上海市金山区2018届高三一模数学试题 word
2018高三“一模”数学试题汇编(函数)
2018上海各区高三“一模”数学试题分类(函数)一、填空题:1.若全集U R =,集合{}02A x x x =≤≥或,则U C A =2.设集合{2,3,4,12}A =,{}0,1,2,3B =,则AB = 3.已知集合{}1,2,5A =,{}2,B a =,若{}1,2,3,5A B =,则a =4.已知全集U N =,集合{}1,2,3,4A =,集合{}3,4,5B =,则()U C A B = 5.设全集U Z =,集合{}1,2M =,{}2,1,0,1,2P =--,则()U P C M =6.已知函数{}2,3A =,{}1,2,B a =,若A B ⊆,则实数a =7.已知集合{}03A x x =<<,{}24B x x =≥,则A B =8.已知集合{}1,2,A m =,{}3,4B =,若{}3A B =,则实数m =9.函数()lg(2)f x x =-的定义域是10.函数()f x =的定义域为11.若行列式124012x -=,则x =12.不等式10x x-<的解为 13.不等式11x<的解集是 14.不等式211x x +>+的解集是 15.不等式2433(1)12()2x x x --->的解集是 16.不等式111x ≥-的解集为 17.已知()f x 是定义在R 上的奇函数,则(1)(0)(1)f f f -++=18.已知函数()21f x x =-的反函数为1()f x -,则1(5)f -=19.若函数()f x x α=的反函数的图像经过点11(,)24,则a = 20.方程222log (2)log (3)log 12x x -+-=的解x =21.已知函数2()log ()f x x a =+的反函数为1()y f x -=,则1(2)1f -=,则实数a =22.已知函数()y f x =是奇函数,当0x <时,()2x f x ax =-,且(2)2f =,则a =23.已知函数()1log a f x x =+,1()y f x -=是函数()y f x =的反函数,若1()y f x -=的图像 过点(2,4),则实数a 的值是24.已知函数()f x 是定义在R 上且周期为4的偶函数,当[2,4]x ∈时,43()log ()2f x x =- 则1()2f =25.已知函数()y f x =是定义在R 上的偶函数,且在[0,)+∞上是增函数,若(1)(4)f a f +≤, 则实数a 的取值范围是26.已知13a >,函数()lg(1)f x x a =-+在区间[0,31]a -上有最小值0,且有最大值为 lg(1)a +,则实数a 的取值范围是27.若不等式1(1)(1)31n na n +--⋅<++对任意正整数n 恒成立,则实数a 的取值范围是 28.若不等式222()x y cx y x -≤-对满足0x y >>的任意实数,x y 恒成立,则实数c 的最大值为29.已知函数()21f x x x a =--有三个零点,则实数a 的取值范围是30.已知函数22log (),0()3,0x a x f x x ax a x +≤⎧=⎨-+>⎩有三个不同的零点,则实数a 的取值范围是 31.定义,(,),a a b F a b b a b ≤⎧=⎨>⎩,已知函数()f x 、()g x 的定义域都是R ,则下列四个命题中为 真命题的是 (写出所有真命题的序号)①若()f x 、()g x 都是奇函数,则函数((),())F f x g x 为奇函数;②若()f x 、()g x 都是偶函数,则函数((),())F f x g x 为偶函数;③若()f x 、()g x 都是增函数,则函数((),())F f x g x 为增函数;④若()f x 、()g x 都是减函数,则函数((),())F f x g x 为减函数.32.关于函数()1xf x x =-,给出以下四个命题:①当0x >时,()y f x =是单调递减且没有最值;②方程()f x kx b =+(0k ≠)一定有实数解;③如果方程()f x m =(m 为常数)有解,则解的个数一定是偶数;④()y f x =是偶函数且有最小值.其中假命题的序号是33.设2()22x f x x ax b =++,其中,a b N ∈,x R ∈,如果函数()y f x =与函数[()]y f f x =都有零点且它们的零点完全相同,则(,)a b 为给出函数2()g x x bx =-+,2()4g x mx x =-+-,这里,,b m x R ∈,若不等式()10g x b ++≤(x R ∈)恒成立,()4h x +为奇函数,且函数()()()()()g x x t f x h x x t ≤⎧=⎨>⎩ 恰有两个零点,则实数t 的取值范围是34.已知函数()()(2)f x m x m x m =-+-和()33x g x =-同时满足以下两个条件: ①对任意实数x 都有()0f x <或()0g x <;②总存在0(,2)x ∈-∞-,使00()()0f x g x <成立.则m 的取值范围是35.已知函数()y f x =与()y g x =的图像关于y 轴对称,当函数()y f x =与()y g x =在区间 [,]a b 上同时递增或同时递减时,把区间[,]a b 叫做函数()y f x =的“不动区间”,若区间[1,2]为函数2x y t =-的“不动区间”,则实数t 的取值范围是36.双曲线2213x y -=绕坐标原点O 旋转适当角度可以成为函数()f x 的图像,关于此函数()f x 有如下四个命题:①()f x 是奇函数;②()f x 的图像过点3)2或3)2-; ③()f x 的值域是33(,][,)22-∞-+∞;④函数()y f x x =-有两个零点.则其中所有真命题的序号是二、选择题:1.若非空集合A 、B 、C 满足A B C =,且B 不是A 的子集,则( )(A )“x C ∈”是“x A ∈”的充分条件但不是必要条件(B )“x C ∈”是“x A ∈”的必要条件但不是充分条件(C )“x C ∈”是“x A ∈”的充要条件(D )“x C ∈”既不是“x A ∈”的充分条件,也不是“x A ∈”必要条件2.“1x >”是“21x >”的( )条件(A )充分不必要 (B )必要不充分 (C )充分必要 (D )既不充分也不必要3.命题:“若21x =,则1x =”的逆否命题为( )(A )若1x ≠,则1x ≠或1x ≠- (B )若1x =,则1x ≠或1x ≠-(C )若1x ≠,则1x ≠且1x ≠- (D )若1x =,则1x =且1x =-4.“a b >”是“2()2a b ab +>”成立的( )条件 (A )充分不必要 (B )必要不充分 (C )充分必要 (D )既不充分也不必要5.已知()f x 是R 上的偶函数,则“120x x +=”是“12()()0f x f x -=”的( )条件(A )充分不必要 (B )必要不充分 (C )充分必要 (D )既不充分也不必要6.若实数x 、y R ∈,则命题甲:“44x y xy +>⎧⎨>⎩”是命题乙“22x y >⎧⎨>⎩”的( ) 条件 (A )充分不必要 (B )必要不充分 (C )充分必要 (D )既不充分也不必要7.若存在[0,)x ∈+∞使221x xm x <成立,则实数m 的取值范围是( )(A )(,1)-∞ (B )(1,)-+∞ (C )(,1]-∞- (D )[1,)+∞8.给出下列函数:①2log y x =;②2y x =;③2xy =;④arcsin y x =.其中图像关于y 轴对称的函数的序号是( )(A ) ①② (B ) ②③ (C )①③ (D )②④9.“0t ≥”是“函数2()f x x tx t =+-在(,-∞+∞)内存在零点”的( )条件 (A )充分不必要 (B )必要不充分 (C )充分必要 (D )既不充分也不必要10.设,a b R ∈,若a b >,则( )(A )11a b< (B )lg lg a b > (C )sin sin a b > (D )22a b >11.若函数(2)y f x =-的图像与函数3log 2y =的图像关于直线y x =对称,则()f x =( )(A )223x - (B ) 213x - (C ) 23x (D ) 213x +12.“0m >”是“函数()(2)f x x mx =+在区间(0,)+∞上为增函数”的( )条件(A )充分不必要 (B )必要不充分 (C )充分必要 (D )既不充分也不必要13.设()f x 定义在R 上的奇函数,当0x >时,()x f x a b =+(0a >且1a ≠),若()f x 在 R 上存在反函数,则下列结论正确的是( )(A )11a b >⎧⎨<-⎩或0110a b <<⎧⎨-<<⎩ (B )11a b >⎧⎨≥-⎩或0110a b b <<⎧⎨≤-≥⎩或 (C )121a b >⎧⎨-<<-⎩或0110.5a b <<⎧⎨-<<-⎩ (D )12a b >⎧⎨≤-⎩或010.50a b <<⎧⎨-<<⎩ 14.已知函数2(0)()(2)(0)x x f x f x x ⎧≤=⎨->⎩,则(1)(2)(2017)f f f +++=( ) (A )2017 (B )1513 (C )20172 (D )3025215.定义在R 上的函数()f x 满足22,01()42,10x x x f x x -⎧+≤<⎪=⎨--≤<⎪⎩,且(1)(1)f x f x -=+,则 函数35()()2x g x f x x -=--在区间[1,5]-上所有零点之和为( ) (A ) 4 (B ) 5 (C ) 7 (D ) 8 16.已知函数12,02()122,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩,且1()()f x f x =,1()(())n n f x f f x -=,*n N ∈,则满足方程()n f x x =的根的个数是( )(A ) 2n 个 (B ) 22n 个 (C ) 2n 个 (D )2(21)n -个17.关于x 的方程2arcsin(cos )0x x a ++=恰有3个实数根1x 、2x 、3x ,则222123x x x ++= ( ) (A ) 1 (B ) 2 (C ) 22π (D ) 22π三、解答题:1.已知函数22()log (3)log (3)f x x x =+--(1)判断函数的奇偶性;(2)(sin )1f α=,求α的值.2.已知函数()3m f x x x=+-(,0m R x ∈≠) (1)判断函数()y f x =的奇偶性,并说明理由;(2)讨论函数()y f x =的零点个数.3.已知函数()1a f x x=-,0x ≠,常数a R ∈ (1)讨论函数()f x 的奇偶性,并说明理由;(2)当0a >时,研究函数()f x 在(0,)x ∈+∞内的单调性.4.已知函数1()ln 1x f x x+=-的定义域为集合A ,集合(,1)B a a =+,且B A ⊆, (1)求实数a 的取值范围;(2)求证:函数()f x 是奇函数但不是偶函数.5.设(,)P x y 为函数()f x =(x D ∈,D 为定义域)图像上的一个动点,O 为坐标原点,OP 为点O 与点P 两点间的距离.(1)若3a =,[3,4]D =,求OP 的最大值域最小值;(2)若[1,2]D =,是否存在实数a ,使得OP 的最小值不小于2?若存在,请求出 a 的取值范围;若不存在,则说明理由.6.如图所示,用总长为定值l 的篱笆围成长方形的场地,以墙为一边,并用平行于一边的 篱笆隔开.(1)设场地面积为y ,垂直于墙的边长为x ,试用解析式将y 表示成x 的函数,并确定 这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?7.如图,阴影部分为古建筑所在地,其形状是一个长为2km ,宽为1km 的矩形,矩形两 边AB 、AD 紧靠两条互相垂直的路上. 现要过点C 修一条直线的路l ,这条路不能穿过 古建筑群,且与另两条路交于点P 和Q .(1)设AQ x =(km ),将APQ ∆的面积S 表示为x 的函数;(2)求APQ ∆的面积S (2km )的最小值.8.松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足220t ≤≤. 经市场调研测算,电车载客量与发车时间间隔t 相关,当1020t ≤≤时电车为满载状态,载客量为400人,当210t ≤<时, 载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时的载客量为 272人,记电车载客量为()p t .(1)求()p t 的表达式,并求当发车时间间隔为6分钟时,电车的载客量;(2)若该线路每分钟的净收益为6()150060p t Q t-=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?9.某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本. 已知购买x 台机器人的总成本21()150600p x x x =++万元, (1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m 人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣. 经实验知,每台机器人的日平均分拣量为8(60)(130)()15480(30)m m m q m m ⎧-≤≤⎪=⎨⎪>⎩(单位:件). 已知传统的人工分拣每人每日的平均 分拣量为1200件,问引进机器人后,日平均分拣量达最大时,用人数量比引进机器人前的用人数量最多可减少百分之几?10.已知函数()22x x f x -=+(1)求证:函数()f x 是偶函数;(2)设a R ∈,求关于x 的函数22222()x x y af x -=+-在[0,)x ∈+∞时的值域()g a 的 表达式;(3)若关于x 的不等式()21x mf x m -≤+-在(0,)x ∈+∞时恒成立,求实数m 的取值范围.11.若存在常数k (0k >),使得对定义域D 内的任意12,x x (12x x ≠),都有1212()()f x f x k x x -≤-成立,则称函数()f x 在其定义域D 是“k -利普希兹条件函数”.(1)若函数()f x =14x ≤≤)的“k -利普希兹条件函数”,求常数k 的取值范围; (2)判断函数2()log f x x =是否是“k -利普希兹条件函数”,若是,请证明;若不是, 请说明理由;(3)若()y f x =(x R ∈)是周期为2的“k -利普希兹条件函数”,证明:对任意的实数12,x x ,都有12()()1f x f x -≤.12.对于定义在[0,)+∞上的函数()f x ,若函数()()y f x ax b =-+满足:①在区间[0,)+∞上单调递减;②存在常数p ,使其值域为(0,]p ,则称函数()g x ax b =+是函数()f x 的“逼进函数”.(1)判断函数()25g x x =+是不是函数22911()2x x f x x ++=+,[0,)x ∈+∞的“逼进函数”;(2)求证:函数1()2g x x =不是函数1()()2x f x =,[0,)x ∈+∞的“逼进函数”;(3)若()g x ax =是函数()f x x =[0,)x ∈+∞的“逼进函数”,求a 的值.13.已知函数()f x 的定义域为D ,值域为()f D ,即{}()(),f D y y f x x D ==∈,若()f D D ⊆,则称()f x 在D 上封闭. (1)试分别判断函数2017()2017log xf x x =+、2()1x g x x =+在(0,1)上是否封闭,并说明理由.(2)函数()f x k =的定义域为[,]D a b =,且存在反函数1()y f x -=,若函数 ()f x 在D 上封闭,且函数1()f x -在()f D 上也封闭,求实数k 的取值范围.(3)已知函数()f x 的定义域是D ,对任意x 、y D ∈,若x y ≠,有()()f x f y ≠恒成立,则称()f x 在D 上是单射. 已知函数()f x 在D 上封闭且单射,并且满足()n f D D Ü, 其中1()(())n n f x f f x +=,1()()f x f x =. 证明:存在D 的真子集,1321n n D D D D D D -苘苘苘,使得()f x 在所有i D (1,2,3,,i n =)上封闭.。
