三线合一解题
利用三线合一解题
等腰三角形的顶角平分线、底边上的中线、底边上的高线相互重合.
1.等腰三角形的顶角平分线也是底边上的中线、底边上的高线.
∵ △ABC中,AB=AC,-∠---B--A---D--=---∠--C---A--D-
A
∴
AD⊥BC
BD=CD
------------- ----------------
只要证DB=DE即可
4
练习:如图3,△ABC中,AB=AC,BD⊥AC
Байду номын сангаас
交AC于D.
1
A
求证:∠DBC= ∠BAC.
2
D
B
C
5
当题目中出现等腰三角形和“三线” 之一时,直接得到其余两线的性质, 但表达要规范;
6
三线合一基本图形
7
∴
∠BAD=∠CAD BD=CD
------------- ----------------
1
三线合一的简单应用 (1)如图,已知AB=BC,D是AC的中点,
∠A=34°,则∠DBC= 56 度.
2
(3)如图,∠A=∠D=90°,AB=CD,AC与 BD相交于点F,E是BC的中点. 求证:∠BFE=∠CFE.
证明:∵∠1=∠2 (对顶角相等) ∠A=∠D=90° AB=CD
∴△ABF≌△DCF (AAS) ∴BF=CF ∴ △BCF是等腰三角形. 又 E是BC的中点, ∴EF是∠BFC的角平分线.
∴ ∠BFE=∠CFE. ( 三线合一 )
3
(4)已知,等边三角形ABC,D是AC的中 点,点E在BC的延长线上,且CE =CD。若 DM⊥BC,垂足为M,那么M是BE的中点, 请说明理由。
专训2 “三线合一”解题的六种技巧
解:如图,延长BA,CD交于点E.
∵BF平分∠ABC, CD⊥BD,BD=BD, ∴△BDC≌△BDE. ∴BC=BE. 又∵BD⊥CE,∴CE=2CD.
∵∠BAC=90°,∠BDC=90°,
∠AFB=∠DFC,∴∠ABF=∠DCF.
又∵AB=AC,∠BAF=∠CAE=90°, ∴△ABF≌△ACE(ASA). ∴BF=CE. 故BF=2CD.
技巧
6
利用“三线合一”证线段的和差关系 (构造三线法)
6.如图,在△ABC中,AD⊥BC于点D,且 ∠ABC=2∠C.试说明:CD=AB+BD.
解:如图,以点A为圆心,
AB长为半径画弧交CD于点E,连接AE, 则AE=AB, 所以∠AEB=∠ABC. 又因为AD⊥BC, 所以AD是BE边上的中线,
AF,试判断△DEF的形状,并说明理由.
(2)如图②,若E,F分别为AB,CA的延长线上的 点,且仍有BE=AF.请判断△DEF是否仍有(1) 中的形状,并说明理由.
解:(1)△DEF为等腰直角三角形.理由:连接
AD,易证△BDE≌△ADF,
∴DE=DF,∠BDE=∠ADF, 又∵∠BAC=90°,AB=AC, D为BC的中点, ∴AD⊥BC.∴∠ADB=90°.
BC=10,所以BD+CD=14.
∵AD=BD, ∴AC=AD+CD=BD+CD=14. 又∵AB=AC=14. AD=DB,DE⊥AB,
1 ∴AE=EB= AC=7. 2
技巧
3
利用“三线合一”证线段(角)相等
3.已知△ABC中,∠BAC=90°,AB=AC, D为BC的中点. (1)如图①,E,F分别是AB,AC上的点,且BE=
1 ∵AE=EC,∴AF= AC. 2 1 又∵AB= AC, 2
专题训练三 活用“三线合一”巧解题
∴△ADE≌△CDF,∴DE=DF
类型二 利用“三线合一”证明角相等
3.如图,在△ABC中,AB=AC,AD是BC边上的中
点E.求证:∠CBE=∠BAD.
证明:∵AB=AC,AD是BC边上的中线,
∴AD⊥BC,∠CAD=∠BAD,又∵BE⊥AC,
∴∠CBE+∠C=∠CAD+∠C=90°, ∴∠CBE=∠CAD.∴∠CBE=∠BAD.
6 . 如图 , 在△ ABC 中 , AC = 2AB , AD 平分∠ BAC 交
上一点,且EA=EC,求证:EB⊥AB.
证明:过点 E 作 EF⊥AC 于点 F,∵EA=EC,∴AF=
∵AC=2AB,∴AF=AB,∵AD 平分∠BAC 交 BC 于
AB=A ∴∠BAD=∠CAD,在△BAE 和△FAE 中,∠BAD AE=A
ห้องสมุดไป่ตู้
4.如图,在△ABC 中,AB=AC,CE⊥AE 于点 E 点 E 在△ABC 外,求证:∠ACE=∠B.
证明:过 A 作 AF⊥BC 于点 F,∵AB=AC, 1 ∴BF=CF,∵CE=2BC,∴BF=CE, ∵CE⊥AE,∴∠AFB=∠AEC=90°,
AB=AC, 在 Rt△ABF 和 Rt△ACE 中 BF=CE,
2.如图,在等腰Rt△ABC中,∠A=90°,D为BC中点
AB,AC上的点,且满足EA=CF.求证:DE=DF.
证明:连接 AD,∵△ABC 为等腰直角三角形,
D 为 BC 中点,∴AD=DC,AD 平分∠BAC,∠C=
EA ∴∠EAD=∠C=45°,在△ADE 和△CDF 中,∠E AD
∴Rt△ABF≌Rt△ACE(HL),∴∠ACE=∠B
类型三 利用“三线合一”证垂直
沪科版八上数学第15章:活用“三线合一”巧解题
返回
技能 5 利用“三线合一”证垂直
5.如图,在△ABC中,AB=AC,直线AE交BC于点D, O是AE上一动点(不与A重合),且OB=OC,试猜想 AE与BC的关系,并说明理由.
解:
猜想:AE垂直平分BC,即AE⊥BC,BD=CD. 理由如下:∵AB=AC,OB=OC,AO=AO, ∴△ABO≌△ACO(SSS),∴∠BAO=∠CAO. ∴AE⊥BC,BD=CD(等腰三角形三线合一).
∵BE⊥AC,∴∠CBE+∠C=90°.
∴∠CBE=∠CAD. ∴∠CBE=∠BAD.
返回
技能 4 利用“三线合一”求线段相等
4.已知△ABC中,∠A=90°,AB=AC,D为BC的中 点,如图,E,F分别是AB,AC上的点,且BE= AF.求证:DE=DF.
证 明:
连接AD.∵AB=AC,D为BC的中点,∴AD⊥BC.
返回
技能 2 利用“三线合一”求线段长度
2.如图,在△ABC中,AB=AC, AD=DB,DE⊥AB于点E,若BC =15,且△BDC的周长为39,求 AE的长.
解:
∵△BDC的周长=BD+BC+CD=39,BC=15,
∴BD+DC=24.
∵AD=BD,
∴AB=AC=AD+DC=24.
又∵AD=DB,DE⊥AB,
技能 7 利用“三线合一”证线段的倍分关系
7.(马鞍山11中期中)如图,在△ABC中,AB=AC,AD和 BE是高,它们相交于点H,且AE=BE.AH与2BD相等 吗?请说明理由.
解:相等.理由:因为AD和BE是高,所以∠AEH= ∠BEC=90°,∠ADC=90°,所以∠C+∠EAH= 90°,∠C+∠EBC=90°,所以∠EAH=∠EBC.又 因为AE=BE,所以△AHE≌△BCE,所以AH=BC ,由等腰三角形的“三线合一”性质得BC=2BD, 所以AH=2BD.
