2013中考数学精选例题解析方程与一次方程(组)及解法
中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
则可列方程组为
( A)
A.yx++2231xy==5500,B.xy--1223yx==5500,C.2xx++23yy==5500,D.2xx--23yy==5500,
10.(2021·成都第 26 题 8 分)为改善城市人居环境,《成都市生活垃圾 管理条例》(以下简称《条例》)于 2021 年 3 月 1 日起正式施行.某区域 原来每天需要处理生活垃圾 920 吨,刚好被 12 个 A 型和 10 个 B 型预处 置点位进行初筛、压缩等处理.已知一个 A 型点位比一个 B 型点位每天 多处理 7 吨生活垃圾. (1)求每个 B 型点位每天处理生活垃圾的吨数;
x=1,则 a+m 的值为
( C)
A.9 B.8 C.5 D.4
x=1 6.(2021·凉山州第 14 题 4 分)已知y=3,是方程 ax+y=2 的解,则 a 的值为__--11__. 7.(2020·泸州第 14 题 3 分)若 xa+1y3 与12x4y3 是同类项,则 a 的值是__33__.
3.(RJ 七下 P111 复习题 T7 改编)用 1 块 A 型钢板可制成 4 件甲种产品和 1 件乙种产品.用 1 块 B 型钢板可制成 3 件甲种产品和 2 件乙种产品;要 生产甲种产品 37 件,乙种产品 18 件,则恰好需用 A,B 两种型号的钢板 共 1 111 块.
4.(RJ 七下 P106 习题 T3 改编)一个两位数,十位数字比个位数字大 3, 若将十位数字和个位数交换位置,所得的新两位数比原两位数的13多 15, 则这个两位数是 6 633.
∵w 随 m 的增大而减小,∴费用越少,m 越大. 故方案③费用最少.
重难点 1:从实际问题中抽象一次方程(组)
我国古代数学名著《孙子算经》中记载:“今有木,不知长短.引绳
【最精细分类】2013全国中考真题分类汇编 12课_考点3 一元一次、二元一次方程(组)的简单应用
(2011湖南湘潭市,13,3分)湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x元,根据题意,列出方程为______________.【答案】50-8x=38(2011山东菏泽,7,3分)某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打A.6折 B.7折 C.8折 D.9折【答案】B1、(绵阳市2013年).朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,请问共有多少个小朋友?()A.4个B.5个C.10个D.12个[解析](x个朋友,3x-3=2x+2,x=5)答案:B2、(2013济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()A.60元B.80元C.120元D.180元考点:一元一次方程的应用.分析:设这款服装的进价为x元,就可以根据题意建立方程300×0.8﹣x=60,就可以求出进价,再用标价减去进价就可以求出结论.解答:解:设这款服装的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.300﹣180=120,∴这款服装每件的标价比进价多120元.故选C.点评:本题时一道销售问题.考查了列一元一次方程解实际问题的运用,利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.3、(2013台湾、16)图(①)为一正面白色,反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上黏贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图(②)所示.若图(②)中白色与灰色区域的面积比为8:3,图(②)纸片的面积为33,则图(①)纸片的面积为何?()A .B .C .42D .44考点:一元一次方程的应用.分析:设每一份为x ,则图②中白色的面积为8x ,灰色部分的面积为3x ,根据②中的纸片的面积为33为等量关系建立方程,求出其解即可.解答:解:设每一份为x ,则图②中白色的面积为8x ,灰色部分的面积为3x ,由题意,得 8x+3x=33,解得:x=3,∴灰色部分的面积为:3×3=9,∴图(①)纸片的面积为:33+9=42.故选C .点评:本题考查了比列问题在解实际问题中的运用,一元一次方程的解法的运用,解答时根据条件建立方程求出灰色部分的面积是关键.(2011甘肃兰州,11,4分)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为A .(1)2070x x -=B .(1)2070x x +=C .2(1)2070x x +=D .(1)20702x x -= 【答案】A(2013台湾、5)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x 件,则依题意可列出下列哪一个一元一次方程式?( )A .0.6×250x+0.8×125(200+x )=24000B .0.6×250x+0.8×125(200﹣x )=24000C .0.8×125x+0.6×250(200+x )=24000D .0.8×125x+0.6×250(200﹣x )=24000 考点:由实际问题抽象出一元一次方程.分析:由于外套卖出x件,则衬衫和裤子卖出(200﹣x)件,根据题意可得等量关系:衬衫的单价×6折×数量+衬衫和裤子的原价×8折×数量=24000元,由等量关系列出方程即可.解答:解:若外套卖出x件,则衬衫和裤子卖出(200﹣x)件,由题意得:0.6×250x+0.8×125(200﹣x)=24000,故选:B.点评:此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.5、(2013达州)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。
2013年中考方程、方程组考题精选
2013年中考方程、方程组考题精选分式方程1、(2013年黄石)分式方程3121x x =-的解为 A.1x = B. 2x = C. 4x = D. 3x =2、(德阳市2013年)已知关于x 的方程22x mx +-=3的解是正数,则m 的取值范围是____3、(2013•绥化)若关于x 的方程=+1无解,则a 的值是 .4.关于x 的分式方程mx -5=1,下列说法正确的是( )A .方程的解是x =m +5B .m >-5时,方程的解是正数C .m <-5时,方程的解为负数D .无法确定 5、(2013•泰州)解方程:.6、(2013•宁夏)解方程:.7、(绵阳市2013年)解方程:23112x x x x -=-+-一元二次方程1、(2013年潍坊市)已知关于x 的方程()0112=--+x k kx ,下列说法正确的是( ).A.当0=k 时,方程无解B.当1=k 时,方程有一个实数解C.当1-=k 时,方程有两个相等的实数解D.当0≠k 时,方程总有两个不相等的实数解4、(2013•咸宁)关于x 的一元二次方程(a ﹣1)x ﹣2x+3=0有实数根,则整6、(2013•呼和浩特)(非课改)已知α,β是关于x 的一元二次方程x+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )7、(2013•烟台)已知实数a ,b 分别满足a ﹣6a+4=0,b ﹣6b+4=0,且a ≠b ,则的值是( )8、(2013•滨州)对于任意实数k,关于x 的方程x ﹣2(k+1)x ﹣k +2k ﹣1=09、(2013年广州市)若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( )A 没有实数根B 有两个相等的实数根C 有两个不相等的实数根D 无法判断11、(2013•铁岭)如果三角形的两边长分别是方程x ﹣8x+15=0的两个根,那13、(2013台湾、26)若一元二次方程式a (x ﹣b )2=7的两根为±,其中a 、b 为两数,则a+b 之值为何?( ) A .B .C .3D .514、(2013年江西省)若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一个..符合题意的一元二次方程 . 15、方程x 2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .16、(2013•常州)已知x=﹣1是关于x 的方程2x 2+ax ﹣a 2=0的一个根,则a=.17、(2013•自贡)已知关于x 的方程x 2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号)18、(2013•荆门)设x 1,x 2是方程x 2﹣x ﹣2013=0的两实数根,则= .19、(2013•白银)现定义运算“★”,对于任意实数a 、b ,都有a ★b=a 2﹣3a+b ,如:3★5=32﹣3×3+5,若x ★2=6,则实数x 的值是 .20、(2013•黔东南州)若两个不等实数m 、n 满足条件:m 2﹣2m ﹣1=0,n 2﹣2n ﹣1=0,则m 2+n 2的值是 . 21、(2013济宁)已知关于x 的方程﹣=0无解,方程x 2+kx+6=0的一个根是m . (1)求m 和k 的值;(2)求方程x 2+kx+6=0的另一个根.22、(2013•玉林)已知关于x 的方程x 2+x+n=0有两个实数根﹣2,m .求m ,n 的值.23、(2013年黄石)解方程:2212223x y x ⎧-=-⎪⎨⎪-=⎩24、(2013•孝感)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+2k=0有两个实数根x 1,x 2. (1)求实数k 的取值范围; (2)是否存在实数k 使得≥0成立?若存在,请求出k的值;若不存在,请说明理由.25、(2013菏泽)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k 是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1,判断y 是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.26、(2013四川南充,20,8分)关于x的一元二次方程为(m-1)x2-2mx+m+1=0 (1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?27.(2013杭州)当x 满足条件时,求出方程x2﹣2x﹣4=0的根.应用题1.某市在端午节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上的人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x人,那么可列出一元一次方程为______.2、(2013泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A .B .C .D .3.(2013•铁岭)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为4、(2013•钦州)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为5、(2013年深圳市)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。
中考数学一轮复习《一次方程组 及其应用》知识梳理及典型例题讲解课件
第一节 一次方程(组)及其应用
一 次 方 程 (组)
等 式 的
如如果果aa==bb,,那那么么aa±c=c=②①___b__c_b__±_,_c_ac_=③___bc_____(c≠0)
性 如果a=b,那么b=a
Байду номын сангаас
及 质 如果a=b,b=c,那么a=④__c__
其 应
马,则可列方程为 A.150(12+x)=240x
B.240(12+x)=150x
(A )
C.150(x-12)=240x
D.240(x-12)=150x
2.已知xy==31, 是方程 ax+y=2 的解,则 a 的值为__-__1__.
