(数学试卷六年级)比的意义和基本性质例题
小学六年级数学《比》测试题及详细解答
一、填空1.一辆汽车6小时行了360千米,这辆汽车行驶的路程和时间的比是(),比值是(),比值表示();这辆汽车行驶的时间和路程的比是(),比值是(),比值表示()。
考查目的:比的意义;求比值和化简比。
答案:60:1,60,这辆汽车的速度;1:60,,这辆汽车行驶1千米所需的时间。
解析:该题分别表示两个量之间的比,利用比的基本性质进行化简,求出比值。
理解比值所表示的意义时,需要结合行程问题的数量关系进行说明。
2.晨晨看一本书,已看页数与剩下页数之比是5:3。
已看页数是剩下页数的;剩下页数是已看页数的;已看页数占全书的;剩下页数占全书的。
考查目的:比的意义和比的应用。
答案:,,,。
解析:对“份数”的理解是解决此题的关键。
根据已看页数与剩下页数之比是5:3,可以将已看的页数看作5份,剩下的页数看作3份,则全书为8份,再利用比的意义解答。
3.9÷()():16()(填小数)。
考查目的:比与分数、除法之间的关系。
答案:15,24,6,。
解析:已知的既可以看作是一个分数,也可以看作是一个比。
该题需综合运用比与分数、除法之间的关系以及它们的基本性质进行解答。
4.一个比的后项是2,比值是2,前项是( );假如这个比的前项是2,比值是2,后项是()。
考查目的:比的前项、后项与比值之间的关系。
答案:4;1。
解析:根据比的前项除以后项所得的商叫做比值,可得:比的前项后项比值,比的后项前项比值。
5.(1)把:化成最简整数比是(),比值是();(2)把小时:25分化成最简整数比是(),比值是()。
考查目的:利用比的基本性质化简比;求比值。
答案:4:3,;8:1,8。
解析:第(1)题,先把比的前项化成分数再利用比的基本性质化成最简整数比;第(2)题要先将比的前后项的单位统一,这里有两种方式,统一成小时或者统一成分,可让学生进行比较:“统一成哪个单位便于计算?”再依据比的基本性质化成最简整数比。
二、选择1.甲、乙、丙三位同学分别调制了一杯蜂蜜水。
六年级数学上册《比的意义和基本性质》习题
六年级数学上册《比的意义和基本性质》习题一、想一想,填一填。
1、()叫做两个数的比。
2.将比率的前后项乘以()或除以()(0除外),再除以比率()。
3、比的前项除以1/5,要使比值不变,比的后项应该()。
4、()∶1/12=3/5,4∶()=0.5。
5、4÷5=()/15=28∶()=()∶20=()(小数)。
二、请当裁判。
1、比的前项和后项同时乘一个相同的数,比值不变。
()2.如果a:B=8:3,那么a=8,B=3。
()3、爸爸和小明的年龄比是7∶2,3年后他们的年龄比不变。
()4.圆圆身高1米,母亲身高162厘米,母亲与圆圆身高之比为162:1。
()5、乙队在一场球赛中以4∶0的比分大胜甲队,这里的4∶0不是比。
()三、按号码就座。
1、a∶b=4/7,如果比的前项和后项同时除以3,比值是()。
a、 4/7第1页b、 4/21c、12/72.在下列比率中,等于0.5:0.6的比率为()。
a、1/5∶1/6b、1/2∶3/5c、25∶263.如果比率是最简单的整数比率,则比率的第一项和最后一项必须为()。
a、素数b、互质数c、整数4.如果在前一项3:7的基础上加9,为保持其比例不变,后一项应为()。
a、加上9b、加21C减去9四、求比值。
0.75∶1.52/5∶1/62∶1.84∶1/22/3小时:45分钟第2页0.3平方米:9平方分米五、把下面各比化成最简单的整数比。
12∶210.8∶2.45/8∶15/160.5∶0.751/8千克:500克15秒:1/3分钟六、请按要求写比。
1.a是B的8/17,B和a的比率是()。
2、在97克水里放入3克盐,盐与水的比是(),比值是();水与盐水的比是(),比值是()。
3、一个工程小组在四天内建造2022米的道路。
工程团队建造的总米数与道路施工时间的比率为(),比率为(),代表()。
七、走进生活,解决问题。
一.一批服装可由甲方单独在30天内完成,由乙方单独在20天内完成。
六年级数学比的意义试题答案及解析
