中央循环蒸发器的设计
中央循环管式蒸发器工作过程
中央循环管式蒸发器工作过程
一、原液进入蒸发器
蒸发器是利用热能将原液加热变成蒸气的一种设备。
原液通过管道进入蒸发器的第一级,经过加热后,液体中的部分水分开始蒸发,原液转化为浓缩液。
二、加热蒸发
在蒸发器中,原液通过加热管进行加热,随着温度的升高,原液中的水分逐渐蒸发,浓缩液的浓度逐渐增加。
热能来源可以是蒸汽、电能或其它热源。
三、蒸发出来的流体气相流向同步器
从蒸发器中蒸发出来的流体气相流向同步器。
同步器的作用是调节蒸发器和浓缩液排出管道之间的压力差,确保蒸发器内部压力稳定,使蒸发过程能够持续稳定地进行。
四、同步器的工作原理
同步器由两部分组成:一部分是气相管道,另一部分是
液相管道。
气相管道与蒸发器出口相连,液相管道与浓缩液排出管道相连。
当蒸发器内部压力升高时,气相管道中的压力也会随之升高,而液相管道中的压力变化不大,这样就会产生压力差,使浓缩液从液相管道流向气相管道,从而维持蒸发器内部的压力稳定。
五、浓缩液排出
从同步器流出的浓缩液通过管道进入下一级处理设备或者直接收集起来。
浓缩液的排出速度和浓度可以根据实际需要进行调节和控制。
六、中央循环管的作用
中央循环管是蒸发器的重要组成部分,它可以将加热后的溶液进行循环流动,增加溶液在蒸发器中的停留时间,从而提高蒸发效率。
同时,中央循环管还能防止溶液在蒸发器内壁形成热阻层,保证传热效率。
综上所述,中央循环管式蒸发器的工作过程包括原液进入蒸发器、加热蒸发、蒸发出来的流体气相流向同步器以及浓缩液排出等步骤。
通过这些步骤,原液可以转化为浓缩液并排出,实现物质的分离和提纯。
蒸发器的设计计算
蒸发器的设计计算蒸发器设计计算已知条件:工质为R22,制冷量为3kW,蒸发温度为7℃。
进口空气的干球温度为21℃,湿球温度为15.5℃,相对湿度为56.34%;出口空气的干球温度为13℃,湿球温度为11.1℃,相对湿度为80%。
当地大气压力为Pa。
1.蒸发器结构参数选择选择φ10mm×0.7mm紫铜管,厚度为0.2mm的铝套片作为翅片,肋片间距为2.5mm,管排方式采用正三角排列,垂直于气流方向的管间距为25mm,沿气流方向的管排数为4,迎面风速为3m/s。
2.计算几何参数翅片为平直套片,考虑套片后的管外径为10.4mm,沿气流方向的管间距为21.65mm,沿气流方向套片的长度为86.6mm。
设计结果为每米管长翅片表面积为0.3651m²/m。
每米管长翅片间管子表面积为0.03m²/m。
每米管长总外表面积为0.3951m²/m。
每米管长管内面积为0.027m²/m。
每米管长的外表面积为0.m²/m。
肋化系数为14.63.3.计算空气侧的干表面传热系数1)空气的物性空气的平均温度为17℃。
空气在下17℃时的物性参数为:密度为1.215kg/m³,比热容为1005kJ/(kg·K)。
2)空气侧传热系数根据空气侧传热系数的计算公式,计算得到空气侧的干表面传热系数为12.5W/(m²·K)。
根据给定的数据,蒸发器的尺寸为252.5mm×1mm×10.4mm。
空气在最窄截面处的流速为5.58m/s,干表面传热系数可以用小型制冷装置设计指导式(4-8)计算得到,计算结果为68.2W/m2·K。
在确定空气在蒸发器内的变化过程时,根据进出口温度和焓湿图,可以得到空气的进出口状态点1和点2的参数,连接这两个点并延长与饱和气线相交的点w的参数为hw25kJ/kg。
dw6.6g/kg。
tw8℃。
中央循环管式蒸发器与热虹吸器的区别
中央循环管式蒸发器与热虹吸器在以下方面存在区别:
1.结构和原理:中央循环管式蒸发器由垂直的加热管束(沸腾管束)构成,管束中央有一根直径较大的管子,称为中央循环管。
当加热介质通入管
间加热时,由于加热管内单位体积液体的受热面积大于中央循环管内液体的受热面积,从而形成自然循环流动。
而热虹吸器则是靠液体的热对流来加热冷流体的换热器,它将沸器内的液体加热后变成气液混和物,再通过自然循环流动进行加热。
2.应用范围:中央循环管式蒸发器在过程工业中应用广泛,特别适用于蒸发结垢不严重、有少量结晶析出和腐蚀性较小的溶液。
而热虹吸器则广泛
应用于炼油、化工和石油化工等行业。
3.性能特点:中央循环管式蒸发器具有溶液循环好、传热速率快等优点,但其加热管长度较短,一般为1至2m,直径在25至75mm之间,因
此循环速度一般在0.4m/s-0.5m/s以下。
此外,由于溶液不断循环,使加热管内溶液始终接近完成液的浓度,故有溶液粘度大、沸点高等缺点。
而热虹吸器的特点是能够根据改变换热面积的大小来改变供热多少。
综上所述,中央循环管式蒸发器和热虹吸器在结构、原理、应用范围以及性能特点等方面存在显著区别。
在选择使用时,应根据具体的工艺要求和应用场景进行综合考虑。
苹果汁浓缩过程中三效并流蒸发器的设计方案
苹果汁浓缩过程中三效并流蒸发器的设计方案1设计说明书在制作果汁中,待处理好原理后,需要将果汁进行浓缩。
现以每天72吨(按8h/天计)的流量将苹果汁固形物为12%的溶液浓缩到40%,原料液在第一效的沸点下加入,料液比热容为3.20kJ/kg -C ;各效蒸发器中溶液的平均密度分别为:1 = 1100kg/m3,笃=1250kg/m3, J = 1300kg/m3。
加热蒸汽绝压为500kPa,冷凝器的绝压为20kPa。
根据经验,取各效蒸发器的总传热系数分别为:K^1500W/ m2C ,K2=1000W/ m2C ,K3=600W/ m2C。
各效加热蒸汽冷凝液在饱和温度下排出,各效传热面积相等,并忽略热损失,不考虑液柱静压对沸点的影响。
试设计一合适的三效并流蒸发系统满足生产要求。
2主要参数说明处理能力:每天72吨(按8h/天计)苹果汁。
设备型式:中央循环管式蒸发器操作条件:①将苹果汁固形物为12%的溶液浓缩到40%,原料液温度为第一效沸点温度,料液比热容为3.20kJ / kg C②加热蒸汽绝压为500kPa,冷凝器的绝压为20kPa。
③各效蒸发器中溶液的平均密度分别为:;-1100kg/m3,烏=1250kg / m3,L = 1300kg / m3,各效蒸发器的总传热系数分别为:K^1500W/ m2C ,K2=1000W/ m2C ,K3=600W/ m2C 。
④各效加热蒸汽冷凝液在饱和温度下排出,各效传热面积相等,并忽略热损失,不考虑液柱静压对沸点的影响。
3 设计计算多效蒸发工艺计算的主要依据是物料衡算、热量衡算及传热速率方程。
计算的主要项目有:加热蒸汽的消耗量,各效溶剂蒸发量以及各效的传热面积。
计算的已知参数包括:料液的流量、温度和组成,加热蒸汽的压力和冷凝器中的压力等。
3.1 设计方案的确定随着工业技术的发展,蒸发设备的结构与形式亦不断改进和创新,其种类繁多,结构各异。
在工业中常用的间接加热蒸发器分别为循环型和单程型两大类。
第二章 蒸发工艺设计计算