典中点全等三角形专训6 三线合一解题的六种技巧
典中点全等三角形专训6 三线合一解题的六种技巧
◐名师点金◑
等腰三角形中的“顶角平分线、底边上的高、底边上的中线”只要知道其中“一线”,就可以说明这“一线”也是其他“两线”。
运用等腰三角形“三线合一”的性质证明角相等、线段相等或垂直关系,可减少证全等的次数,简化解题过程。
技巧1:利用“三线合一”求角
1.如图,房屋顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋檐AB=AC.求顶架上的∠B,∠C,∠BAD,∠CAD的度数。
技巧2:利用“三线合一”求线段
2.如图,在△ABC中,AB=AC,AD=DB,DE⊥AB于点E,若BC=10,且△BDC的周长为24,求AE的长。
技巧3:利用“三线合一”证线段(角)相等
3.已知△ABC中,∠BAC=90°,AB=AC,D为BC的中点。
(1)如图①,E,F分别是AB,AC上的点,且BE=AF,试判断△DEF的形状,并说明理由。
(2)如图②,若E,F分别为AB,CA的延长线上的点,且仍有BE=AF.请判断△DEF是否仍有(1)中的形状,并说明理由。
技巧4:利用“三线合一”证垂直
4.如图,在△ABC中,AC=2AB,AD平分∠BAC,E是AD上一点,且EA=EC.求证:EB⊥AB。
技巧5:利用“三线合一”证线段的倍数关系(构造三线法)
5.如图,已知等腰直角三角形ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BF交BF的延长线于点D.试说明:BF=2CD
技巧6:利用“三线合一”证线段的和差关系(构造三线法)
6.如图,在△ABC中,AD⊥BC于点D,且∠ABC=2∠C,试说明:CD=AB+BD。
利用等腰三角形的“三线合一”性质解题
证明 以A为圆心,AB长为半径画弧交CD于点E,连结AE,则AE=AB,即∠AEB=∠ABC.
因为AD⊥BC,所以AD是BE的中线,即DE=BD.
又因为∠ABC=2∠C,所以∠AEB3;∠C,所以∠CAE=∠C,即CE=AE=AB,
故CD=AB+BD.
分析 由于DE⊥AB,DF⊥AC,所以要证明DE=DF,只要证明点D是∠BAC的平分线上的点,于是连结AD,而由AB=AC,BD=CD即可证明AD是∠BAC的平分线.
证明 连结AD.因为AB=AC,BD=CD,所以AD是等腰三角形底边BC上的中线,即AD又是顶角的平分线.
又因为DE⊥AB,DF⊥AC,所以DE=DF.
证明 延长线BA、CD交于点E.因为BF平分∠ABC,CD⊥BD,所以可得BC=BE,DE=DC,
又因为∠BAC=90°,∠AFB=∠DFC,所以可得∠ABF=∠DCF,
又AB=AC,∠BAF=∠CAE,所以△ABF≌△ACE(SAS),即BF=CE,
故BF=2CD.
五、证明一个角是直角
例5如图5,△ABC中,∠ACB=2∠B,BC=2AC.求证:∠A=90°.
利用等腰三角形的“三线合一”性质解题
我们知道,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,被称做为“三线合一”.等腰三角形的“三线合一”性质在几何解题中有着广泛地运用,现举例说明.
一、证明线段相等
例1如图1,在△ABC中,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF.
解题技巧专题:利用等腰三角形的'三线合一'作辅助线与构造等腰三角形的解题技巧(6类热点题型讲练)解析
第05讲解题技巧专题:利用等腰三角形的'三线合一'作辅助线与构造等腰三角形的解题技巧(6类热点题型讲练)目录【考点一等腰三角形中底边有中点时,连中线】 (1)【考点二等腰三角形中底边无中点时,作高】 (6)【考点三利用平行线+角平分线构造等腰三角形】 (12)【考点四过腰或底作平行线构造等腰(边)三角形】 (15)【考点五巧用“角平分线+垂线合一”构造等腰三角形】 (24)【考点六利用倍角关系构造新等腰三角形】 (28)【考点一等腰三角形中底边有中点时,连中线】例题:(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,120BAC ∠=︒,AB AC =,D 为BC 的中点,DE AC ⊥于E .(1)求EDC ∠的度数;(2)若2AE =,求CE 的长.【答案】(1)60︒(2)6【分析】本题考查了等腰三角形的“三线合一”,含30︒角的直角三角形的性质等知识,(1)连接AD ,根据等腰三角形的“三线合一”即可作答;(2)根据含30︒角的直角三角形的性质即可作答.【详解】(1)连接AD ,∵AB AC =,120BAC ∠=︒,∴AD BC ⊥,AD 平分BAC ∠,∴1602∠=∠=︒DAC BAC ,ADC ∠1.(2023上·北京·八年级期末)如图,在ABC 中,AB AC =,D 是BC 的中点,过A 作EF BC ∥,且AE AF =.求证:(1)DE DF =;(2)BG CH =.【答案】(1)见解析(2)见解析【分析】(1)连接AD ,利用等腰三角形“三线合一"的性质得AD BC ⊥,再利用平行线的性质得90DAF ADB ∠=∠=︒,从而说明AD 垂直平分EF ,则有DE DF =;(2)利用等角的余角相等EDB FDC ∠=∠,再利用ASA 证明BDG CDH ≌,从而证明结论.【详解】(1)证明:连接AD ,ABAC =,点D 为BC 的中点,∴AD BC ⊥,∴90ADB ∠=︒,EF BC ∥,∴90DAF ADB ∠=∠=︒,∴AD EF ⊥,AE AF =,∴AD 垂直平分EF ,∴DE DF =;(2),,DE DF DA EF =⊥ ,EAD FAD ∴∠=∠,ADB ADC ∠=∠ ,EDB FDC ∴∠=∠,AB AC =,B C ∴∠=∠在BDG 和CDH △中,,B C BD CD BDG CDH ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA),BDG CDH ∴△≌△.BG CH ∴=【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定与性质,线段垂直平分线的性质,余角的性质,熟练掌握等腰三角形“三线合一"的性质是解题的关键.2.(2023上·辽宁葫芦岛·八年级统考期末)如图,在ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 为线段CE 的中点,且BE AC =.(1)求证:AD BC ⊥.(2)若90BAC ∠=︒,2DC =,求BD 的长.【答案】(1)见解析(2)6【分析】(1)连接AE ,根据线段垂直平分线的性质得到BE AE =,证明AE AC =,根据等腰三角形的三线合一证明结论;(2)证明AEC △为等边三角形,根据等边三角形的性质解答即可.【详解】(1)证明:连接AE ,EF 是AB 的垂直平分线,BE AE ∴=,BE AC = ,AE AC ∴=,AEC ∴ 是等腰三角形,D 为线段CE 的中点,AD BC ∴⊥;(2)解:BE AE = ,EAB B ∴∠=∠,2AEC EAB B B ∴∠=∠+∠=∠,AE AC = ,AEC C ∴∠=∠,2C B ∴∠=∠,90BAC ∠=︒ ,60C ∴∠=︒,AEC ∴ 为等边三角形,2DC ED ==,24AE EC BE DC ∴====,426BD BE ED ∴=+=+=.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质、等边三角形的判定和性质,掌握等腰三角形的三线合一是解题的关键.3.(2023上·全国·八年级专题练习)如图,已知ABC 中,AB AC =,90BAC ∠=︒,点D 为BC 的中点,点E 、F 分别在直线AB AC 、上运动,且始终保持AE CF =.(1)如图①,若点E F 、分别在线段AB AC 、上,DE 与DF 相等且DE 与DF 垂直吗?请说明理由;(2)如图②,若点E F 、分别在线段AB CA 、的延长线上,(1)中的结论是否依然成立?说明理由.【答案】(1)DE DF =且DE DF ⊥,见解析(2)成立,见解析【分析】(1)先利用等腰直角三角形的性质得到45BAD DAC B C ∠=∠=∠=∠=︒和AD BD DC ==,再证明AED CFD SAS ≌(),利用全等三角形的性质即可求解;(2)利用等腰直角三角形的性质得到45BAD DAC B C ∠=∠=∠=∠=︒和AD BD DC ==,再证明AED CFD SAS ≌(),利用全等三角形的性质即可求解.