六年级数学比的意义试题答案及解析1.(5分)(2011•高邮市模拟)一个长方形的周长是32厘米,长和宽的比是5:3.长是多少厘米?【答案】10厘米.【解析】由“一个长方形的周长是32厘米,”知道长和宽的和;由“长和宽的比是5:3.”知道长占总数的几分之几,最后求长是多少,列式即可解答.解:总份数:5+3=8(份)长的厘米数是:32÷2×=10(厘米)答:长是10厘米.点评:此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.2.(2分)把:化成最简单的整数比是,比值是.【答案】4:1,4.【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项,即得比值.解:(1):=(×6):(×6)=4:1(2):=4:1=4÷1=4.故答案为:4:1,4.点评:此题考查化简比和求比值的方法,要注意区分:化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个数,可以是整数、小数或分数.3.请按要求完成一下题目:(1)=______÷______=______(2)______÷______=0.25=【答案】(1)5;8;0.625(2)1;4;【解析】(1)=5÷8=0.625(2)1÷4=0.25=4.请按要求完成一下题目:(1)50÷81改写成比是______,用分数表示是______。
(2) 42÷63改写成比是______,用分数表示是______。
(3)55÷99改写成比是______,用分数表示是______。
【答案】(1)50:81;(2)42:63;(3)55:99;【解析】(1)50÷81改写成比是50:81;用分数表示是50÷81=(2)42÷63改写成比是42:63;用分数表示是42÷63=(3)55÷99改写成比是55:99;用分数表示是55÷99=5.请按要求完成一下题目:(1)72÷7改写成比是______,用分数表示是______。
六年级数学下册《比例的意义和性质》练习题(附答案解析)
六年级数学下册《比例的意义和性质》练习题(附答案解析)学校:___________姓名:___________班级:____________一、选择题1.能与11:34组成比例的是()。
A.4∶3B.3∶4C.1:43D.1:342.下面每组中的四个数,不能组成比例的是()。
A.2,0.25,3,0.375B.18,8,5.4,24C.5452,,,3767D.30,25,6,1253.下面能与3∶8组成比例的是()。
A.8∶3B.15∶40C.0.2∶0.6 4.下列哪个选项中的四个数不能组成比例。
()A.3,5,9,15B.1,2,3,4C.12,13,16,19D.2,4,7,145.如果a、b都是不为0的数,且56a=78b,则a和b的大小关系是()。
A.a<b B.a=b C.a>b6.能与13∶14组成比例的是()。
A.4∶13B.13∶4C.4∶3D.3∶47.下面各比中,能与0.14∶0.1组成比例的是()。
A.0.8∶0.25B.28∶20C.13∶35D.14∶18.在比例里,两个外项的积等于两个内项的积。
这叫做()。
A.比例的基本性质B.比例C.比例的外项9.根据下图中的信息判断,下列等式不成立的是()。
A.a∶c=d∶b B.a b=c dC.b d=c a10.如果a×3=b×4,那么a∶b=()。
A.4∶3B.3∶4C.1∶12二、填空题11.12的因数共有______个,选择其中的4个因数,把它们组成一个比例是______。
12.在30的因数中选择4个奇数组成一个比例:( )。
根据比例的基本性质把它改写成乘法等式:( )。
13.比值是2的一个比例是( )。
14.如果2a=3b(a、b≠0),那么a∶b=( )∶( );如果a∶b=5∶2 ,那么a∶5=( )∶( )。
15.比值是35的两个比可以为( ),( ),这两个比组成比例是( ).16.一个比例,等号左边的比和等号右边的比一定是( )的。
六年级数学:《比的意义和基本性质》试题
其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。2、计划生产1800个零件,第一天生产了计划的,第二天生产了计划的。还剩下计划的几分之几没生产?还剩下多少个没生产?
六年级数学:《比的意义和基本性质》试题
二、求比值:
12:8 0.4:0.12
“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。三、解决问题:
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。以上就是六年级数学:《比的意义和基本性质》试题全文,希望能给大家带来帮助!