化工原理课程设计说明书●班级:●姓名:●组员:●学号:●日期:●指导老师:目录一.概述………………………………………………………………1-1蒸发操作特点……………………………………………………1-2蒸发操作分类……………………………………………………1-3蒸发设备…………………………………………………………1-4蒸发流程示意图…………………………………………………二.蒸发设计计算……………………………………………………2-1完成液浓度和各效水分蒸发量的计算…………………………2-2各效溶液的沸点和总有效温度差估算…………………………2-3加热蒸汽消耗量的计算…………………………………………2-4传热系数的确定…………………………………………………2-5有效温差在各效的分配…………………………………………2-6蒸发器传热面积计算……………………………………………三.蒸发器主要结构尺寸计算………………………………………3-1加热管的选择和管数的初步估计………………………………3-2循环管的选择……………………………………………………3-3加热管的直径以及加热管数目的确定…………………………3-4分离室直径和高度的计算………………………………………3-5接管尺寸的确定…………………………………………………四.蒸发装置的辅助设备……………………………………………4-1气液分离器………………………………………………………4-2蒸汽冷凝器………………………………………………………4-3真空泵的选型……………………………………………………4-4预热器的选型……………………………………………………五.主要设备强度计算及校核………………………………………5-1加热室的强度校核………………………………………………5-2蒸发室的强度校核………………………………………………5-3支座的选择与强度校核…………………………………………六.设计总结…………………………………………………………6-1设计结果汇总表………………………………………………6-2设计评价………………………………………………………6-3心得体会………………………………………………………参考文献………………………………………………………………第一章概述1—1蒸发操作的特点蒸发的目的是是溶剂和溶质分离,但溶液中的含溶质的数量不变,而溶剂气化速率只取决于在传热速率,即蒸发是传热过程。
中央循环管式蒸发器原理
中央循环管式蒸发器原理
一、加热室原理
中央循环管式蒸发器的加热室位于蒸发器的底部,由加热管组成。
加热管内通入蒸汽或热水,通过加热管将热量传递给管外的料液。
加热室的设计要考虑到传热效率和均匀性,以保证料液在加热管周围均匀受热,避免局部过热或结垢。
二、蒸发室原理
蒸发室是中央循环管式蒸发器的主体部分,位于加热室之上。
蒸发室内充满待蒸发的料液,加热后的料液在蒸发室中蒸发,产生蒸汽。
蒸发室的设计要考虑到蒸汽的逸出和料液的循环流动,以保持蒸发过程的稳定进行。
三、循环管原理
中央循环管式蒸发器的循环管位于蒸发器顶部,连接加热室和蒸发室。
循环管的作用是将加热后的料液引入蒸发室进行蒸发,并将产生的蒸汽送回加热室进行冷凝。
循环管的长度和直径根据蒸发器的设计参数确定,以保证良好的循环流动和传热效果。
四、液位控制原理
中央循环管式蒸发器的液位控制是保证蒸发过程稳定进行的重要环节。
液位控制通过调节进入蒸发器的料液流量来实现。
当蒸发器内的料液液面下降时,液位传感器会发出信号,控制料液泵增加进料量;当蒸发器内的料液液面上升时,液位传感器会发出信号,控制料液泵减少进料量。
通过液位控制,可以保持蒸发器内的料液液面稳定,避免因液面波动而影响蒸发过程的稳定进行。
总之,中央循环管式蒸发器的工作原理是通过加热室将热量传递给料液,使其蒸发产生蒸汽;通过循环管将蒸汽送回加热室进行冷凝,形成循环流动;通过液位控制保持蒸发器内的料液液面稳定。
这些原理共同作用,实现了中央循环管式蒸发器的稳定运行和高效蒸发。
蒸发器的设计
蒸发器主体为加热室和分离室,蒸发器的主要结构尺寸包括:加热室和分离室的直径及高度;加热管的规格、长度及在花板上的排列方式、连接管的尺寸。
这些尺寸的确定取决于工艺计算结果,主要是传热面积。
3.1加热管的选择和管数的初步估计3.1.1管子长度的选择根据溶液结垢的难易程度、溶液的起泡性和厂房的高度等因素来考虑。
本次设计选用外循环式蒸发器,国产外循环式蒸发器蒸发器的管长一般从2560到3000mm不等,具体参考《糖汁加热与蒸发》[1]第139页表6-1,再根据糖汁的黏度情况,选择加热管以及板管型号如下表3-1所示:表3-1加热选择参数因加热管固定在管板上,管板选择考虑到管板厚所占有的传热面积,以及因焊接所需要每端留出的剩余长度,则计算理论管子数n时的管长实际可以按以下公式计算:L=(L0-0.1)m=3-0.1=2.9 m前面已经计算求得各效面积A取500m2n= = =1307加热管的排布方式按正三角形排列,查《常用化工单元设备设计》[3]第163页表4-6,知道当管数为1303时,排布为a=19层,1307与1303相差不大,在这可以取19层进行计算。
其中排列在六角形内管数为 =1027根,其余排列在弓形面积内,如果按标准间距即管间距离54mm排列,则有四根管排不下,四根管的总面积为:A3=3.1415926×0.042×2.9×3=1.53 m2鉴于前面已经取1.11的安全系数,如果现在取1303根管,则总面积为:=500-1.53=498.47 安全系数为 K= =1.108在安全系数范围内,所以可以不要三根管,取1303根。
3.1.2加热壳体的直径计算D=t(b-1)+2eD-----壳体直径,m;t------管间距,m;b-----沿直径方向排列的管子数目;,在此取 e-----外层管的中心到壳体内壁的距离,一般取e=(1.0~1.5)d1.5。
b =2a-1=2×19-1=37D=0.054×(37-1)+2×1.5×0.042=2.07m参考《糖厂技术准备第三册》[6]第198页表9-2,本次设计常用标准形式的外循环式蒸发器,型号为TWX-550,有关参数如下表所示取标准的壳体直径为2400mm,具体参数如下表3-2-1,3-2-2所示:表3-2-1外循环管蒸发器有关技术参数表3-2-2 管蒸发器有关技术参数3.3 分离室直径与高度的校核分离室的直径取决于分离室的体积,而分离室体积又与二次蒸汽的体积流量及蒸发体积强度有关。
蒸发器蒸发方案设计课程设计
蒸发器蒸发方案设计课程设计第1章蒸发方案设计一般的加热蒸汽压强在.5~0.8MPa范围内加热蒸汽的确定需要考虑加热蒸汽温度的上限和下限。
被蒸发的溶液有一个最高的蒸发温度,超过此温度蒸发就物料就会变质,破坏和分解,这是确定加热蒸气压强的一个依据通常所用饱和蒸汽的温度不超过180℃,超过时相应的压强就很高,这将增加加热的设备费和操作费。
进入冷凝器冷凝需消耗大量冷却水,而且溶液粘度大,传热差。
但对于那些热敏性物料的蒸发,为充分利用热源还是经常采用。