【详解】(1)DE DF =且DE DF ⊥,理由是:如图①,连接AD ,∵90BAC ∠=︒,AB AC =,D 为BC 中点,∴45BAD DAC B C ∠=∠=∠=∠=︒,∴AD BD DC ==,在AED △和CFD △中,AE CF EAD DAC AD DC =⎧⎪∠=∠⎨⎪=⎩∴AED CFD SAS ≌(),∴DE DF =,ADE CDF ∠=∠,又∵90CDF ADF ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.(2)若点E F 、分别在线段AB ,CA 的延长线上,(1)中的结论依然成立,如图②,连接AD ,理由如下:∵AB AC =,90BAC ∠=︒,点D 为BC 的中点,∴45BAD DAC B C ∠=∠=∠=∠=︒,∴AD BD DC ==,在AED △和CFD △中,AE CF EAD DAC AD DC =⎧⎪∠=∠⎨⎪=⎩∴AED CFD SAS ≌();∴DE DF ADE CDF =∠=∠,,又∵90CDF ADF ∠-∠=︒,∴90ADE ADF ∠-∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.【点睛】本题考查了等腰直角三角形的性质和全等三角形的判定与性质,解题关键是正确作出辅助线构造全等三角形.【考点二等腰三角形中底边无中点时,作高】例题:(2023上·福建厦门·八年级厦门一中校考期中)如图,已知60AOB ∠=︒,点P 在边OA 上,12OP =,点M N 、在边OB 上,PM PN =,若5OM =,求MN 的长.【答案】2【分析】本题考查了等腰三角形的性质、含角形的性质可得CM 练掌握等腰三角形的三线合一以及直角三角形中PM PN = ,PC ⊥CM CN ∴=,在OPC 中,PCO ∠162OC OP ∴==,5OM = ,1.(2023上·河南省直辖县级单位·八年级校联考期末)在ABC 中,点,D E 是边BC 上的两点.(1)如图1,若AB AC =,AD AE =.求证:BD CE =;(2)如图2,若90BAC ∠=︒,BA BD =,设B x ∠=︒,CAD y ∠=︒.(2)①猜想:2x y =,理由是:∵BA BD =,B x ∠=︒,∴(11802BAD BDA ∠=∠=︒-∠∵90BAC ∠=︒,CAD y ∠=︒,∴90BAD CAD ∠+∠=︒,即90整理得:2x y =;(1)如图1,当点E 与点C 重合时,AD 与CB '的位置关系是表示)(2)如图2,当点E 与点C 不重合时,连接DE .①用等式表示BAC ∠与DAE ∠之间的数量关系,并证明;②用等式表示线段BE ,CD ,DE 之间的数量关系,并证明.则90AMC ADC ∠∠=︒=∵AB AC =,∴1122CM BM BC ===在ACD 与ACM △中,∵AB AC =,∴B ACB ∠=∠,∵ACB ACB '∠=∠,∴B ACB ACD '∠=∠=∠【考点三利用平行线+角平分线构造等腰三角形】例题:(2024上·北京西城·八年级校考期中)如图,在ABC 中,BD 平分ABC ∠,DE CB ∥,F 是BD 的中点.(1)求证:BDE 是等腰三角形(2)若50ABC ∠=︒,求DEF ∠的度数.【答案】(1)见解析(2)65︒【分析】本题考查了等腰三角形的判定与性质,熟记相关定理内容是解题关键.(1)由角平分线的定义得EBD CBD ∠=∠,由DE CB ∥得EDB CBD ∠=∠即可求证;(2)先求出EDB ∠,根据“三线合一”得EF BD ⊥,即可求解.【详解】(1)证明:∵BD 平分ABC ∠,∴EBD CBD ∠=∠,∵DE CB ∥,是等腰三角形;(1)如图1,求证:CDE∠交AC于E,(2)如图2,若DE平分ADC的长.【答案】(1)见解析(2)4【分析】本题考查角平分线、平行线的性质以及直角三角形的边角关系,掌握角平分线的定义,平行线的性质是解决问题的关键.∠=∠(1)根据角平分线的定义得出BCD(1)当53BE CF ==,,则EF =___________;(2)当BE CF >时,若CO 是ACB ∠的外角平分线,如图2,它仍然和∠作EF BC ∥,交AB 于E ,交AC 于F ,试判断EF BE ,,CF 之间的关系,并说明理由.【答案】(1)8(2)EF BE CF =-,见解析∴∠EOB =∠OBC ,∠FOC =∠OCB ,∵ABC ∠和ACB ∠的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠BCO ,∴∠EBO =∠EOB ,∠FCO =∠FOC ,∴53BE OE OF CF ====,,∴8EF EO FO =+=,故答案为:8;(2)EF BE CF =-,理由如下:∵BO 平分ABC ∠,∴ABO OBC ∠=∠,∵EO BC ∥,∴EOB OBC ∠=∠,∴ABO EOB ∠=∠,∴BE EO =,同理可得FO CF =,∴EF EO FO BE CF =-=-.【考点四过腰或底作平行线构造等腰(边)三角形】例题:(2023上·吉林通化·八年级统考期末)如图,ABC 是等边三角形,点D 在AC 上,点E 在BC 的延长线上,且BD DE =.(1)若点D 是AC 的中点,如图1,则线段AD 与CE 的数量关系是__________;(2)若点D 不是AC 的中点,如图2,试判断AD 与CE 的数量关系,并证明你的结论;(提示:过点D 作DF BC ∥,交AB 于点F )(3)若点D 在线段AC 的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.【答案】(1)AD CE =,理由见解析(2)AD CE =,理由见解析(3)成立,理由见解析【分析】本题考查全等三角形判定与性质,平行线性质,等腰三角形性质,等边三角形性质与判定.(1)求出E CDE ∠=∠,推出CD CE =,根据等腰三角形性质求出AD DC =,即可得出答案;(2)过D 作DF BC ∥,交AB 于F ,证明BFD DCE ≌,推出DF CE =,证ADF △是等边三角形,推出AD DF =,即可得出答案;(3)过点D 作DP BC ∥,交AB 的延长线于点P ,证明BPD DCE ≌,得到PD CE =,即可得到AD CE =.【详解】(1)解:AD CE =,理由如下:ABC 是等边三角形,60,ABC ACB AB AC BC ∴∠=∠=== .∵点D 为AC 中点,30,DBC AD DC ∴∠== ,BD DE = ,30E DBC ∴∠=∠= ,ACB E CDE ∠=∠+∠ ,30CDE E ∴∠=∠= ,CD CE ∴=,又AD DC = ,AD CE ∴=.故答案为:AD CE =;(2)解:AD CE =,理由如下:如图,过点D 作DF BC ∥,交AB 于点F ,则60ADF ACB ∠=∠= ,60A ∠= ,AFD ∴ 是等边三角形,,60AD DF AF AFD ∴==∠= ,18060120BFD DCE ∴∠=∠=-= ,D F B C ∥ ,FDB DBE E ∴∠=∠=∠,在BFD △和DCE △中,FDB E BFD DCE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,BFD DCE ∴ ≌()AAS ,DF CE ∴=,又AD DF = ,AD CE ∴=;(3)解:结论仍成立,理由如下:如图,过点D 作DP BC ∥,交AB 的延长线于点P ,则60,60ABC APD ACB ADP ∠=∠=∠=∠= ,60A ∠= ,APD ∴ 是等边三角形,AP PD AD ∴==,ACB DCE ∠=∠ ,DCE ACB P ∴∠=∠=∠,DP BC ∥ ,PDB CBD ∴∠=∠,DB DE = ,DBC DEC ∴∠=∠,PDB DEC ∴∠=∠,在BPD △和DCE △中,PDB CED P DCE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,BPD DCE ∴ ≌()AAS ,PD CE ∴=,又AD PD = ,AD CE ∴=.【变式训练】(1)如图1,当点E 运动到线段AB 的中点,点D 在线段(2)如图2,当点E 在线段AB 上运动,点D 在线段说明理由.【答案】(1)12∵EF BC ∥,∴60AFE ACB ∠=∠=︒120,EFC AFE ∴∠=︒∠EF EA∴=∵60ABC ∠=︒,(1)【感知】如图1,当点E为AB的中点时,则线段(2)【类比】如图2,当点E为AB边上任意一点时,∥,交AC于点F.