比的意义及比的基本性质
第十讲 比的意义及比的基本性质【典型例题1】求下列各式的比值:(1)4.5:217; (2)312:611 (3)36分:0.4时.解析:(1)4.5:217= 4.5÷7.5=0.6;或 4.5:217=29÷215=29×152=53.(2)312:611=37÷67=37×76=2.(3)0.4时=0.4×60=24分; 36分:0.4时=36分÷24分=211点评:此题考查的是比与比值的概念;掌握正确、熟练地求比值的方法. 【知识点】1.比a 、b 是两个数或两个同类的量,为了把b 和a 相比较,将a 与b 相除,叫做a与b 的比.记作a:b ,或写成ba,其中b ≠0;a 叫做比的前项,b 叫做比的后项.2.比值 比的前项除以比的后项所得的商叫做比值。
求比值时注意: (1)得到的结果是一个数(分数或小数,有时是整数). (2)求两个同类量的比值时,如果单位不同,必须把这两个量化成相同的单位. (注意:比是解决同类量之比). 【基本习题限时训练】1. 求54:45的比值,结果正确的是:( ) A 、2516 B 、1625 C 、16﹕25 D 、 25﹕16【解】A2. 求2周: 5天的比,结果正确的是:( )A 、14:5B 、542 C 、5:14 D 、 2.8【解】C3. 某中学预备(2)的学生人数为40人,其中男生17人,则该班男生人数与女生人数的比值是:( )A 、4017B 、1723C 、17﹕23D 、 2317【解】D 【拓展题1】一项工程,甲队用15天完成,乙队用18天完成,求甲队与乙队的工作效率的比值.【解析】(1÷15) ﹕(1÷18)= 151:181=151÷181=151×18=115【点评】把这项工程看成整体“1”,工作效率=工作总量÷工作时间,所以甲队和乙队的工作效率分别是151和181【拓展题2】如图,在ΔABC 中BC=10厘米,BD 是BC 的52,求ΔABD 和ΔABC 的面积之比.【解析】BD=10×52=4厘米;BC=10厘米;BD 上高的长=BC 上高的长;ΔABD 的面积:ΔABC 的面积=(21×BD ×BD 上高):(21×BC ×BC 上高)=(21×4):(21×10)=2:5.【点评】 三角形的面积公式是21×底边长×底边长上的高,而ΔABD 和ΔABC的边长可以取B D 、BC 它们底边上的高是同一条高,由已知条件只要求出B D 长就可以求出这两个三角形的面积比.【典型例题2】已知41:x=213,求x.解析:因为41:x=213;所以41÷x=213;由 x=41÷213;可得x=41×72;所以x=141.点评:要求正确理解分数、除法、比的关系和区别,从而求出所求的未知数。
3.9比的意义和基本性质练习
2 > 1.5 > 1
数越多,洗洁液越淡;对应的水的 份数越少,洗洁液反而更浓。
答:第二种洗洁液最浓,第一种洗洁液最淡。
把原来洗洁液与水的比,转化成前项是1的比,更容 易看出溶液中水占的比例的大小,也更容易调配。
练习九
13.搬运工人为了把汽油桶推上汽车,用木板搭 了两个斜面(如图)。分别写出每个斜面最高 点的高度与木板长度的比,并化简。
练习九
12.在洗洁液中加入不同数量的水后,可以 清洗不同的衣物。下图表示几种洗洁液与水 的比。你能把下面的表格填写完整吗?
2:4 4:4 4:6
1
1:2
2
1
1:1
2 3
1 : 1.5
2:4 4:4 4:6
1
1:2
2
1
1:1
2 3
1 : 1.5
思考一:想一想,不同的比值说明了什么?能从比值 里看出哪种洗洁液最浓,哪种洗洁液最淡吗?
21 1>3>2
比值越大,说明溶液中含有的洗洁液越多; 比值越小,说明溶液中含有的洗洁液越少;
答:第二种洗洁液最浓,第一种洗洁液最淡。
2:4
1
1:2
2
4:4 4:6
1
1:1
2 3
1 : 1.5
洗洁液1份 水的份数
思考二:比较前项是1的比,怎样看出哪一种含有的
洗洁液多?
同样一份的洗洁液,对应的水的份
通过本节课的练习,对于比 你又有了哪些新的认识?