3x-y=-4, 3.解方程组:x-2y=-3.
解:
3x-y=-4…①, x-2y=-3…②.
5.为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消 毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53 元.
(1)这两种消毒液的单价分别是多少元?
(2)学校准备购进这两种消毒液共 90 瓶,且 B 型消毒液的数量不少 于 A 型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.
等式两边都除以x-m,得x+m=m.④ 等式两边都减m,得x=0.⑤ 所以任意一个实数都等于0. 以上推理过程中,开始出现错误的那一步对应的序号是___④__.
2.方程3x=2x+7的解是 A.x=4 C.x=7
( C) B.x=-4 D.x=-7
3.对于二元一次方程组
y=x-1…①, x+2y=7…②,
由①式,得 y=3x+4,代入②式,得 x
-2(3x+4)=-5x-8=-3,解得 x=-1.将 x=-1 代入②式,得-1-
(中考数学真题复习)第7讲 一元一次方程及分式方程基础例题 附答案解析
中考数学复习一元一次方程及分式方程【基础演练】1.(2013·滨州)把方程12x=1变形为x=2,其依据是() A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质1解析把方程12x=1变形为x=2,其依据是等式的性质2.答案B2.(2013·泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.2300x+23001.3x=33 B.2300x+2300x+1.3x=33C.2300x+4600x+1.3x=33 D.4600x+2300x+1.3x=33解析设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:2300 x+2300x+1.3x=33.答案B3.(2013·丽水)分式方程1x-2=0的解是________.解析方程两边同乘以x,得1-2x=0,解得x=12.检验:当x=12时,x=12≠0,所以,原方程的解为x =12.答案x =124.(2012·宁波)分式方程x -2x +4=12的解是________.解析方程的两边同乘2(x +4),得2(x -2)=x +4,2x -4=x +4,解得x =8.检验:把x =8代入x +4=12≠0.故原方程的解为x =8.答案x =85.(2013·绍兴)分式方程2xx -1=3的解是________.解析方程两边同乘以x -1,得2x =3(x -1),解得x =3.检验:当x =3时,x -1=3-1=2≠0,所以,原方程的解为x =3.答案x =36.(2013·滨州)解方程:3x +52=2x -13.解去分母得:3(3x +5)=2(2x -1),去括号得:9x +15=4x -2,移项合并得:5x =-17,解得:x =-175.7.(2010·台州)解方程:3x =2x -1.解方程两边同乘以x (x -1),得3(x -1)=2x ,解得x =3.经检验:x =3是原方程的解,所以原方程的解是x =3.8.(2010·义乌市)解分式方程:2x2+1x+2=2x.解方程的两边同乘x+2,得2x2+1=2x2+4x,∴4x=1,∴x=1 4 .经检验,x=14是原方程的解.9.(2012·北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.解设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x-4)毫克,由题意得:10002x-4=550x,解得:x=22.经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.【能力提升】10.(2013·台湾)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200-x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200-x)=24000解析若外套卖出x 件,则衬衫和裤子卖出(200-x )件,由题意得:0.6×250x +0.8×125(200-x )=24000,答案B11.(2012·山西)图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.解析长方体的高为x cm ,然后表示出其宽为30-4x ,根据题意得:30-4x =2x ,解得:x =5.故长方体的宽为10cm ,长为20cm 则长方体的体积为5×10×20=1000cm 3.答案100012.(2012·攀枝花)若分式方程:2+1-kx x -2=12-x有增根,则k =________.解析∵2+1-kx x -2=12-x,去分母得:2(x -2)+1-kx =-1,整理得:(2-k )x =2,当2-k =0时,此方程无解,不符合题意.∵分式方程2+1-kx x -2=12-x 有增根,∴x -2=0,2-x =0,解得:x =2,把x =2代入(2-k )x =2得:k =1.答案113.(2010·嘉兴)解方程:x x +1+x +1x=2.解设x x +1=y ,则原方程化为y +1y =2.整理得,y 2-2y +1=0,解之得,y =1.当y =1时,xx +1=1,此方程无解.故原方程无解.14.(2010·义乌市)我市举办的“义博会”是国内第三大展会,从1995年以来已成功举办了15届.(1)1995年“义博会”成交金额为1.01亿元,1999年“义博会”成交金额为35.2亿元,求1999年的成交金额比1995年的增加了几倍?(结果精确到整数)(2)2000年“义博会”的成交金额与2009年的成交金额的总和是153.99亿元,且2009年的成交金额是2000年的3倍少0.25亿元,问2009年“义博会”的成交金额是否突破了百亿元大关?解(1)(35.2-1.01)÷1.01≈34.答:1999年的成交金额比1995年约增加了34倍;(2)设2000年成交金额为x 亿元,则2009年成交金额为(3x -0.25)亿元.由题意得x +3x -0.25=153.99,解得x =38.56,∴3x -0.25=115.43>100,∴2009年“义博会”的成交金额突破了百亿元大关.。
中考数学专题3:方程(组)和不等式(组)【2013广东各市真题分类解析】
广东2013年中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1. (2012广东佛山3分)用配方法解一元二次方程x2-2x-3=0时,方程变形正确的是【】A.(x-1)2=2 B.(x-1)2=4 C.(x-1)2=1 D.(x-1)2=7【考点】用配方法解一元二次方程。
2. (2012广东广州3分)已知a>b,若c是任意实数,则下列不等式中总是成立的是【】A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc【考点】不等式的性质。
【分析】根据不等式的性质,应用排除法分别将个选项分析求解即可求得答案:A、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;B、∵a>b,c是任意实数,∴a﹣c>b﹣c,故本选项正确;C、当a>b,c<0时,ac<bc,而此题c是任意实数,故本选项错误;D、当a>b,c>0时,ac>bc,而此题c是任意实数,故本选项错误.3. (2012广东湛江4分)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是【】A.5500(1+x)2=4000 B.5500(1﹣x)2=4000 C.4000(1﹣x)2=5500 D.4000(1+x)2=5500【考点】由实际问题抽象出一元二次方程(增长率问题)。
二、填空题- 1 -中考复习资料1.(2012广东省4分)不等式3x﹣9>0的解集是▲ .【考点】解一元一次不等式。
2. (2012广东佛山3分)分式方程123=x x-的解x等于▲ ;【考点】解分式方程3. (2012广东佛山3分)某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是▲ ;【考点】一元二次方程的应用(增长率问题)。
【分析】设每次降价的百分率是x,第一次降价后,价格变为100(1-x),则第二次降价后,价格变为100(1-x) (1-x)= 100(1-x)2。
中考《一次方程(组)》经典例题及解析