示如下:过点E作EF BC(3)【拓展】在等边三角形ABC中,点E在直线(2)AE DB =,理由如下:过点E 作EF BC ∥,交AC 于点F ,则AEF ABC AFE ACB ∠=∠∠=∠,,FEC ECD ∠=∠,∵ABC 是等边三角形,∴60AB AC A ABC ACB =∠=∠=∠=︒,,∴60120AEF AFE A DBE ∠=∠=∠=︒∠=︒,,∴AEF △为等边三角形,120EFC ∠=︒,∴AE EF =,∵ED EC =,∴D ECD ∠=∠,∴D FEC ∠=∠,在DBE 和EFC 中,DBE EFC D FEC ED EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS DBE EFC ≌,∴DB EF =,∴AE DB =;(3)过点E 作EF BC ∥,交AC 于点F ,如图3所示:同(2)得:AEF △是等边三角形,()AAS DBE EFC ≌,∴33AE EF DB EF ====,,∵2BC =,∴235CD BC DB =+=+=.故答案为:5.【点睛】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.(1)求证:2AP AQ AB +=(2)求证:PD DQ =;(3)如图,过点P 作PE ⊥出这个长度;如果变化,请说明理由.【答案】(1)见解析(2)见解析(3)ED 为定值5,理由见解析【分析】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,平行线的性质,线段的和差,准确作出辅助线找出全等三角形是解题关键.(1)利用P 、Q 的移动速度相同,得到CQ PB ∴=,AB AC = ,2AP AQ AB PB AC CQ AB ∴+=-++=;(2)如图,过点P 作PF AC ∥,交BC 于点F ,PF AC ∥,,PFB ACB DPF DQC ∴∠=∠∠=∠,AB AC = ,B ACB ∴∠=∠,B PFB ∴∠=∠,BP PF ∴=,由(1)得BP CQ =,PF CQ ∴=,在PFD 与QCD 中,PDF QDC DPF DQC PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS PFD QCD ∴ ≌,PD DQ ∴=;(3)解:ED 为定值5,理由如下:如图,过点P 作PF AC ∥,交BC 于点F ,由(2)得:PB PF =,【考点五巧用“角平分线+垂线合一”构造等腰三角形】例题:如图,在ABC 中,AD 平分BAC ∠,E 是BC 的中点,过点E 作FG AD ⊥交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF AG =;(2)BF CG =.【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明AHF AHG ≌ ,即可得出AF AG =;(2)过点C 作CM AB ∥交FG 于点M ,由AHF AHG ≌ 可得AFH G ∠=∠,根据平行线的性质得出CMG AFH ∠=∠,可得CMG G ∠=∠,进而得出CM CG =,再根据据ASA 证明BEF CEM ≌ ,得出BF CM =,等量代换即可得到BF CG =.【详解】(1)证明:∵AD 平分BAC ∠,∴FAH GAH ∠=∠,∵FG AH ⊥,∴90AHF AHG ∠=∠=︒,在AHF △和AHG 中,FAH GAH AH AH AHF AHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AHF AHG ≌ ,∴AF AG =;(2)证明:过点C 作CM AB ∥交FG 于点M ,∵AHF AHG ≌ ,∴AFH G ∠=∠,∵CM AB ∥,∴CMG AFH ∠=∠,∴CMG G ∠=∠,∴CM CG =,∵E 是BC 的中点,∴BE CE =,∵CM AB ∥,∴B ECM ∠=∠,在BEF △和CEM 中,B ECM BE CE BEF CEM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BEF CEM ≌ ,∴BF CM =,∴BF CG =.【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】1.如图:(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP 平分MON ∠.点A 为OM 上一点,过点AC OP ⊥,垂足为C ,延长AC 交ON 于点B ,可根据证明AOC BOC ≌△△,则AO 点C 为AB 的中点).(2)【类比解答】如图2,在ABC 中,CD 平分ACB ∠,AE CD ⊥于E ,若63EAC ∠=︒,37B ∠=︒,通过上述构造全等的办法,可求得DAE ∠=.(3)【拓展延伸】如图3,ABC 中,AB AC =,90BAC ∠=︒,CD 平分ACB ∠,BE CD ⊥,垂足E 在CD 究BE 和CD 的数量关系,并证明你的结论.(4)【实际应用】如图4是一块肥沃的三角形土地,其中AC 边与灌渠相邻,李伯伯想在这块地中划出一块直角三角形土地进行水稻试验,故进行如下操作:①用量角器取ACB ∠的角平分线CD ;②过点A 作AD 13BC =,10AC =,ABC 面积为20,则划出的ACD 的面积是多少?请直接写出答案.【答案】(1)ASA(2)26︒(3)12BE CD =,证明见解析100【考点六利用倍角关系构造新等腰三角形】例题:(2023上·河南信阳·八年级统考期中)阅读材料:截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一长边相等,解答下列问题:如图1,在ABC 中,交BC 于点D ,AD 平分BAC ∠,且2B C ∠=∠.(1)为了证明结论“AB BD AC +=”,小亮在AC 上截取AE ,使得AE AB =,解答了这个问题,请按照小亮的思路写证明过程;(2)如图2,在四边形ABCD 中,已知58BAD ∠=︒,109D ∠=︒,42ACD ∠=︒,80ACB ∠=︒,10AD =,CE AB ⊥3EB =,求AB 的长.【答案】(1)见解析(2)16【分析】本题考查了全等三角形的判定与性质,等腰三角形的判定及性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.(1)在AC 上截取AE ,使得AE AB =,连接DE ,根据角平分线的定义可得BAD DAC ∠=∠,再利用SAS 证明ABD AED ≌,从而可得B AED ∠=∠,BD DE =,进而可得2AED C ∠=∠,然后利用三角形的外角性质可得AED C EDC ∠=∠+∠,从而可得C EDC ∠=∠,进而可得DE CE =,再根据等量代换可得BD EC =,最后利用线段的和差关系进行计算,即可解答;(2)在AE 上截取AF AD =,连接CD ,先利用三角形内角和定理可得29DAC ∠=︒,从而可得29DAC FAC ∠=∠=︒,再利用SAS 证明DAC FAC ≌,从而可得109AFC D ∠=∠=︒,进而可得71CFE ∠=︒,然后利用三角形内角和定理可得71B CFE ∠=∠=︒,从而可得CF BC =,再利用等腰三角形的三线合一性质可得26BF BE ==,最后利用线段的和差关系进行计算,即可解答.【详解】(1)解:证明:在AC 上截取AE ,使得AE AB =,∵AD 平分BAC ∠,∴BAD DAC ∠=∠,∵AD AD =,∴()SAS ABD AED ≌,∴B AED ∠=∠,BD DE =,∵2B C ∠=∠,∴2AED C ∠=∠,∵AED ∠是DEC 的一个外角,∴AED C EDC ∠=∠+∠,∴C EDC ∠=∠,∴DE CE =,∴BD EC =,∵AE EC AC +=,∴AB BD AC +=;(2)在AE 上截取AF AD =,连接CF ,∵109D ∠=︒,42ACD ∠=︒,∴18029DAC D ACD ∠=︒-∠-∠=︒,∵58BAD ∠=︒,∴29FAC BAD DAC ∠=∠-∠=︒,∴29DAC FAC ∠=∠=︒,∵AC AC =,∴()SAS DAC FAC ≌,∴109AFC D ∠=∠=︒,∴18071CFE AFC ∠=︒-∠=︒,∵80ACB ∠=︒,29FAC ∠=︒,∴18071B ACB FAC ∠=︒-∠-∠=︒,∴B CFE ∠=∠,∴CF BC =,∵CE AB ⊥,∴26BF BE ==,∴10616AB AF BF =+=+=,∴AB 的长为16.【变式训练】1.在Rt ABC 中,90BAC ∠=︒,点D 在边BC 上,AB AD =,点E 在线段BD 上,3BAE EAD ∠=∠.(1)如图1,若点D 与点C 重合,则AEB ∠=______︒;(2)如图2,若点D 与点C 不重合,试说明C ∠与EAD ∠的数量关系;(3)在(1)的情况下,试判断BE ,CD 与AC 的数量关系,并说明你的理由.