对混合式冷凝器,其最大的真空度取决于冷凝器内的水温和真空装置的性能。
若第一效用较高压强的加热蒸汽,则末效可采用常压或真空蒸发,此时末效产生的二次蒸汽具有较高的温度,可以全部利用。
而且各效操作温度高时,溶液黏度低,传热好。
若一效加热蒸汽压强低,末效应采用真空操作。
此时各效二次蒸汽温度低,③蒸发的类型:本设计采用中央循环管式蒸发器中央循环管式蒸发器结构紧凑,制造方便,操作可靠,故在工业上应用广泛,有所谓标准蒸发器。
但设备的清洗和检修保证较大的传热系数,满足生产工艺的要求生产能力大,能完善分离液沫,尽量减慢传热面上垢层的生成本设计蒸发器效数采用3效为充分利用热能,为提高热能利用效率,生产中一般采用多效蒸发,但并不是效经济上的限制是指效数超过一定数时经济上不合算。
多效蒸发中,随效数的增加,总蒸发量相同时所需蒸汽量减少,使蒸汽用量减少,使操作费用降低。
但随效数增加,设备费成倍增长,而所节省的蒸汽量愈来愈少,所以无限制增加效数已无实际意义,最适宜的效数应使设备费和操作费二者之和为最小。
技术上的限制是指效数过多,蒸发操作难于进行。
一般工业秤中加热蒸汽压强和冷凝器操作压强都有一定限制,因此在一定操作条件下,蒸发器的理论总温度差为一定值。
在效数增加时,由于各效温差损失之和的增加,使总有效温差减小,分配到各效的有效温差小到无法保证各效发生正常的沸腾状态时,蒸发操将无法进行下去。
蒸发器尺寸设计
蒸发器尺寸设计集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)蒸发器工艺尺寸计算加热管的选择和管数的初步估计1加热管的选择和管数的初步估计蒸发器的加热管通常选用38*2.5mm无缝钢管。
加热管的长度一般为0.6—2m,但也有选用2m以上的管子。
管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。
根据我们的设计任务和溶液性质,我们选用以下的管子。
可根据经验我们选取:L=2M,38*2.5mm可以根据加热管的规格与长度初步估计所需的管子数n’,=124(根)式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积);d0----加热管外径,m; L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m.2循环管的选择循环管的截面积是根据使循环阻力尽量减小的原则考虑的。
我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。
加热管的总截面积可按n’计算。
循环管内径以D1表示,则所以mm对于加热面积较小的蒸发器,应去较大的百分数。
选取管子的直径为:循环管管长与加热管管长相同为2m。
按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。
循环管的规格一次确定。
循环管的管长与加热管相等,循环管的表面积不计入传热面积中。
3加热室直径及加热管数目的确定加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。
加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。
根据我们的数据表加以比较我们选用三角形排列式。
管心距t为相邻两管中心线之间的距离,t一般为加热管外径的1.25—1.5倍,目前在换热器设计中,管心距的数据已经标准化,只要确定管子规格,相应的管心距则是定值。
蒸发器设计手册
蒸发器设计手册【原创实用版】目录1.蒸发器设计手册概述2.蒸发器的工作原理3.蒸发器的分类和结构4.蒸发器的设计和选型5.蒸发器的性能测试和优化6.蒸发器的应用领域7.蒸发器的维护和故障处理正文【蒸发器设计手册概述】蒸发器设计手册是一本关于蒸发器设计、选型、应用、维护等方面的专业指南,旨在帮助工程师和技术人员更好地理解和运用蒸发器技术。
本文将根据手册内容,分七个部分详细介绍蒸发器的相关知识。
【蒸发器的工作原理】蒸发器是一种用于实现液体蒸发的设备,其基本原理是利用加热源对液体进行加热,使液体中的溶质逐渐变为蒸汽,从而实现溶液的浓缩。
蒸发过程中,液体的温度、压力、热流速等参数对蒸发效果有重要影响。
【蒸发器的分类和结构】根据工作原理和结构特点,蒸发器可分为自然循环蒸发器、强制循环蒸发器、单效蒸发器、多效蒸发器等。
蒸发器的主要结构包括壳体、加热器、传热管、蒸发室、分离器等部分,各部分协同工作以实现蒸发效果。
【蒸发器的设计和选型】蒸发器的设计需要考虑诸多因素,如溶液的性质、蒸发速率、设备投资和运行费用等。
选型时,应根据实际需求选择合适的蒸发器类型和规格。
此外,还需注意设备的布局、材料选择、施工质量等方面,以确保蒸发器的稳定运行。
【蒸发器的性能测试和优化】蒸发器的性能测试主要包括蒸发速率、热效率、蒸汽品质等指标。
通过测试数据,可以对蒸发器进行优化调整,提高其性能。
具体的优化措施包括提高传热效率、降低能耗、调整运行参数等。
【蒸发器的应用领域】蒸发器广泛应用于化工、轻工、食品、制药等行业,尤其在盐类、糖类、果汁、乳品等领域具有重要作用。
通过蒸发器,可以实现溶液的浓缩、脱水、提纯等工艺过程。
【蒸发器的维护和故障处理】蒸发器的正常运行离不开良好的维护和管理。
应定期检查设备的运行状况,保持设备清洁,及时更换易损件。
在遇到故障时,要迅速排除,避免影响生产。
常见的故障有传热管堵塞、蒸发室泄漏、电机故障等,需要针对性地进行处理。
化工原理课程设计 -蒸发
CHANGSHA UNIVERSITY OF SCIENCE & TECHNOLOGY化工原理课程设计B题目:KNO3水溶液三效并流加料蒸发装置的设计学生姓名:周文奕学号: 201538090108 班级:生物1501 专业:生物工程指导教师:方芳2017年6月课程设计成绩评定表化工原理设计B任务书化学与生物工程学院生物工程专业 15-01 班题目:KNO3水溶液三效并流加料蒸发装置的设计任务起止日期:2017年6月26日~2017年6月30日学生姓名张钰义学号201538090120 指导老师方芳教研室主任年月日审查院长年月日批准化工原理课程设计任务KNO3水溶液三效并流加料蒸发装置的设计摘要蒸发器可广泛用于医药、食品、化工、轻工等行业的水溶液或有机溶媒溶液的蒸发,特别适用于热敏性物料(例如中药生产的水、醇提取液等)。
同时,蒸发操作也可对溶剂进行回收。
随着工业蒸发技术的发展,蒸发器的结果和型式也不断的改进。
目前,蒸发器大概分为两类:一类是循环型,包括中央循环管式、悬筐式、外热式、列文式及强制循环式等;另一类是单程型,包括升膜式、降膜式、升—降膜式等。
这些蒸发器型式的选择,要多个方面综合得出。
现在化工生产实践中,为了节约能源、提高经济效益,很多厂家采用的蒸发设备是多效蒸发。
因为这样可以降低蒸气的消耗量,从而提高蒸发装置的各项热损失。