上海市金山区达标名校2018年高考一月大联考数学试卷含解析
上海市金山区达标名校2018年高考一月大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{2,0,1,3}A =-,{53}B x x =-<<,则集合A B 子集的个数为( )A .4B .8C .16D .322.设,a b 为非零向量,则“a b a b +=+”是“a 与b 共线”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件3.中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以A 、B 、C 、D 、E 为顶点的多边形为正五边形,且512PT AP -=,则512AT ES --=( )A .51QR + B .51RQ + C .51RD - D .51RC - 4.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件.A .必要而不充分B .充要C .充分而不必要D .即不充分也不必要5.设,,a b c ∈R 且a b >,则下列不等式成立的是( ) A .c a c b -<-B .22ac bc >C .11a b< D .1b a< 6.设()f x 是定义在实数集R 上的函数,满足条件()1y f x =+是偶函数,且当1x ≥时,()112xf x ⎛⎫=- ⎪⎝⎭,则()3log 2a f =,3log2b f ⎛=- ⎪⎝⎭,()3c f =的大小关系是( ) A .a b c >>B .b c a >>C .b a c >>D .c b a >>7.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .8.关于函数()sin 6f x x π⎛⎫=-- ⎪⎝⎭在区间,2ππ⎛⎫⎪⎝⎭的单调性,下列叙述正确的是( ) A .单调递增 B .单调递减 C .先递减后递增D .先递增后递减9.设数列{}()*n a n N ∈的各项均为正数,前n 项和为nS ,212log 1log n n a a +=+,且34a =,则6S =( )A .128B .65C .64D .6310.若集合{}2|0,|121x A x B x x x +⎧⎫=≤=-<<⎨⎬-⎩⎭,则A B =( ) A .[2,2)-B .(]1,1-C .()11-,D .()12-, 11.抛物线()220y px p =>的准线与x 轴的交点为点C ,过点C 作直线l 与抛物线交于A 、B 两点,使得A 是BC 的中点,则直线l 的斜率为( ) A .13±B .22C .±1D . 3±12.已知向量(3sin ,2)a x =-,(1,cos )b x =,当a b ⊥时,cos 22x π⎛⎫+= ⎪⎝⎭( ) A .1213-B .1213C .613-D .613二、填空题:本题共4小题,每小题5分,共20分。
上海市金山区达标名校2018年高考一月质量检测数学试题含解析
上海市金山区达标名校2018年高考一月质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则2n x ⎛ ⎝的展开式中2x 项的系数为( ) A .60B .80C .90D .1202.设i 为虚数单位,若复数(1)22z i i -=+,则复数z 等于( ) A .2i -B .2iC .1i -+D .03.已知函数()ln f x x =,()()23g x m x n =++,若()0,x ∀∈+∞总有()()f x g x ≤恒成立.记()23m n +的最小值为(),F m n ,则(),F m n 的最大值为( )A .1B .1eC .21e D .31e 4.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数()0,1k k k >≠的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B 的距离,当P ,A ,B 不共线时,PAB ∆的面积的最大值是( ) A.BC.3D.35.已知复数552iz i i=+-,则||z =( ) AB.C.D.6.已知函数()e ln mx f x m x =-,当0x >时,()0f x >恒成立,则m 的取值范围为( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,e e ⎛⎫ ⎪⎝⎭C .[1,)+∞D .(,e)-∞7.定义在R 上的偶函数()f x 满足()()11f x f x +=-()()0≠f x ,且在区间()20172018,上单调递减,已知,αβ是锐角三角形的两个内角,则()()sin cos f f βα,的大小关系是( ) A .()()sin cos βα<f f B .()()sin cos βα>f f C .()()sin =cos βαf fD .以上情况均有可能8.已知将函数()sin()f x x ωϕ=+(06ω<<,22ππϕ-<<)的图象向右平移3π个单位长度后得到函数()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则下述四个结论:①3ω=②4πϕ=③262f π⎛⎫=⎪⎝⎭④点,012π⎛⎫ ⎪⎝⎭为函数()f x 的一个对称中心 其中所有正确结论的编号是( ) A .①②③B .①③④C .①②④D .②③④9.设n S 是等差数列{}n a 的前n 项和,且443S a =+,则2a =( ) A .2-B .1-C .1D .210.已知向量()3,2AB =,()5,1AC =-,则向量AB 与BC 的夹角为( ) A .45︒ B .60︒C .90︒D .120︒11.设函数'()f x 是奇函数()()f x x R ∈的导函数,当0x >时,1'()ln ()<-f x x f x x,则使得2(1)()0x f x ->成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-12.已知33a b ==,且(2)(4)a b a b -⊥+,则2a b -在a 方向上的投影为( ) A .73B .14C .203D .7二、填空题:本题共4小题,每小题5分,共20分。
最新上海市2018届高三一模数学试卷(含答案)
高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 方程lg(34)1x +=的解x =2. 若关于x 的不等式0x a x b->-(,a b R ∈)的解集为(,1)(4,)-∞+∞,则a b += 3. 已知数列{}n a 的前n 项和为21n n S =-,则此数列的通项公式为4. 函数()1f x x =+的反函数是5. 6(12)x +展开式中3x 项的系数为 (用数字作答)6. 如图,已知正方形1111ABCD A B C D -,12AA =,E 为棱1CC 的中点,则三棱锥1D ADE -的体积为7. 从单词“shadow ”中任意选取4个不同的字母排成一排,则其中含有“a ”的共有 种排法(用数字作答)8. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示)9. 如图,已知半径为1的扇形AOB ,60AOB ∠=︒,P为弧AB 上的一个动点,则OP AB ⋅取值范围是10. 已知x 、y 满足曲线方程2212x y+=,则22x y +的 取值范围是11. 已知两个不相等的非零向量a 和b ,向量组1234(,,,)x x x x 和1234(,,,)y y y y 均由2个a 和2个b 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅,那么S 的所有可能取值中的最 小值是 (用向量a 、b 表示)12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足1n n n b b a +-=(*n N ∈),若数列2{}n nb a 中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为二. 选择题(本大题共4题,每题5分,共20分)13. 若a 、b 为实数,则“1a <”是“11a>”的( )条件 A. 充要 B. 充分不必要 C. 必要不充分 D. 既不充分也不必要14. 若a 为实数,(2)(2)4ai a i i +-=-(i 是虚数单位),则a =( )A. 1-B. 0C. 1D. 215. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,那么实数a 的取值范围是( ) A. [0,)+∞ B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞ 16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( ) A. 恒为偶数 B. 恒为奇数 C. 不超过2017 D. 可超过2017三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 中点,现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上一点,且90BOC ∠=︒,(1)求圆锥的侧面积;(2)求直线CD 与平面BOC 所成的角的大小;(用反三角函数表示)18. 已知(23,1)m =,2(cos ,sin )2A n A =,A 、B 、C 是ABC ∆的内角; (1)当2A π=时,求||n 的值;(2)若23C π=,||3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长;19. 如图所示,沿河有A 、B 两城镇,它们相距20千米,以前,两城镇的污水直接排入河 里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污 水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送), 依据经验公式,建厂的费用为0.7()25f m m =⋅(万元),m 表示污水流量,铺设管道的费 用(包括管道费)() 3.2g x x =(万元),x 表示输送污水管道的长度(千米);已知城镇A 和城镇B 的污水流量分别为13m =、25m =,A 、B 两城镇连接污水处理 厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排 入河中;请解答下列问题(结果精确到0.1)(1)若在城镇A 和城镇B 单独建厂,共需多少总费用?(2)考虑联合建厂可能节约总投资,设城镇A 到拟建厂的距离为x 千米,求联合建厂的总费用y 与x 的函数关系式,并求y 的取值范围;20. 如图,椭圆2214yx+=的左、右顶点分别为A、B,双曲线Γ以A、B为顶点,焦距为25,点P是Γ上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为k,O为坐标原点;(1)求双曲线Γ的方程;(2)求点M的纵坐标M y的取值范围;(3)是否存在定直线l,使得直线BP与直线OM关于直线l对称?若存在,求直线l方程,若不存在,请说明理由;21. 在平面直角坐标系上,有一点列01231,,,,,,n n P P P P P P -⋅⋅⋅,设点k P 的坐标(,)k k x y (k N ∈,k n ≤),其中k x 、k y Z ∈,记1k k k x x x -∆=-,1k k k y y y -∆=-,且满足 ||||2k k x y ∆⋅∆=(*k N ∈,k n ≤);(1)已知点0(0,1)P ,点1P 满足110y x ∆>∆>,求1P 的坐标;(2)已知点0(0,1)P ,1k x ∆=(*k N ∈,k n ≤),且{}k y (k N ∈,k n ≤)是递增数列,点n P 在直线:38l y x =-上,求n ;(3)若点0P 的坐标为(0,0),2016100y =,求0122016x x x x +++⋅⋅⋅+的最大值;。
2018年上海市高考数学一模试卷(解析卷)
2018年上海市高考数学试卷一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.(4分)设全集U=Z,集合M={1,2},P={﹣2,﹣1,0,1,2},则P∩C U M {﹣2,﹣1,0} .【解答】解:C U M={﹣2,﹣1,0},故P∩C U M={﹣2,﹣1,0}故答案为:{﹣2,﹣1,0}2.(4分)已知复数(i为虚数单位),则=.【解答】解:复数==,∴=,∴=•==,故答案为.3.(4分)不等式2>()3(x﹣1)的解集为(﹣∞,﹣2)∪(3,+∞).【解答】解:不等式2>()3(x﹣1)化为2>23﹣3x,即x2﹣4x﹣3>3﹣3x,∴x2﹣x﹣6>0,解得x<﹣2或x>3,∴原不等式的解集为(﹣∞,﹣2)∪(3,+∞).故答案为:(﹣∞,﹣2)∪(3,+∞).4.(4分)函数f(x)=sinxcosx+cos2x的最大值为.【解答】解:函数f(x)=sinxcosx+cos2x=sin2x+cos2x+=sin(2x+)+,当2x+=2kπ+,k∈Z,即x=kπ+,k∈Z,函数取得最大值1+=,故答案为:.5.(4分)在平面直角坐标系xOy中,以直线y=±2x为渐近线,且经过椭圆x2+=1右顶点的双曲线的方程是x2﹣=1.【解答】解:设以直线y=±2x为渐近线的双曲线的方程为x2﹣=λ(λ≠0),∵双曲线椭圆x2+=1右顶点(1,0),∴1=λ,∴双曲线方程为:x2﹣=1.故答案为:x2﹣=1.6.(4分)将圆锥的侧面展开后得到一个半径为2的半圆,则此圆锥的体积为.【解答】解:设圆锥的底面半径为r,则2πr=2π,∴r=1.∴圆锥的高h=.∴圆锥的体积V==.故答案为:.7.(5分)设等差数列{a n}的公差d不为0,a1=9d.若a k是a1与a2k的等比中项,则k=4.【解答】解:因为a k是a1与a2k的等比中项,则a k2=a1a2k,[9d+(k﹣1)d]2=9d•[9d+(2k﹣1)d],又d≠0,则k2﹣2k﹣8=0,k=4或k=﹣2(舍去).故答案为:4.8.(5分)已知(1+2x)6展开式的二项式系数的最大值为a,系数的最大值为b,则=12.【解答】解:由题意可得a==20,再根据,解得,即≤r≤,∴r=4,此时b=×24=240;∴==12.故答案为:12.9.(5分)同时掷两枚质地均匀的骰子,则两个点数之积不小于4的概率为.