【答案】(1)67.5(2)2C EAD∠=∠(3)BE CD AC +=,理由见解析【分析】(1)根据等腰直角三角形的性质得到45D ∠=︒,根据题意求出EAD ∠,根据三角形的外角性质计算,得到答案;(2)根据直角三角形的两锐角互余得到90B C ∠=︒-∠,根据等腰三角形的性质、三角形内角和定理得到2BAD C ∠=∠,进而证明结论;(3)在BD 上截取BF DE =,连接AF ,证明ABF △≌ADE V ,根据求等三角形的性质得到BAF DAE ∠=∠,根据三角形的外角性质得到CAF CFA ∠=∠,得到AC CF =,进而得出结论.【详解】(1)解:在Rt BAD 中,90BAD ∠=︒,AB AD =,则45D ∠=︒,90BAD ∠=︒Q ,3BAE EAD ∠=∠,22.5EAD ∴∠=︒,67.5AEB EAD D ∴∠=∠+∠=︒,故答案为:67.5;(2)解:2C EAD ∠=∠,理由如下:90BAC ∠=︒ ,90B C ∴∠=︒-∠,AB AD = ,则BE BF EF DE EF DF =+=+=,BE CD DF CD CF ∴+=+=,在ABF △和ADE V 中,AB AD B ADE BF DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ADE △(1)写出图1中与BAC ∠相等的角,BAC ∠=______(2)如图1,若GFC FGE ∠=∠,在图中找出与AG (3)如图2,若2,3HC CE ==,求BC 的长度.【答案】(1)AGF∠(2)AG CE =,证明见解析(3)72MGN AGF BAC∠=∠=∠,∠=∠,则N BAC∴∠=∠,N MGNMG MN∴=,∠=∠=∠+∠FGE BEG BEG2∴∠=∠,BEG GME∴=,MG GE,=AC GE∴=,MN AC。
专题6 妙用三线合一巧解题(含答案)
专题6 妙用三线合一巧解题知识解读三线合一:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
三线合一的几种应用:如图2-6-1,在△ABC 中,①若AB =AC ,∠BAD =∠CAD ,则AD ⊥BC ,BD =CD ; ②若AB =AC ,AD ⊥BC ,则∠BAD =∠CAD ,BD =CD ;③若AB =AC ,BD =CD ,则∠BAD =∠CAD ,AD ⊥BC ;④若∠BAD =∠CAD ,AD ⊥BC ,则AB =AC ,BD =CD ; ⑤若∠BAD =∠CAD ,BD =CD ,则AD ⊥BC ,AB =AC ; ⑥若AD ⊥AC ,BD =CD ,则AB =AC ,∠BAD =∠CAD 。
即“AB =AC ,∠BAD =∠CAD ,AD ⊥BC ,BD =CD ”中已知其中两个结论,总能推出其他两个结论是成立的.等腰三角形三线合一的应用非常广泛,它包含了多层意义.可以用来证明角相等、线段相等、垂直关系等. 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
培优学案典例示范一、利用三线合一证明角度之间的倍分关系例1如图2-6-2,在△ABC 中,AB =AC ,CD ⊥AB 于点D .求证:∠BAC =2∠DCB .【提示】欲证角之间的倍半关系,结合题意,观察图形,∠BAC 是等腰三角形的顶角,于是想到构造它的一半,再证与∠DCB 的关系 【解答】D B CA图2-6-2【技巧点评】要证明一个角等于等腰三角形顶角的一半,常考虑构造等腰三角形三线合一的那根线.由这道题目,我们还可以得出这样一个常用的结论,等腰三角形一腰上的高与底边的夹角等于顶角的一半.跟踪训练1.如图2-6-3①,点P 是BC 的中点,如图2-6-3②,点P 与点C 重合,如图2-6-3③,点P 在BC 的延DBC A 图2-6-1长线上,△ABC都是等腰三角形,BC为底边,PD⊥AB,∠A与∠BPD之间都存在一个相同的数量关系,请猜想这个数量关系,并就图③进行验证。
专题08 解题技巧专题:利用等腰三角形的'三线合一'作辅助线压轴题三种模型全攻略(解析版)
专题08解题技巧专题:利用等腰三角形的'三线合一'作辅助线压轴题三种模型全攻略【考点导航】目录【典型例题】 (1)【类型一等腰三角形中底边有中点时,连中线】 (1)【类型二等腰三角形中底边无中点时,作高线】 (11)【类型三巧用“角平分线+垂线合一”构造等腰三角形】 (17)【典型例题】【类型一等腰三角形中底边有中点时,连中线】例题:已知,在ABC 中,90ACB ∠=︒,AC BC =,点M 是AB 的中点,作90DME ∠=︒,使得射线MD 与射线ME 分别交射线AC ,CB 于点D ,E .(1)如图1,当点D 在线段AC 上时,线段MD 与线段ME 的数量关系是___________;(2)如图2,当点D 在线段AC 的延长线上时,用等式表示线段CD ,CE 和BC 之间的数量关系并加以证明.【答案】(1)MD ME =;(2)CE CD BC =+,理由见解析.【分析】(1)连接CM ,由等腰直角三角形的性质可得CM MB =,ACM B ∠=∠,根据90DME ∠=︒可推导CMD BME ∠=∠,进而证明CMD BME △≌△,即可得到线段MD 与线段ME 的数量关系;(2)连接CM ,利用(1)中的证明思路,再次证明CMD BME △≌△,证得CD BE =,即可利用等量代换得到CE CD BC =+.【详解】(1)解:连接CM ,∵90ACB ∠=︒,AC BC =,点M 是AB 的中点∴CM AM MB ==,且CM AB ⊥,CM 平分ACB ∠,45A B ∠=∠=︒∴45ACM BCM B ∠=∠=︒=∠,90CMB ∠=︒,又∵90DME ∠=︒∴CMB CME DME CME∠-∠=∠-∠∴CMD BME∠=∠∴CMD BME △≌△(ASA )∴MD ME =.(2)CE CD BC =+,理由如下:连接CM ,由(1)可知:CM BM =,45ACM ABC ∠=∠=︒,CMD BME∠=∠∴135DCM EBM ∠=∠=︒在CMD △和BME 中,CMD BME CM BM DCM EBM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴CMD BME △≌△(ASA )∴CD BE=∵CE BC BE=+∴CE CD BC =+.【点睛】本题考查等腰直角三角形的性质,全等三角形的判定,熟练掌握等腰直角三角形的性质是解决问题的关键.【变式训练】1.在ABC 中,90A ∠=︒,AB AC =,点D 是边BC 的中点.(1)如图,若点E ,F 分别在边AB ,AC 上,DE DF ⊥,求证:BE AF =,并说明理由;(2)在(1)的条件下,AB AC a ==,求AE AF +的值.【答案】(1)证明见解析;(2)a .【分析】(1)连接AD ,证明()BDE ADF ASA ≌即可得到BE AF =;(2)由(1)可得:BE AF =,进一步得到:AE BE AE AF AB a +=+==.【详解】(1)证明:连接AD ,∵90A ∠=︒,AB AC =,∴45B C ∠==︒∠,∵点D 是边BC 的中点,∴45B BAD DAC C ∠=∠=∠=∠=︒,AD BC ⊥,AD BD =,∵DE DF ⊥,∴90EDA ADF Ð+Ð=°,∵90BDE EDA ∠+∠=︒,∴ADF BDE ∠=∠,在BDE △和ADF △中,BDE ADF BD AD B DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()BDE ADF ASA ≌,∴BE AF =.(2)解:由(1)可知:()BDE ADF ASA ≌,∴BE AF =,∵AB AC a ==,∴AE AF AE BE AB a +=+==.【点睛】本题考查全等三角形的判定及性质,等腰直角三角形的性质,解题的关键是掌握全等三角形的判定及性质.2.如图1,在Rt ABC △中,90C ∠=︒,AC BC =,点P 是斜边AB 的中点,点D ,E 分别在边,AC BC 上,连接,PD PE ,若PD PE ⊥.(1)求证:PD PE =;(2)若点D ,E 分别在边,AC CB 的延长线上,如图2,其他条件不变,(1)中的结论是否成立?并加以证明;(3)在(1)或(2)的条件下,PBE △是否能成为等腰三角形?若能,请直接写出PEB ∠的度数(不用说理);若不能,请说明理由.【答案】(1)见解析(2)成立,见解析(3)能成为等腰三角形,此时PEB ∠的度数为22.5︒或67.5︒或90︒或45︒【分析】(1)连接PC ,根据等腰直角三角形的性质可得45DCP B ∠=︒=∠,从而得到CP BP =,再由PD PE ⊥,可得DPC EPB ∠=∠,可证得DPC EPB △△≌,即可求证;(2)连接PC ,根据等腰直角三角形的性质可得45ECP ABC A ACP ∠=︒=∠=∠=∠,从而得到CP AP =,再由∵,PD PE CP AB ⊥⊥,可得APD CPE ∠=∠,可证得APD CPE △≌△,即可;(3)根据等腰三角形的性质,分四种情况讨论,即可求解.