocdn.com/s3/m/c80c9e7e27284b73f242502c.png)
集成运算放大器将电路的元器件和连线制作在同一硅片上,制成了集成电路。
随着集成电路制造工艺的日益完善,目前已能将数以千万计的元器件集成在一片面积只有几十平方毫米的硅片上。
按照集成度(每一片硅片中所含元器件数)的高低,将集成电路分为小规模集成电路(简称SSI) ,中规模集成电路(简称MSI), 大规模集成电路(简称LSI)和超大规模集成电路(VLSI)。
运算放大器实质上是高增益的直接耦合放大电路,集成运算放大器是集成电路的一种,简称集成运放,它常用于各种模拟信号的运算,例如比例运算、微分运算、积分运算等,由于它的高性能、低价位,在模拟信号处理和发生电路中几乎完全取代了分立元件放大电路。
集成运放的应用是重点要掌握的内容,此外,本章也介绍集成运放的主要技术指标,性能特点与选择方法。
一、集成运算放大器简介1. 集成运放的结构与符号1. 结构集成运放一般由4部分组成,结构如图1所示。
图1 集成运放结构方框图其中:输入级常用双端输入的差动放大电路组成,一般要求输入电阻高,差摸放大倍数大,抑制共模信号的能力强,静态电流小,输入级的好坏直接影响运放的输入电阻、共模抑制比等参数。
中间级是一个高放大倍数的放大器,常用多级共发射极放大电路组成,该级的放大倍数可达数千乃数万倍。
输出级具有输出电压线性范围宽、输出电阻小的特点,常用互补对称输出电路。
偏置电路向各级提供静态工作点,一般采用电流源电路组成。
2. 特点:142○1 硅片上不能制作大容量电容,所以集成运放均采用直接耦合方式。
○2 运放中大量采用差动放大电路和恒流源电路,这些电路可以抑制漂移和稳定工作点。
○3 电路设计过程中注重电路的性能,而不在乎元件的多一个和少一个 ○4 用有源元件代替大阻值的电阻 ○5 常用符合复合晶体管代替单个晶体管,以使运放性能最好 3. 集成运放的符号从运放的结构可知,运放具有两个输入端v P 和v N 和一个输出端v O ,这两个输入端一个称为同相端,另一个称为反相端,这里同相和反相只是输入电压和输出电压之间的关系,若输入正电压从同相端输入,则输出端输出正的输出电压,若输入正电压从反相端输入,则输出端输出负的输出电压。
第6章 集成运算放大器及其应用
![第6章 集成运算放大器及其应用](https://img.taocdn.com/s3/m/cac2f01efc4ffe473368abae.png)
6.3 .
一、比例运算电路
集成运算放大器的线性应用
1.反相比例运算电路 反相比例运算电路如下图所示
根据理想运放在线性区“虚短”和“虚断”的特点,有 输入电压ui 通过电阻R1作用于集成运放的反相输入端,故输出电压uo与ui 反 相;电阻Rf 跨接在集成运放的输出端和反相输入端,引入了电压并联负反馈; 同相输入端通过电阻R’ 接地,R’ 为补偿电阻,以保证集成运放输入级差分放 大电路的对称性,其值为ui =0时反相输入端总等效电阻,即R’=R1∥ Rf 。 集成运放两个输入端的电位均为零,但由于它们并没有接地,故称为“虚 地”。节点N的电流方程为 该电路的闭环电路放大倍数为 由于N点虚地(u-=0),整理得出 A= uo /ui = -Rf/ R1 若Rf= R1 ,则A=1,即uo =-ui ,这时电路为倒相器。 uo 与ui 成比例关系,比例系数为-Rf/ R1负号表示uo 与ui 反相。 1
6.2 放大电路中的负反馈 .