多效蒸发流程可分为:并流流程、逆流流程、平流流程以及错流流程。
在选择型式时应考虑料液的性质、工程技术要求、公用系统的情况等。
关键词:化工设备;三效蒸发装置;KNO溶液;并流3目录一绪论 (1)二设计任务 (2)2.1设计任务 (2)2.2操作条件 (2)三设计条件及设计方案说明 (2)四物性数据及相关计算 (3)4.1估计各效蒸发量和完成液浓度 (3)4.2估计各效蒸发溶液的沸点和有效总温度差 (4)4.3加热蒸汽消耗量和各效蒸发水量的初步计算 (5)4.4蒸发器传热面积的估算 (7)4.5有效温度的再分配 (7)4.6重复上述计算步骤 (8)4.7计算结果列表 (11)五主体设备计算和说明 (11)5.1加热管的选择和管数的初步估计 (11)5.2循环管的选择 (11)5.3加热管的直径以及加热管数目的确定 (12)5.4分离室直径和高度的确定 (13)5.5接管尺寸的确定 (14)六附属设备的选择 (16)6.1气液分离器 (16)6.2蒸汽冷凝器 (16)七三效蒸发器主要结构尺寸和计算结果 (18)7.1蒸发器的主要结构尺寸的确定 (18)7.2气液分离器结构尺寸的确定 (18)7.3 蒸汽冷凝器主要结构的确定 (19)八设计心得 (20)九参考文献 (20)十附录 (21)附录A:并流加料三效蒸发器的物料衡算和热量衡算示意图 (21)附录B:并流加料蒸发流程 (22)一、绪论蒸发是使含有不挥发溶质的溶液沸腾汽化并移出蒸气,从而使溶液中溶质浓度提高的单元操作。
化工原理课程设计---甘蔗糖厂四效真空蒸发装置
化工原理课程设计---甘蔗糖厂四效真空蒸发装置化工原理课程设计设计地点厦门市实习时间2012.09.03-07 学院生物工程学院班级食工1011 姓名学号成绩指导老师王美贵谢远红王瑞芳2012-9-7目录第一部分一、设计任务和原始数据 (2)二、设备型式的简要论述 (2)三、工艺流程的确定及说明 (2)第二部分一、蒸发器工艺设计计算(一)估算各效蒸发量和完成液浓度 (3)(二)估算各效溶液沸点和有效温度差 (3)(三)估算多效加热蒸汽消耗量和各效蒸发水量 (5)(四)估算传热面积 (6)(五)重新计算 (6)二、计算结果汇总表 (8)三、蒸发器的主要尺寸 (9)第三部分辅助设备的选择 (10)第四部分设计过程分析讨论 (10)附录参考文献 (12)第一部分一、设计的任务要求和原始数据本次设计的任务是根据所提供的原始数据和要求设计甘蔗糖厂四效真空蒸发装置,确定蒸发器的操作条件,蒸发器的型式及蒸发流程;进行工艺计算,确定蒸发器的传热面积及结构尺寸。
(一)设计要求:1.采用中央循环管式蒸发器(即标准式蒸发器)2.采用各效蒸发器的传热面积相等3.原料液采用沸点进料4.加热蒸汽的冷凝液均在饱和温度下排出5.各效均无抽6.各效有效温度差不宜少于(5-7)℃7.加热管长度不得大于2m中央循环管式蒸发器有悠久的历史,传统上称它为标准式蒸发器。
中央循环管式蒸发器在外观上是一个圆柱式容器,其主体是加热室和分离室。
加热室是由直立的加热管束所组成,管束中间为一根直径较粗的中央循环管。
中央循环管的直径约为器体直径的1/4~1/8,其截面积约等于全部加热截面积的35~40%,在糖厂循环管内装有出汁管,管端有漏斗、浓度较高的糖汁从出汁管压到下一效蒸发器。
糖汁从器底送入,顺加热管上升,从循环管下降,循环速度约0.4~0.5m/s。
分离室是气液分离的空间,又名蒸发室。
中央循环管式蒸发器结构简单、紧凑,适应性强 ,操作可靠,传热效果好,至今工业上仍广泛使用,对于较粘的液体易结垢或在浓缩过程中会产生结晶的溶液都可以采用,但由于溶液的不断循环,使加热管内的溶液始终接近完成液的组成,故有溶液黏度大、沸点高等缺点。
苹果汁浓缩过程中三效并流蒸发器的设计方案
苹果汁浓缩过程中三效并流蒸发器的设计方案1 设计说明书在制作果汁中,待处理好原理后,需要将果汁进行浓缩。
现以每天72吨(按8h /天计)的流量将苹果汁固形物为12%的溶液浓缩到40%,原料液在第一效的沸点下加入,料液比热容为()3.20/kJ kg ⋅℃;各效蒸发器中溶液的平均密度分别为:311100/kg m ρ=,321250/kg m ρ=,331300/kg m ρ=。
加热蒸汽绝压为500kPa ,冷凝器的绝压为20kPa 。
根据经验,取各效蒸发器的总传热系数分别为:()211500/K W m =⋅℃,()221000/K W m =⋅℃,()23600/K W m =⋅℃。
各效加热蒸汽冷凝液在饱和温度下排出,各效传热面积相等,并忽略热损失,不考虑液柱静压对沸点的影响。
试设计一合适的三效并流蒸发系统满足生产要求。
2 主要参数说明处理能力:每天72吨(按8h /天计)苹果汁。
设备型式:中央循环管式蒸发器 操作条件:①将苹果汁固形物为12%的溶液浓缩到40%,原料液温度为第一效沸点温度,料液比热容为()3.20/kJ kg ⋅℃②加热蒸汽绝压为500kPa ,冷凝器的绝压为20kPa 。
③各效蒸发器中溶液的平均密度分别为:311100/kg m ρ=,321250/kg m ρ=,331300/kg m ρ=,各效蒸发器的总传热系数分别为:()211500/K W m =⋅℃,()221000/K W m =⋅℃,()23600/K W m =⋅℃。
④各效加热蒸汽冷凝液在饱和温度下排出,各效传热面积相等,并忽略热损失,不考虑液柱静压对沸点的影响。
3 设计计算多效蒸发工艺计算的主要依据是物料衡算、热量衡算及传热速率方程。
计算的主要项目有:加热蒸汽的消耗量,各效溶剂蒸发量以及各效的传热面积。
计算的已知参数包括:料液的流量、温度和组成,加热蒸汽的压力和冷凝器中的压力等。
3.1设计方案的确定随着工业技术的发展,蒸发设备的结构与形式亦不断改进和创新,其种类繁多,结构各异。
中央循环管式蒸发器的工作原理
中央循环管式蒸发器的工作原理嘿,朋友们!今天咱来聊聊中央循环管式蒸发器的工作原理。
你看啊,这中央循环管式蒸发器就像是一个勤劳的小厨师,在默默地工作着。
它里面有一根粗粗的管子,就像厨师的大勺一样重要。
工作的时候呢,溶液就被送进这个蒸发器里啦。
这就好比食材被送进了厨房。
然后啊,通过加热,让溶液沸腾起来,就好像食材在锅里被煮得咕嘟咕嘟响。
这时候,产生的蒸汽就往上跑啦,而那些浓缩后的溶液呢,就会在管子里循环流动,就像小厨师在不断翻炒食材一样,让它们均匀受热,变得更加浓郁。
你说这神奇不神奇?就这么个装置,能把稀稀的溶液变得稠稠的。
它就像是一个魔法盒子,把普通的东西变得有价值了。
再想想,这中央循环管式蒸发器是不是特别厉害?它悄无声息地工作着,为我们的生活带来了很多便利呢。
比如说,在一些化工生产中,没有它可不行。
它就像一个默默奉献的幕后英雄,虽然我们平时可能不太注意到它,但它的作用可大了去了。
而且哦,它还特别稳定可靠呢。
就像一个忠实的伙伴,一直坚守在自己的岗位上,不离不弃。
不管遇到什么情况,它都能稳稳地运行,给我们带来满意的结果。