【详解】(1)明∶连接PC ,∵90,ACB AC BC ∠=︒=,∴45A B ∠=∠=︒,∵P 为斜边AB 的中点,∴CP AB ⊥,∴45DCP B ∠=︒=∠,∴CP BP =,∵PD PE ⊥,∴90DPC CPE CPE EPB ∠+∠=∠+∠=︒,∴DPC EPB ∠=∠,在DPC △和EPB △中,DCP B PC PB DPC EPB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA DPC EPB △△≌,∴PD PE =;(2)解:PD PE =仍成立,理由如下:连接CP ,∵90,C AC BC ∠=︒=,∴45A ABC ∠=∠=︒,②当BE BP =,点E ③当EP EB =时,则∴180PEB B ∠=︒-∠-④当EP PB =,点∴PEB B ∠=∠=综上所述,PBE △【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的性质,全等三角形的判定和性质,利用分类讨论思想解答是解题的关键.3.在ABC 中,E(1)如图1,若点(2)如图2,BF 为腰(3)如图3,当点【答案】(1)见解析(2)PD PE BF +=,理由见解析(3)143【分析】(1)根据ABP S S =△APC ,即可得证;∵AB AC =,点P ∴ABP S S =△△APC即1122AB DP AC ⋅=∴PD PE =,∵AB AC =,PD ∴=ABP APC ABCS S S + ∴1122AB DP AC ⋅+∴PD PE BF +=,∵AB AC =,PD AB ⊥∴=ABC ABP APCS S S - ∴11=22AC BF AB PD ⋅⋅(1)若90EOF ∠=︒,两边分别交,AC BC 于E ,F 两点.==同理可证:AO CO BO∵AC BC =,90ACB ∠=︒,点O 为AB 的中点,∴0,90,45AO CO B AOC FOH BAC BCO ︒︒==∠=∠=∠=∠=,∴.,135COF AOH OCF OAH ︒∠=∠∠=∠=,∴(ASA)COF AOH ≌,∴3,CF AH OF OH ===,∵45,90EOF FOH ︒︒∠=∠=,∴45EOF EOH ︒∠=∠=,又∵,OF OH EO EO ==,∴(SAS)EOF EOH ≌,∴5EF EH ==,∴.2AE EH AH =-=.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.【类型二等腰三角形中底边无中点时,作高线】例题:如图,已知点D 、E 在△ABC 的边BC 上,AB =AC ,AD =AE .(1)求证:BD =CE ;(2)若AD =BD =DE =CE ,求∠BAE 的度数.【答案】(1)见解析;(2)90°.【分析】(1)作AF ⊥BC 于点F ,利用等腰三角形三线合一的性质得到BF =CF ,DF =EF ,相减后即可得到正确的结论.(2)根据等边三角形的判定得到△ADE 是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解.【详解】(1)证明:如图,过点A 作AF ⊥BC 于F .【变式训练】(1)若20∠=︒EAC ,求CBE ∠(2)求证:AE EC ⊥;(3)若BE a =,AE b =,CE =【答案】(1)20°(2)见解析(3)21122a bc +∴AFB ABC CGB ∠=∠=∠又∵AD AB CB ==,∴45BAC ACB ∠=∠=︒,∵FAB FBA FBA ∠+∠=∠∴FAB CBG CAE ∠=∠=∠∴在BAF △和CBG 中,(1)如图1,若ACD ∠与BAC ∠互余,则DCB ∠=__________()如图,过A点作AE BC⊥于E点,)②如图,作BG AC ⊥于G ,作DN 垂直于AC 的延长线于N .则90BGA DNC ∠=∠=︒.∵AB AC =,AC CD =,∴AB CD =,∵ABC 与ACD 的面积相等,∴BG DN =.∴ABG ≌CDN △.∴BAG DCN ∠=∠.180ACD DCN ∠+∠=︒,∴180ACD BAC ∠+∠=︒,综上,ACD ∠与BAC ∠相等或互补.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,同底等高的两个三角形面积相等,综合能力较强,有一定难度.熟练掌握以上知识是解题的关键.【类型三巧用“角平分线+垂线合一”构造等腰三角形】例题:如图,在ABC 中,AD 平分BAC ∠,E 是BC 的中点,过点E 作FG AD ⊥交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF AG =;(2)BF CG =.【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明AHF AHG ≌ ,即可得出AF AG =;(2)过点C 作CM AB ∥交FG 于点M ,由AHF AHG ≌ 可得AFH G ∠=∠,根据平行线的性质得出CMG AFH ∠=∠,可得CMG G ∠=∠,进而得出CM CG =,再根据据ASA 证明BEF CEM ≌ ,得出BF CM =,等量代换即可得到BF CG =.【详解】(1)证明:∵AD 平分BAC ∠,∴FAH GAH ∠=∠,∵FG AH ⊥,∴90AHF AHG ∠=∠=︒,在AHF △和AHG 中,FAH GAH AH AH AHF AHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AHF AHG ≌ ,∴AF AG =;(2)证明:过点C 作CM AB ∥交FG 于点M ,∵AHF AHG ≌ ,∴AFH G ∠=∠,∵CM AB ∥,∴CMG AFH ∠=∠,∴CMG G ∠=∠,∴CM CG =,∴BE CE =,∵CM AB ∥,∴B ECM ∠=∠,在BEF △和CEM 中,B ECM BE CE BEF CEM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BEF CEM ≌ ,∴BF CM =,∴BF CG =.【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP 平分MON ∠.点AC OP ⊥,垂足为C ,延长AC 交ON 于点B ,可根据证明AOC ≌△△【答案】[问题情境]ASA ,全等三角形对应边相等;[问题探究]见解析;[拓展延伸【分析】[问题情境]利用全等三角形的性质证明即可;[问题探究]延长BE 交CA 延长线于F ,证明CEF ∆≌CEB ASA ∆(),推出FE =ACD ∆≌ABF ASA ∆(),可得结论;[拓展延伸]结论:12BE DF =.过点D 作DG AC ∥,交BE 的延长线于点G ,与DG AC ∥,交BE 的延长线于点G ,与AE 相交于H ,证明方法类似.CD 平分ACB ∠,FCE BCE ∴∠=∠,在CEF ∆和CEB ∆中,90FCE BCE CE CE CEF CEB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,CEF ∴∆≌CEB ASA ∆(),DG AC ,GDB C BHD ∴∠=∠∠,12EDB C ∠=∠ ,12EDB EDC ∴∠=∠=∠BE ED ⊥ ,90BED ∴∠=︒,。
巧用“三线合一”定理解题
。
再 取 B C 的 中点 C
目 D G
二
’
连D
G
,
则 刀 “ 了A B
。
,
又 :
’ .
:
.
M是 B C中 点
刀M
告B F
A石 A D
_
一
二
1 专(
二
一 入) 月 B
I
二
AB
,
匕 1 二 乙 3 M E 厂A C
,
。
,
又 :
只 E : 刀 E
月 B : D G
,
匕
’
2
匕 4
=
。
又
:
乙 3
“
匕 4
,
…
艺A 了B
=
ED
匕C
乙
」
一
匕 刀D C
。
,
四
证 明 线段 平 行
5
艺 C
十
,
ED C
例
在△
C刀
,
丫
A B C
、
的 两 边 B A 及 C A 上分 别 的 中点
,
匕B 匕C
=
2匕 C
取B 刀
二
F
G 分 别 是B C 和 D E
。
…
二
匕E D C
二
,
则 D
二
E
二
E C E C
。
求证
:
F ` 平 行于 之 理 的平 分 线 月 T
CE
二
玉( C
O A
二
O C
_
、
O几 了
,
B D
’.