一、反馈的基本概念 所谓反馈,就是指连接放大电路输入回路和放大电路输出回路的电路(或元 件),利用反馈元件将输出信号(电压或电流,全部或部分)引回到放大电路输入 回路中,来影响或改变受控元件的净输入信号(电压或电流)的大小或波形,从 而控制输出信号的大小及波形。将放大电路输出端的电压或电流,通过一定的 方式返回到放大器的输入端,对输入端产生作用或影响,称为反馈。 反馈放大电路的方框图如下图所示。
•
• 放大器的输出信号为 由上式可知,放大器一旦引入深度负反馈,其闭环放大倍数仅与反馈系数 F 有关,而与放大器本身的参数无关。 反馈放大器的放大倍数At(又称为闭环增益)为
其中, 称为反馈深度,是描述反馈强弱的物理量。可见,放大器引 入负反馈后,放大器的放大倍数下降。如果 >>1,则一般认为反馈 已经加得很深,这时的反馈称为深度负反馈,此时上式可简化为
运放应用大全
![运放应用大全](https://img.taocdn.com/s3/m/930d2c986bec0975f465e258.png)
1.集成运算放大器的主要应用集成运算放大器的两个输入端分别为同相输入端u P 和反相输入端u N ,这里的“同相”和“反相”是集成运算放大器的输入电压与输出电压u o 之间的相位关系,其符号及外观如图1.1所示。
从外部看,可以认为集成运算放大器是一个双端输入、单端输出、具有高差模放大倍数A od 、高输入电阻、低输出电阻、能较好地抑制温漂的差动放大电路。
集成运算放大器加上负反馈回路,使其具有各种各样的特性,实现各种各样的电路功能。
集成运算放大器的主要应用:DC 放大器----DC ~低频信号的放大。
音频放大器----数十H Z ~数十kH Z 的低频信号的放大器。
视频放大器----数十H Z ~数十MH Z 的视频信号的放大器。
有源滤波器----低通滤波器、高通滤波器、带通滤波器、带阻滤波器。
模拟运算----模拟信号的加法、减法、微分、积分等运算。
信号的发生和转换----正弦波振荡电路、矩形波发生电路、电压比较器、电压—电流转换电路等。
2.集成运算放大器的主要性能指标(1) 开环差模增益A od在集成运算放大器无外加反馈时的差模放大倍数称为开环差模增益,记作A od 。
A od =△u o /△(u P -u N ),常用分贝(dB )表示,其分贝数为20lg|A od |。
通用型集成运算放大器A od 通常在105左右或用102V/mV 表示,即100dB 左右。
(2)共模抑制比K CMR共模放大倍数A oc 如图2.1所示,A oc =△u o /△u ic 。
共模抑制比等于差模放大倍数与共模放大倍数A oc 之比的绝对值,即K CMR =|A od /A oc |,常用分贝表示,其数值为20lg K CMR 。
K CMR 越大越好,K CMR 越大对温度影响的抑制能力就越大。
图1.1 集成运算放大器的符号及外观图2.1 共模放大倍数(3)差模输入电阻r idr id 是集成运算放大器两个输入端之间的差模输入电压变化量与由它所引起的差模输入电流之比。
运算放大器的原理简介
![运算放大器的原理简介](https://img.taocdn.com/s3/m/7f4da52b5b8102d276a20029bd64783e09127d12.png)
运算放大器运算放大器 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,能把输入讯号的电压或功率放大的装置,由电子管或晶体由电子管或晶体管、电源变压器和其他电器元件组成。
用在通讯、广播、雷达、电视、自动控制等各种装置中。
原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。
高频功率放大器是通信系统中发送装置的重要组件。
按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。