咱再深入想想,这中央循环管式蒸发器的工作原理其实也不难理解嘛。
就是加热、沸腾、循环,这么几个简单的步骤,却能发挥出巨大的作用。
这不就跟我们生活中的很多事情一样吗?看似简单的事情,只要坚持去做,就能产生意想不到的效果。
所以啊,朋友们,可别小看了这中央循环管式蒸发器哦。
它虽然看起来普普通通,但其实蕴含着大大的能量呢!它就像是我们生活中的那些平凡英雄,虽然不引人注目,但却在默默地为我们的生活做出贡献。
让我们为它点个赞吧!。
蒸发器的结构
蒸发器的结构蒸发器主要由加热室及分离室组成。
按加热室的结构和操作时溶液的流动情况,可将工业中常用的间接加热蒸发器分为循环型(非膜式)和单程型(膜式)两大类。
一、循环型(非膜式)蒸发器这类蒸发器的特点是溶液在蒸发器内作连续的循环运动,以提高传热效果、缓和溶液结垢情况。
由于引起循环运动的原因不同,可分为自然循环和强制循环两种类型。
前者是由于溶液在加热室不同位置上的受热程度不同,产生了密度差而引起的循环运动;后者是依靠外加动力迫使溶液沿一个方向作循环流动。
(一)中央循环管式(或标准式)蒸发器中央循环管式蒸发器如图5—1所示,加热室由垂直管束组成,管束中央有一根直径较粗的管子。
细管内单位体积溶液受热面大于粗管的,即前者受热好,溶液汽化得多,因此细管内汽液混合物的密度比粗管内的小,这种密度差促使溶液作沿粗管下降而沿细管上升的连续规则的自然循环运动。
粗管称为降液管或中央循环管,细管称为沸腾管或加热管。
为了促使溶液有良好的循环,中央循环管截面积一般为加热管总截面积的40%一100%。
管束高度为1—2m;加热管直径在25~75mm之间、长径之比为20~40。
图5—1 中央循环管式蒸发器1-加热室:2-分离室中央循环管蒸发器是从水平加热室、蛇管加热室等蒸发器发展而来的,相对于这些老式蒸发器而言,中央循环管蒸发器具有溶液循环好、传热效率高等优点;同时由于结构紧凑、制造方便、操作可靠,故应用十分广泛,有“标准蒸发器”之称。
但实际上由于结构的限制,循环速度一般在0.4~0.5m/s以下;且由于溶液的不断循环,使加·热管内的溶液始终接近完成液的浓度,故有溶液粘度大、沸点高等缺点;此外,这种蒸发器的加热室不易清洗。
中央循环管式蒸发器适用于处理结垢不严重、腐蚀性较小的溶液。
(二)悬筐式蒸发器悬筐式蒸发器的结构如图5—2所示,是中央循环管蒸发器的改进。
加热蒸汽由中央蒸汽管进入加热室,加热室悬挂在器内,可由顶部取出,便于清洗与更换。
空调蒸发器设计的标准手册
空调蒸发器设计的标准手册第一部分:引言空调蒸发器是空调系统中的重要组成部分,它通过蒸发制冷原理,将空气中的热量吸收并转化为冷量,从而实现空调效果。
本手册旨在制定空调蒸发器设计的标准,以确保其安全、高效、可靠地运行。
本手册适用于各种类型的空调蒸发器设计,包括家用空调、商用空调等。
第二部分:设计要求1. 材料选择:空调蒸发器的制作材料应选用耐腐蚀、导热性好的材料,如铝合金、不锈钢等,以确保其在潮湿环境下能够长期稳定运行。
2. 散热设计:空调蒸发器应设计合理的散热结构,以确保在长时间运行时不会产生过热现象,降低能耗和延长使用寿命。
3. 水循环系统:空调蒸发器的水循环系统应设计成稳定、可靠的结构,避免漏水和结垢现象,确保水的平稳流动和蒸发效果。
4. 控制系统:空调蒸发器的控制系统应灵活可靠,能够根据环境温度和湿度进行自动调节,实现节能和舒适的空调效果。
第三部分:设计流程1. 初步设计:根据空调系统的需求和工作条件,制定空调蒸发器的初步设计方案,包括结构布局、材料选择等。
2. 模拟验证:利用计算机辅助设计软件对初步设计进行模拟验证,评估蒸发器的热力特性和散热性能。
3. 试制样机:制作空调蒸发器的试制样机,进行实际的性能测试和调试,对设计方案进行修正和改进。
4. 批量生产:根据试制样机的测试结果确定最终设计方案,进行空调蒸发器的批量生产和推广应用。
第四部分:质量控制1. 材料检测:对空调蒸发器所使用的材料进行严格的质量把控,确保符合相关标准要求。
2. 制造工艺:对空调蒸发器的制造工艺进行全程监控,包括材料切割、焊接、组装等环节,避免质量缺陷。
3. 性能测试:对生产出的空调蒸发器进行严格的性能测试,确保其符合设计要求并具备稳定可靠的工作性能。
第五部分:安全和维护1. 安全设计:空调蒸发器的设计应考虑安全因素,避免产生漏电、漏水等安全隐患。
2. 维护保养:为用户提供空调蒸发器的维护保养手册,指导用户进行定期检查和清洁保养工作,延长空调蒸发器的使用寿命。
家用电冰箱蒸发器设计与制冷效果的匹配及改进
家用电冰箱蒸发器设计与制冷效果的匹配及改进随着社会的不断进步和技术的快速发展,家用电冰箱已经成为了现代生活中必备的家电之一。
而作为电冰箱中最核心的部件之一,蒸发器的设计和制冷效果对冰箱的性能和使用体验起着至关重要的作用。
本文将重点探讨家用电冰箱蒸发器的设计原则、与制冷效果的匹配以及对其进行的改进方案。
首先,家用电冰箱蒸发器的设计应考虑到制冷效果所需的几个重要因素。
首先是制冷剂循环的流量和速度。
为了保证良好的制冷效果,制冷剂在蒸发器内应以合适的流量和速度进行流动。
根据不同型号的冰箱和使用环境的不同,蒸发器的设计需要根据实际需要进行合理的折中和调整。
其次是蒸发器的传热效果。
蒸发器是将制冷剂从液体态转变为气体态的关键环节,其传热效果的好坏决定了制冷效果的优劣。
因此,蒸发器的设计应重点考虑提高传热效率,例如通过增加蒸发器内的传热面积、优化制冷剂通道的结构等方式来提升传热效果。
另外,家用电冰箱蒸发器的设计还要考虑降低能耗的问题。
随着人们对节能环保意识的增强,制冷设备的能效也日益受到重视。
在设计家用电冰箱蒸发器时,应优化制冷剂的回路结构,减少能量损耗,并合理使用制冷剂的压力和温度参数,以提高蒸发器的能效。
针对家用电冰箱蒸发器的制冷效果,我们还可以通过一些改进方案来进一步提升其性能。
首先是增加蒸发器的表面积,通过增加传热面积来提高传热效果。
这可以通过增加蒸发器内传热管道的数量和长度来实现。
同时,我们可以优化蒸发器内的制冷剂流动通道结构,以减轻制冷剂在流动过程中的阻力,提高流通效率。
其次,可以考虑采用新型的制冷材料来改进蒸发器的制冷效果。
目前,一些新型的制冷材料如热导率较高的铜铝合金等已经被广泛应用于蒸发器的制造中,并取得了不错的效果。
这些新材料具有较好的导热性能,可以更快地将热量传递给制冷剂,提高蒸发器的制冷效果。
此外,还可以采用先进的制冷技术来改进家用电冰箱蒸发器的制冷效果。
例如,可以引入变频技术,通过调节制冷剂的流量和速度来实现智能控制和优化制冷效果。
蒸发器设计 2