【解答】解:同时掷两枚质地均匀的骰子,基本事件总数n=6×6=36,两个点数之积小于4包含的基本事件(a,b)有:(1,1),(1,2),(2,1),(1,3),(3,1),共5个,∴两个点数之积不小于4的概率为p=1﹣=.故答案为:.10.(5分)已知函数f(x)=有三个不同的零点,则实数a的取值范围是[1,+∞).【解答】解:由题意可知:函数图象的左半部分为单调递增对数函数的部分,函数图象的右半部分为开口向上的抛物线,对称轴为x=,最多两个零点,如上图,要满足题意,必须指数函数的部分向下平移到与x轴相交,由对数函数过点(1,0),故需左移至少1个单位,故a≥1,还需保证抛物线与x轴由两个交点,故最低点<0,解得a<0或a>,综合可得:a≥1,故答案为:[1,+∞).11.(5分)已知S n为数列{a n}的前n项和,a1=a2=1,平面内三个不共线的向量,,,满足=(a n﹣1+a n+1)+(1﹣a n),n≥2,n∈N*,若A,B,C在同一直线上,则S2018=2.【解答】解:若A,B,C三点共线,则=x+(1﹣x),∴根据条件“平面内三个不共线的向量,,,满足=(a n﹣1+a n+1)+(1﹣a n),n≥2,n∈N*,A,B,C在同一直线上,”得出a n﹣1+a n+1+1﹣a n=1,∴a n﹣1+a n+1=a n,∵S n为数列{a n}的前n项和,a1=a2=1,∴数列{a n}为:1,1,0,﹣1,﹣1,0,1,1,0,﹣1,﹣1,0,…即数列{a n}是以6为周期的周期数列,前6项为1,1,0,﹣1,﹣1,0,∵2018=6×336+2,∴S2018=336×(1+1+0﹣1﹣1+0)+1+1=2.故答案为:2.12.(5分)已知函数f(x)=m(x﹣m)(x+m+2)和g(x)=3x﹣3同时满足以下两个条件:①对任意实数x都有f(x)<0或g(x)<0;②总存在x0∈(﹣∞,﹣2),使f(x0)g(x0)<0成立.则m的取值范围是(﹣3,﹣2).【解答】解:对于①∵g(x)=3x﹣3,当x<1时,g(x)<0,又∵①∀x∈R,f(x)<0或g(x)<0∴f(x)=m(x﹣m)(x+m+2)<0在x≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面,即,可得﹣3<m<0又∵②x∈(﹣∞,﹣2),f(x)g(x)<0∴此时g(x)=3x﹣3<0恒成立∴f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣2)有成立的可能,则只要﹣2比x1,x2中的较小的根大即可,(i)当﹣1<m<0时,较小的根为﹣m﹣2,﹣m﹣2>﹣2不成立,(ii)当m=﹣1时,两个根同为﹣1>﹣3,不成立,(iii)当﹣3<m<﹣1时,较小的根为m,即m<﹣2成立.综上可得①②成立时﹣3<m<﹣2.故答案为:(﹣3,﹣2).二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)“a>b”是“()2>ab”成立的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【解答】解:由()2>ab得>ab,即a2+2ab+b2>4ab,则a2﹣2ab+b2>0,即(a﹣b)2>0,则a≠b,则“a>b”是“()2>ab”成立的充分不必要条件,故选:A.14.(5分)已知函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f (x)≤f(x2),则|x2﹣x1|的最小值是()A.πB.2πC.2 D.4【解答】解:对于函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x2﹣x1|的最小值为函数f(x)的半个周期,即===2,故选:C.15.(5分)已知和是互相垂直的单位向量,向量满足:,,n∈N*,设θn为和的夹角,则()A.θn随着n的增大而增大B.θn随着n的增大而减小C.随着n的增大,θn先增大后减小D.随着n的增大,θn先减小后增大【解答】解:分别以和所在的直线为x轴,y轴建立坐标系,则=(1,0),=(0,1),设=(x n,y n),∵,,n∈N*,∴x n=n,y n=2n+1,n∈N*,∴=(n,2n+1),n∈N*,∵θn为和的夹角,∴tanθn===2+∴y=tanθn为减函数,∴θn随着n的增大而减小.故选:B.16.(5分)在平面直角坐标系xOy中,已知两圆C1:x2+y2=12和C2:x2+y2=14,又点A坐标为(3,﹣1),M、N是C1上的动点,Q为C2上的动点,则四边形AMQN能构成矩形的个数为()A.0个 B.2个 C.4个 D.无数个【解答】解:如图所示,任取圆C2上一点Q,以AQ为直径画圆,交圆C1与M、N两点,则四边形AMQN能构成矩形,由作图知,四边形AMQN能构成矩形的个数为无数个.故选:D.三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2AB=2,E是PB的中点.(1)求三棱锥P﹣ABC的体积;(2)求异面直线EC和AD所成的角(结果用反三角函数值表示).【解答】解:(1)∵PA⊥平面ABCD,底面ABCD是矩形,高PA=2,BC=AD=2,AB=1,==1.∴S△ABC故V P==.﹣ABC(2)∵BC∥AD,∴∠ECB或其补角为异面直线EC和AD所成的角θ,又∵PA⊥平面ABCD,∴PA⊥BC,又BC⊥AB,∴BC⊥平面PAB,∴BC⊥PB,于是在Rt△CEB中,BC=2,BE=PB=,tanθ==,∴异面直线EC和AD所成的角是arctan.18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.【解答】解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p=,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)证明:设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),∴直线OP为y=x,直线ON为:y=x,由题意知A(x1,x1),B(x1,),由,可得k2x2+(k﹣1)x+=0,∴x1+x2=,x1x2=∴y1+=kx1++=2kx1+=2kx1+=2kx1+(1﹣k)•2x1=2x1,∴A为线段BM的中点.19.(14分)如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向2千米处,值班室C在值班室B的正东方向2千米处.(1)保安甲沿CA从值班室出发行至点P处,此时PC=1,求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?【解答】解:(1)在Rt△ABC中,AB=2,BC=2,所以∠C=30°,在△PBC中PC=1,BC=2,由余弦定理可得BP2=BC2+PC2﹣2BC•PCcos30°=(2)2+1﹣2×2×1×=7,即BP=;(2)在Rt△ABC中,BA=2,BC=2,AC==4,设甲出发后的时间为t小时,则由题意可知0≤t≤4,设甲在线段CA上的位置为点M,则AM=4﹣t,①当0≤t≤1时,设乙在线段AB上的位置为点Q,则AQ=2t,如图所示,在△AMQ中,由余弦定理得MQ2=(4﹣t)2+(2t)2﹣2•2t•(4﹣t)cos60°=7t2﹣16t+7>9,解得t<或t>,所以0≤t≤;②当1≤t≤4时,乙在值班室B处,在△ABM中,由余弦定理得MB2=(4﹣t)2+4﹣2•2t•(4﹣t)cos60°=t2﹣6t+12>9,解得t<3﹣或t>3+,又1≤t≤4,不合题意舍去.综上所述0≤t≤时,甲乙间的距离大于3千米,所以两人不能通话的时间为小时.20.(16分)设集合A,B均为实数集R的子集,记A+B={a+b|a∈A,b∈B}.(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*且n≥2时,曲线+=的焦距为a n,如果A={a1,a2,…,a n},B={﹣,﹣,﹣},设A+B中的所有元素之和为S n,求S n的值;(3)在(2)的条件下,对于满足m+n=3k,且m≠n的任意正整数m,n,k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值.【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线+=,即﹣=,在n≥2时表示双曲线,故a n=2=n,∴a1+a2+a3+…+a n=∵B={﹣,﹣,﹣},∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n(﹣﹣﹣)=3•+n (﹣﹣﹣)=n2,(3)∵∴S m+S n﹣λS k>0恒成立⇔λ<=恒成立,∵m+n=3k,且m≠n,∴==>,∴λ≤,故实数λ的最大值为21.(18分)对于定义在[0,+∞)上的函数f(x),若函数y=f(x)﹣(ax+b)满足:①在区间[0,+∞)上单调递减,②存在常数p,使其值域为(0,p],则称函数g(x)=ax+b是函数f(x)的“逼进函数”.(1)判断函数g(x)=2x+5是不是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)求证:函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”(3)若g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,求a 的值.【解答】解:(1)f(x)﹣g(x)=﹣(2x+5)=,可得y=f(x)﹣g(x)在[0,+∞)递减,且x+2≥2,0<≤,可得存在p=,函数y的值域为(0,],则函数g(x)=2x+5是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)证明:f(x)﹣g(x)=()x﹣x,由y=()x,y=﹣x在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)的最大值为1;由x=1时,y=﹣=0,x=2时,y=﹣1=﹣<0,则函数y=f(x)﹣g(x)在[0,+∞)的值域为(﹣∞,1],即有函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”;(3)g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,可得y=x+﹣ax为[0,+∞)的减函数,可得导数y′=1﹣a+≤0在[0,+∞)恒成立,可得a﹣1≥,由x>0时,=≤1,则a﹣1≥1,即a≥2;又y=x+﹣ax在[0,+∞)的值域为(0,1],则>(a﹣1)x,x=0时,显然成立;x>0时,a﹣1<,可得a﹣1≤1,即a≤2.则a=2.。
2018届上海市金山区高三第一学期(一模)期末质量监控数学试题(解析版)
2018届上海市金山区高三第一学期(一模)期末质量监控数学试题一、单选题1.已知方程表示焦点在轴上的椭圆,则的取值范围是()A.或B.C.D.或【答案】D【解析】椭圆的焦点在x轴上∴m2>2+m,即m2﹣2﹣m>0解得m>2或m<﹣1又∵2+m>0∴m>﹣2∴m的取值范围:m>2或﹣2<m<﹣1故答案为:D。
2.给定空间中的直线l及平面 ,条件“直线l与平面α内的无数条直线都垂直”是“直线l与平面α垂直的().A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【答案】B【解析】试题分析:直线与平面α内的无数条平行直线垂直,但该直线未必与平面α垂直;即“直线l与平面α内无数条直线都垂直”⇒“直线l与平面α垂直”为假命题;但直线l与平面α垂直时,l与平面α内的每一条直线都垂直,即“直线l与平面α垂直”⇒“直线l与平面α内无数条直线都垂直”为真命题;故“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的必要非充分条件;故选B【考点】空间中直线与平面之间的位置关系.3.欧拉公式(为虚数单位,,为自然底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】利用欧拉公式和诱导公式进行计算即可得出答案.【详解】e2018i=cos2018+i sin2018,∵2018=642π+(2018﹣642π),2018﹣642π∈,∴cos2018=cos(2018﹣642π)<0.sin2018=sin(2018﹣642π)>0,∴e2018i表示的复数在复平面中位于第二象限.故选:B.【点睛】本题考查了欧拉公式、诱导公式以及复数的有关概念,考查推理能力与计算能力,属于基础题.4.已知函数,则方程()的实数根个数不可能为()A.5个B.6个C.7个D.8个【答案】A【解析】以f(x)=1的特殊情形为突破口,解出x=1或3或或﹣4,将x+﹣2看作整体,利用换元的思想方法进一步讨论.【详解】∵函数,即f(x)=,因为当f(x)=1时,x=1或3或或﹣4,则当a=1时,x+﹣2=1或3或或﹣4,又因为x+﹣2≥0或x+﹣2≤﹣4,所以,当x+﹣2=﹣4时只有一个x=﹣2与之对应.其它情况都有2个x值与之对应,故此时所求的方程有7个根,当1<a<2时,y=f(x)与y=a有4个交点,故有8个根;当a=2时,y=f(x)与y=a有3个交点,故有6个根;综上:不可能有5个根,故选:A.【点睛】本题考查分段函数、函数的零点等知识,属于中档题.二、填空题5.已知集合,,则___【答案】【解析】对集合A和集合B取交集即可得到答案.【详解】,,则,故答案为:.【点睛】本题考查集合的交集运算.6.抛物线的准线方程是______【答案】【解析】试题分析:开口向右,所以它的准线方程为x=-1【考点】本题考查抛物线的标准方程点评:开口向右的抛物线方程为,准线方程为7.计算:______【答案】【解析】分子分母同时除以n,计算可得极限.【详解】==故答案为:.【点睛】本题考查型极限问题,解题的关键是合理地选取公式.8.不等式的解集为________【答案】【解析】根据绝对值的定义去绝对值符号,直接求出不等式的解集即可.【详解】由,得,解得故答案为.【点睛】本题考查绝对值不等式的解法,考查等价转化的数学思想和计算能力.9.若复数(为虚数单位),________【答案】【解析】利用复数的乘法运算将复数化简为a+bi的形式,然后利用复数模的公式计算即可得到答案.【详解】=7+i,则,故答案为:.【点睛】本题考查复数的模的概念和复数的四则运算,属于基础题.10.已知函数,则_______【答案】【解析】由反函数定义令f(x)=5,求出x的值即可.【详解】由反函数定义,令,得=4,则x=24=16,∴f﹣1(5)=16.故答案为:16.【点睛】本题考查反函数的性质与应用问题,是基础题.11.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______【答案】【解析】答案:解析:简单考察古典概型的概率计算,容易题。
2018年上海市15区高考高三一模数学试卷合集 带答案
8
第 2 卷 2018 年崇明区一模
一、填空题(本大题共有 12 题,满分 54 分,其中 1-6 题每题 4 分,7-12 题每题 5 分)
1、已知集合 A {1, 2, 5}, B {2, a} ,若 A B {1, 2, 3, 5} ,则 a
;
2、抛物线 y2 4x 的焦点坐标是
Sn ,首项 a1
1,公比为
a
3 2
,且
lim
n
S
n
a
,则
a ________.