因此又称为非调谐功率放大器。
高频功率放大器是一种能量转换器高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理运算放大器原理 运算放大器原理运算放大器原理运算放大器(Operational Amplifier,简称OP 、OP A 、OPAMP )是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, Differential-in, single-ended single-ended single-ended output output )的高增益(gain )电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。
因而得名。
一个理想的运算放大器必须具备下列特性:一个理想的运算放大器必须具备下列特性:一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、无限大的输入阻抗、无限大的输入阻抗、等于等于零的输出阻抗、零的输出阻抗、无限大的开回路增益、无限大的开回路增益、无限大的开回路增益、无限大的共模排斥比的部分、无限大的共模排斥比的部分、无限大的共模排斥比的部分、无限大的频无限大的频宽。
运放应用大全
![运放应用大全](https://img.taocdn.com/s3/m/2a7a01b427d3240c8447efe4.png)
1•集成运算放大器的主要应用集成运算放大器的两个输入端分别为同相输入端U p和反相输入端U N,这里的“同相”和“反相”是集成运算放大器的输入电压与输出电压U o之间的相位关系,其符号及外观如图1.1所示。
从外部看,可以认为集成运算放大器是一个双端输入、单端输出、具有高差模集成运算放大器加上负反馈回路,使其具有各种各样的特性,实现各种各样的电路功能。
集成运算放大器的主要应用:DC放大器----DC〜低频信号的放大。
音频放大器----数十H z〜数十kH z的低频信号的放大器。
视频放大器----数十H z〜数十MH z的视频信号的放大器。
有源滤波器----低通滤波器、高通滤波器、带通滤波器、带阻滤波器。
模拟运算----模拟信号的加法、减法、微分、积分等运算。
信号的发生和转换----正弦波振荡电路、矩形波发生电路、电压比较器、电压一电流转换电路等。
2•集成运算放大器的主要性能指标(1)开环差模增益A od在集成运算放大器无外加反馈时的差模放大倍数称为开环差模增益,记作A°d。
A od=^ u o/ △( U P-U N ),常用分贝(dB)表示,其分贝数为20lg|A°d|。
通用型集成运算放大器A od通常在105左右或用102V/mV表示,即100dB左右。
(2)共模抑制比K CMR共模放大倍数A oc如图2.1所示,A oc= △ u o/△ u ic。
共模抑制比等于差模放大倍数与共模放大倍数A oc之比的绝对值,即K cMR = |A od/A oc|,常用分贝表示,其数值为20lg K CMR。
K CMR越大越好,K CMR越大对温度影响的抑制能力就越大。
K CMR =|A od/A oc|。
K CMR越大越好,K CMR越大对温度影响的抑制能力就越大。
图2.1共模放大倍数持别晏示⑶差模输入电阻r idr id 是集成运算放大器两个输入端之间的差模输入电压变化量与由它所引起的差模输入 电流之比。
第三章 差动放大电路及集成运算放大器 第三节集成运算放大器及其应用
![第三章 差动放大电路及集成运算放大器 第三节集成运算放大器及其应用](https://img.taocdn.com/s3/m/bd7423499a6648d7c1c708a1284ac850ad020480.png)
差动放大电路及集成运算放大器
3.3.3.4 差模输入电阻rid
是指运放在输入差模信号时的输入电阻。对信号源来说,