2.6.2重复上述计算步骤(1)由所求得的各效蒸发量1W 、2W ,求各效料液的浓度,它们分别为011Fx 37083.330.1215.71F-W 37083.338761.17x ⨯===-%2012Fx 37083.330.1223.51F-W -W 37083.338761.179391.22x ⨯===--%3x =50%0x —原料液的浓度;F —原料液的进料量,kg/h ; (2)计算各效料液的沸点表2-6因末效完成液浓度和冷凝器压力均不变,各种温度差损失及溶液沸点可视为恒定,即''''''3333 1.4410.53112.97∆=∆+∆+∆=++= ℃,故末效溶液的沸点3t 仍为79.47 ℃,而'3t 40.29∆=℃,则第三效加热蒸汽的温度(即第二效二次蒸汽温度)为 ''323340.2979.47119.76T T t t ==+∆=+= ℃ 则()2'2''223119.7627316.216.20.370.422205.8610T a r+∆=∆=⨯⨯=⨯℃2'32gh197.22101096.159.81 2.2/2209048.552m p p Pa ρ=+=⨯+⨯⨯=查表知m T =121.11℃'''11121.11119.76 1.35m T T ∆=-=-=℃ '''21∆=℃121T 143.69+2.11=145.71t =+∆=‘℃2T =''122221.16119.76 2.77143.69T t t =+∆+∆=++=℃由第一效、第二效的二次蒸汽的温度'1T ,'2T 查表知气化潜热 'i r 二次蒸汽压强'i P 如下表所示表2-7()2'2''113143.6927316.216.20.210.282138.1210T a r+∆=∆=⨯⨯=⨯℃1'31gh400.53101061.989.81 2.2/2411989.832m p p Paρ=+=⨯+⨯⨯=由1m p 查表可知水的沸点m T =144.43℃'''11144.43143.60.83m T T ∆=-=-=℃'''11∆=℃''''''11110.280.831 2.11∆=∆+∆+∆=++=℃111T 143.69+2.11=145.71t =+∆=‘℃(3)各效的焓衡算 第Ⅰ效:111111'12091.1D 0.98=0.96D 2138.12D r W r η==⨯(h kg /) (e )第Ⅱ效:])([2211022222r t t C W FCr r D W pw p '--+'=η()()112138.1237083.33 3.95W 4.187145.71-122.530.982205.86W ⨯+⨯-⨯⎡⎤=⨯⎢⎥⎣⎦10.901493.97W =+ (h kg /) (f )第Ⅲ效:])([33221033333r t t C W C W FCr r D W pw pw p '---+'=η()()2122205.8637083.33 3.95W 4.187-W 4.187122.53-79.470.982333.7W ⨯+⨯-⨯⨯⎡⎤=⨯⎢⎥⎣⎦10.6893918.97W =+ (h kg /) (g )又因W =1W +2W +3W =28183.33 kg/h (h ) 联立式(e )至(h ),可得1W =8791.66 h kg / 2W =9406.46 h kg /3W =9976.42 h kg /1D =9157.98 h kg /(4)计算蒸发器的传热面积31119157.982091.110Q =D r =5319514.44W3600⨯⨯=则第一效蒸发器传热面积为21111Q 5319514.44S =129.71K t 300013.67m==∆⨯3'2118791.662138.1210Q =W r =5221562.24W3600⨯⨯=则第二效蒸发器传热面积为22222Q 5221562.24S =129.88K t 190021.16m==∆⨯3'3229406.462205.8610Q =W r =5763703.85W3600⨯⨯=则第三效蒸发器传热面积为23333Q 5763703.85S =130.05K t 110040.29m==∆⨯因313130.05129.710.00260.04130.05S S S --==<计算误差在0.04以下,试差结果合理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
食品工程原理课程设计说明书中央循环蒸发器的设计姓名:学号:班级:X年X月X日一 《食品工程原理》课程设计任务书一 《食品工程原理》课程设计任务书 ..............................................................................2 (1).设计课题 .......................................................................................................................3 (2).设计条件 .......................................................................................................................3 (3).设计要求 ..........................................................................................................................3 (4).设计意义 ......................................................................................................................3 (5).主要参考资料...............................................................................................................3 二 设计方案的确定 ..............................................................................................................4 三 设计计算 ........................................................................................................................4 3.1.总蒸发水量 ..................................................................................................................4 3.2.