三线合一 解题给力
三线合一解题给力◎吴育弟一、推理证明例1 如图1,点D,E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.图1 分析:过点A作BC的垂线,利用等腰三角形的“三线合一”得到P为DE及BC的中点,进而可证.证明:如图1,过点A作AP⊥BC于点P.因为AB=AC,所以BP=PC.因为AD=AE,所以DP=PE.所以BP-DP=PC-PE,即BD=CE.例2如图2,在等边三角形ABC中,D为AC边的中点,E为BC延长线上一点,CE=CD,DM⊥BC于点M.求证:M是BE的中点.分析:连接BD,构造等腰三角形,利用等腰三角形“三线合一”的性质,得出DM是BE边上的中线,从而使问题得证.证明:连接BD.因为△ABC是等边三角形,所以∠ABC=∠ACB=60°,AB=AC=BC.因为C D=CE,所以∠CDE=∠E=1/2∠ACB =30°.因为BD是AC边上的中线,AB=BC,所以BD平分∠ABC,则∠DBC=30°.所以∠DBE=∠E.所以DB=DE.又因为DM⊥BE,所以DM是BE边上的中线,即M是BE的中点.二、判断说理例3 如图3,在△ABC中,AB=AC,AD为BC边上的中线,E为AD边上一点,则∠ABE与∠ACE的大小关系是怎样的?试说明理由图3 分析:根据等腰三角形“三线合一”的性质,可得AD为∠BAC的平分线,所以∠BAD=∠CAD.结合已知条件可判定△ABE≌△ACE,所以∠ABE=∠ACE.解:相等.理由:因为AB=AC,AD为BC边上的中线,所以AD平方∠BAC,所即∠BAE=∠CAE.在△ABE和△ACE中,AB=AC,∠BAE=∠CAE,AE=AE,所以△ABE≌△ACE.所以∠ABE=∠ACE.图2。
三线合一练习题
三线合一练习题高考数学是每个高中生都必须面对的一道“坎”。
而三线合一题作为数学试卷中的重要部分,也是令很多学生头疼的难题。
在本文中,将给大家介绍三线合一练习题的解题方法和技巧,帮助大家更好地应对这一题型。
在解答三线合一练习题之前,我们先来了解一下三线合一的概念。
三线合一是指将三角形的三条线段合成一条线段。
在三线合一题中,通常给出三角形的三个角度和一个边长,要求计算另外两个边长。
这一题型常常需要用到三角函数的知识,包括正弦定理和余弦定理。
下面以一个具体的例子来说明三线合一练习题的解题过程。
例题:已知三角形ABC,∠A=30°,边AB=8,边AC=6,求边BC 的长度。
解:首先,我们可以利用余弦定理来计算边BC的长度。
余弦定理的公式是:c² = a² + b² - 2ab·cosC根据题目中给出的信息,我们已知边AB和边AC的长度,分别为8和6,∠A的大小为30°,要求的是边BC的长度,设为x。
代入余弦定理的公式,我们可以得到:x² = 8² + 6² - 2·8·6·cos30°接下来,我们需要计算cos30°的值。
根据余弦函数的定义,我们知道cos30°=√3/2。
将cos30°代入上面的公式,我们可以继续计算:x² = 64 + 36 - 96·√3/2x² = 100 - 48√3最后,我们可以求解x的值:x = √(100 - 48√3)这样,我们就得到了边BC的长度。
以上就是解答三线合一练习题的基本步骤和方法。
根据题目给出的已知信息,利用余弦定理或者其他相关的公式,计算出未知边长的值。
除了余弦定理,我们在解答三线合一练习题时还可以利用正弦定理。
正弦定理的公式是:a/sinA = b/sinB = c/sinC当已知三个角度和一个边长时,我们可以利用正弦定理计算其他两个边长的值。
初中数学三线合一解题技巧
初中数学三线合一解题技巧
三线合一,即在等腰三角形中,底边上的高、底边上的中线、顶角的角平分线,这三线合一。
解题技巧如下:
1. 证明三线合一,首先应明确三角形是否为等腰三角形。
可以通过给定的条件或结论,证明三角形为等腰三角形。
2. 在等腰三角形中,由于两腰相等,对应的两个底角也相等。
因此,可以通过证明两个底角相等,来证明三线合一。
3. 若要证明高也是中线或角平分线,可以通过证明高所在的三角形与原三角形相似或全等,来证明高也是中线或角平分线。
4. 在证明过程中,要注意使用给定的条件和结论,以及相关的定理和性质。
下面是一个具体的例子:
题目:在$\bigtriangleup ABC$中,$AB = AC$,$\angle BAC =
120^{\circ}$,$D$是$BC$上一点,$BD = AD$,求证:$CD = 2BD$。
证明:
1. 由于$AB = AC$,根据等腰三角形的性质,$\angle B = \angle C$。
2. 又因为$\angle BAC = 120^{\circ}$,所以$\angle B = \angle C = 30^{\circ}$。
3. 在$\bigtriangleup ABD$中,由于$\angle ABD = 30^{\circ}$,根据三角形的性质,有$BD = \frac{1}{2}AD$。
4. 又因为$BD = AD$,所以$AD = BD = CD$。
5. 因此,$CD = 2BD$。
人教版数学八年级上册第十三章利用等腰三角形的“三线合一”性质解题
利用等腰三角形的“三线合一”性质解题我们知道,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,被称做为“三线合一”.等腰三角形的“三线合一”性质在几何解题中有着广泛地运用,现举例说明. 一、证明线段相等例1 如图1,在△ABC 中,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:DE =DF .分析 由于DE ⊥AB ,DF ⊥AC ,所以要证明DE =DF ,只要证明点D 是∠BAC 的平分线上的点,于是连结AD ,而由AB =AC ,BD =CD 即可证明AD 是∠BAC 的平分线.证明 连结AD .因为AB =AC ,BD =CD ,所以AD 是等腰三角形底边BC 上的中线,即AD 又是顶角的平分线.又因为DE ⊥AB ,DF ⊥AC ,所以DE =DF . 二、证明两条线垂直例2 如图2,AB =AE ,∠B =∠E ,BC =ED ,CF =DF .求证:AF ⊥CD . 分析 由已知条件AB =AE ,∠B =∠E ,BC =ED ,显然只要连结AC 、AD ,则△ABC ≌△AED ,于是AC =AD ,而CF =DF ,则由等腰三角形的“三线合一”性质即可证明AF ⊥CD .证明 连结AC 、AD .因为AB =AE ,∠B =∠E ,BC =ED ,所以△ABC ≌△AED (SAS ),所以AC =AD ,又因为CF =DF ,所以AF 是等腰三角形底边CD 的中线, 所以AF 也是CD 边上的高,即AF ⊥CD .F E 图3D C BACD EF 图1BAF D 图2BECA三、证明角的倍半关系例3 如图3,△ABC 中,AB =AC ,BD ⊥AC 交AC 于D .求证:∠DBC =12∠BAC . 分析 要证明∠DBC =12∠BAC ,只要作出∠BAC 的平分线,然后利用等腰三角形的“三线合一”性质即可证明证明 作∠BAC 的平分线AE .因为AB =AC ,所以由等腰三角形的“三线合一”可知AE ⊥BC .又因为BD ⊥AC ,所以∠ADB =90°,而∠BFE =∠AFD ,所以∠DBC =∠CAE , 故∠DBC =12∠BAC . 四、证明线段的倍半关系例4 如图4,已知等腰Rt △ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D .求证:BF =2CD .分析 由BF 平分∠ABC ,CD ⊥BD ,可想到等腰三角形的“三线合一”性质,于是延长线BA 、CD 交于点E ,于是△BCE 是等腰三角形,并有ED =CD ,余下来的问题只需证明BF =CE ,而事实上,由∠BAC =90°,CD ⊥BD ,∠AFB =∠DFC ,得∠ABF =∠DCF ,而AB =AC ,所以△ABF ≌△ACE ,则BF =CE ,从而问题获解.证明 延长线BA 、CD 交于点E .因为BF 平分∠ABC ,CD ⊥BD ,所以可得BC =BE ,DE =DC ,又因为∠BAC =90°,∠AFB =∠DFC ,所以可得∠ABF =∠DCF , 又AB =AC ,∠BAF =∠CAE ,所以△ABF ≌△ACE (SAS ),即BF =CE , 故BF =2CD .图5ABCDE图4BF DECAD 图6CE BA。
平行四边形三线合一专项综合练习
平行四边形三线合一专项综合练习一、题目背景平行四边形是初中数学中的重要概念,其中三线合一是指在平行四边形中存在一条线,可以同时成为角平分线、高线和中位线。
本练旨在帮助学生综合运用平行四边形相关性质,解决涉及三线合一的问题。
二、题目内容1. 已知平行四边形ABCD,AD=7cm,BC=5cm,角D为锐角,求平行四边形的面积。
2. 已知平行四边形PQRS,角P等于其对角S,PS垂直于QR,PS的长度为9cm,求对角SR的长度。
3. 平行四边形WXYZ中,WZ=10cm,角Y等于其对角W,YZ垂直于WX,PY是平行四边形WXYZ中的高线,PY的长度为6cm,求平行四边形的面积。
4. 平行四边形ABCD,AD=12cm,BC=8cm,对角BD的长度为10cm,求平行四边形的周长。
5. 平行四边形MNOP中,MO是平行四边形的中位线,点Q在线段NO上,QO=6cm,MQ=12cm,求QN的长度。
三、解题思路1. 根据平行四边形的性质,平行四边形的面积等于底边乘以高,可以使用此公式求解。
2. 利用平行四边形的性质,可以得知PS与QR平行且垂直,利用勾股定理可以求解对角SR的长度。
3. 根据平行四边形的性质,PY是平行四边形的高线,利用此性质可以求解平行四边形的面积。
4. 利用平行四边形的性质,可以通过已知的边长和对角BD的长度求解平行四边形的周长。
5. 根据平行四边形的性质,MO是平行四边形的中位线,利用平行四边形中位线定理可以求解QN的长度。
四、参考答案1. 平行四边形的面积为 35 平方厘米。
2. 对角SR的长度为 15 cm。
3. 平行四边形的面积为 30 平方厘米。
4. 平行四边形的周长为 40 cm。
5. QN的长度为 6 cm。
五、总结通过完成综合练习,学生可以综合运用平行四边形的相关知识和性质,解决涉及三线合一的问题。
同时,通过解题过程,学生可以加深对平行四边形的理解,并提升解决数学问题的能力。
正方形三线合一专项综合练习
正方形三线合一专项综合练习
1. 正方形的定义
正方形是一种特殊的四边形,具有以下性质:
- 四条边相等;
- 四个角都是直角(90度);
- 对角线相等且互相垂直。
2. 正方形的三线
正方形有三条特殊的线,即:
- 边:连接正方形的相邻顶点,形成四条相等的边;
- 对角线:连接正方形的对角顶点,形成两条相等的对角线;
- 中线:连接正方形的相邻中点,形成四条相等的中线。
3. 练题
现在我们将提供一些练题,帮助你巩固对正方形的三线合一的理解。
1. 下图中,ABCD是一个正方形。
请标出正方形的三条边和两条对角线。
![正方形练题1](image1)
2. 下图中,EFGH是一个正方形。
请标出正方形的三条边和两条对角线,以及四条中线。
![正方形练题2](image2)
3. 已知正方形ABCD的边长为8cm。
请计算正方形的对角线长度及中线长度。
解析:
- 对角线长度:根据勾股定理,对角线长度等于边长的平方根乘以根号2。
即:对角线长度= 8cm * √2 ≈ 11.31cm;
- 中线长度:中线长度等于边长的一半。
即:中线长度 = 8cm / 2 = 4cm。
4. 总结
通过以上练,你应该对正方形及其三线合一的概念有了更深入的理解。
继续进行类似的练,加深对正方形性质的掌握,提高解题能力。
Happy Learning!。
活用三线合一解题的六种技巧
证明:过点 A 作 AF⊥BC 于点 F.