差模输入电阻rid的值越大,对其影响越小。理想运放的rid
为无穷大。
3.3.3.5 开环输出电阻ro
运放在开环状态且负载开路时的输出电阻。其数值越小,
带负载的能力越强。理想运放的ro = 0。
i11
ui1 R11
;i12
ui 2 R12
该参数表示运放两个输入端之间所能承受的最大差模电 压值,输入电压超过该值时,差动放大电路的对管中某侧的 三极管发射结会出现反向击穿,损坏运放电路。运放μA741 的最大差模输入电压为30V。
差动放大电路及集成运算放大器
3.3.3.2 最大共模输入电压Uicmax
这是指运算放大器输入端能承受的最大共模输入电压。 当运放输入端所加的共模电压超过一定幅度时,放大管将退 出放大区,使运放失去差模放大的能力,共模抑制比明显下 降。运放μA741在电源电压为±15V时,输入共模电压应在 ±13V以内。
如果输入信号从同相输入端引入,运放电路就成了同相 比例运算放大电路。如图3-20所示。根据理想运算放大器的 特性:u u ui i1 i f 得:
i1
u R1
ui R1
if
u uo RF
ui uo RF
因而: uo
1
RF R1
ui
Auf
uo ui
1
RF R1
差动放大电路及集成运算放大器
该电路的反馈类型为串联电.3.4.3 反相加法器 如果在反相输入比例运算电路的输入端增加若干输入支
路,就构成反相加法运算电路,也称求和电路,如图3-22所 示。
集成运算放大器及其应用
![集成运算放大器及其应用](https://img.taocdn.com/s3/m/6fee739c6429647d27284b73f242336c1eb930aa.png)
集成运算放⼤器及其应⽤第5章集成运算放⼤器及其应⽤在半导体制造⼯艺的基础上,把整个电路中的元器件制作在⼀块硅基⽚上,构成具有特定功能的电⼦电路,称为集成电路。
集成电路具有体积⼩,重量轻,引出线和焊接点少,寿命长,可靠性⾼,性能好等优点,同时成本低,便于⼤规模⽣产,因此其发展速度极为惊⼈。
⽬前集成电路的应⽤⼏乎遍及所有产业的各种产品中。
在军事设备、⼯业设备、通信设备、计算机和家⽤电器等中都采⽤了集成电路。
集成电路按其功能来分,有数字集成电路和模拟集成电路。
模拟集成电路种类繁多,有运算放⼤器、宽频带放⼤器、功率放⼤器、模拟乘法器、模拟锁相环、模/数和数/模转换器、稳压电源和⾳像设备中常⽤的其他模拟集成电路等。
在模拟集成电路中,集成运算放⼤器(简称集成运放)是应⽤极为⼴泛的⼀种,也是其他各类模拟集成电路应⽤的基础,因此这⾥⾸先给予介绍。
5.1 集成电路与运算放⼤器简介5.1.1 集成运算放⼤器概述集成运放是模拟集成电路中应⽤最为⼴泛的⼀种,它实际上是⼀种⾼增益、⾼输⼊电阻和低输出电阻的多级直接耦合放⼤器。
之所以被称为运算放⼤器,是因为该器件最初主要⽤于模拟计算机中实现数值运算的缘故。
实际上,⽬前集成运放的应⽤早已远远超出了模拟运算的范围,但仍沿⽤了运算放⼤器(简称运放)的名称。
集成运放的发展⼗分迅速。
通⽤型产品经历了四代更替,各项技术指标不断改进。
同时,发展了适应特殊需要的各种专⽤型集成运放。
第⼀代集成运放以µA709(我国的FC3)为代表,特点是采⽤了微电流的恒流源、共模负反馈等电路,它的性能指标⽐⼀般的分⽴元件要提⾼。
主要缺点是内部缺乏过电流保护,输出短路容易损坏。
第⼆代集成运放以⼆⼗世纪六⼗年代的µA741型⾼增益运放为代表,它的特点是普遍采⽤了有源负载,因⽽在不增加放⼤级的情况下可获得很⾼的开环增益。
电路中还有过流保护措施。
但是输⼊失调参数和共模抑制⽐指标不理想。
第三代集成运放代以⼆⼗世纪七⼗年代的AD508为代表,其特点使输⼊级采⽤了“超β管”,且⼯作电流很低。
运算放大器作用通俗讲解
![运算放大器作用通俗讲解](https://img.taocdn.com/s3/m/db2f4a9785254b35eefdc8d376eeaeaad1f31636.png)
运算放大器作用通俗讲解