一次方程(组)一、方程和方程的解的概念1.等式的性质(1)等式两边都加上(或减去)同一个数或同一个整式,所得的结果仍是等式.(2)等式两边都乘以(或除以)同一个不等于零的数,所得的结果仍是等式.2.方程:含有未知数的等式叫做方程.3.方程的解:使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫做解方程.二、一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.一元一次方程0(0)ax b a +=≠的求解步骤注意:解方程时移项容易忘记改变符号而出错,要注意解方程的依据是等式的性质,在等式两边同时加上或减去一个代数式时,等式仍然成立,这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项,此时该项在方程一边是0,而另一边是它改变符号后的项,所以移项必须变号.三、二元一次方程(组)及解的概念1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a x b y c a x b y c +=⎧⎨+=⎩. 4.解二元一次方程组的基本思想解二元一次方程组的基本思想是消元,即将二元一次方程组转化为一元一次方程.5.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.四、一次方程(组)的应用1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量. (2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.经典例题 一元一次方程的定义1.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .4【答案】C【分析】根据一元一次方程的概念和其解的概念解答即可.【解析】解:因为关于x 的一元一次方程2x a -2+m =4的解为x =1, 可得:a -2=1,2+m =4,解得:a =3,m =2,所以a +m =3+2=5,故选C .【点睛】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.1.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.【答案】2x =或2x =-或x =-3.【分析】利用一元一次方程的定义判断即可.211m ∴﹣=,即1m =或0m =,方程为20x ﹣=或20x --=,解得:2x =或2x =-,当2m -1=0,即m =12时,方程为112022x --=解得:x =-3, 故答案为x =2或x =-2或x =-3.【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.经典例题 解一元一次方程 1.解方程:221123x x x ---=- 【答案】27x = 【分析】去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解析】解:221123x x x ---=- ()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =【点睛】本题考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化. 2.以下是圆圆解方程1323+--x x =1的解答过程. 解:去分母,得3(x +1)﹣2(x ﹣3)=1.去括号,得3x +1﹣2x +3=1.移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.【答案】圆圆的解答过程有错误,正确的解答过程见解析【分析】直接利用一元一次方程的解法进而分析得出答案.【解析】解:圆圆的解答过程有错误,正确的解答过程如下:3(x +1)﹣2(x ﹣3)=6.去括号,得3x +3﹣2x +6=6.移项,合并同类项,得x =﹣3.【点睛】此题主要考查一元一次方程的求解,解题的关键是熟知一元一次方程的求解方法.3.把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )【答案】A【分析】根据题意求出“九宫格”中的y ,【解析】如图,依题意可得2+5+8=2+7+y【点睛】此题主要考查一元一次方程的应用1.关于x 的方程38x x -=的解为x ___【答案】4【分析】方程移项、合并同类项、把x 系数【解析】解:方程38x x -=,移项,【点睛】方程移项,把x 系数化为1,即可2.有一列数,按一定的规律排列成1个数中第一个数是______.【答案】81-【分析】题中数列的绝对值的比是-3,由三解.【解析】题中数列的绝对值的比是-3,由三题意:()n 3n 9n 567+-+=-,解得:【点睛】此题主要考查数列的规律探索与运列出方程是解题的关键.3. 在实数范围内定义运算“☆”:a,再求出x 即可求解. +7+y 解得y=6∴8+x+6=2+5+8解得x=1故选A . 的应用,解题的关键是根据题意得到方程求解.=________.系数化为1,即可求出解. 得3x-x=8,合并同类项,得2x=8.解得x=4.故答案为即可求出解.3,1-,3,9-,27,-81,….若其中某三个相邻由三个相邻数的和是567-,可设三个数为n ,-由三个相邻数的和是567-,可设第一个数是n ,:n=-81,故答案为:-81.索与运用,一元一次方程与数字的应用,熟悉并会用1b a b =+-☆,例如:232314=+-=☆.如果2☆答案为:x=4.个相邻数的和是567-,则这三-3n ,9n ,据题意列式即可求,则三个数为n ,-3 n ,9n 由并会用代数式表示常见的数列,1x =,则x 的值是( ).【答案】C【分析】根据题目中给出的新定义运算规则进行运算即可求解.【解析】解:由题意知:2211☆=+-=+x x x ,又21x =☆,∴11x +=,∴0x =.故选:C .【点睛】本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解即可. 经典例题 一元一次方程的应用1.我国古代数学著作《算学启蒙》中有这样一个学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为______.【答案】(240-150)x=150×12【分析】根据两马的速度之差×快马出发的时间=慢马的速度×慢马提前出发的时间,即可得出关于x 的一元一次方程.【解析】解:题中已设快马x 天可以追上慢马,则根据题意得:(240-150)x=150×12.故答案为:(240-150)x=150×12.【点睛】本题考查了一元一次方程的应用问题,找到等量关系,正确列出一元一次方程是解题的关键.2.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打________折.【答案】八【分析】打折销售后要保证打折后利率为20%,因而可以得到不等关系为:利润率=20%,设可以打x 折,根据不等关系列出不等式求解即可.【解析】解:设应打x 折,则根据题意得:(180×x×10%-120)÷120=20%,解得:x=8.故商店应打八折.故答案为:八.【点睛】本题考查一元一次方程的实际应用,解题关键是读懂题意,找到符合题意的等量关系式,同时要注意掌握利润率的计算方法.1.篮球联赛中,每玚比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.【答案】9【分析】设该对胜x 场,则负14-x 场,然后根据题意列一元一次方程解答即可.【解析】解:设该对胜x 场 由题意得:2x+(14-x )=23,解得x=9.故答案为9.【点睛】本题考查了一元一次方程的应用,弄清题意、设出未知数、找准等量关系、列出方程是解答本题的关键.有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .2932x x +=-B .9232x x -+=C .9232xx +-= D .2932x x -=+ 【答案】B【分析】设有x 人,根据车的辆数不变,即可得出关于x 的一元一次方程,此题得解.【解析】解:设有x 人,根据车的辆数不变列出等量关系,每3人共乘一车,最终剩余2辆车,则车辆数为:23x +, 每2人共乘一车,最终剩余9个人无车可乘,则车辆数为:92x -, ∴列出方程为:9232x x -+=.故选:B . 【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 经典例题 二元一次方程(组)的定义1. 下列方程中,是二元一次方程组的是A .4237x y x y +=⎧⎨+=⎩B .23225412a b x c -=⎧⎨-=⎩C .245x x y ⎧=⎨+=⎩D .75x y xy +=⎧⎨=⎩ 【答案】A 【解析】根据定义可以判断:A 、4237x y x y +=⎧⎨+=⎩,满足要求;B 、23225412a b x c -=⎧⎨-=⎩中含有a ,b ,c ,是三元方程; C 、245x x y ⎧=⎨+=⎩中含有2x ,是二次方程;D 、275x y x y +=⎧⎨-=⎩中含xy ,是二次方程.故选A .【点评】二元一次方程组的三个必需条件:(1)含有两个未知数;(2)每个含未知数的项次数为1;(3)每个方程都是整式方程.1.若关于x ,y 的二元一次方程组20x y A +=⎧⎨=⎩的解为11x y =⎧⎨=⎩,则多项式A 可以是_____(写出一个即可). 【答案】答案不唯一,如x ﹣y . 【分析】根据方程组的解的定义,11x y =⎧⎨=⎩应该满足所写方程组的每一个方程.因此,可以围绕11x y =⎧⎨=⎩列一组算式,【解析】∵关于x ,y 的二元一次方程组20x y A +=⎧⎨=⎩的解为11x y =⎧⎨=⎩,而1﹣1=0, ∴多项式A 可以是答案不唯一,如x ﹣y .故答案为:答案不唯一,如x ﹣y .【点睛】此题考查二元一次方程组的定义,二元一次方程组的解,正确理解方程组的解与每个方程的关系是解题的关键. 经典例题 解二元一次方程组1.解方程组2451x y x y +=⎧⎨=-⎩. 【答案】1232x y ⎧=-⎪⎪⎨⎪=⎪⎩ 【分析】根据题意选择用代入法解答即可.【解析】解:2451x y x y +=⎧⎨=-⎩①②,将②代入①中得2(1)45y y -+=.解得32y =. 将32y =代入②,得12x =-.所以原方程组的解为1232x y ⎧=-⎪⎪⎨⎪=⎪⎩. 【点睛】本题考查了解二元一次方程组,解答关键是根据题目特点选择代入法或加减法解答问题.2.已知关于x 、y 的方程221255x y a x y a +=+⎧⎨+=-⎩的解满足3x y +=-,则a 的值为__________________. 【答案】5【分析】①+②可得x+y=2-a ,然后列出关于a 的方程求解即可.【解析】解:221255x y a x y a +=+⎧⎨+=-⎩①②,①+②,得3x+3y=6-3a ,∴x+y=2-a , ∵3x y +=-,∴2-a=-3,∴a=5.故答案为:5.【点睛】本题考查了二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.3.若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为( ) A .3B .3,-3 CD【分析】将21a b =⎧⎨=⎩代入二元一次方程组中解出x 和y 的值,再计算x +2y 的算术平方根即可. 