11.从 5 男 3 女共 8 名学生中选出队长 1 人,副队长 1 人,普通队员 2 人组成 4 人志愿者服
务,要求服务队中至少有 1 名女生,共有
种不同的选法.(用数字作答)
12.在 ABC 中, BC 边上的中垂线分别交 BC, AC 于点 D, E .若 AE BC 6 , AB 2 ,
f (C) 1 ,求 ABC 面积的最大值,并指出此时 ABC 为何种类型的三角形. 2
19. 设数列{an} ,{bn} 及函数 f (x) ( x R ), bn f (an ) ( n N * ). (1)若等比数列{an} 满足 a1 1, a2 3 , f (x) 2x ,求数列{bnbn1} 的前 n ( n N * ) 项和; (2)已知等差数列{an} 满足 a1 2 , a2 4 , f (x) (q x 1) ( 、 q 均为常数, q 0 且 q 1), cn 3 n (b1 b2 bn ) ( n N * ),试求实数对 (, q) ,使得{cn} 成等比 数列.
x 1 5. 若 z 2 3i (其中 i 为虚数单位),则 Im z
i 6. 若从五个数 1 ,0,1,2,3 中任选一个数 m ,则使得函数 f (x) (m2 1)x 1 在 R 上
上海市金山区2017-2018学年高考数学一模试卷 Word版含解析
上海市金山区2017-2018学年高考数学一模试卷一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若集合M={y|y=﹣x2+5,x∈R},N={y|y=,x≥﹣2},则M∩N=__________.2.计算:=__________.3.不等式的解集是__________.4.如果复数z=(b∈R)的实部与虚部相等,则z的共轭复数=__________.5.方程:sinx+cosx=1在[0,π]上的解是__________.6.等差数列{a n}中,a2=8,S10=185,则数列{a n}的通项公式a n=__________(n∈N*).7.当a>0,b>0且a+b=2时,行列式的值的最大值是__________.8.若(x+)12的二项展开式中的常数项为m,则m=__________.9.从一堆苹果中任取5只,称得它们的质量为(单位:克):125 124 121 123 127,则该样本标准差s=__________(克)(用数字作答).10.三棱锥O﹣ABC中,OA=OB=OC=2,且∠BOC=45°,则三棱锥O﹣ABC体积的最大值是__________.11.从集合{1,2,3,4,5,6,7,8,9,10}中任取两个数,欲使取到的一个数大于k,另一个数小于k(其中k∈{5,6,7,8,9})的概率是,则k=__________.12.已知点A(﹣3,﹣2)和圆C:(x﹣4)2+(y﹣8)2=9,一束光线从点A发出,射到直线l:y=x﹣1后反射(入射点为B),反射光线经过圆周C上一点P,则折线ABP的最短长度是__________.13.如图所示,在长方体ABCD﹣EFGH中,AD=2,AB=AE=1,M为矩形AEHD内的一点,如果∠MGF=∠MGH,MG和平面EFG所成角的正切值为,那么点M到平面EFGH 的距离是__________.14.已知点P(x0,y0)在椭圆C:(a>b>0)上,如果经过点P的直线与椭圆只有一个公共点时,称直线为椭圆的切线,此时点P称为切点,这条切线方程可以表示为:.根据以上性质,解决以下问题:已知椭圆L:,若Q(u,v)是椭圆L外一点(其中u,v为定值),经过Q点作椭圆L的两条切线,切点分别为A、B,则直线AB的方程是__________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.复数z1=a+bi(a、b∈R,i为虚数单位),z2=﹣b+i,且|z1|<|z2|,则a的取值范围是( ) A.a>1 B.a>0 C.﹣l<a<1 D.a<﹣1或a>116.由数字1,2,3,4,5组成没有重复数字的五位数,其中偶数共有( )A.60个B.48个C.36个D.24个17.设k>1,f(x)=k(x﹣1)(x∈R).在平面直角坐标系xOy中,函数y=f(x)的图象与x轴交于A点,它的反函数y=f﹣1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于( )A.3 B.C.D.18.若集合A1、A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a1,a2,a3}的不同分拆种数是( )A.27 B.26 C.9 D.8三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.a、b、c分别是锐角△ABC的内角A、B、C的对边,向量=(2﹣2sinA,cosA+sinA),=(sinA﹣cosA,1+sinA),且∥.已知a=,△ABC面积为,求b、c的大小.20.如图,在四棱锥P﹣ABCD的底面梯形ABCD中,AD∥BC,AB⊥BC,AB=1,AD=3,∠ADC=45°.又已知PA⊥平面ABCD,PA=1.求:(1)异面直线PD与AC所成角的大小.(结果用反三角函数值表示)(2)四棱锥P﹣ABCD的体积.21.已知a>0且a≠1,数列{a n}是首项与公比均为a的等比数列,数列{b n}满足b n=a n•lga n (n∈N*).(1)若a=3,求数列{b n}的前n项和S n;(2)若对于n∈N*,总有b n<b n+1,求a的取值范围.22.(16分)动点P与点F(0,1)的距离和它到直线l:y=﹣1的距离相等,记点P的轨迹为曲线C.(1)求曲线C的方程;(2)设点A(0,a)(a>2),动点T在曲线C上运动时,|AT|的最短距离为a﹣1,求a的值以及取到最小值时点T的坐标;(3)设P1,P2为曲线C的任意两点,满足OP1⊥OP2(O为原点),试问直线P1P2是否恒过一个定点?如果是,求出定点坐标;如果不是,说明理由.23.(18分)设函数f(x)=2ka x+(k﹣3)a﹣x(a>0且a≠1)是定义域为R的奇函数.(1)求k值;(2)若f(2)<0,试判断函数f(x)的单调性,并求使不等式f(x2﹣x)+f(tx+4)<0恒成立的t的取值范围;(3)若f(2)=3,且g(x)=2x+2﹣x﹣2mf(x)在[2,+∞)上的最小值为﹣2,求m的值.上海市金山区2015届高考数学一模试卷一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若集合M={y|y=﹣x2+5,x∈R},N={y|y=,x≥﹣2},则M∩N=[0,5].考点:交集及其运算.专题:集合.分析:分别求出M与N中y的范围,确定出M与N,找出两集合的交集即可.解答:解:由M中y=﹣x2+5≤5,得到M=(﹣∞,5],由N中y=,x≥﹣2,得到y≥0,即N=[0,+∞),则M∩N=[0,5],故答案为:[0,5]点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.计算:=.考点:数列的极限.专题:点列、递归数列与数学归纳法.分析:直接利用数列极限的运算法则,分子分母同除3n,然后求解极限即可.解答:解:===.故答案为:.点评:本题考查数列极限的运算法则,基本知识的考查.3.不等式的解集是{x|0<x<1}.考点:其他不等式的解法.专题:计算题.分析:将不等式>1移项后通分,即可求得不等式的解集.解答:解:∵>1,∴﹣1=>0,∴>0,∴0<x<1.∴不等式的解集为{x|0<x<1}.故答案为:{x|0<x<1}.点评:本题考查不等式的解法,移项后通分是关键,属于基础题.4.如果复数z=(b∈R)的实部与虚部相等,则z的共轭复数=1﹣i.考点:复数的基本概念.专题:数系的扩充和复数.分析:利用分母实数化化简复数z,由条件求出b的值,代入求出复数z和.解答:解:由题意知,z===,因为复数z=(b∈R)的实部与虚部相等,所以2+b=2﹣b,解得b=0,则z=1+i,所以=1﹣i,故答案为:1﹣i.点评:本题考查复数的基本概念,化简复数的方法:分母实数化,以及共轭复数,属于基础题.5.方程:sinx+cosx=1在[0,π]上的解是或0.考点:三角方程.专题:三角函数的求值.分析:sinx+cosx=1,可得sin2x+cos2x+2sinxcosx=1,sinxcosx=0,可得sinx=0或cosx=0,利用x∈[0,π],即可得出.解答:解:∵sinx+cosx=1,∴sin2x+cos2x+2sinxcosx=1,∴sinxcosx=0,∴sinx=0或cosx=0,∵x∈[0,π],∴或0.故答案为:或0.点评:本题考查了同角三角函数的关系式、正弦函数与余弦函数的单调性,属于基础题.6.等差数列{a n}中,a2=8,S10=185,则数列{a n}的通项公式a n=3n+2(n∈N*).考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:由已知条件,利用等差数列的通项公式和前n项和公式求出首项和公差,由此能求出数列的通项公式.解答:解:∵等差数列{a n}中,a2=8,S10=185,∴,解得a1=5,d=3,∴a n=5+(n﹣1)×3=3n+2.故答案为:3n+2.点评:本题考查等差数列的通项公式的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.7.当a>0,b>0且a+b=2时,行列式的值的最大值是0.考点:二阶行列式的定义;基本不等式.专题:矩阵和变换.分析:利用行列的性质和均值定理求解.解答:解:∵a>0,b>0且a+b=2时,∴行列式=ab﹣1≤﹣1=1﹣1=0.当且仅当a=b=1时,取“=”,∴行列式的值的最大值为0.故答案为:0.点评:本题考查行列式的最大值的求法,是基础题,解题时要认真审题,注意行列式性质和均值定理的合理运用.8.若(x+)12的二项展开式中的常数项为m,则m=7920.考点:二项式定理的应用.专题:二项式定理.分析:根据二项式展开式的通项公式,求出展开式为常数时r的值,再计算常数项m即可.解答:解:(x+)12的展开式的通项公式为T r+1=•x12﹣r•=2r••x12﹣3r,令12﹣3r=0,解得r=4;∴常数项m=24•=16×=7920.故答案为:7920.点评:本题考查了二项式定理的应用问题,也考查了组合公式的应用问题,是基础题目.9.从一堆苹果中任取5只,称得它们的质量为(单位:克):125 124 121 123 127,则该样本标准差s=2(克)(用数字作答).考点:极差、方差与标准差.专题:计算题;压轴题.分析:根据题意,利用平均数、方差、标准差的公式直接计算即可.解答:解:由题意得:样本平均数x=(125+124+121+123+127)=124,样本方差s2=(12+02+32+12+32)=4,∴s=2.故答案为2.点评:本题考查用样本的平均数、方差、标准差来估计总体的平均数、方差、标准差,属基础题,熟记样本的平均数、方差、标准差公式是解答好本题的关键.10.三棱锥O﹣ABC中,OA=OB=OC=2,且∠BOC=45°,则三棱锥O﹣ABC体积的最大值是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:将△BOC作为三棱锥的底面,当OA⊥平面BOC时,该棱锥的高最大,体积就最大,由此能求出三棱锥O﹣ABC体积的最大值.解答:解:将△BOC作为三棱锥的底面,∵OA=OB=OC=2,且∠BOC=45°,∴△BOS的面积为定值S==,∴当OA⊥平面BOC时,该棱锥的高最大,体积就最大,此时三棱锥O﹣ABC体积的最大值V=×S×h==.故答案为:.点评:本题考查三棱锥的体积的最大值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.11.从集合{1,2,3,4,5,6,7,8,9,10}中任取两个数,欲使取到的一个数大于k,另一个数小于k(其中k∈{5,6,7,8,9})的概率是,则k=7.考点:古典概型及其概率计算公式.专题:概率与统计.分析:,先求出所有的基本事件有45种,再求出取到的一个数大于k,另一个数小于k的基本事件有(k﹣1)(10﹣k),根据古典概率公式即可得到关于k的方程解得即可解答:解:从集合{1,2,3,4,5,6,7,8,9,10}中任取两个数的基本事件有=45种,取到的一个数大于k,另一个数小于k,比k的小的数有(k﹣1)个.比k的大的数有(10﹣k)个,故有=(k﹣1)(10﹣k),所以取到的一个数大于k,另一个数小于k(其中k∈{5,6,7,8,9})的概率是P==,解得k=7故答案为:7点评:本题考查了古典概型的概率公式的应用,关键是求出取到的一个数大于k,另一个数小于k的基本事件,属于基础题12.已知点A(﹣3,﹣2)和圆C:(x﹣4)2+(y﹣8)2=9,一束光线从点A发出,射到直线l:y=x﹣1后反射(入射点为B),反射光线经过圆周C上一点P,则折线ABP的最短长度是10.考点:圆的标准方程.专题:直线与圆.分析:求出A点关于直线l:y=x﹣1的对称点D,连接D与圆C的圆心,交圆C于P,则折线ABP的最短长度等于|DC|﹣3.解答:解:如图:设A(﹣3,﹣2)关于直线l:y=x﹣1的对称点为D(x0,y0),由,解得D(﹣1,﹣4),由圆的方程可知圆心为C(4,8),半径为3.