运算放大器(简称“运放”)是一种具有很高放大倍数的电路单元。
在实际电路中,通常结合反馈网络共同组成某种功能模块。
它是一种带有特殊耦合电路及反馈的放大器,其输出信号可以是输入信号加、减或微分、积分等数学运算的结果。
由于早期应用于模拟计算机中用以实现数学运算,因而得名“运算放大器”。
通俗来说,运算放大器就像一个“转换器”或者“处理器”,能够把输入的信号按照一定的规则和算法进行放大、缩小、相加、相减等处理,并将结果输出。
它广泛应用于各种电子设备中,例如音响设备、通信设备、传感器等等。
通过使用运算放大器,人们可以更好地控制和调节电子设备的性能和参数,使其满足各种不同的需求。
具体来说,运算放大器的作用有很多种,例如:
1.放大信号:运算放大器可以将输入的微弱信号放大成较大的
信号,使其能够满足后续电路的需求。
2.比较信号:将两个信号进行比较,输出一个二进制信号(例
如高电平或低电平),类似于一个比较器。
3.积分和微分:运算放大器可以对输入的信号进行积分和微分
运算,输出一个与输入信号成比例的时间函数。
4.滤波:通过对输入信号进行滤波处理,可以滤除不必要的噪
声和干扰,提取出有用的信号成分。
5.振荡和调制:运算放大器可以用于产生振荡信号和调制信号,
用于各种频率合成和调制解调的应用。
总之,运算放大器是一种非常重要的电子元件,在各种电子设备和系统中得到了广泛的应用。
通过了解和掌握运算放大器的原理和作用,人们可以更好地设计和应用各种电子系统,提高其性能和稳定性。
第四章 集成运算放大器各种运用
![第四章 集成运算放大器各种运用](https://img.taocdn.com/s3/m/b76479ed4793daef5ef7ba0d4a7302768e996fbd.png)
的R1对应于当具用有R1内+R阻s代Rs替的,信为号了源不,使上电面压公增式益中 受Rs的太大影响,R1应该取大一些。但为了 保运证 放输 的入 内电 阻流,远对大于于通偏用置型电运流放,,RR11应 不宜远小超于过 数十千欧,反馈电阻RF越大则电压增益越大, 但要求反馈电流也应远大于偏置电流,所以 RF也不能取得过大,通常不宜超过兆欧。因 此,当Rs达到数千欧时,这个电路难以获得 高增益。另外,反相放大器是并联负反馈电
集成运放的基本组成
右图是运算放大器
的电路符号。它有两个 输入端和一个输出端。 反相输入端标“-”号, 同相输入端标“+”号。 输出电压与反相输入电 压相位相反,与同相输 入电压相位相同。此外 还有两个端分别接正、 负电源,有些集成运放 还有调零端和相位补偿 端。在电路中不画出。
二. 集成运算放大器的使用
由于集成运放具有性能稳定、可靠性高、寿命 长、体积小、重量轻、耗电量少等优点得到了广泛 应用。可完成放大、振荡、调制、解调及模拟信号 的各种运算和脉冲信号的产生等。
本章将介绍集成运放的基本知识、基本电路及 其主要应用。
主要内容
第一节 运算放大器的基本知识 第二节 运算放大器的基本电路 第三节 运算放大器的应用
因Ii=0,故i1≈if,因此 又因u+≈u-,因此
uo与ui之间的比例 关系也与运放本身
的参数无关,电路
精度和稳定度都很 高。KF为正表示uo 与ui同相,并且KF 总是大于或等于1, 这一点与反相放大 器不同。
当RF=0时KF=1,电路就变成电压 跟随器。
同相放大器实际上是一个电压串 联负反馈放大器,因此其输入阻抗高、 输出阻抗低,而且增益不受信号源内 阻的影响。该电路的不足是其共模抑 制比CMRR不太大。
运算放大器及其应用
![运算放大器及其应用](https://img.taocdn.com/s3/m/e4146950777f5acfa1c7aa00b52acfc789eb9f70.png)
第一节 员工的培训管理
一、员工培训基本理论
1.员工培训的含义
员工培训是指企业为了实现其战略发展目 标,满足培养人才、提升员工职业素质的 需要,采用各种方法对员工进行有计划的 教育、培养和训练的活动过程。