【解析】解:将21a b =⎧⎨=⎩代入二元一次方程3522ax by ax by ⎧+=⎪⎨⎪-=⎩中, 得到:3522+=⎧⎨-=⎩x y x y ,解这个关于x 和y 的二元一次方程组, 两式相加,解75x =得,将75x =回代方程中,解得45y =, ∴7415223555+=+⨯==x y ,∴x +2yC . 【点睛】本题考查了二元一次方程组的解法,算术平方根的概念等,熟练掌握二元一次方程组的解法是解决本题的关键.1.方程组422x y x y +=⎧⎨-=⎩的解是_________. 【答案】22x y =⎧⎨=⎩【分析】直接利用加减消元法求解.【解析】422x y x y +=⎧⎨-=⎩①②由①+②得:3x=6,解得x=2, 把x=2代入①中得,y=2,所以方程组的解为22x y =⎧⎨=⎩.故答案为:22x y =⎧⎨=⎩. 【点睛】考查了解二元一次方程组,解题关键是利用加减消元法实现消元.2.已知1023a b +=,16343a b +=,则+a b 的值为_________. 【答案】1【分析】观察已知条件可得两式中a 与b 的系数的差相等,因此把两式相减即可得解.【解析】解:1023a b +=①,16343a b +=②,②-①得,2a+2b=2,解得:a+b=1,故答案为:1. 【点睛】此题主顾考查二元一次方程组的特殊解法,观察条件的结构特征得出2a+2b=2是解答此题的关键.3.已知关于x ,y的方程组4ax x y ⎧+=-⎪⎨+=⎪⎩与215x y x by -=⎧⎨+=⎩的解相同. (1)求a ,b 的值;(2)若一个三角形的一条边的长为,另外两条边的长是关于x 的方程20x ax b ++=的解.试【答案】(1)-;12 (2)等腰直角三角形,理由见解析【分析】(1)关于x ,y 的方程组4ax x y ⎧+=-⎪⎨+=⎪⎩215x y x by -=⎧⎨+=⎩的解相同.实际就是方程组 42x y x y +=⎧⎨-=⎩的解,可求出方程组的解,进而确定a 、b 的值;(2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与形的形状.【解析】解:由题意列方程组:42x y x y +=⎧⎨-=⎩解得31x y =⎧⎨=⎩将3x =,1y =分别代入ax +=-和15x by +=解得a =-12b = ∴a =-,12b =(2)2120x -+= 解得x == 这个三角形是等腰直角三角形理由如下:∵222+=∴该三角形是等腰直角三角形.【点睛】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键. 经典例题 二元一次方程组的应用1.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ).A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩【答案】A【分析】根据大小桶所盛酒的数量列方程组即可.【解析】∵5个大桶加上1个小桶可以盛酒3斛,∴5x+y=3,∵1个大桶加上5个小桶可以盛酒2斛,∴x+5y=2,∴得到方程组5352x y x y +=⎧⎨+=⎩,故选:A. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.——进价(元/部) 售价(元/部) A3000 3400 B 3500 4000某营业厅购进A 、B 两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A 、B 两种型号手机各多少部?(2)若营业厅再次购进A 、B 两种型号手机共30部,其中B 型手机的数量不多于A 型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?【答案】(1)营业厅购进A 、B 两种型号手机分别为6部、4部;(2)营业厅购进A 种型号的手机10部,B 种型号的手机20部时获得最大利润,最大利润是14000元【分析】(1)根据题意和表格中的数据,可以得到相应的二元一次方程组,从而可以求得营业厅购进A 、B 两种型号手机各多少部;(2)根据题意,可以得到利润与A 种型号手机数量的函数关系式,然后根据B 型手机的数量不多于A 型手机数量的2倍,可以求得A 种型号手机数量的取值范围,再根据一次函数的性质,即可求得营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少.【解析】解:(1)设营业厅购进A 、B 两种型号手机分别为a 部、b 部,()()300035003200034003000400035004400a b a b +=⎧⎨-+-=⎩,解得,64a b =⎧⎨=⎩, 答:营业厅购进A 、B 两种型号手机分别为6部、4部;(2)设购进A 种型号的手机x 部,则购进B 种型号的手机(30﹣x )部,获得的利润为w 元,w =(3400﹣3000)x +(4000﹣3500)(30﹣x )=﹣100x +15000,∵B 型手机的数量不多于A 型手机数量的2倍,∴30﹣x ≤2x ,解得,x ≥10,∵w =﹣100x +15000,k =﹣100,∴w 随x 的增大而减小,∴当x =10时,w 取得最大值,此时w =14000,30﹣x =20,答:营业厅购进A 种型号的手机10部,B 种型号的手机20部时获得最大利润,最大利润是14000元.【点睛】本题考查了二元一次方程组的应用,以及一次函数的应用,熟练掌握一次函数的性质是解答本题的关键.1.我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米,根据题意,所列方程组正确的是( )A .2x y =-⎧⎨B .2x y =-⎧⎨C .2x y =+⎧⎨D .2x y =+⎧⎨【答案】D【分析】根据“甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程”和“甲工程队每天比乙工程队多施工2米”可分别列出方程,联立即可.【解析】解:依据题意:“甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程”可列方程23()40050x x y ++=-,“甲工程队每天比乙工程队多施工2米”可列方程2x y =+,故可列方程组:223()40050x y x x y =+⎧⎨++=-⎩,故选:D . 【点睛】本题考查列二元一次方程组.能仔细读题,找出描述等量关系的语句是解题关键.2.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x 只,兔有y 只,则根据题意,下列方程组中正确的是( )A .352494x y x y +=⎧⎨+=⎩B .354294x y x y +=⎧⎨+=⎩C .235494x y x y +=⎧⎨+=⎩D .435294x y x y +=⎧⎨+=⎩【答案】A 【分析】根据“上有三十五头”和“下有九十四足”两个等量关系列二元一次方程组即可.【解析】解:设鸡有x 只,兔有y 只 根据上有三十五头,可得x+y=35;下有九十四足,2x+4y=94 即352494x y x y +=⎧⎨+=⎩.故答案为A . 【点睛】本题考查了二元一次方程组的应用,弄清题意、找准等量关系是解答本题的关键.。
【2013版中考12年】江苏省泰州市2002-2013年中考数学试题分类解析 专题03 方程(组)和
某某市2002-2013年中考数学试题分类解析 专题03 方程(组)和不等式(组)一、选择题1.(某某省某某市2002年4分)k 为实数,则关于x 的方程01)12(2=-+++k x k x 的根的情况是【 】A 、有两个不相等的实数根B 、有两个相等的实数根C 、没有实数根D 、无法确定2.(某某省某某市2003年4分)一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 的取值X 围是【 】A .2>kB .12≠<k k 且C .2<kD .12≠>k k 且3.(某某省某某市2004年4分)小芳和爸爸、妈妈三人玩跷跷板,三人的体重一共为150千克,爸爸坐在跷跷板的一端;体重只有妈妈一半的小芳和妈妈一同坐在跷跷板的另一端.这时,爸爸的那一端仍然着地.请你猜一猜小芳的体重应小于【】A. 49千克B. 50千克C. 24千克D. 25千克4.(某某省某某市2005年3分)不等式组2x03x0-<⎧⎨-≥⎩的正整数解的个数是【】A.1个 B.2个 C.3个 D.4个5.(某某省某某市2006年3分)若关于x的一元一次方程23132x k x k---=的解是1x=-,则k的值是【】A.27 B.1 C.1311- D.06.(某某省某某市2007年3分)现有甲、乙、丙、丁、戊五个同学,他们分别来自一中、二中、三中.已知:(1)每所学校至少有他们中的一名学生;(2)在二中联欢会上,甲、乙、戊作为被邀请的客人演奏了小提琴;(3)乙过去曾在三中学习,后来转学了,现在同丁在同一个班学习;(4)丁、戊是同一所学校的三好学生.根据以上叙述可以断定甲所在的学校为【 】A .一中B .二中C .三中D .不确定7.(某某省某某市2011年3分)一元二次方程x x 22=的根是【 】A .2=xB .0=xC .2,021==x xD .2,021-==x x8.(2012某某某某3分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是【 】A .236(1x)3625-=-B .36(12x)25-=C .236(1x)25-=D .236(1x )25-=9.(2013年某某某某3分)下列一元二次方程中,有两个不相等实数根的方程是【 】A .x 2﹣3x+1=0B .x 2+1=0C .x 2﹣2x+1=0D .x 2+2x+3=0二、填空题1.(某某省某某市2002年2分)如果12 x x ,是方程0342=++x x 的两根,那么2112x x x x += ▲ .2.(某某省某某市2002年2分)为了绿色,市现在执行严格的机动车尾气排放标准,同时正在不断设法减少工业及民用燃料造成的污染。
2013中考数学精选例题解析:一次函数(1)
2 013中考数学精选例题解析:一次函数(1)知识考点:掌握二次函数的图像和性质以及抛物线的平移规律;会确定抛物线的顶点坐标、对称轴及最值等。