谢谢
比
4 : 16 5.6 : 4.2 75 : 25
化简后的比 1 : 4 4 : 3 3 : 1
比值
1 4
4
3
3
人教版六年级下册《41_比例的意义和基本性质》小学数学-有答案-同步练习卷(2)
人教版六年级下册《4.1 比例的意义和基本性质》小学数学-有答案-同步练习卷(2)一、填空题(共15小题,每小题3分,满分45分)1. 直接写出得数2. 写出两个比值是0.4的两个比组成比例________.3. 判断下面的比是否可以组成比例。
(对的在括号中划“√”,错的画“×”)(1)3:4和4.5:6()(2)12:3和9:4.5()(3)25:57和225:17()4. 应用比例的基本性质,把下列比例改写成乘法算式。
7.5:15=2:4________5 12=ab________2 3:8=115:45________5. 在2:5=6:15中,________是内项,________是外项。
6. 如果3A=4B(A,B不为0),那么AB =________,BA=________.7. 在比例里,两个内项互为倒数,那么两个内项的积是________,如果一个外项是45,另一个外项是________.8. 在比例里,两个外项的积减去两个内项的积,差为0.________.(判断对错)9. 如果4x=5y(x和y均不为0),那么4:x=5:y.________(判断对错)10. 18:30和0.3:0.5可以组成比例。
________(判断对错)11. 如果甲数的45与乙数的23相等,则甲数与乙数的比是5:6.________(判断对错)12. 把下面的等式,按比例的基本性质改写成比例式,看看你能写几个,并想想你发现了什么。
10×8=16×5a ×b =c ×d(a ,b ,c ,d 均不为0)13. 把25×4=50×2改写成比例是( )A.25:4=50:2B.25:2=4:50C.252=504D.4:25=50:214. 如果x 的34等于y 的45,且x 和y 均不为0,则x:y =( )A.34:45B.4:3C.15:16D.16:1515. 不能与4、5、8这三个数组成比例的数是( )A.10B.2.5C.6.4D.7参考答案与试题解析人教版六年级下册《4.1 比例的意义和基本性质》小学数学-有答案-同步练习卷(2)一、填空题(共15小题,每小题3分,满分45分)1.【考点】整数的除法及应用整数的乘法及应用小数的加法和减法小数乘法分数乘法【解析】根据整数、小数以及分数的加减乘除法的计算法则口算即可。
六年级数学上册比的意义和基本性质提高练习题
1、甲车3小时行驶120千米,乙车4小时行驶140千米,甲乙两车所行驶时间的比是( );路程的比是( );速度的比是( )。
2、一条路甲车行驶的速度是每时60km ,乙车行驶的速度每时50km ,甲乙两车行完全程所用时间比是( )。
3、一件工作,小红需4小时完成,小东需5小时完成,小红和小东的工作效率比是( )。
4、两个正方形边长的比是4∶3,它们周长的比是( ),面积的比是( )。
5、两个正方体的棱长比是3:1,它们的表面积的比是( ),体积的比是( )。
6、大伯家有一块长方形菜地,他用步测法测得菜地周长大约是50米,长和宽的比是3∶2。
那么,菜地的面积是多少平方米?
*7、画一个长方形,面积是24 cm2,长和宽的比是3∶2,长宽各应画多长?
8、用36厘米长的铁丝围成一个长方体框架,这个长方体长、宽、高的比是3∶2∶1,它体积是多少?
9、甲、乙、丙三个数的比是2∶3∶7,三个数的平均数是48,乙数是多少?
10、甲数和乙数的比是3∶4,乙数和丙数的比是5∶6,甲数和丙数的比是多少?
11、一个班的学生人数介于40人至60人之间,男生人数与女生人数的比是7∶8,男生可能是多少人? 12、
12、学校把360本科技书分配给甲、乙、丙三个班,甲班的21等于乙班的31,等于丙班的4
1,甲、乙、丙三个班各分得多少本?