加热面积初算 ..............................................................................................................4 (1)估算各效浓度 ..............................................................................................................4 (2)沸点的初算 ..................................................................................................................5 (3)温度差的计算 ..............................................................................................................5 (4)计算两效蒸发水量1W ,2W 及加热蒸汽的消耗量 1D ..........................................6 (5)总传热系数K 的计算 ..................................................................................................7 (6)分配有效温度差,计算传热面积 ..............................................................................9 3.3.重算两效传热面积 ....................................................................................................... 10 (1).第一次重算 .............................................................................................................. 10 3.4 计算结果 ...................................................................................................................... 11 四.简图 .. (15)(1).设计课题:番茄汁浓缩工艺装置的设计计算(2).设计条件:题目1:番茄汁低温浓缩工艺装置的设计设计任务及操作条件生产能力:3110 kg/h原料固形物含量:10%浓缩要求:使固形物质量分数浓缩至36%液加入温度料:25℃原料最高许可温度:58℃浓缩液经冷凝后出口温度:25℃加热介质:100℃的饱和蒸汽。
物料平均比热为3.50 kJ/(kg·K),忽略浓缩热试设计一套双效中央循环蒸发系统,满足上述工艺要求。
(3).设计要求:1.设计一套双效中央循环蒸发系统(满足上述工艺要求并包括料液输送系统,蒸发系统,冷凝水分离排除系统及真空系统);2.提交设计计算说明书一份,(应包括目录、设计计算任务书、设计方案的确定、各系统的设计计算及设备选型、简略的技术经济分析、参考文献资料等。
须打印);3.工艺布置简图一幅(可附在设计计算书上);4.注意收集、阅读参考资料,形成设计方案;5.提交日期:2013年12月27日。
(4).设计意义中央循环蒸发器属于自然循环型的蒸发器。
它是工业生产中广泛使用且历史悠久的大型蒸发器,至今在化工、轻工、环保等行业中仍被广泛采用。
(5).主要参考资料1.夏清、陈常贵主编,姚玉英主审,化工原理,天津大学出版社,2005,12.华南理工大学化工原理教研组,化工过程及设备设计,华南理工大学出版社.19953.化工设备的选择与工艺设计,中南工业大学出版社. 19924.丛德滋等, 化工原理详解与应用, 化学工业出版社. 2002,7, 151-1585.张承翼李春英,化工工程制图,化学工业出版社. 19976.张桂昭,三效逆流加料蒸发器的设计,化工设计. 1996(6):6-107. 蒋迪清等,食品通用机械与设备,华南理工大学出版社,2001,7,111-13 8. 各类化学工程学报、期刊、化工设备手册及其化工机械设备产品广告二 设计方案的确定一.对果汁进行浓缩的好处: 1.减少包装、运输和贮藏的费用; 2.防止腐败; 3.改善口感。
二.确定设计方案:考虑到高温会破坏果汁的品质,故采用真空低温蒸发来对番茄汁进行浓缩操作;由处理物料(原料)的性质及设计要求知,番茄汁黏度大、不易生泡沫,考虑到经济和效率问题,选用双效中央循环蒸发系统,根据设计要求,采用并流双效中央循环式蒸发器蒸发。
选用2m 长φ38×3mm 的无缝不锈钢管作加热管。
三 设计计算3.1.总蒸发水量020.10(1)3110(1)2246.1/0.36X W F kg h X =-=-=3.2.加热面积初算 (1)估算各效浓度:第一效蒸发后101W F FX X -=由经验公式:1W :2W =1:1.1而122246.1/W W W kg h +==解得 11069.57/W k g h =21176.53/W kg h =1X =15.24%(暂取15%)(2)沸点的初算查表:T=100℃时,P=101.33kpa ;T=25℃时,2P =3.1684kpa 设两效蒸汽压强相等2101.33 3.168498.1616P P P kpa ∆=-=-=198.1616101.3352.249222P P P kpa ∆=-=-= 查的1P 时,沸点182.19w t =℃;2126w t T =+=℃,第二效加热蒸汽2T =1w t —1=81.19℃(3)温度差的计算①沸点升高引起:将该溶液当作蔗糖溶液处理,有沸点的温度损失差为: 第一效时:1f a ''∆=⨯∆20.0162(82.19273)0.22301.7⨯+=⨯0.18=℃ 第二效时:2f a ''∆=⨯∆=20.0162(26273)0.842432.7⨯+=⨯0.50=℃ =0.18+0.50=0.68'∆∑℃②对中央循环蒸发器,静压效应引起的温度差损失''∆:第一效时:P m1=11 1.02929.81252.249255.6147223ghp kPa ρ⨯⨯+=+=⨯第二效时:P m2=22 1.15369.8123.1684 6.9407223gh p ρ⨯⨯+=+=⨯KPa查表:1m p 时沸点 1m T =83.67℃ 2m p 时沸点 2m T =38.61℃''111 1.48m w T T ∴∆=-=℃''22212.61m w T T ∆=-=℃''1.4812.6114.09∴∆=+=∑℃③由于流体阻力产生压强降所引起的温度差根据经验取'''''''''121=2∆=∆=∆∑℃ 即℃ ④有效温度差:第一效沸点 ''''1111t T =+∆+∆=82.19+0.18+1.48=83.85℃有效温差 111-t T t ∆==100—83.85=16.15℃ 第二效沸点 ''''2222t T =+∆+∆=26+0.50+12.61=39.11℃ 有效温差 222-t T t ∆==81.19—39.11=42.08℃ 有效总温差 1216.15+42.08=58.23t t t ∆=∆+∆=∑℃(4)计算两效蒸发水量1W ,2W 及加热蒸汽的消耗量1D由题意知溶液比热为k kg kj C ⋅=/5.30,查表得水的比热为 4.220/w C kj kg k =⋅ 作第一效热量衡算,得11101111)(η''-+=r t t FC r r D W 其中10.98η=所以10111111112258.42582.19()0.98(3110 3.50)0.9622652301.72301.7r t t W D FC D D r r η''--=+=+⨯⨯=-----① 同理作第二效热量衡算,得21221101222[()]w r t t W W W W C F C W r r η''-=-=+-----------------② 其中20.98η=所以1112304.083.8539.112246.1[(3.503110 4.220)]0.982432.72432.7W W W --=+⨯-⨯ 整理得11106.97/W kg h =代入①式可得:11426.2/D kg h =由②式可得:212246.11106.971139.13/W W W kg h =-=-=(5)总传热系数K 的计算第一效时:定性温度41.52f T ==℃3.5/()p k J k g k = C 0.1480.4930.1480.4930.850.5671/()w w m k λω=+=+⨯=2231101.0442/0.7850.0321029.2360036004Fu m s d πρ===⨯⨯⨯⨯ 4e 40.032 1.04421029.2R 5.831040005.910du ρμ-⨯⨯===⨯>⨯在湍流层流动113.641p r C P μλ==0.140.1440.80.330.80.3345.9100.023Re Pr 0.02358300 3.641253.672.82410b w Nu μμ--⎛⎫⎛⎫⨯==⨯⨯⨯= ⎪⎪⨯⎝⎭⎝⎭由中央循环蒸发器的管内沸腾传热系数i α的关联式有:2253.670.56714496/()0.032i Nu w m k L λα⨯=== 饱和水蒸气的传热系数由下公式可求得:12323341/411104112258.49.81958.40.6821100.943()0.9432 2.8241016.15w r g L t ρλαμ-⎛⎫⨯⨯⨯⨯==⨯ ⎪∆⨯⨯⨯⎝⎭=48642/(w m⋅℃)传热外表面的总传热系数K 由下公式计算:11i 011()K δααλ-=++1110.003()4496486417.4-=++ 211665.5/(K w m =⋅℃)第二效时:定性温度2658422f T +==℃3.5/()p k J k g k = C 0.1480.4930.1480.4930.640.4635/()w w m k λω=+=+⨯=同理可得:e 23110R 1577.520002.18100.0320.785360036004du Fd ρμμ-====<⨯⨯⨯⨯⨯ 在层流层流动2222.181********.620.4635p r C P μλ-⨯⨯===0.032Pr Re 164.621577.541551002d l =⨯⨯=>0.140.14-20.330.33-42.18101.86Pr Re 1.864155=53.442.82410b w d Nu l μμ⎛⎫⎛⎫⨯==⨯⨯ ⎪⎪⨯⎝⎭⎝⎭()由中央循环蒸发器的管内沸腾传热系数i α的关联式有:253.440.4635774.05/()0.032i Nu w m k L λα⨯=== 饱和水蒸气的传热系数由下公式可求得:12323341/4222042223049.819710.6747100.943()0.9432 3.4621042.08w r g L t ρλαμ-⎛⎫⨯⨯⨯⨯==⨯ ⎪∆⨯⨯⨯⎝⎭=3650.82/(w m⋅℃)传热外表面的总传热系数K 由下公式计算:12i 011()K δααλ-=++1110.003()774.053650.817.4-=++ 22575.3/(K w m =⋅℃)(6)分配有效温度差,计算传热面积111-100-83.85=16.15t T t ∆==℃222-81.19-39.11=42.08t T t ∆==℃1112111111426.22258.4100033.261665.516.153600Q D r S m K t K t ⨯⨯====∆∆⨯⨯2112222221106.972304100029.263600575.342.08Q W r S m K t K t '⨯⨯====∆∆⨯⨯3.3.重算两效传热面积 (1).第一次重算① 各效完成液浓度 根据前面算出的蒸发量重算各效完成液浓度,即:01131100.10=0.155331101106.97FX X F W ⨯==--021231100.10=0.3631101106.971139.13FX X F W W ⨯==----②由第2效溶液沸点及温度差损失 因冷凝液压强和完成液浓度没有变化,故第2效中各种温度差损失及溶液沸点与前次计算结果相同,即: t 2=39.11℃Δ2’=0.50℃、Δ2” =12.61℃、及Δ2”’=1℃已算出重新分配后的第2效有效温度差Δt 2’为40.5℃,故第2效加热蒸汽温度为: T 2 = t 2 + Δt 2’=39.11+40.5= 79.61℃③第1效溶液沸点及温度差损失 由于静压强及流体阻力损失引起的温度差损失可视为与第一次计算的相同,即:Δ1”= 1.48 ℃ 及 Δ1”’= 1℃ 第1效二次蒸汽温度为:T 1’=T 2 + Δ1”’=79.61 + 1 = 80.61℃根据x 1=0.1553及T 1’=80.61℃,r 1’=2301 kJ/kg()()22'1'''111'27380.612730.01620.01620.20.1762301a a T f r++∆=∆=⨯∆=⨯⨯=℃则()()22'2'''222'273262730.01620.01620.840.502432.7a a T f r++∆=∆=⨯∆=⨯⨯=℃(不变)第1效溶液沸点为:t 1 = T 1’+Δ1’+Δ1’’= 80.61 + 0.176 + 1.48 = 82.27℃④总有效温度差 因各种温度差损失没有变化,故总有效温度差仍为58.23℃。