∵AAC.
∵AF⊥BC,BD⊥AC,
∴∠CAF+∠C=∠DBC+∠C=90°.
∴∠DBC=∠CAF. ∴∠DBC=12∠BAC.
返回
技巧 6 利用“三线合一”证线段的和差关系
6.如图,在△ABC中,AD⊥BC于点D,且∠ABC =2∠C.求证:CD=AB+BD.
又∵AB=AC=14,AD=DB,DE⊥AB,
∴CF=DF. ∴AC=AD+CD=BD+CD=14.
3.如图,AB=AE,∠B=∠E,BC=ED,AF⊥CD于点F.
求证:∠DBC= ∠BAC.
求证:∠DBC= ∠BAC.
利用“三线合一”求线段的长
(2)由(1)知AC=AD,AF⊥CD,
∴∠CAF=∠DAF.
∵AE=EC,∴AF=12AC. 又∵AB=12AC,∴AF=AB. ∵AD 平分∠BAC,∴∠FAE=∠BAE. 又∵AE=AE,∴△AEF≌△AEB(SAS).
返回
∴∠ABE=∠AFE=90°,即 EB⊥AB.
技巧 5 利用“三线合一”证角的倍数关系
5.如图,已知AB=AC,BD⊥AC于点D. 求证:∠DBC= ∠B12 AC.
∴AE=EB= 1 AB=7. 2
返回
技巧 3 利用“三线合一”证线段、角相等
3.如图,AB=AE,∠B=∠E,BC=ED, AF⊥CD于点F.求证:(1)CF=DF; (2)∠BAF=∠EAF.
∵AD⊥BC,∴AD是BE边上的中线,
又∵△ABC≌△AED,
利用“三线合一”证垂直
又∵△ABC≌△AED,
返回
技巧 2 利用“三线合一”求线段的长
2.如图,在△ABC中,AB=AC,AD=DB,DE⊥AB 于点E,若BC=10,且△BDC的周长为24,求AE 的长.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
-
添加辅助线思路
图中AP这条线段的引出可以看成是: 1 .过A点作BC 的平行线. 2 .过A点作DE的垂线.
D AP
3 .作∠DAC的角平分线.
E
4 .作DE边的中线.
B
C
-
(4)已知,等边三角形ABC,D是AC的中 点,点E在BC的延长线上,且CE =CD。若 DM⊥BC,垂足为M,那么M是BE的中点, 请说明理由。
等腰三角
(三线合一)
-
A
复习回顾:
等腰三角形有哪些性质?
BD
C
1.等腰三角形是轴对称图形,顶角平分线所在
的直线是它的对称轴。
2.等腰三角形的两个底角相等
(简称“等边对等角”)
-
三线合一基本图形
-
等腰三角形三线合一性质
等腰三角形的顶角平分线、底边上的中线、底边上的高线相互重合.
1.等腰三角形的顶角平分线也是底边上的中线、底边上的高线.
证明:∵∠1=∠2 (对顶角相等) ∠A=∠D=90° AB=CD
∴△ABF≌△DCF (AAS) ∴BF=CF ∴ △BCF是等腰三角形. 又 E是BC的中点, ∴EF是∠BFC的角平分线.
∴ ∠BFE=∠CFE. ( 三线合一 )
-
例1.已知AB′=AB,E为BB′的中点,
EC⊥AB′, ED ⊥AB.
∵ △ABC中,AB=AC,∠--B---A--D---=---∠--C--A---D--
A
∴
AD⊥BC
BD=CD
------------- ----------------
2.等腰三角形底边上的中线也是的顶角平分线、 底边
上的高线.
∵ △ABC中,AB=AC,----B--D---=--C---D--------
B
D
C
∴
∠BAD=∠CA
AD⊥BC
D------------- ----------------
3.等腰三角形的底边上的高线也是顶角平分线、底边上的中线.
∵ △ABC中,AB=AC,----A--D---⊥---B---C-------
∴
∠BAD=∠CAD - BD=CD
------------- ----------------
求证:∠2=∠1+∠B
A
E3 B
2
D
1
C
-
1、当题目中出现等腰三角形和“三线”
之一时,直接得到其余两线的性质,
但表达要规范; 2、当题目中没有出现等腰三角形时, 要善于发现“补形”的条件:是否能 产生“两线合一”的情境?
3、应用“三线合一基本图形”是一个重 要 的解题策略,为我们解决问题又提 供了一种手段。
-
在△ABC中 ①AB=AC或(∠B=∠ C)
A
② ∠BAD=∠CAD
③ AD⊥BC
④ BD=CD
已知:
B
D
C
求证:
-
例:如图,在等腰△ABC中,∠C=90°,
如果点B到∠A的平分线AD的距离为5cm, 求AD的长。
B
E 10cm D
A
F C
-
练习:已知:如图,在△ABC中,AD平分 ∠BAC,CD⊥AD,D为垂足,AB>AC。
?
-
三线合一的简单应用 (1)如图,已知AB=BC,D是AC的中点,
∠A=34°,则∠DBC= 56 度.
(2)△ABC中,AB=AC,AD是BC上的高 DE⊥AB,DF⊥AC,垂足分别是E、F.指出 图中各对相等的线段,且说明理由.
-
(3)如图,∠A=∠D=90°,AB=CD,AC与 BD相交于点F,E是BC的中点. 求证:∠BFE=∠CFE.
-
这节课你有那些收获?
-
只要证DB=DE即可
-
练习:如图3,△ABC中,AB=AC,BD⊥AC交
AC于D.
1
A
求证:∠DBC= 2 ∠BAC.
D
B
C
-
在△ABC中 ①AB=AC或(∠B=∠ C)
A
② ∠BAD=∠CAD
③ AD⊥BC
④ BD=CD
已知:
B
DC
求证: E
证明:延长△ABC的中线AD至E点,使DE=AD,连接CE.
在△ABC中,对于以下四个条
①件AB=AC或(∠B=∠ C)
② ∠BAD=∠CAD
A
③ AD⊥BC
④ BD=CD
我们已经知道了 ① ②
①③ ①④
③
④
②B
D
C
思考: ② ③
①
②④
①
③④
①
-
在△ABC中 ①AB=AC或(∠B=∠ C)
A
② ∠BAD=∠CAD
③ AD⊥BC
④ BD=CD
已知:
B
D
C
求证:
求证:CE=ED
A
C
D
B'
E
B
-
例3.已知:如图,在△ABC中,AB=AC, E在 AC上,D 在BA的延长线上,
AD=AE,连接DE.求证:DE⊥BC.
D
A
B
-
E C
添加辅助线思路
图中AR这条线段的引出可以看成是: 1 .过A点作DE的平行线. 2 .过A点作BC的垂线. 3 . ∠BAC的角平分线. 4 . BC边的中线.