比的意义和基本性质整理和复习。
六下数学 比例的意义和基本性质+解比例 完整版考点总结+题型训练
考点一、比例的基本意义和性质【基础知识回顾】1、比的意义:( 两个数相除又叫两个数的比 )比例的意义:( 表示两个比相等的式子 )如2.4:1.6=60:40是一个比例,2:3=4:6是一个比例2、 比和比例之间的练习与区别:表示两个比相等的式子叫做“比例”。
如2:3=4:6关系:“比”是研究两个量之间的关系,所以它有(两项);“比例”是研究相关联的两种量中两组相对应数的关系,所以比例是由(四项)组成。
比例是由比组成的,如果两个比相等,那么这两个比就可以组成比例。
成比例的两个比的比值一定相等。
区别: “比”是表示两个数相除的关系 比由两项组成(前项、后项) 任意两个数都能组成比 。
“比例”是表示两个比相等 的关系 比例由四项组成(两个内 项、两个外项) 任意四个数不一定都能组成比例3、 比例的基本性质:(1)组成比例的四个数,叫做比例的项,两端的两项叫做外项,中间的两项叫做比例的内项,例如:如果把上面的比例写成分数的形式40606.14.2 ,2.4和40仍然是外项,1.6和60仍然是内项。
(2)比例的基本性质:在比例里,两个外项的积等于两个内项的积。
用字母表示比例的基本性质:4、常用结论:如果4个不同的数可以组成比例,一共可以组成8个不同的比例。
例如用2,4,8,16组成比例可以组成如下的8个2:4=8:162:8=4:1616:4=8:216:8=4:28:16=2:48:2=16:44:16=2:84:2=16:8【练习一】一、判断题1、8:2=4是比例 ( )2、5x=6y ,则x:y=5:6。
( )3、比例是表示两个比相等的式子。
( )4、 比是表示两个数相除的一种关系。
( )5、 比例有4项,各项的名称分别是前项和后项。
( )6、 比只有两项,各项的名称分别是外项和内项。
( )7、 在比例里,如果两个外项互为倒数,那么两个内项也互为倒数。
( )8、如果3a=4b ,那么a :b=3:4。
六年级上数学比的意义和比的基本性质练习题
六年级上数学比的意义和比的基本性质练习题
学习是休息,是充溢思想的休息。
查字典数学网为大家整理了比的意义和比的基本性质练习题,让我们一同窗习,一同提高吧!
填空:
1,一车水果重1.8吨,按2:3:5的比例分配给甲,乙,丙三个水果店,乙水果店分得这批水果的().
2,甲数比乙数多,甲数与乙数的比是().
3,甲,乙,丙三个数的平均数是15,甲,乙,丙三个数的比是2:3:4,甲数是().
4、西风小学六年级人数是五年级人数的,五年级与六年级人数的比是().
5,把3克盐放入12克水中,盐与盐水重量的最简整数比是().
6,把(5平方米):(50平方分米)化成最简整数比是( ),它们的比值是( ).
7,甲数除以乙数的商是1.5,甲数与乙数的最简整数比是( ). 8,写异样多的作业,李莉用12分钟,王祥用15分钟,李莉与王祥的最复杂的速度比是( ).
9,把1与它的倒数的比化成最简整数比是( ),比值是( ). 10,4分:时的比值是( ),最简整数比是( ).
11,把:0.75化成最复杂的整数比是( ),比值是( ).
12,1:0.75化成最复杂的整数比是( ),比值是( ).
13,:0.125化成最复杂的整数比是( ),读作( ),比值是( ),读作( ).
欢迎大家去阅读由小编为大家提供的比的意义和比的基本性质练习题大家好好去品味了吗?希望可以协助到大家,加油哦!。
《比的意义和基本性质》练习题
比的意义和基本性质(一)一、细心填写:1、鸡有80只,鸭有100只,鸡和鸭只数的比是( ),比值是( )。
2、长方形长3分米,宽12厘米,长与宽的比是( ),比值是( )。
3、小李5小时加工60个零件,加工个数与时间的比是( ),比值是( )。
4、一本书读了55页,45页没有读,已读与总数的比是( ),比值是( )。
5、甲数相当于乙数的92,甲数与乙数的比是( ),乙数与甲数的比是( )。
6、三好学生占全班人数的81,三好学生与全班人数的比是( )。
7、白兔只数的31与黑兔相等。
白兔与黑兔的比是( ),白兔与黑兔的比是( ) 8、若A ÷B =5(A 、B 都不等于0)则A :B =( ):( )若A =B (A 、B 都不等于0) 则A :B =( ):( )9、 填写比、除法和分数的关系。
比 比的前项除法 除数分数 --- 分数线 分数值10、( )又叫做两个数的比。
( )叫做比值。
11、43=( ):( ) =( )÷( )12、在100克水中加入10克盐,盐和盐水的比是( )。
13、男工人数是女工人数的52,男、女工人数的比是( )。