2.员工培训的原则
(1)学用一致原则。
(2)按需培训原则。 (3)多样性培训原则。
上一页 下一页
第二节 负反馈放大器
二、负反馈放大器的四种组态
图8-9 (c)所示电路,从输入端看,净输入id=ii-if,因此是并 联反馈。由虚地可看出Rf与R相当于并联的关系,所以反馈 量if=-Rio/(Rf+R)>0(由图中io的实际方向可知,io<0),因此既 是负反馈,又是电流反馈。综上所述,反馈组态为电流并联 负反馈。
输出级与负载相接,要求其输出电阻低,带负载能力强, 一般由互补对称电路或射极输出器组成
偏置电路的作用是为上述各级电路提供稳定和合适的偏置 电流,决定各级的静态工作点。
上一页 下一页
第一节 集成运算放大器
三、集成运算放大器的主要参数
开环电压放大倍数Auo 指运放在无外加反馈情况下的空载 电压放大倍数
上一页 返 回
第三节 运算放大器的线性和非线性 应用
一、运放的线性应用
1.信号运算电路 (1)同相比例运算 图8-15 (a)为同相比例运算电路,信号ui
电路中的运算放大器及其应用
![电路中的运算放大器及其应用](https://img.taocdn.com/s3/m/2f0e858609a1284ac850ad02de80d4d8d05a014b.png)
电路中的运算放大器及其应用电路是现代科技的基石,而其中的运算放大器更是电路中的重要组成部分。
运算放大器是一种特殊的电子放大器,具有高增益、高输入阻抗和低输出阻抗的特点。
它被广泛应用于各种电子设备中,包括计算机、音频设备、医疗仪器等。
在电路中,运算放大器有三个主要引脚,即非反馈输入端(负输入端)、反馈输入端(正输入端)和输出端。
当输入信号加在非反馈输入端上时,运算放大器会自动调整输出信号来使非反馈输入端和反馈输入端之间的电势差为零,这种特性被称为"虚拟接地"。
通过这个特性,运算放大器能将信号放大,并且因为输入阻抗很高,可以减少对输入信号源的影响。
运算放大器广泛应用于电路中的各种功能模块,其中包括比较器、积分器、微分器等。
比较器是一种将输入信号与参考电平进行比较的电路,常用于模拟信号的数字化处理。
通过运算放大器的高增益特性,比较器可以非常准确地判断输入信号与参考电平的关系,并输出相应的高或低电平。
积分器和微分器则用于对输入信号进行积分和微分运算。
积分器将输入信号进行积分运算,输出信号为输入信号在一定时间内的累积效果。
而微分器则将输入信号进行微分运算,输出信号为输入信号的变化率。
这两个功能模块在信号处理和控制系统中起到了重要作用,例如在机器人控制和自动驾驶系统中,往往需要对输入信号进行积分和微分运算来实现精确的控制。
除了基本的功能模块,运算放大器还可以用于实现其他高级的功能,例如滤波器和振荡器。
滤波器可用于滤除输入信号中的特定频率成分,常用于音频设备和通信系统中。
振荡器则可用于产生稳定的高频信号,常用于射频发射器和天线驱动器等应用中。
尽管运算放大器具有广泛的应用领域,但在实际应用中也存在一些考虑因素。
首先,运算放大器对电源电压有一定的要求,因此在设计电路时需要考虑到电源电压的稳定性和可靠性。
其次,运算放大器的输入和输出范围也有一定限制,需要根据具体的应用场景进行合适的选择。
总之,运算放大器是电路中的重要组成部分,能够实现信号的放大、比较、积分、微分、滤波和振荡等功能。
opamp的原理
![opamp的原理](https://img.taocdn.com/s3/m/8ec48964bf23482fb4daa58da0116c175f0e1e0b.png)
opamp的原理Opamp的原理及应用引言运算放大器(Operational Amplifier,简称Opamp)是电子电路中常见的一种集成电路器件。
它具有高增益、高输入阻抗、低输出阻抗等特性,在各种电路应用中发挥着重要的作用。
本文将介绍Opamp的原理及其在电子电路中的应用。