连接DC交圆C于P,则|DC|=.∴折线ABP的最短长度是13﹣3=10.故答案为:10.点评:本题考查了圆的标准方程,考查了直线和圆的位置关系,考查了数形结合的解题思想方法与数学转化思想方法,是中档题.13.如图所示,在长方体ABCD﹣EFGH中,AD=2,AB=AE=1,M为矩形AEHD内的一点,如果∠MGF=∠MGH,MG和平面EFG所成角的正切值为,那么点M到平面EFGH的距离是.考点:点、线、面间的距离计算.专题:空间位置关系与距离.分析:以E为原点,EF为x轴,EH为y轴,EA为z轴,建立空间直角坐标系,设M(0,b,c),00≤b≤2,0≤c≤1,利用向量法能求出点M到平面EFGH的距离.解答:解:以E为原点,EF为x轴,EH为y轴,EA为z轴,建立空间直角坐标系,设M(0,b,c),00≤b≤2,0≤c≤1,则G(1,2,0),F(1,0,0),H(0,2,0),=(﹣1,b﹣2,c),=(0,﹣2,0),=(﹣1,0,0),cos<>=,cos<>=,∵∠MGF=∠MGH,∴=,解得b=1.∴=(﹣1,﹣1,c),又平面EFG的法向量=(0,0,1),MG和平面EFG所成角的正切值为,∴|cos<>|==,由0≤c≤1,解得c=,∴=(﹣1,﹣2,),∴点M到平面EFGH的距离d==.故答案为:.点评:本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.14.已知点P(x0,y0)在椭圆C:(a>b>0)上,如果经过点P的直线与椭圆只有一个公共点时,称直线为椭圆的切线,此时点P称为切点,这条切线方程可以表示为:.根据以上性质,解决以下问题:已知椭圆L:,若Q(u,v)是椭圆L外一点(其中u,v为定值),经过Q点作椭圆L的两条切线,切点分别为A、B,则直线AB的方程是.考点:椭圆的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:设切点A(x1,y1),B(x2,y2),由切线的性质分别写出切线方程,再将点Q代入,由两点确定一条直线,即可得到直线AB的方程.解答:解:设切点A(x1,y1),B(x2,y2),则由切线的性质可得,切线方程分别为=1,=1,由于椭圆的两条切线都经过点Q(u,v),则有=1,=1,由于过A,B有且只有一条直线,则直线AB的方程为=1.故答案为:=1.点评:本题考查椭圆的切线的性质,考查切点弦方程的求法,考查运算能力,属于基础题.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.复数z1=a+bi(a、b∈R,i为虚数单位),z2=﹣b+i,且|z1|<|z2|,则a的取值范围是( ) A.a>1 B.a>0 C.﹣l<a<1 D.a<﹣1或a>1考点:复数求模.专题:数系的扩充和复数.分析:利用复数的模的计算公式即可得出.解答:解:∵复数z1=a+bi(a、b∈R,i为虚数单位),z2=﹣b+i,且|z1|<|z2|,∴,化为a2<1,解得a∈(﹣1,1).故选:C.点评:本题考查了复数的模的计算公式,属于基础题.16.由数字1,2,3,4,5组成没有重复数字的五位数,其中偶数共有( )A.60个B.48个C.36个D.24个考点:分步乘法计数原理.分析:偶数即个位数字只能是2或4解答:解:偶数即个位数字只能是2或4,其它位置任意排放共有C21•A44=2×4×3×2×1=48个故选B点评:分步乘法计数原理的理解,偶数怎样选,注意没有0;当然也可以用概率解答.17.设k>1,f(x)=k(x﹣1)(x∈R).在平面直角坐标系xOy中,函数y=f(x)的图象与x轴交于A点,它的反函数y=f﹣1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于( )A.3 B.C.D.考点:反函数.专题:计算题;压轴题.分析:先根据题意画出图形,由于互为反函数的两个函数的图象关于y=x对称,从而两个函数的图象交于P点必在直线y=x上.且A,B两点关于y=x对称,利用四边形OAPB的面积=AB×OP,求得P(3,3)从而求得k值.解答:解:根据题意画出图形,如图.由于互为反函数的两个函数的图象关于y=x对称,所以这两个函数的图象交于P点必在直线y=x上.且A,B两点关于y=x对称,∴AB⊥OP∴四边形OAPB的面积=AB×OP=×OP=3,∴OP=3.∴P(3,3)代入f(x)=k(x﹣1)得:k=故选B.点评:本题主要考查反函数,反函数是函数知识中重要的一部分内容.对函数的反函数的研究,我们应从函数的角度去理解反函数的概念,从中发现反函数的本质,并能顺利地应用函数与其反函数间的关系去解决相关问题.18.若集合A1、A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a1,a2,a3}的不同分拆种数是( )A.27 B.26 C.9 D.8考点:交、并、补集的混合运算.专题:计算题;新定义.分析:根据拆分的定义,对A1分以下几种情况讨论:A1=∅,A1={a1},A1={a1,a2},A1={a1,a2,a3}.解答:解:∵A1∪A2=A,对A1分以下几种情况讨论:①若A1=∅,必有A2={a1,a2,a3},共1种拆分;②若A1={a1},则A2={a2,a3}或{a1,a2,a3},共2种拆分;同理A1={a2},{a3}时,各有2种拆分;③若A1={a1,a2},则A2={a3}、{a1,a3}、{a2,a3}或{a1,a2,a3},共4种拆分;同理A1={a1,a3}、{a2,a3}时,各有4种拆分;④若A1={a1,a2,a3},则A2=∅、{a1}、{a2}、{a3}、{a1,a2}、{a1,a3}、{a2,a3},{a1,a2,a3}.共8种拆分;∴共有1+2×3+4×3+8=27种不同的拆分.故选A点评:本题属于创新型的概念理解题,准确地理解拆分的定义,以及灵活运用集合并集的运算和分类讨论思想是解决本题的关键所在.三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.a、b、c分别是锐角△ABC的内角A、B、C的对边,向量=(2﹣2sinA,cosA+sinA),=(sinA﹣cosA,1+sinA),且∥.已知a=,△ABC面积为,求b、c的大小.考点:平面向量数量积的运算;正弦定理.专题:平面向量及应用.分析:由∥,根据共线向量基本定理即可求得sinA=,所以A=60°,根据△ABC的面积即可求得bc=6①,而由余弦定理便可得到b2+c2=13,联立①式即可求出b,c.解答:解:,,又∥;∴(2﹣2sinA)(1+sinA)﹣(cosA+sinA)(sinA﹣cosA)=0,即:4sin2A﹣3=0;又∠A为锐角,则,所以∠A=60°;因为△ABC面积为,所以bcsinA=,即bc=6 ①;又a=;∴7=b2+c2﹣2bccosA,b2+c2=13 ②;①②联立解得:或.点评:考查共线向量基本定理,三角形的面积公式,以及余弦定理.20.如图,在四棱锥P﹣ABCD的底面梯形ABCD中,AD∥BC,AB⊥BC,AB=1,AD=3,∠ADC=45°.又已知PA⊥平面ABCD,PA=1.求:(1)异面直线PD与AC所成角的大小.(结果用反三角函数值表示)(2)四棱锥P﹣ABCD的体积.考点:用空间向量求直线间的夹角、距离;棱柱、棱锥、棱台的体积.专题:综合题.分析:(1)利用平移法作出异面直线所成的角,进而利用余弦定理可求线线角;(2)四棱锥的体积为×底面积×高,求出底面梯形的面积即可.解答:解:(1)连接AC,过点C作CF∥AB交AD于点F,因为∠ADC=45°,所以FD=1,从而BC=AF=2,……延长BC至E,使得CE=AD=3,则AC∥DE,∴∠PDE(或其补角)是异面直线PD与AC 所成角,且DE=AC=,AE=,PE=3,PD=.在△PDE中,cos∠PDE=﹣.…所以,异面直线PD与AC所成角的大小为arccos.…(2)∵BC=2,AD=3,AB=1,∴底面梯形面积为∵PA⊥平面ABCD,PA=1.∴四棱锥P﹣ABCD的体积为.…点评:本题考查线线角,考查棱锥的体积,解题的关键是正确作出线线角,属于中档题.21.已知a>0且a≠1,数列{a n}是首项与公比均为a的等比数列,数列{b n}满足b n=a n•lga n (n∈N*).(1)若a=3,求数列{b n}的前n项和S n;(2)若对于n∈N*,总有b n<b n+1,求a的取值范围.考点:等比数列的性质;等比数列的前n项和.专题:计算题.分析:(1)由已知有a n=3n,b n=a n•lga n =n•3n•lg3,由此可得S n=[3+2•32+3•3n+…+n•3n]lg3,用错位相减法求出它的值.(2)由条件可得nlga<(n+1)alga,所以,或,而,且,由此解得a的取值范围.解答:解:(1)由已知有a n=3n,b n=a n•lga n =n•3n•lg3.∴S n=[3+2•32+3•3n+…+n•3n]lg3,∴3S n=[32+2•33+…+(n﹣1)3n+n•3n+1]lg3,∴﹣2S n=[3+32+33+…+3n﹣n•3n+1]lg3=[﹣n•3n+1]lg3,∴S n=•[3+(2n﹣1)•3n+1].(2)b n<b n+1 ,即na n lga<(n+1)a n+1lga.由a>0且a≠1,可得nlga<(n+1)alga.所以,或.即或对任意n∈N*成立,而,且,解得或a>1,即a的取值范围为(0,)∪(1,+∞).点评:本题主要考查等比数列的定义和性质,等比数列的通项公式,等比数列的前n项和公式的应用,用错位相减法求数列的前n项和,属于中档题.22.(16分)动点P与点F(0,1)的距离和它到直线l:y=﹣1的距离相等,记点P的轨迹为曲线C.(1)求曲线C的方程;(2)设点A(0,a)(a>2),动点T在曲线C上运动时,|AT|的最短距离为a﹣1,求a的值以及取到最小值时点T的坐标;(3)设P1,P2为曲线C的任意两点,满足OP1⊥OP2(O为原点),试问直线P1P2是否恒过一个定点?如果是,求出定点坐标;如果不是,说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)根据抛物线的定义可知,动点P的轨迹是抛物线,且抛物线的焦点坐标为F(0,1),准线方程为l:y=﹣1,由此能求出曲线C的方程.(2)设点T(x0,y0),x02=4y0(y0≥0),|AT|=,由此能求出a的值以及取到最小值时点T的坐标.(3)由题意得直线OP1、OP2的斜率都必须存在,记为k,,联立,解得P1(,),同理P2(﹣4k,4k2),由此能证明直线P1P2恒过点(0,4).解答:解:(1)∵动点P与点F(0,1)的距离和它到直线l:y=﹣1的距离相等,∴根据抛物线的定义可知,动点P的轨迹是抛物线,且抛物线的焦点坐标为F(0,1),准线方程为l:y=﹣1,所以曲线C的方程为x2=4y.…(2)设点T(x0,y0),x02=4y0(y0≥0),|AT|==,a﹣2>0,则当y 0=a﹣2时,|AT|取得最小值为2,2=a﹣1,a2﹣6a+5=0,a=5或a=1 (舍去),所以y0=a﹣2=3,x0=±2,所以T坐标为(±2,3);…(3)由题意得直线OP1、OP2的斜率都必须存在,记为k,,联立,解得P1(,),同理P2(﹣4k,4k2),直线P1P2的斜率为,直线P1P2方程为:整理得:k(y﹣4)+(k2﹣1)x=0,所以直线P1P2恒过点(0,4)…(16分)点评:本题考查曲线方程的求法,考查满足条件的实数值以及取到最小值时点的坐标的求法,考查直线是否恒过一个定点的判断与求法,解题时要注意函数与方程思想的合理运用.23.(18分)设函数f(x)=2ka x+(k﹣3)a﹣x(a>0且a≠1)是定义域为R的奇函数.(1)求k值;(2)若f(2)<0,试判断函数f(x)的单调性,并求使不等式f(x2﹣x)+f(tx+4)<0恒成立的t的取值范围;(3)若f(2)=3,且g(x)=2x+2﹣x﹣2mf(x)在[2,+∞)上的最小值为﹣2,求m的值.考点:函数奇偶性的性质;函数的最值及其几何意义;函数恒成立问题.专题:函数的性质及应用.分析:(1)运用f(0)=0求解.(2)根据单调性得出不等式x2﹣x>﹣tx﹣4,即x2+(t﹣1)x+4>0恒成立,(3)化简得出g(x)=2x+2﹣x﹣4m(﹣)=(﹣)2﹣4m(﹣)+2.换元转化:令t=﹣,h(t)=t2﹣4mt+2=(t﹣2m)2+2﹣4m2(t≥)分类讨论求解即可.解答:解(1)因为f(x)是定义域为R的奇函数,所以f(0)=0,所以2k+(k﹣3)=0,即k=1,检验知,符合条件(2)f(x)=2(a x﹣a ﹣x)(a>0且a≠1)因为f(2)<0,<0,又a>0且a≠1,所以0<a<1因为y=a x单调递减,y=a ﹣x单调递增,故f(x)在R上单调递减.不等式化为f(x2﹣x)<f(﹣tx﹣4)所以x2﹣x>﹣tx﹣4,即x2+(t﹣1)x+4>0恒成立,所以△=(t﹣1)2﹣16<0,解得﹣3<t<5.(3)因为f(2)=3,所以2()=3,即2a4﹣3a2﹣2=0,所以a=,所以g(x)=2x+2﹣x﹣4m(﹣)=(﹣)2﹣4m(﹣)+2.令t=﹣,由(1)可知t=﹣为增函数,因为x≥2,所以t≥,令h(t)=t2﹣4mt+2=(t﹣2m)2+2﹣4m2(t≥)若m≥,当t=2m时,h(t)min=2﹣4m2=﹣2,∴m=1若m<,当t=时,h(t)min=﹣6m=﹣2,解得m=>,舍去综上可知m=1.点评:本题考查了函数的性质,运用求解数值,判断单调性求解字母的范围,属于中档题,综合性较大.。