14、甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。
15、甲数比乙数多41,甲数与乙数的比是( ),比值是( )。
16、( ),叫做比的基本性质。
17、16:20=32:( ) =( )÷10 =()4=()80=1.6( ) =( ):0.218、火车4小时行驶了600千米,路程和时间的最简整数比是( ),比值是( )。
19、甲数是乙数的3倍乙数与甲数的比是( ),比值是( )。
20、601班男生与女生人数的比是2:3,女生占全班的( ),男生占全班的( )。
21、甲数是乙数的32,乙数与甲数的比是( ),甲数与乙数的比是( )。
二、求比值:12:8 0.4:0.12 5: 41 4.5:0.9 31:65 32:910 0.75:41 4: 41 35:45 360:450 0.3:0.15 18: 32 6:0.36 203:54 0.6:52 32:6 三、化简比:35:45 360:450 0.3:0.15 18: 32 6:0.36 203:54 0.6:52 32:683:21 0.75: 43 24: 31 6.4:0.16 2.25:9 815:32 54:83 31:41四、判断是否:1、54可以读作“6比7”。
六年级数学下册试题 -《第4章 比例 第1课时 比例的意义和基本性质》同步测试题 人教版
人教版六年级数学下册《第4章比例第1课时比例的意义和基本性质》同步测试题一.选择题(共6小题)1.下列()组中的两个比不可以组成比例。
A.6:18和3:9B.3:和5:6C.:和2:0.52.在=中,a的值是()A.2B.4C.6D.83.解比例:=2:1,x=()A.6B.1.5C.0.7D.94.在一个比例中,已知两个外项互为倒数,其中一个内项是最小的质数,另一个内项是()A.4B.C.2D.5.根据ab=cd,下面不能组成比例的是()A.a:c和d:b B.b:d和a:c C.d:a和b:c6.下列能与:组成比例的是()A.3:4B.4:3C.1:4D.:3二.填空题(共6小题)7.解比例=,则x=8.解比例:3.5:x=0.5:20%则x=9.在一个比例里,两个内项互为倒数,其中一个外项是3,另一个外项是.10.在横线里填上适当的数.24:9=8:;:6=3:.11.如果4x=5y,那么x:y=:,x:5=:.12.下面哪组中的两个比可以组成比例?把能组成比例的在横线里打“√”.(1)2:6和3:1.(2)1:2和0.5:1.(3)0.8:0.2和16:4.(4)7:3和3:7.三.判断题(共5小题)13.交换比例的两个内项或两个外项,比例仍然成立..(判断对错)14.表示两个比相等的式子叫比例.(判断对错)15.比例的两个内项互为倒数,那么它的两个外项也互为倒数..(判断对错)16.若2:a=4:8那么a=1.(判断对错)17.解比例的依据是比的基本性质..(判断对错)四.计算题(共1小题)18.解比例。
(1)96:24=x:36(2):x=五.应用题(共2小题)19.如图,在左边刻度5的地方放3个棋子,那么在右边刻度3的地方应放多少个棋子才能保持平衡?20.如图所示,一个长方形,它的长是4cm,宽是2cm.这个长方形的宽和长之比是,长和周长之比是,这两个比能组成比例吗?六.解答题(共6小题)21.按照下面的条件列出比例,并且解比例.比例的两个外项分别是和,两个内项分别是x和.22.把15×6=30×3改写成四个不同的比例.23.两个外项是X和5,两个内项是25和4.24.一个比例的两个内项分别是最小的质数和合数,两个外项分别是1和x.25.一个比例中,两个内项都是6,而且两个比的比值都是5,x是一个外项,列出这个比例并解答.26.把、、0.4和四个数组成一个比例.参考答案与试题解析一.选择题(共6小题)1.【分析】要想判断两个比能不能组成比例,可以根据比例的基本性质:两个外项的积等于两个内项的积,计算出两个外项的积、两个内项的积,然后判断即可。
六年级数学上册比的意义和基本性质提高练习题
百分数应用题姓名:1.六(1)班有男生25人,女生比男生少5名。
A.女生人数是男生人数的百分之几?B.女生人数比男生人数少百分之几?C.男生人数比女生人数多百分之几?2.六年级一班有男同学20人,比女同学人数多百分之25,男同学比女同学多多少人?3.某校三年级有240人,比二年级少百分之20,三年级比二年级少多少人?24.一桶油用去寺,剩下的比用去的多百分之几?5.某车间计划生产零件8000个,实际超产1000个,实际完成计划的百分之几?6.某车间计划生产一批零件,实际生产9000个,比计划超产1000个,实际比计划超产百分之几?7.一捆铁丝,第一次减去40%,第二次减去第一次的25% ,,第三次比第二次多剪15米,这时还剩25米,这困铁丝长多少米?& 一捆铁丝,第一次减去40%,第二次减去第一次的25%,还剩56米,这捆铁丝长多少米?9.一捆铁丝,第一次减去20%,第二次减去第一次的50%,还多8米,正好剪了全长的一半。