精典例题:【例1】二次函数c bx ax y ++=2的图像如图所示,那么abc 、ac b 42-、b a +2、c b a +-24这四个代数式中,值为正的有( )A 、4个B 、3个C 、2个D 、1个 解析:∵abx 2=<1 ∴b a +2>0 答案:A评注:由抛物线开口方向判定a 的符号,由对称轴的位置判定b 的符号,由抛物线与y 轴交点位置判定c 的符号。
由抛物线与x 轴的交点个数判定ac b 42-的符号,若x 轴标出了1和-1,则结合函数值可判定b a +2、c b a ++、c b a +-的符号。
【例2】已知0=++c b a ,a ≠0,把抛物线c bx ax y ++=2向下平移1个单位,再向左平移5个单位所得到的新抛物线的顶点是(-2,0),求原抛物线的解析式。
分析:①由0=++c b a 可知:原抛物线的图像经过点(1,0);②新抛物线向右平移5个单位,再向上平移1个单位即得原抛物线。
解:可设新抛物线的解析式为2)2(+=x a y ,则原抛物线的解析式为1)52(2+-+=x a y ,又易知原抛物线过点(1,0)∴1)521(02+-+=a ,解得41-=a ∴原抛物线的解析式为:1)3(412+--=x yyx例1图-11O评注:解这类题的关键是深刻理解平移前后两抛物线间的关系,以及所对应的解析式间的联系,并注意逆向思维的应用。
另外,还可关注抛物线的顶点发生了怎样的移动,常见的几种变动方式有:①开口反向(或旋转1800),此时顶点坐标不变,只是a 反号;②两抛物线关于x 轴对称,此时顶点关于x 轴对称,a 反号;③两抛物线关于y 轴对称,此时顶点关于y 轴对称; 探索与创新:【问题】已知,抛物线22)1(t t x a y +--=(a 、t 是常数且不等于零)的顶点是A ,如图所示,抛物线122+-=x x y 的顶点是B 。
2013中考数学一次函数解答题汇总
2013中考数学一次函数解答题汇总(2013•大连)如图,一次函数y = - x + 4的图象与x轴、y轴分别相交于点A、B。
P是射线BO上的一个动点(点P不与点B重合),过点P作P C⊥AB,垂足为C,在射线CA上截取CD=CP,连接PD。
设BP=t。
(1)t为何值时,点D恰好与点A重合?(2)设△PCD与△AOB重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围。
25.(2013•大连)将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF。
(1)如图1,若∠ABC=α=60°,BF=AF。
①求证:DA∥BC;②猜想线段DF、AF的数量关系,并证明你的猜想;(2)如图2,若∠ABC<α,BF=mAF(m为常数),求的值(用含m、α的式子表示)。
(2013•常州)在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a>0),直线l过动点M(0,m)(0<m<2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA.(1)写出A、C两点的坐标;(2)当0<m<1时,若△PAQ是以P为顶点的倍边三角形(注:若△HNK满足HN=2HK,则称△HNK为以H为顶点的倍边三角形),求出m的值;(3)当1<m<2时,是否存在实数m,使CD•AQ=PQ•DE?若能,求出m的值(用含a 的代数式表示);若不能,请说明理由.所示,利用相似三角形,将已知的比例式转化为:(,解得:k=﹣2,b=2m﹣2,,解得:(,PQ=(.,,即.m=,这样可以简化计算.(2013山东滨州,25,12分)根据要求,解答下列问题:(1)已知直线l1的函数解析式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)如图,过原点的直线l3向上的方向与x轴的正方向所成的角为30°.①求直线l3的函数表达式;②把直线l3绕原点O按逆时针方向旋转90°得到直线l4,求直线l4的函数表达式.(3)分别观察(1)、(2)中的两个函数表达式,请猜想:当两直线互相垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线y=-1 5 x垂直的直线l5的函数表达式.【解答过程】解:(1)y=-x.(2)①如图,在直线l3上任取一点M,作MN⊥x轴,垂足为N.设MN的长为1,∵∠MON=30°,∴.设直线l3的表达式为y=kx,把1)代入y=kx,得,.∴直线l3的表达式为x.②如图,作出直线l4,且在l4取一点P,使OP=OM,作PQ⊥y轴于Q,同理可得∠POQ=30°,PQ=1,设直线l4的表达式为y=kx,把(-1)代入y=kx,得=-k,∴k=.∴直线l4的表达式为y==x.(3)当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数,即两系数的乘积等于-1.X|k |B | 1 . c|O |m∴过原点且与直线y=-15x垂直的直线l5的函数表达式为y=5x.(2013菏泽)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过()A.第二、四象限 B.第一、二、三象限 C.第一、三象限 D.第二、三、四象限考点:一次函数图象与系数的关系.分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限即可.解答:解:∵k+b=﹣5、kb=6,∴k<0,b<0∴直线y=kx+b经过二、三、四象限,故选D.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.(2013济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.考点:一次函数综合题.分析:(1)根据直线y=﹣x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度;(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;(3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.解答:解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴==,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,则∵OQ=FQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴8﹣3t=t,解得:t=2,如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,PA=2t,∴OP=8﹣2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴t=3t﹣8,解得:t=4;(3)如图1,当Q在P点的左边时,∵OQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2,当t=﹣=时,S矩形PEFQ的最大值为:=4,如图2,当Q在P点的右边时,∵OQ=t,PA=2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴S矩形PEFQ=QP•QE=(3t﹣8)•t=3t2﹣8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴0≤t≤4,当t=﹣=时,S矩形PEFQ的最小,∴t=4时,S矩形PEFQ的最大值为:3×42﹣8×4=16,综上所述,当t=4时,S矩形PEFQ的最大值为:16.点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键.(2013•牡丹江)如图,平面直角坐标系中,矩形OABC的对角线AC=12,tan∠ACO=,(1)求B、C两点的坐标;(2)把矩形沿直线DE对折使点C落在点A处,DE与AC相交于点F,求直线DE的解析式;(3)若点M在直线DE上,平面内是否存在点N,使以O、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.ACO=OA=(x=2,=,,xAC=6×=3×=3)3OH=OF=3==2ON=,×=33)或(轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.,x+6﹣a+6a+6a=,)(,(﹣a+6a=,则﹣a+6=,∴(,﹣)(﹣,(,)()轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.(2013•安徽)如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB)是方程x2-18x+72=0的两个根,点C是线段AB的中点,点D在线段OC上,OD=2CD.(1)求点C的坐标;(2)求直线AD的解析式;(3)P是直线AD上的点,在平面内是否存在点Q,使以O、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解】(1)OA=6,OB=12点C是线段AB的中点,OC=AC作CE⊥x轴于点E.∴ OE=12OA=3,CE=12OB=6.∴ 点C 的坐标为(3,6)(2)作DF ⊥x 轴于点F△OFD ∽△OEC ,OD OC =23,于是可求得OF=2,DF=4.∴ 点D 的坐标为(2,4)设直线AD 的解析式为y=kx+b . 把A(6,0),D(2,4)代人得 解得k=-1,b=6∴ 直线AD 的解析式为y=-x+6(3)存在.Q 1(-32,32)Q 2(32,-32)Q 3(3,-3)Q 4(6,6)。
山东省17市2013年中考数学试题分类解析汇编专题03方程(组)和不等式(组)(K12教育文档)