2018年12月上海市金山区高三数学一模卷答案
金山区2018学年第一学期期末考试高三数学试卷评分参考答案(满分:150分,完卷时间:120分钟)一、填空题(本大题共有12题,满分54分,第1–6题每题4分,第7–12题每题5分) 考生应在答题纸相应编号的空格内直接填写结果.1.}6,5{;2.1-=x ;3.32;4.)1,31(;5.25;6.16; 7.31;8.210;9.(2, 4);10.2π;11. )52,(-∞∪),2(∞+;12.31. 二、选择题(本大题共4小题,满分20分,每小题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.D ; 14.B ; 15.A ; 16.A .三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分,第1小题满分7分,第2小题满分7分)解:(1) ∵⊥PA 底面ABC ,PB 与底面ABC 所成的角为3π, 3π=∠PBA .…2分因为2=AB ,所以PA =4分114233P ABC ABC V S PA -∆=⋅=⨯,即三棱锥ABC P -的体积为2.…7分 (2) 连结PM ,取AB 的中点,记为N ,连接MN ,则AC MN //,所以PMN ∠为异面直线PM 与AC 所成的角,………………………………8分 又13=PN ,1=MN ,15=PM ,……………………………………11分cosPMN ∴∠==PMN ∠=13分 即异面直线PM 与AC 所成角的大小为1015arccos.……………………………14分 18.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)角α的终边经过点(P -,21sin =α,cos α=,tan α=,…3分sin 1si cos tan tan cos 12n αααααα=∴-=.………………………………6分 (2) ∵f (x )=cos(x+α)cos α+sin(x+α)sin α=cos x (x ∈R ),………………………………8分2cos(2)2cos 21cos 22sin(2)126y x x x x x ππ∴=-+=++=++,…11分 ∴当2262x k πππ+=+,即6x k ππ=+(k ∈Z )时,max 3y =.…………………14分19.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1))1(log )(21+=-x x f ,(x >–1)………………………………………………2分不等式为)13(log )1(log 42+≤+x x ,⎪⎩⎪⎨⎧+≤+>+>+∴13)1(013012x x x x ……………………4分解得]1,0[,10=∴≤≤D x .……………………………………………………………6分 (2))10(113log 21)1(log 21)13(log )(224≤≤++=+-+=x x x x x x H ,……………8分 )123(log 21)(2+-=∴x x H ,…………………………………………………………10分 当]1,0[∈x 时,123+-x 单调递增,)(x H ∴单调递增,…………………………12分 ]21,0[)(∈∴x H ,因此当]21,0[∈a 时满足条件.…………………………………14分 20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)解:(1) 1222=+x y ;……………………………………………………………………4分 (2) 设),(y x P ,则2222)()(||2222222++--=-+-=+-=a ax x x a x y a x PA 22)(22+++-=a a x ,]1,1[-∈x ,…………………………………………………6分 令22)()(22+++-=a a x x f ,所以,当1>a 时)(x f 在]1,1[-上是减函数,[]2max )1()1()(+=-=a f x f ;当11≤≤-a 时,)(x f 在],1[a --上是增函数,在]1,[a -上是减函数,则[]22)()(2max +==a a f x f ;当1-<a 时,)(x f 在]1,1[-上是增函数,[]2max )1()1()(-==a f x f ;…………9分 所以,⎪⎪⎩⎪⎪⎨⎧>+≤≤-+-<-=1,111,221,1)(2a a a a a a a d .…………………………………………10分;(3) 当10<<a 时,)22,(2a a P -±,)1(22121a a S -=,2222+=a S ,…12分 若正数m 满足条件,则)22()1(22122+≤-a m a a ,即)1(4)1(222+-≥a a a m ,…13分 22222)1(8)1(+-≥a a a m ,令2222)1(8)1()(+-=a a a a f ,设12+=a t ,则)2,1(∈t ,12-=t a , 641431411328123818)2)(1()(22222+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛-+-=--=t t t t t t t t t a f , 所以,当431=t ,即)2,1(34∈=t 时,641)]([max =a f , 即6412≥m ,81≥m .所以,m 存在最小值81.…………………………………16分. [另解]由1S ≤2mS ,得m ≥12S S ,而12S S ==2222(1)12)84(1a a a ++-=, 当且仅当2221a a =-,即a =12max 18S S ⎛⎫∴= ⎪⎝⎭. 从而m ≥18 ,故m 的最小值为18.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)(1) 解设数列{}n a 的公差为d ,由113615511a d a d +=⎧⎨+=⎩,………………………………2分 得112a d =⎧⎨=⎩,故数列{}n a 的通项公式为21n a n =-,n ∈N *;……………………4分 (2) 对任意m ∈N *,若1212212m m n ++<-<, 则2112222m m n +<<+, 故222m m m b =-,m ∈N *,…………………………………………………………6分 S m =b 1+b 2+…+b m =(22+24+26+…+22m )–(2+22+23+…+2m )=21)21(241)41(4-----m m =322644+⨯-⨯m m , ………………………………8分 令4462220183m m ⨯-⨯+>,解得2l 5.3og m >≈, 故所求最小整数m 为6;…………………………………………………………10分 (3) 1111(21)n n n n a n a a a λ+++≤+≤+,22(21)111(21)(21)(21)n n n n λ-+≤≤+-++,…12分 记2(21)1(21)(21)n n A n n -+=-+,211(21)n B n =++,n ∈N *, 由221(21)1(21)18(1)(21)(23)(21)(21)(21)(21)(23)n n n n n A A n n n n n n n +++-+--=-=++-+-++, 知12A A =,且从第二项起,{}n A 递增,即1234AA A A =<<< 而211(21)n B n =++递减,故实数λ的范围为[]11,A B ,即210,39⎡⎤⎢⎥⎣⎦.…………18分 【注】求出A 1给3分,求出B 1给2分,结论1分。
2018年上海市高三一模数学试题完整解析
2018年高三一模数学试题解析目录2018年杨浦区高三一模试题分析 (1)2018年松江区高三一模试题分析 (10)2018年青浦区高三一模试题分析 (20)2018年虹口区高三一模试题分析 (31)2018年普陀区高三一模试题分析 (42)2018年徐汇区高三一模试题分析 (56)2018年长宁、嘉定区高三一模试题分析 (67)2018年浦东新区高三一模试题分析 (77)2018年崇明区高三一模试题分析 (87)2018年静安区高三一模试题分析 (96)2018年闵行区高三一模试题分析 (105)2018年黄浦区高三一模试题分析 (117)2018年三区高三一模填选难题试题分析 (127)2018年杨浦区高三一模试题分析一、填空题的结果是 1 .1.计算∞【考点】极限及其运算.=1.【分析】由n→+∞,→0,即可求得∞=1,故答案为:1.【解答】解:当n→+∞,→0,∴∞【点评】本题考查极限的运算,考查计算能力,属于基础题.2.已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m= 3 .【考点】交集及其运算.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2,m},B={3,4},A∩B={3},∴实数m=3.故答案为:3.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.3.已知,则= ﹣.【考点】三角函数的恒等变换及化简求值.【分析】由已知利用诱导公式即可化简求值得解.【解答】解:∵θ,∴θπ=θ.故答案为:﹣.【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.4.若行列式,则x= 2 .【考点】二阶矩阵.【分析】先根据行列式的计算公式进行化简,然后解指数方程即可求出x的值.【解答】解:∵,∴2×2x﹣1﹣4=0即x﹣1=1,∴x=2,故答案为:2【点评】本题主要考查了行列式的基本运算,同时考查了指数方程,属于基础题.5.已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y= 6 .【考点】增广矩阵的概念.【分析】由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,由此能求出x+y.【解答】解:∵一个关于x、y的二元一次方程组的增广矩阵是,∴由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,解得 x=4,y=2,∴x+y=6.故答案为:6.【点评】本题考查两数和的求法,是基础题,解题时要认真审题,注意增广矩阵的合理运用.6.在的二项展开式中,常数项等于﹣160 .【考点】二项式定理.【分析】研究常数项只需研究二项式的展开式的通项,使得x的指数为0,得到相应r,从而可求出常数项.【解答】解:展开式的通项为T r+1=x6﹣r(﹣)r=(﹣2)r x6﹣2r ,令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160,故答案为:﹣160【点评】本题主要考查了利用二项展开式的通项求解指定项,同时考查了计算能力,属于基础题.7.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.【考点】古典概型及其概率计算公式.【分析】分别求出基本事件数,“点数和为4”的种数,再根据概率公式解答即可.【解答】解:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故P==.故答案为:.【点评】本题考查的知识点是古典概型概率计算公式,难度不大,属于基础题.8.数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n= 2n﹣1.【考点】反函数.【分析】先利用点(n,S n)都在f(x)的反函数图象上即点(S n,n)都在f(x)的原函数图象上,得到关于S n的表达式;再利用已知前n项和为S n求数列{a n}的通项公式的方法即可求数列{a n}的通项公式;【解答】解:由题意得n=log2(S n+1)⇒s n=2n﹣1.n≥2时,a n=s n﹣s n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=s1=21﹣1=1也适合上式,∴数列{a n}的通项公式为a n=2n﹣1;故答案为:2n﹣1【点评】本小题主要考查反函数、利用已知前n项和为S n求数列{a n}的通项公式的方法等基础知识,考查运算求解能力,属于基础题.9.在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.【考点】余弦定理.【分析】由sinA、sinB、sinC依次成等比数列,利用等比数列的性质列出关系式,利用正弦定理化简,再利用余弦定理表示出cosB,把得出关系式代入并利用基本不等式求出cosB的范围,利用余弦函数的性质可求B的最大值.【解答】解:∵在△ABC 中,sinA 、sinB 、sinC 依次成等比数列,∴sin 2B=sinAsinC , 利用正弦定理化简得:b 2=ac ,由余弦定理得:cosB==≥=(当且仅当a=c 时取等号),则B 的范围为(0,π],即角B 的最大值为π.故答案为:π.