一、Opamp的原理Opamp是一种差分放大器,由输入级、差动放大器级和输出级组成。
其中输入级为差动放大器提供了高输入阻抗和差分输入功能,差动放大器级将输入信号放大,输出级将信号放大后的电压转化为电流输出。
Opamp的原理主要有以下几个方面:1. 运算放大器的差动输入Opamp的差动输入可以接受两个输入信号,分别为正相输入和负相输入。
通过两个输入信号的差异,Opamp可以放大差动信号。
差动输入使得Opamp在实际应用中能够抵消一部分噪声和干扰,提高了信号的质量。
2. 运算放大器的放大倍数Opamp的放大倍数非常高,可达到几千甚至上万倍。
这使得Opamp能够将微弱的输入信号放大到足够大的幅度,以便于后续电路的处理。
同时,高放大倍数也使得Opamp在负反馈电路中能够提供稳定的增益。
3. 运算放大器的输入阻抗和输出阻抗Opamp的输入阻抗非常高,一般可达到几兆欧姆。
这意味着Opamp对输入信号的影响非常小,输入电流几乎可以忽略不计。
而输出阻抗则非常低,可以实现较大的输出电流。
二、Opamp的应用Opamp是一种功能强大、应用广泛的电子器件,其在各个领域都有着重要的应用。
以下是几个常见的Opamp应用示例:1. 反相放大器反相放大器是Opamp最基本的应用电路之一。
它通过将输入信号与反馈电阻相连,将信号反相放大输出。
反相放大器可以实现信号的放大和反相,广泛用于音频放大、信号处理等领域。
2. 非反相放大器非反相放大器是Opamp的另一种常见应用电路。
它通过将输入信号与反馈电阻相连,将信号非反相放大输出。
非反相放大器可以实现信号的放大和不反相,常用于传感器信号放大、仪器测量等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AD9618 OP37
SR = 1800 V/ μ S
SR = 17 V/ μ S
BWG 8000MHZ
BWG 63MHZ
CF357
SR = 50 V/ μ S BWG 20MHZ
高输入阻抗型
用于测量设备及采样保持电路中。 例如: AD549
IIB 0.040p A
Rid 1013
CF155/255/355
运放所能承受的共模输入电压最大值。超出此值, 运放的共模抑制性能下降,甚至造成器件损坏。
1.1.3 通用运算放大器简介
μA741(F007)——1个运放 LM358——2个运放 LM324——4个运放
1.1.3 通用运算放大器简介
LM311——1个集成比较器
LM339——4个集成比较器
2. 电阻元件由硅半导体构成,范围在几十到20千 欧,精度低。高阻值电阻用三极管有源元件代 替或外接。
3. 几十 pF 以下的小电容用PN结的结电容构成、 大电容要外接。
4. 二极管一般用三极管的发射结构成。
原理框图
与uo反相
反相 输入端
u–
同u相+
输入端
与uo同相
T1 T2
输
IS
入
级
+UCC
T4
理想运算放大器及其分析依据
运放的特点
ri 大: 几十k 几百 k KCMRR 很大 ro 小:几十 几百 A uo很大: 104 107
运放符号:
理想运放: ri KCMRR ro 0 Auo
2 消振
通常是外接RC消振电路或消振电容,用它来破坏产生自激振荡 的条件。是否已消振,可将输入端接地,用示波器观察输出端有 无自激振荡。目前由于集成工艺水平的提高,运算放大器内部已 有消振元件,毋须外部消振。
3 调零
调零时应将电路接成闭环。调零分两种,一种是在无输入时调零, 即将两个输入端接地,调节调零电位器,使输出电压为零。另一 种是在有输入时调零,即按已知输入信号电压计算输出电压,而 后将实际值调整到计算值。
4 保护
1)输入端保护
Rf
ui R1 R2
Δ
∞
-
uo
+
+
2)输出端保护
3)电源保护
Δ
Δ
ui R1 R2
Rf
∞
-
R
uo
+
+
∞
-
+ +
5 扩大输出电流
R1 ui
Δ
RF
∞
- +
+
R2
+UCC
V1 D1
D2
V2 R3
+ RL uo