(组)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省17市2013年中考数学试题分类解析汇编专题03方程(组)和不等式(组)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省17市2013年中考数学试题分类解析汇编专题03方程(组)和不等式(组)(word版可编辑修改)的全部内容。
式(组)一、选择题1。
(2013年山东滨州3分)对于任意实数k,关于x的方程()22x2k1x k2k10-+-+-=的根的情况为【】A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根D.无法确定2。
(2013年山东滨州3分)若把不等式组2x3x12-≥-⎧⎨-≥-⎩的解集在数轴上表示出来,则其对应的图形为【】A.长方形 B.线段 C.射线 D.直线不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线3. (2013年山东东营3分)已知1O ⊙的半径1r =2,2O ⊙的半径2r 是方程32x x 1=-的根,1O ⊙与1O ⊙的圆心距为1,那么两圆的位置关系为【 】A .内含B .内切C .相交D .外切 4. (2013年山东东营3分)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是【 】A. 5个 B 。
6个 C. 7个 D. 8个5. (2013年山东济宁3分)已知ab=4,若﹣2≤b≤-1,则a的取值范围是【】A.a≥-4 B.a≥-2 C.-4≤a≤-1 D.-4≤a≤-26. (2013年山东济宁3分)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多【】A.60元B.80元 C.120元 D.180元7. (2013年山东莱芜3分)方程2x4x2-=-的解为【】A.2- B.2 C.2± D.12-8. (2013年山东聊城3分)不等式组3x1>242x0-⎧⎨-≥⎩的解集在数轴上表示为【】A .B .C .D .10。
中考总复习一次方程及方程组--知识讲解
中考总复习一次方程及方程组--知识讲解一、一次方程1.1一次方程的定义一次方程是指未知数的最高次数为1的方程,可以用下面的形式表示:ax + b = 0其中,a和b为已知数,a≠0,x为未知数。
1.2方程的解求解一次方程的过程,就是要确定使等式成立的未知数的值。
将未知数的值代入等式,若等式成立,则该值为方程的解。
1.3解一次方程的方法1.3.1移项法对于一次方程ax+b=0,可以通过移项来求解,具体步骤如下:- 将一次方程两边的常数项b移到方程的右边,得到ax = -b-再将一次方程两边的系数项a移到方程的右边(即除以a),得到x=-b/a1.3.2代入法代入法是指将一次方程的已知数代入方程,然后求解未知数的值。
具体步骤如下:-将方程的已知数代入未知数的位置,得到一个带有未知数的一次方程-再求解带有未知数的一次方程,得到未知数的值1.4解一次方程的注意事项当解一次方程时,需要注意以下几点:-方程的两边同时加上(或减去)相同的数,等号的两边仍然相等。
即可以将方程中的数移到等号的另一边。
-方程的两边同时乘以(或除以一个不为0的数),等号的两边仍然相等。
即可以将方程中的系数移到等号的另一边。
二、一次方程组2.1一次方程组的定义一次方程组是指多个一次方程组成的方程组,可以用下面的形式表示:a₁x+b₁y+c₁=0a₂x+b₂y+c₂=0其中,a₁、b₁、c₁、a₂、b₂、c₂为已知数,a₁、b₁、a₂、b₂≠0,x和y为未知数。
2.2方程组的解求解一次方程组的过程,就是要确定使所有方程都成立的未知数的值。
将未知数的值代入所有方程,若所有方程都成立,则该值为方程组的解。
2.3解一次方程组的方法2.3.1代入法代入法是指将一个方程的解代入其他方程中,然后求解代入后的方程,得到未知数的值。
具体步骤如下:-解一个方程,得到其中一个未知数的解-将这个未知数的解代入另一个方程中,得到一个只有一个未知数的一次方程-求解这个一次方程,得到另一个未知数的解2.3.2消元法消元法是指通过对一次方程组中的方程进行加、减、乘、除等运算,将方程组中的未知数逐渐消去,从而得到只含一个未知数的方程。
中考数学总复习:一次方程及方程组--知识讲解【含解析】.doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】中考总复习:一次方程及方程组--知识讲解【考纲要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程;2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组;3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思想.【知识网络】【考点梳理】考点一、一元一次方程 1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式. (2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式. 2.方程的概念(1)含有未知数的等式叫做方程.(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根). (3)求方程的解的过程,叫做解方程. 3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程.(2)一元一次方程的一般形式:0(0)ax b a +=≠.(3)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来). 要点诠释:解一元一次方程的一般步骤 步骤名 称 方 法依 据注 意 事 项1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)等式性质21、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来.2 去括号 去括号法则(可先分配再去括号)乘法分配律 注意正确的去掉括号前带负数的括号3移项把未知项移到方程的一边(左边),常数项移到另一边等式性质1移项一定要改变符号(右边)4 合并同类项分别将未知项的系数相加、常数项相加 1、整式的加减; 2、有理数的加法法则 单独的一个未知数的系数为“±1”5系数化为“1” 在方程两边同时除以未知数的系数(或方程两边同时乘以未知数系数的倒数)等式性质2不要颠倒了被除数和除数(未知数的系数作除数——分母)*6检根 x=a 方法:把x=a 分别代入原方程的两边,分别计算出结果.① 若 左边=右边,则x=a 是方程的解; ② 若 左边≠右边,则x=a 不是方程的解.注:当题目要求时,此步骤必须表达出来.说明:(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法;(3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解.考点二、二元一次方程组 1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组. 要点诠释:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组. 2.二元一次方程组的一般形式111222a xb yc a x b y c +=⎧⎨+=⎩ 要点诠释:a 1、a 2不同时为0,b 1、b 2不同时为0,a 1、b 1不同时为0,a 2、b 2不同时为0. 3. 二元一次方程组的解法(1) 代入消元法; (2) 加减消元法. 要点诠释:(1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.(2)一元一次方程与一次函数、一元一次不等式之间的关系:当二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围,由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y =0时,求x 的值.从图象上看,这相当于已知纵坐标,确定横坐标的值.考点三、一次方程(组)的应用列方程(组)解应用题的一般步骤:1.审:分析题意,找出已知、未知之间的数量关系和相等关系;2.设:选择恰当的未知数(直接或间接设元),注意单位的统一和语言完整;3.列:根据数量和相等关系,正确列出代数式和方程(组);4.解:解所列的方程(组);5.验: (有三次检验 ①是否是所列方程(组)的解;②是否使代数式有意义;③是否满足实际意义);6.答:注意单位和语言完整.要点诠释:列方程应注意:(1)方程两边表示同类量;(2)方程两边单位一定要统一;(3)方程两边的数值相等.【典型例题】类型一、一元一次方程及其应用1.如果方程2n 731x 157--=是关于x 的一元一次方程,则n 的值为( ). A.2 B.4 C.3 D.1 【思路点拨】未知数x 的指数是1即可. 【答案】B ;【解析】由题意可知2n-7=1,∴n=4.【总结升华】根据一元一次方程的定义求解. 举一反三:【变式1】已知关于x 的方程4x-3m=2的解是x=5,则m 的值为 . 【答案】由题意可知4×5-3m =2,∴m=6.【高清课程名称:一次方程及方程组 高清ID 号:404191 关联的位置名称(播放点名称):例4】 【变式2】若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,求a ,b 的值. 【答案】a=0,b=11.2.(2015•顺德区校级三模)一收割机收割一块麦田,上午收割了麦田的25%,下午收割了剩下麦田的20%,结果还剩下6公顷麦田未收割.这块麦田一共有多少公顷?【思路点拨】设这块麦田一共有x 公顷,根据上午收割了麦田的25%,则剩余x (1﹣25%)公顷,再利用下午收割了剩下麦田的20%,则剩余x (1﹣25%)(1﹣20%)公顷,进而求出即可. 【答案与解析】解:设这块麦田一共有x 公顷, 根据题意得出:x (1﹣25%)(1﹣20%)=6, 解得:x=10,答:这块麦田一共有10公顷.