【点评】此题考查了正弦、余弦定理,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键,属于基础题.10.抛物线y 2=﹣8x 的焦点与双曲线﹣y 2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.【考点】双曲线的性质.【分析】由已知条件推导出a 2+1=4,从而得到双曲线的渐近线方程为y=,由此能求出这条双曲线的两条渐近线的夹角.【解答】解:∵抛物线y 2=﹣8x 的焦点F (﹣2,0)与双曲线﹣y 2=1的左焦点重合,∴a 2+1=4,解得a= ,∴双曲线的渐近线方程为y=,∴这条双曲线的两条渐近线的夹角为π ,故答案为:π. 【点评】本题考查双曲线的两条渐近线的夹角的求法,是基础题,解题时要认真审题,注意抛物线性质的合理运用.11.已知函数,x ∈R ,设a >0,若函数g (x )=f (x+α)为奇函数,则α的值为2k πα=【考点】三角函数中的恒等变换应用.【分析】首先通过三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质求出结果.【解答】()cos (sin )sin(2)3f x x x x x π=+,()sin(22)3g x x πα=++为奇函数,且0α>,∴23k παπ+=,26k ππα=-,k ∈*N .【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用.12.已知点C 、D 是椭圆上的两个动点,且点M (0,2),若,则实数λ的取值范围为1[,3]3λ∈.【考点】椭圆的性质.【分析】数形结合,取极端情况,考查椭圆的性质,直线与椭圆的位置关系. 【解答】数形结合,取极端情况. 作CE ⊥y 轴,DF ⊥y 轴,3MD MF MB MC ME MA λ==≤=,同理13λ≥ 当D 点位于(0,1)-,C 点位于(0,1)时,λ等于3; 当D 点位于(0,1),C 点位于(0,1)-时,λ等于13,∴1[,3]3λ∈.【点评】本题考查椭圆的性质,直线与椭圆的位置关系,考查计算能力,属于中档题. 二、选择题13.在复平面内,复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义. 【分析】直接由复数的除法运算化简,求出复数对应的点的坐标,则答案可求.【解答】解:∵=,∴复数对应的点的坐标为(﹣1,﹣2),位于第三象限.故选:C .【点评】本题考查了复数代数形式的除法运算,考查了复数的代数表示法及其几何意义,是基础题. 14.给出下列函数:①y=log 2x;②y=x 2;③y=2|x|;④y=arcsinx .其中图象关于y 轴对称的函数的序号是( ) A.①②B.②③C.①③D.②④【考点】函数奇偶性的性质与判断.【分析】根据函数奇偶性的定义进行判断即可.【解答】解:①y=log 2x 的定义域为(0,+∞),定义域关于原点不对称,则函数为非奇非偶函数; ②y=x 2;是偶函数,图象关于y 轴对称,满足条件.③y=2|x|是偶函数,图象关于y 轴对称,满足条件. ④y=arcsinx 是奇函数,图象关于y 轴不对称,不满足条件,故选:B .【点评】本题主要考查函数奇偶性的判断,利用函数奇偶性的定义和性质是解决本题的关键 15.“t ≥0”是“函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分也非必要条件 【考点】充分条件、必要条件、充要条件.【分析】t ≥0⇒△=t 2+4t ≥0⇒函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点,函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点⇒△=t 2+4t ≥0⇒t ≥0或t ≤﹣4.由此能求出结果. 【解答】解:t ≥0⇒△=t 2+4t ≥0⇒函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点, 函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点⇒△=t 2+4t ≥0⇒t ≥0或t ≤﹣4.∴“t ≥0”是“函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点”的充分非必要条件.故选:A . 【点评】本题考查充分条件、充要条件、必要条件的判断,考查函数的零点等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.16.设A 、B 、C 、D 是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S 1、S 2、S 3分别表示△ABC 、△ACD 、△ABD 的面积,则S 1+S 2+S 3的最大值是( )A.B.2C.4D.8【考点】平面向量数量积的性质及其运算;棱柱、棱锥的体积.【分析】由题意可知,三棱锥的顶点的三条直线AB ,AC ,AD 两两垂直,可以扩展为长方体,对角线为球的直径,设出三边,表示出面积关系式,然后利用基本不等式,求出最大值.【解答】解:设AB=a ,AC=b ,AD=c ,因为AB ,AC ,AD 两两互相垂直,扩展为长方体,它的对角线为球的直径,所以a 2+b 2+c 2=4R 2=4 所以S △ABC +S △ACD +S △ADB =(ab+ac+bc )≤(a 2+b 2+c 2)=2即最大值为:2故选:B .【点评】本题是基础题,考查球的内接多面体,基本不等式求最值问题,能够把几何体扩展为长方体,推知多面体的外接球是同一个球,是解题的关键. 三、解答题17.如图所示,用总长为定值l 的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开. (1)设场地面积为y ,垂直于墙的边长为x ,试用解析式将y 表示成x 的函数,并确定这个函数的定义域; (2)怎样围才能使得场地的面积最大?最大面积是多少?【考点】基本不等式及其应用.【分析】(1)由题意设长方形场地的宽为x ,则长为l ﹣3x ,表示出面积y ;由x >0,且l ﹣3x >0,可得函数的定义域;(2)对其运用基本不等式求出函数的最值即场地的面积最大值,从而求解. 【解答】解:(1)设平行于墙的边长为a ,则篱笆总长3l x a =+,即3a l x =-,所以场地面积(3)y x l x =-,(0,)3lx ∈(2)222(3)33()612ll y x l x x lx x =-=-+=--+,(0,)3l x ∈,所以当且仅当6l x =时,2max 12l y = 综上,当场地垂直于墙的边长x 为6l 时,最大面积为212l【点评】此题是一道实际应用题,考查函数的最值问题,解决此类问题要运用基本不等式,这也是高考常考的方法.18.如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)【考点】旋转体(圆柱、圆锥);异面直线及其所成的角.【分析】(1)推导出BS=5,从而SO=4,由此能求出圆锥的体积.(2)取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与PA所成角,由此能求出异面直线SO与PA所成角.解:(1)由题意,π•OA•SB=15π,解得BS=5,故从而体积πππ.(2)如图,取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与PA所成角.∵SO⊥平面OAB,∴PH⊥平面OAB,∴PH⊥AH.在△OAH中,由OA⊥OB,得,在Rt△APH中,∠AHP=90 O,,…则∠,∴异面直线SO与PA所成角的大小.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.19.已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.【考点】集合的包含关系判断及应用;函数奇偶性的性质与判断.【分析】(1)由对数的真数大于0,可得集合A,再由集合的包含关系,可得a的不等式组,解不等式即可得到所求范围;(2)求得f(x)的定义域,计算f(﹣x)与f(x)比较,即可得到所求结论.【解答】解:(1)令>,解得﹣1<x<1,所以A=(﹣1,1),因为B⊆A,所以,解得﹣1≤a≤0,即实数a的取值范围是[﹣1,0];(2)证明:函数f(x)的定义域A=(﹣1,1),定义域关于原点对称,f(﹣x)=ln=ln()﹣1=﹣ln=﹣f(x),而,,所以,所以函数f(x)是奇函数但不是偶函数.【点评】本题考查函数的定义域和集合的包含关系,考查函数的奇偶性的判断,注意运用定义法,考查运算能力,属于基础题.20.设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.【考点】直线与抛物线的综合.【分析】(1)根据题意,由抛物线的方程分析可得p的值,即可得答案;(2)根据题意,设直线的方程为x=my+b,分m=0与m≠0两种情况讨论,分析m的取值,综合可得m可取的值,将m的值代入直线的方程即可得答案;(3)设直线AB:x=my+b,将直线的方程与抛物线方程联立,结合OQ⊥AB,由根与系数的关系分析可得答案.【解答】解:(1)根据题意,抛物线Ω的方程为y2=4x,则p=2,故抛物线Ω的焦点到准线的距离为2;(2)设直线l:x=my+b,当m=0时,x=1和x=9符合题意;当m≠0时,A(x1,y1)、B(x2,y2)的坐标满足方程组,所以y2﹣4my﹣4b=0的两根为y1、y2.△=16(m2+b)>0,y1+y2=4m,所以,所以线段AB的中点M(2m2+b,2m),因为k AB•k CM=﹣1,,所以,得b=3﹣2m2 ,所以△=16(m2+b)=16(3﹣m2)>0,得0<m2<3因为,所以m2=3(舍去)综上所述,直线l的方程为:x=1,x=9(3)设直线AB:x=my+b,A(x1,y1)、B(x2,y2)的坐标满足方程组,所以y2﹣4my﹣4b=0的两根为y1、y2,△=16(m2+b)>0,y1+y2=4m,y1y2=﹣4b所以,得b=0或b=4b=0时,直线AB过原点,所以Q(0,0);b=4时,直线AB过定点P(4,0)设Q(x,y),因为OQ⊥AB,所以,,(x≠0),综上,点Q的轨迹方程为x2﹣4x+y2=0【点评】本题考查直线与抛物线的位置关系,(2)中注意设出直线的方程,并讨论m的值.21.若数列A:a1,a2,…,a n(n≥3)中(1≤i≤n)且对任意的2≤k≤n﹣1,a k+1+a k﹣1>2a k恒成立,则称数列A为“U﹣数列”.(1)若数列1,x,y,7为“U﹣数列”,写出所有可能的x、y;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n0为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,,,,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数,求M的最小值.【考点】数列与不等式的综合.【分析】(1)根据“U﹣数列”的定义可得:x=1时,>>;x=2时,>>;x≥3时,>>,解出即可得出.(2)n的最大值为65,理由如下:一方面,注意到:a k+1+a k﹣1>2a k⇔a k+1﹣a k>a k﹣a k﹣1.对任意的1≤i≤n ﹣1,令b i=a i+1﹣a i,可得b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,利用裂项求和方法可得b i≥i﹣1.(2≤i≤n﹣1).即b i≥i ﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥,即,解得n≤65.另一方面,取b i=i﹣1(1≤i≤64),可得对任意的2≤k≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,进而得出.(3)M的最小值为,分析如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k+1﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)+…+(b k+1﹣b k)≥m.此时有:a1+a2m﹣(a m+a m+1)≥m(m﹣1),即(a1+a2m)≥(a m+a m+1)+m(m﹣1)可得M≥.又,可得,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1时,a k+1+a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0,取a m=1,则a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,且a1=a m﹣(b1+b2+…+b m﹣1)=m(m﹣1)+1.此时.即可得出.【解答】解:(1)x=1时,>>,所以y=2或3;x=2时,>>,所以y=4;x≥3时,>>,无整数解;所以所有可能的x,y为,或.