-
-UCC
1.2 运算放大器在信号运算方面的应用
运放线 性应用
信号的放大、运算 有源滤波电路
(2)输入级常采用复合三极管或场效应管,以减小输入 电流,增加输入电阻。
(3)输出级采用互补对称式射极跟随器,以进行功率放 大,提高带负载的能力。
1.1.2运算放大器的主要技术指标
1.开环电压放大倍数Auo
无外加反馈回路的差模放大倍数。一般在 105 107之间。理想运放的Auo为。
2.共模抑制比KCMMR
IIO 0.4 ~ 0.8nA d IIO 8 ~ 12 pA/C dT
大功率型
这种运放的输出功率可达1W以上, 输出电流可达几个安培以上。
例如: LM12 Io 10 A TP1465 Io 0.75 A
低功耗型
用于空间技术和生物科学研究中,工作于较低 电压下,工作电流微弱。 例如:
OP22 正常工作静态功耗可低至36 W。 OP290 在0.8 V电压下工作,功耗为24 W 。 CF7612 在5 V电压下工作,功耗为50 W 。
第一单元 运算放大器及其应用
梅山培训中心 陈礼明
1.1 运算放大器
集成电路Байду номын сангаас 将整个电路的各个元件做在同一个半导
体基片上。
集成电路的优点:
工作稳定、使用方便、体积小、重量轻、 功耗小。
集成电路的分类:
模拟集成电路、数字集成电路; 小、中、大、超大规模集成电路;
1.1.1 运算放大器基本结构
1. 电路元件制作在一个芯片上,元件参数偏差方 向一致,温度均一性好。
1.1.5 运算放大器使用时的主要事项
1 选用元件
通常是根据实际要求来选用运算放大器。如测量放大器的输人 信号微弱它的第一级应选用高输入电阻、高共模抑制比、高开 环电压放,大倍数、低失调电压及低温度漂移的运算放大器。 选好后,根据管脚图和符号图联接外部电路,包括电源、外接 偏置电阻、消振电路及调零电路等。
高速型和宽带型
用于宽频带放大器,高速A/D、D/A,高
速数据采集测试系统。这种运放的单位增益
带宽和压摆率的指标均较高,用于小信号放
大时,可注重fH或fc,用于高速大信号放大时, 同时还应注重SR。例如:
CF2520/2525 SR = 120 V/ μ s BWG = 20MHz
AD9620
SR = 2200 V/ μ S fH 600 MHZ
运算放大器外形图
1.1.4 特殊类型的运算放大器
为满足实际使用中对集成运放性能的特殊要求, 除性能指标比较适中的通用型运放外,还有适应不 同需要的专用型集成运放。它们在某些技术指标上 比较突出。
根据运算放大器的技术指标可以对其进行分类, 主要有通用、高速、宽带、高精度、高输入电阻和 低功耗等几种。
IIB 30p A
Rid 1012
高精度(低漂移型)
用于精密仪表放大器,精密测试系统,精密
传感器信号变送器等。 例如:
OP177 VIO 4μ V
IIO 0.3nA
dVIO 0.03μ V/ C d IIO 1.5pA/C
dT
dT
CF714 VIO 30 ~ 60 μ V
dVIO 0.3 ~ 0.5 μ V/ C dT
T3
T5
uo
中
输
间
出
级
级 UEE
对输入级的要求:尽量减小零点漂移,尽量提高 KCMRR , 输入阻抗 ri 尽可能大。
对中间级的要求:足够大的电压放大倍数。
对输出级的要求:主要提高带负载能力,给出足 够的输出电流io 。即输出阻抗 ro小。
集成运放的结构
(1)采用四级以上的多级放大器,输入级和第二级一般 采用差动放大器。
常用分贝作单位,一般100dB以上。
1.1.2运算放大器的主要技术指标
3. 最大输出电压 UOPP 能使输出和输入保持不失真关系的最大输出电压。
4. 开环差模电压增益 Auo
运放没有接反馈电路时的差模电压放大倍数。 Auo 愈高,所构成的运算电路越稳定,运算精度也越高。
5. 输入失调电压 UIO 6. 输入失调电流 IIO 愈小愈好 7. 输入偏置电流 IIB 8. 共模输入电压范围 UICM