【总结升华】此题主要考查了一元一次方程的应用,正确表示出两次剩余小麦的亩数是解题关键.举一反三:【变式】“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .()130%80%2080x +⨯= B . 30%80%2080x ⋅⋅= C . 208030%80%x ⨯⨯= D . 30%208080%x ⋅=⨯【答案】成本价提高30%后标价为()130%x +,打8折后的售价为()130%80%x +⨯.根据题意,列方程得()130%80%2080x +⨯=,故选A .类型二、二元一次方程组及其应用3.(2015春•宁波期中)解下列方程组. (1)(2).【思路点拨】代入消元法或加减消元法均可. 【答案与解析】 解:(1),将②代入①得:2(﹣2y+3)+3y=7, 去括号得:﹣4y+6+3y=7, 解得:y=﹣1,将y=﹣1代入②得:x=2+3=5, 则方程组的解;(2),①×4+②×3得:17m=34, 解得:m=2,将m=2代入①得:4+3n=13, 解得:n=3, 则方程组的解为.【总结升华】解方程组要善于观察方程组的特点,灵活选用适当的方法,提高解题速度.举一反三:① ②【变式1解方程组【答案】方程②化为,再用加减法解,答案:【高清课程名称:一次方程及方程组 高清ID 号: 404191 关联的位置名称(播放点名称):例3 】 【变式2】解方程组⎩⎨⎧=++=.36,5:4:3::c b a c b a【答案】a=9,b=12,c=15.4.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)写出用含x 、y 的代数式表示的地面总面积;(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?【思路点拨】根据题意找出等量关系式,列出方程或方程组解题. 【答案与解析】(1)地面总面积为:(6x +2y +18)m 2; (2)由题意,得6221,6218152.x y x y y -=⎧⎨++=⨯⎩解之,得4,3.2x y =⎧⎪⎨=⎪⎩∴地面总面积为:6x +2y +18=6×4+2×32+18=45(m 2). ∵铺1m 2地砖的平均费用为80元,∴铺地砖的总费用为:45×80=3600(元). 【总结升华】注意不要丢掉题中的单位. 举一反三:【变式】利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm【答案】设桌子高度为acm,木块竖放为bcm,木块横放为ccm.则80,a=7570a b ca c b+-=⎧⎨+-=⎩解得.故选C.类型三、一次方程(组)的综合运用5.某县为鼓励失地农民自主创业,在2012年对60位自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【思路点拨】根据失地农民自主创业连续经营一年以上的给予1000元奖励:自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励列方程求解.【答案与解析】方法一:设失地农民中自主创业连续经营一年以上的有x人,则根据题意列出方程 1000x+(60–x)(1000+2000)=100000,解得:x=40,∴60-x =60-40=20答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.方法二:设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民有分别有x,y人,根据题意列出方程组:601000(10002000)100000 x yx y+=⎧⎨++=⎩解得:2040 yx=⎧⎨=⎩答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.【总结升华】本题考查理解题意的能力,关键是找到人数和钱数作为等量关系.举一反三:【变式】某公园的门票价格如下表所示:购票人数1~50人51~100人100人以上票价 10元/人 8元/人 5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人? 【答案】设甲班有x 人,乙班有y 人,由题意得:8109205()515x y x y +=⎧⎨+=⎩ 解得:5548x y =⎧⎨=⎩. 答:甲班有55人,乙班有48人.6.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”; 乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”; 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少? 【思路点拨】根据甲、乙、丙三位同学提供的信息找出等量关系列出方程组求解. 【答案与解析】设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:解得答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. 【总结升华】通过甲、乙、丙三位同学调查结果找到车流量的等量关系式是解题的关键.中考数学知识点代数式一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
2013中考数学精选例题解析:一次函数(2)
2 013中考数学精选例题解析:一次函数(2)知识考点:1、掌握抛物线解析式的三种常用形式,并会根据题目条件灵活运用,使问题简捷获解;2、会利用图像的对称性求解有关顶点、与x 轴交点、三角形等问题。
精典例题:【例1】已知抛物线c bx ax y ++=2与抛物线732+--=x x y 的形状相同,顶点在直线1=x 上,且顶点到x 轴的距离为5,则此抛物线的解析式为 。
解析:1±=a ,顶点(1,5)或(1,-5)。
因此5)1(2+-=x y 或5)1(2--=x y 或5)1(2+--=x y 或5)1(2---=x y 展开即可。
评注:此题两抛物线形状相同,有1-=a ,一般地,已知抛物线上三个点的坐标,选用一般式;已知抛物线的顶点坐标(或对称轴和最值),选顶点式;已知抛物线与x 轴两交点的坐标,选交点式。
【例2】如图是抛物线型的拱桥,已知水位在AB 位置时,水面宽64米,水位上升3米就达到警戒水位线CD ,这时水面宽34米,若洪水到来时,水位以每小时0.25米的速度上升,求水过警戒线后几小时淹到拱桥顶?解析:以AB 所在直线为x 轴,AB 的中点为原点,建立直角坐标系,则抛物线的顶点M 在y 轴上,且A (62-,0),B (62,0),C (32-,3),D (32,3),设抛物线的解析式为)62)(62(-+=x x a y ,代入D 点得6412+-=x y ,顶点M (0,6),所以1225.0)36(=÷-(小时)xy例2图 D CB AO x y 问题图 C B A O评注:本题是函数知识的实际应用问题,解决的关键是学会“数学模型”,并合理建立直角坐标系来解决实际问题。
探索与创新:【问题】如图,开口向上的抛物线c bx ax y ++=2与x 轴交于A (1x ,0)和B (2x ,0)两点,1x 和2x 是方程0322=-+x x 的两个根(21x x <),而且抛物线交y 轴于点C ,∠ACB 不小于900。
中考数学复习第二章方程组与不等式组第6课时一次方程组及其应用真题精选含解析.doc
第二章 方程(组)与不等式(组)第6课时 一次方程(组)及其应用 江苏近4年中考真题精选(2013~2016)命题点1 一元一次方程及其解法(2016年常州13题,2015年2次,2013年镇江16题)1. (2015无锡4题3分)方程2x -1=3x +2的解为( )A. x =1B. x =-1C. x =3D. x =-32. (2013镇江16题3分)已知关于x 的方程2x +4=m -x 的解为负数,则m 的取值范围是( ) A. m <43 B. m >43C. m <4D. m >4 3. (2015常州14题2分)已知x =2是关于x 的方程a (x +1)=12a +x 的解,则a 的值是________. 命题点2 二元一次方程组及其解法(2016年3次,2015年4次,2014年2次,2013年2次)4. (2014宿迁4题3分)已知21x y =⎧⎨=⎩是方程组51ax by bx ay +=⎧⎨+=⎩的解,则a -b 的值是( )A. -1B. 2C. 3D. 45. (2016无锡20(2)题4分)解方程组:⎩⎪⎨⎪⎧2x =3-y ①3x +2y =2 ②.命题点3 一次方程(组)的实际应用(2016年6次,2015年3次,2014年4次,2013年2次)6. (2014无锡5题3分)某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )A. 1.2×0.8x+2×0.9(60+x)=87B. 1.2×0.8x+2×0.9(60-x)=87C. 2×0.9x+1.2×0.8(60+x)=87D. 2×0.9x+1.2×0.8(60-x)=877. (2016盐城16题3分)李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的.现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需________分钟.8. (2014苏州16题3分)某地准备对一段长120 m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为________.9. (2015无锡18题2分)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款________元.10. (2015南通22题8分)有大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.11. (2016徐州24题8分)小丽购买学习用品的收据如下表,因污损导致部分数据无法识别.