这捆铁丝长多少米?一一 1 ______________________________________ 一9.水果店有苹果1200千克,卖出-后,剩下的苹果重量是梨的60%,水果店5有梨多少千克?一一 1 ____________________________________ 一10.水果店有苹果1200千克,卖出-后,剩下的苹果重量比梨少60%,水果店5有梨多少千克?11.有一批粮食,第一次取出25吨,第二次取出余下的40%,还剩一半。
这批粮食共有多少吨?12.学校有一年级学生100人,二年级比一年级多10%,一、二年级学生人数占全校人数的20%,全校有学生多少人?13.某商店同时卖出两件商品,每件各得240元,但其中的一件赚20%,另一件亏20%,这个商店卖出这两件商品亏损多少元?14.六年级(1)班有40人,其中23人为灾区捐了款,25人为灾区小朋友捐赠了学习用品,既捐款又捐学习用品的同学占全班人数的百分之几?15.六(1)班期中测试,数学不及格人数是及格人数的丄,六一班期中测试数学及格率是多少?1915.肿瘤医院有医务人员85 人,其中男医务人员占40% ,今年又分配了一些男医生,这时男医务人员占医务人员总数的49% ,新来了多少名男医生?16.一件商品按30%的利润定价,然后又打九折出售,结果每件商品获利34元。
人教版册数学比的意义和基本性质》练习题
人教版册数学《比的意义和基本性质》练习题 The document was prepared on January 2, 202139、比的意义和基本性质(一)一、细心填写:1、鸡有80只,鸭有100只,鸡和鸭只数的比是( ),比值是( )。
2、长方形长3分米,宽12厘米,长与宽的比是( ),比值是( )。
3、小李5小时加工60个零件,加工个数与时间的比是( ),比值是( )。
4、一本书读了55页,45页没有读,已读与总数的比是( ),比值是( )。
5、甲数相当于乙数的92,甲数与乙数的比是( ),乙数与甲数的比是( )。
6、三好学生占全班人数的81,三好学生与全班人数的比是( )。
7、白兔只数的31与黑兔相等。
白兔与黑兔的比是( ),白兔与黑兔的比是( )8、若A ÷B =5(A 、B 都不等于0)则A :B =( ):( )若A =B (A 、B 都不等于0) 则A :B =( ):( )二、求比值:32:94 : 3321:113 : 48:36 : 52 7: 3: 116 1: 9072 三、解决问题:1、一辆汽车从甲地到乙地,每小时行80千米,用了43小时,返回时只用了85小时。
返回时每小时行多少千米2、商店售出2筐橙子,每筐24千克。
售出的橙子占水果总数的116,售出的香蕉占水果总数的41。
售出香蕉多少千克40、比的意义和基本性质(二)一、细心填写:12)叫做比值。
3、43=( ):( ) =( )÷( ) 4、在100克水中加入10克盐,盐和盐水的比是( )。
5、男工人数是女工人数的52,男、女工人数的比是( )。
6、甲数是乙数的4倍,甲、乙两数的比是( ),乙数与两数和的比是( )。
7、甲数比乙数多41,甲数与乙数的比是( ),比值是( )。
二、求比值:12:8 :5: 41 : 31:65 32:910 :41 4: 41 三、解决问题:1、小明体重40千克,相当于小军的910,小华的体重是小军的65。
小学数学比的意义和基本性质
6
)=(
(
11 6
) )
练习十三
⒈ 看图填空。
⑴ 一张长方形方格纸被涂成了红白相 间的图案。 红格与白格个数的比是 13∶12 白格与红格个数的比是 12∶13
练习十三
⑵ 黄色部分与圆面积的比是 3∶9 绿色部分与圆面积的比是 6∶9
练习十三
⒉ 下面是妈妈买几种水果的总价和数量 的记录。
品种 苹果 橘子 香蕉
什么叫做比例的基本性质? 在比例里,两个外项的积等于两个内项的积。
判断下列各组比能否组成比例:
⑴ 6 :12 和 4 :8
()
⑵ 24:8 和 0.6:2
()
⑶ 4 :7 和 6 :5
56
74
⑷ 12 和 3 2.4 6
() ()
侦探柯南之神秘脚印:
一个月黑风高的夜晚,一家珠宝店失 窃了。第二天早上,小侦探柯南经过仔 细勘察,在案发现场发现了一枚犯罪嫌 疑人留下的脚印,根据这枚脚印,柯南 很快判断出了犯罪嫌疑人的身高,你们 知道,他是怎样判断的吗?
比是5:4,如果这时测得电线杆的影长为4.8
米,那么电线杆的实际长度是多少米?
育新小区1号楼的实际高度是 35m,它的高度与模型高度的比是 500:1。模型的高度是多少厘米?
按照下面的条件列出比例,并且解比例:
(1) x
和
3 4
1 的比等于 5和
2 5
的比。
x:
3 4=
1 :2
55
x (2)等号左端的比是1.5 : ,等号右端比的
内项积:2.7 × 10 = 27 内项积: 10 × 9 = 90
1 32
11
∶=
6 ∶4
0.6 ∶0.2 = 3 ∶ 1
六年级数学比和比的应用题
一、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10= 23(比值通常用分数表示,也可以用小数或整数表示)3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、 比和除法、分数的联系:二、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
三、化简比与求比值的区别1、 求比值 (前项除以后项的商叫做比值。
比值是一个数) 方法:整数比或者小数比求比值,可以把它写成分数形式(后项前项),再把它约分,约成最简分数或整数。
这个结果就是比值。
练习:14:35 120:300.25:2 1.8:2.4 方法:分数比,可以把它看成分数除法来做,求得的结果就是比值。
58 ∶56 14:7152、 化简比 (最后结果是一个比,且是前项和后项只有公因数1,而不是一个数)方法:可以采用求比值的方法,先求比值,再把比值转化为最简整数比。
(比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
)练习: 14:35 120:30 0.25:21.8:2.4 58 ∶56练习一1、两个数( )又叫做两个数的( )。
2、 如果A ∶B=C ,那么A 是比的( ),B 是比的( ),C 是比的( )。
3、4÷5=( )∶( )=()()4、从A 地到B 地共180千米,客车要行2小时,货车要行3小时。
客车所行的路程与所用时间的比是( ),比值是( );客车所用的时间与货车所用的时间比是( ),比值是( );货车与客车的速度比是( ),比值是( );客车与货车所行的路程比是( ),比值是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比的意义和性质
☆知识要点:
(1)比的意义:两个数相除,又叫两个数的比.例如:
某车间有男工人15人,女工人有11人.求男工是女工的几倍?可以写成15÷11,也可以说男工与女工人数的比是15∶11.
求女工是男工的几分之几,可以写成11÷15,也可写成女工和男工人数的比是11∶15.
比号前面的数叫比的前项,比号后面的数叫比的后项.注意:
写比时要认真审题,弄清谁与谁相比,确定哪个量作比的前项,哪个量作比的后项前项和后项的位置不能颠倒.
(2)比和除法,分数的关系.
比和除法,分数之间既有联系,又有区别.
因为比与分数有一定的联系,所以比也可以写成分数形式,例如,3比2,可以写成3∶2
也可以写成3
2
,仍读3比2.
区别:
比,除法,分数,意义不一样
除法是一种运算,除号是运算符号.
分数是一种数,分数线有除号,比号,括号的作用.
比是两个数相除,表示两数的关系,比号是关系的符号.
比值:比的前项除以比的后项,所得的商叫做比值.
(3)比的基本性质:
比的前项和后项同时乘以或者同时除以相同的数,(零除外)比值不变.应用比的基本性质,可以把比化成最简单的整数比.
例如①300∶3.2=3000∶32=125∶2.
先把它们化成整数比,然后再化简,使比的前项和后项互质,
例如②:3小时∶18分.
有单位名称的要先统一单位名称,然后去掉单位名称,再化简成最简单的整数比,
3小时∶18分=180分∶18分=180∶18=10∶1
(4)求比值和化简比的区别.
①意义不同:求比值是用比的前项除以比的后项所得的商.化简比是把一个比化成最简单的整数比,使比的前项和后项成为互质数.
②结果不同, 求比值,结果是商,它是一个数,这个数可以是整数,也可以是小数或分数.
化简比结果仍是一个比,写成比的形式,也可以写成分数形式.
注:化简比也可以用求比值的方法.
☆基础练习:
练习: 1、求比值:
3、填空:
4填空:
①5只羊重280千克,写出羊的总重量与羊的只数的最简单的整数比是().
②甲数比乙数少20%,乙数与甲数的比是().
③甲数与乙数的比是9∶4,甲比乙多()%.
④20克糖加200克水,溶成糖水,糖和糖水的比是().
⑩
如图:甲乙两个三角形重叠部分的面积相当于甲三角形的面积的,相当于乙三角形的,甲乙两三角形面积的比是()。