根据下表,解决下列问题:(1)小丽买了自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?12. (2014连云港23题10分)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买.三次购买商品A、B的数量和费用如下表:(1)小林以折扣价购买商品A、B是第________次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?答案1. D 【解析】移项得,2x -3x =2+1,合并同类项得,-x =3,系数化为1,得x =-3.2. C 【解析】由2x +4=m -x 得,x =43m -,∵方程的解为负数,∴43m -<0,解得m <4. 3. 45 【解析】把x =2代入原方程,得3a =12a +2,解得a =45. 4. D 【解析】∵⎩⎪⎨⎪⎧x =2y =1是方程组51ax by bx ay +=⎧⎨+=⎩的解,∴2521a b b a +=⎧⎨+=⎩,两个方程相减,得a -b =4.5. 解:原方程组可变形为:23322x y x y +=⎧⎨+=⎩①②,①×2,得4x +2y =6 ③,(1分)③-②,得x =4,把x =4代入①得8+y =3,解得y =-5,∴原方程组的解为⎩⎪⎨⎪⎧x =4y =-5. 6. B 【解析】设铅笔卖出x 支,由题意,得1.2×0.8x +2×0.9(60-x )=87.7. 40 【解析】设李师傅加工1个甲种零件需要x 分钟,加工1个乙种零件需要y 分钟,根据题意可列方程组35554985x y x y +=⎧⎨+=⎩,解得⎩⎪⎨⎪⎧x =10y =5,∴2x +4y =20+20=40(分钟). 8. 20 【解析】由题意得⎩⎪⎨⎪⎧4x +9y =1208x +3y =120,解得⎩⎪⎨⎪⎧x =12y =8,∴x +y =20. 9. 838或910 【解析】小红付款480元,但到底有没有享受优惠还不清楚,因此我们需要分类讨论,第一种情况:小红没有享受优惠,直接购买商品的价格为480元;第二种情况:小红享受超过500元优惠,但不超过800元,则按购物总额给予8折优惠,则此时小红的商品价格为480÷80%=600(元);妈妈付款520元,则说明妈妈至少使用了第②种优惠,但又由于800×80%=640(元),所以可以判断妈妈只可能享受第②种优惠,因此妈妈购买商品的价格为520÷80%=650元,综上所述小红和妈妈购买商品的价格可能会出现两种情况:①小红没有享受优惠,直接购买商品的价格为480元,妈妈购买商品的价格为650元,480+650=1130>800,因此此时享受第③种优惠需要支付800×80%+(1130-800)×60%=838元;②小红享受第②种优惠,直接购买商品的价格为600元,妈妈购买商品的价格为650元,600+650=1250>800,因此此时享受第③种优惠需要支付800×80%+(1250-800)×60%=910元.10. 解:本题答案不唯一,下列解法供参考.①问题:1辆大车一次运货多少吨,1辆小车一次运货多少吨?解:设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意,得34222623x yx y+=⎧⎨+=⎩,解得⎩⎪⎨⎪⎧x=4y=2.5,答:1辆大车一次运货4吨,1辆小车一次运货2.5吨.②问题:1辆大车一次运货多少吨?解:设1辆大车一次运货x吨,则1辆小车一次运货2234x-吨.根据题意,得2x+6×2234x-=23,解得x=4.答:1辆大车一次运货4吨.③问题:5辆大车与10辆小车一次运货多少吨?解:设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意,得3422 2623x yx y+=⎧⎨+=⎩①②,①+②,得5x+10y=45.答:5辆大车与10辆小车一次运货45吨.11. 解:(1)设买自动铅笔x支,则买记号笔8-2-2-1-x=(3-x)支,由题意可得:6+1.5x+4(3-x)+9+3.5×1=28,解得:x=1,∴3-x=2,答:买自动铅笔1支,买记号笔2支.(2)设买软皮笔记本y本,自动铅笔z支.由表格可得,软皮笔记本的单价为9÷2=4.5(元),根据题意得,4.5y+1.5z=15,解得z=10-3y,当y=0时,z=10(舍去),当y=1时,z=7,当y=2时,z=4,当y=3时,z=1,答:共有3种不同的方案:第1种买1本软皮笔记本,7支自动铅笔;第2种买2本软皮笔记本,4支自动铅笔;第3种买3本软皮笔记本,1支自动铅笔.12. (1)【思维教练】由表格可以看出,第三次购买A、B两种商品的数量明显多于前两次,但费用却比前两次少,所以以折扣价购买A、B两种商品应该是第三次.解:三;(2)【信息梳理】设A 、B 两种商品的标价分别为x 元、y 元.解:设A 、B 两种商品的标价分别为x 元、y 元,根据题意,得651140371110x y x y +=⎧⎨+=⎩,解得⎩⎪⎨⎪⎧x =90y =120. 答:A 、B 两种商品的标价分别为90元、120元.(3)【信息梳理】解:设A 、B 两种商品均打a 折出售.根据题意,得9×90×10a +8×120×10a =1062, 解得a =6.答:商店是打6折出售商品A 、B 的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 013中考数学精选例题解析:方程与一次方程(组)及解法
知识考点:
了解等式和方程、一元一次方程(组)的概念,掌握等式的基本性质,能正确熟练地解一元一次方程,会对方程的解进行检验。
明确解方程组的基本思想是化归思想,并能用加减消元法和代入消元法解一次方程组。
精典例题:
【例1】解方程:12
733)1(2-=-+
+x
x x 分析:依据方程的同解原理,突出基本步骤,去分母时防止漏乘,注意移项时要改变符号。
答案:7
12
=
x 【例2】若关于x 的方程:4)2(35)3(10--
=+-x k x x k 与方程3
21)1(25x
x -=+-的解相同,求k 的值。
分析:由“解相同”的定义,将方程3
21)1(25x
x -=+-的解代入第一个方程,建立一个关于k 的方程,解之即可。
答案:k =4
【例3】在代数式m by ax ++中,当x =2,y =3,m =4时,它的值是零;当x =-3,y =-6,m =4时,它的值是4;求a 、b 的值。
分析:由代数式值的定义得关于a 、b 的二元一次方程组,侧重分析如何选择使用加减法或代入法消元。
答案:⎪⎩
⎪⎨⎧=-=3107
b a
探索与创新:
【问题一】要把面值为10元的人民币换成2元或1元的零钱,现有足够的面值为2元、1元的人民币,那么共有换法( )
A 、5种
B 、6种
C 、8种
D 、10种 略解:首先把实际问题转化成数学问题,设需2元、1元的人民币各为x 、y 张(x 、
y 为非负数),则有:x y y x 210102-=⇒=+,0≤x ≤5且x 为整数⇒x =0、1、
2、3、4、5。
答案:B
【问题二】如图是某风景区的旅游路线示意图,其中B 、C 、D 为风景点,E 为两条路的交叉点,图中数据为相应两点的路程(单位:千米)。
一学生从A 处出发以2千米/小时的速度步行游览,每个景点的逗留时间均为0.5小时。
(1)当他沿着路线A →D →C →E →A 游览回到A 处时,共用了3小时,求CE 的长;
(2)若此学生打算从A 处出发后,步行速度与在景点的逗留时间保持不变,且在最短时间内看完三个景
点返回到A 处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其它因素)。
略解:
(1)设CE 线长为x 千米,列方程可得x =0.4。
(2)分A →D →C →B →E →A 环线和A →D →C →E →B →E →A 环线计算所用时间,前者4.1小时,后者3.9小时,故先后者。
跟踪训练: 一、填空题:
1、若)23(x -∶2=)23(x +∶5,则x = 。
2、如果
532-x 与33
2
-x 的值互为相反数,则x = 。
3、已知⎩⎨
⎧-==11y x 是方程组⎩⎨⎧=-=+2
412
by x by ax 的解,则b a += 。
二、选择题:
1、若单项式124+-m b a 与7
23
2+-
m m b a 是同类项,则m =( ) 问题二图
x
••
•
•
•
1.2
0.4
1
1
1.6
E
D C
B
A
A 、2
B 、±2
C 、-2
D 、4
2、已知方程组⎩⎨
⎧=+=+4535y ax y x 与⎩
⎨⎧=+=-155
2by x y x 有相同的解,则a 、b 的值为( )
A 、⎩⎨
⎧==21b a B 、⎩⎨⎧-=-=64b a C 、⎩⎨⎧=-=26b a D 、⎩⎨⎧==2
14b a 3、若方程组⎩⎨
⎧=++=+3
31
3y x k y x 的解x 、y 满足0<y x -<1,则k 的取值范围是( )
A 、2<k <3
B 、2<k <4
C 、-4<k <0
D 、-4<k <-2 4、在一次美化校园的活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人数各是多少?解题时若设支援拔草的人数有x 人,则下列方程中正确的是( ) A 、18232⨯=+x B 、)38(232x x -=+
C 、)18(252x x +=-
D 、18252⨯=-x 三、解方程(组)
1、
4
2
331+-
=-x x ; 2、
2
5
03.002.003.02.18.08.1-=
+-+x x x ; 3、⎩
⎨⎧=-=+123532y x y x ;
4、⎪⎪⎩⎪⎪⎨⎧-=----=+-+x y y x y x y x 2334
35
)
(24231。
四、当x =1、2、3时,c bx ax ++2的对应值分别是2、3、6,求a 、b 、c 的值。
五、已知a 、b 是实数,
且0262=-++b a ,解关于x 的方程:1)2(2-=++a b x a
参考答案
一、填空题:
1、
149;2、8
27;3、8 二、选择题:CDBB 三、解方程(组):
1、26-=x ;
2、6=x ;
3、⎩⎨⎧==11y x ;
4、⎩⎨⎧==611y x ;
四、⎪⎩
⎪
⎨⎧=-==321
c b a
五、6=x。