(2)n的最大值为65,理由如下:一方面,注意到:a k+1+a k﹣1>2a k⇔a k+1﹣a k>a k﹣a k﹣1.对任意的1≤i≤n﹣1,令b i=a i+1﹣a i,则b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.(*)当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,得︸个(2≤i≤n﹣1)即b i≥i﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥0+1+2+…+(n﹣2)=,(**)即,解得:﹣62≤n≤65,故n≤65.另一方面,为使(**)取到等号,所以取b i=i﹣1(1≤i≤64),则对任意的2≤k≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,此时由(**)式得,所以a65=2017,即n=65符合题意.综上,n的最大值为65.(3)M的最小值为,证明如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k+1﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)+…+(b k+1﹣b k)≥m.此时有:(a1+a2m)﹣(a m+a m+1)=(a2m﹣a m+1)﹣(a m﹣a1)=(b m+1+b m+2+…+b2m﹣1)﹣(b1+b2+…+b m﹣1)=(b m+1﹣b1)+(b m+2﹣b2)+…+(b2m+1﹣b m﹣1)≥m+m+…+m=m(m﹣1).即(a1+a2m)≥(a m+a m+1)+m(m﹣1)故,因为,所以,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1时,a k+1+a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0,取a m=1,则a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,,此时.综上,M的最小值为.【点评】本题考查了新定义、等差数列的通项公式与求和公式、裂项求和方法、不等式的性质,考查了推理能力与计算能力,属于难题2018年松江区高三一模试题分析一、填空题1.计算:∞= .【考点】极限及其运算.【分析】∞=∞,当n→∞,→0,即可求得∞=.【解答】解:∞=∞=,故答案为:【点评】本题考查极限的运算,考查计算转化思想,属于基础题.2.已知集合A={x|0<x<3},B={x|x2≥4},则A∩B= {x|2≤x<3} .【考点】交集及其运算.【分析】根据题意,B为一元二次不等式的解集,解不等式可得集合B;又由交集的性质,计算可得答案.【解答】解:由已知得:B={x|x≤﹣2或x≥2},∵A={ x|0<x<3},∴A∩B={x|0<x<3}∩{ x|x≤﹣2或x≥2}={x|2≤x<3}为所求.故答案为:{x|2≤x<3}.【点评】本题考查交集的运算,解题的关键在于认清集合的意义,正确求解不等式.3.已知{a n}为等差数列,S n为其前n项和.若a1+a9=18,a4=7,则S10= 100 .【考点】等差数列的前n项和.【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a1+a9=18,a4=7,∴,解得d=2,a1=1.则S10=10+=100.故答案为:100.【点评】本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.4.已知函数f(x)=log2(x+a)的反函数为y=f﹣1(x),且f﹣1(2)=1,则实数a= 3 .【考点】反函数.【分析】直接利用反函数值域和定义域的关系求出结果.【解答】解:函数f(x)=log2(x+a)的反函数为y=f﹣1(x),且f﹣1(2)=1,解得:a=3.故答案为:3.【点评】本题考查的知识要点:反函数的应用.5.已知角α的终边与单位圆x2+y2=1交于,,则cos2α等于﹣.【考点】二倍角的三角函数.【分析】由角α的终边与单位圆x2+y2=1交于,,可得:r=1,cosα=,从而可求cos2α=2cos2α﹣1=2×﹣1=﹣.【解答】解:∵角α的终边与单位圆x2+y2=1交于,,∴可得:r=1,cosα=,∴cos2α=2cos2α﹣1=2×﹣1=﹣.故答案为:﹣.【点评】本题主要考察了三角函数的定义,二倍角的余弦公式的应用,属于基本知识的考查.6.如图是一个算法的程序框图,当输入的值x为8时,则其输出的结果是 2 .【考点】循环结构.【分析】x=8>0,不满足条件x≤0,则执行循环体,依此类推,当x=﹣1<0,满足条件,退出循环体,从而求出最后的y值即可.【解答】解:x=8>0,执行循环体,x=x﹣3=5﹣3=2>0,继续执行循环体,x=x﹣3=2﹣3=﹣1<0,满足条件,退出循环体,故输出y=0.5﹣1=2.故答案为:2【点评】本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.7.函数y=sin2x的图象与y=cosx的图象在区间[0,2π]上交点的个数是 4 .【考点】正弦函数的图象;余弦函数的图象.【分析】直接利用三角方程求出结果.【解答】解:由于函数y=sin2x与y=cosx有交点,则:sin2x=cosx,整理得:sinx=或cosx=0所以:在[0,2π]范围内,x=π,π,π,π,故答案为:4.【点评】本题考查的知识要点:正弦函数的图象和余弦图象的应用.8.设直线ax﹣y+3=0与圆(x﹣1)2+(y﹣2)2=4相交于A、B两点,且弦AB的长为2,则a= 0 .【考点】直线与圆的位置关系.【分析】由弦长公式可得圆心到直线的距离为,再由点到直线的距离公式可得=1,由此求得a的值.【解答】解:由于圆(x﹣1)2+(y﹣2)2=4的圆心C(1,2),半径等于2,且圆截直线所得的弦AB的长为2ax﹣y+3=0的距离为,即=1,解得a=0,故答案为 0.【点评】本题主要考查直线和圆的位置关系,弦长公式、点到直线的距离公式的应用,属于中档题. 9.在△ABC 中,∠A=90°,△ABC 的面积为1,若=,=4,则的最小值为.【考点】平面向量数量积的性质及其运算.【分析】通过建系设出B ,C 坐标,化简的表达式,利用三角形面积求解表达式的最小值. 【解答】解:如图,建立直角坐标系,设B (10x ,0),C (0,10y ),若 = , =4, 则M (5x ,5y ),N (2x ,8y ),由题意△ABC 的面积为1,可得50xy=1,=10x 2+40y 2≥2 xy=,当且仅当x=2y=时取等号.故答案为:.【点评】本题考查向量的数量积的应用,考查转化思想以及计算能力.10.已知函数f (x )=x|2x ﹣a|﹣1有三个零点,则实数a 的取值范围为 (2 ,+∞) . 【考点】函数的零点与方程根的关系;研究曲线上某点切线方程. 【分析】转化方程的根为两个函数的图象的交点,利用数形结合. 【解答】分类讨论,设()|2|g x x x a =-,可以看作()g x 与1y =有三个交点,当0a <,()g x 图像如图所示,易知与1y =只有1个交点,不符;当0a>,()g x 图像如图所示,要与1y =有3个交点,需满足()14af >,即a >解法二:根据题意,可以看作()|2|g x x a =-与1()h x x=有三个交点,结合图像可知,当2ax >时,()g x 与()h x恒有一个交点,∴当2ax <时,()g x 与()h x 有两个不同交点,即12a xx-=在(0,)x∈+∞有两个解,2210x ax-+=,280a∆=->,且0a>,∴a>【点评】本题考查函数的零点的判断,考查数形结合的应用,是中档题.11.定义,>,已知函数f(x)、g(x)的定义域都是R,则下列四个命题中为真命题的是②③④(写出所有真命题的序号)①若f(x)、g(x)都是奇函数,则函数F(f(x),g(x))为奇函数;②若f(x)、g(x)都是偶函数,则函数F(f(x),g(x))为偶函数;③若f(x)、g(x)都是增函数,则函数F(f(x),g(x))为增函数;④若f(x)、g(x)都是减函数,则函数F(f(x),g(x))为减函数.【考点】函数单调性的性质与判断;函数奇偶性的性质与判断.【分析】由已知中:,>,结合具有奇偶性及单调性的图象特征,可得答案.【解答】解:,>,若f(x)、g(x)都是奇函数,则函数F(f(x),g(x))不一定是奇函数,如y=x与y=x3,故①是假命题;若f(x)、g(x)都是偶函数,则函数F(f(x),g(x))为偶函数,故②是真命题;若f(x)、g(x)都是增函数,则函数F(f(x),g(x))为增函数,故③是真命题;若f(x)、g(x)都是减函数,则函数F(f(x),g(x))为减函数,故④是真命题.故答案为:②③④.【点评】本题考查的知识点是函数奇偶性的性质,函数单调性的判断与证明,难度中档.12.已知数列{a n}的通项公式为a n=2q n+q(q<0,n∈N*),若对任意m,n∈N*都有,,则实数q的取值范围为(﹣,0).【考点】数列递推式.【分析】由a n=2q n+q,a1=3q<0,由,,则a n<0,由指数函数的单调性知,{a n}的最大值为a2=2q2+q,最小值为a1=3q,由题意,的最大值及最小值分别为和,即可求q的取值范围.【解答】解:由a n=2q n+q(q<0,n∈N*),因为a1=3q<0,且对任意n∈N*,∈(,6)故a n<0,特别地2q2+q<0,于是q∈(﹣,0),此时对任意n∈N*,a n≠0.当﹣<q<0时,a2n=2|q|2n+q>q,a2n﹣1=﹣2|q|2n﹣1+q<q,由指数函数的单调性知,{a n}的最大值为a2=2q2+q,最小值为a1=3q,由题意,的最小值及最大值分别为=和=.由>及<6,解得﹣<q<0.综上所述,q的取值范围为(﹣,0),故答案为:(﹣,0).【点评】本题考查等差数列以及等比数列的综合应用,数列与函数关系,考查计算能力、转化思想,属于中档题.二、选择题13.若2﹣i是关于x的方程x2+px+q=0的一个根(其中i为虚数单位,p,q∈R),则q的值为( )A.﹣5B.5C.﹣3D.3【考点】复数的运算.【分析】直接利用实系数一元二次方程的虚根成对原理及根与系数的关系求解.【解答】解:∵2﹣i是关于x的实系数方程x2+px+q=0的一个根,∴2+i是关于x的实系数方程x2+px+q=0的另一个根,则q=(2﹣i)(2+i)=|2﹣i|2=5.故选:B.【点评】本题考查实系数一元二次方程的虚根成对原理,考查复数模的求法,是基础题.14.已知f(x)是R上的偶函数,则“x1+x2=0”是“f(x1)﹣f(x2)=0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】充分条件、必要条件、充要条件.【分析】“x1+x2=0”⇒“f(x1)﹣f(x2)=0”,“f(x1)﹣f(x2)=0”⇒“x1+x2=0”或“x1=x2”,由此能求出结果.【解答】解:∵f(x)是R上的偶函数,∴“x1+x2=0”⇒“f(x1)﹣f(x2)=0”,“f(x1)﹣f(x2)=0”⇒“x1+x2=0”或“x1=x2”或者其他情况,∴“x1+x2=0”是“f(x1)﹣f(x2)=0”的充分而不必要条件.故选:A.【点评】本题考查充分条件、充要条件、必要条件的判断,考查函数的奇偶性等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.15.若存在x∈[0,+∞)使<成立,则实数m的取值范围是( )A.(﹣∞,1)B.(﹣1,+∞)C.(﹣∞,﹣1]D.[1,+∞)【考点】存在量词和特称命题.【分析】推导出2x•m>2x•x﹣1,从而m>x﹣,再由x∈[0,+∞),能求出实数m的取值范围.【解答】解:存在x∈[0,+∞)使<成立,∴2x•x﹣2x•m<1,∴2x•m>2x•x﹣1,∴m>x﹣,∵x∈[0,+∞),∴2x≥1,∴m>x﹣≥﹣1.∴实数m的取值范围是(﹣1,+∞).故选:B.【点评】本题考查实数值的取值范围的求法,考查二阶行列式、不等式、指数性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.16.已知曲线C1:|y|﹣x=2与曲线C2:λx2+y2=4恰好有两个不同的公共点,则实数λ的取值范围是( )A .(﹣∞,﹣1]∪[0,1)B .(﹣1,1]C .[﹣1,1)D .[﹣1,0]∪(1,+∞) 【考点】双曲线的性质.【分析】利用绝对值的几何意义,由x=|y|﹣2可得,y ≥0时,x=y ﹣2;y <0时,x=﹣y ﹣2,函数x=|y|﹣2的图象与方程y 2+λx 2=4的曲线必相交于(0,±2),为了使曲线C 1:|y|﹣x=2与曲线C 2:λx 2+y 2=4恰好有两个不同的公共点,则两曲线无其它交点.x=y ﹣2代入方程y 2+λx 2=4,整理可得(1+λ)y 2﹣4λy+4λ﹣4=0,分类讨论,可得结论,根据对称性,同理可得y <0时的情形. 【解答】解:由x=|y|﹣2可得,y ≥0时,x=y ﹣2;y <0时,x=﹣y ﹣2, ∴函数x=|y|﹣2的图象与方程y 2+λx 2=4的曲线必相交于(0,±2), 所以为了使曲线C 1:|y|﹣x=2与曲线C 2:λx 2+y 2=4恰好有两个不同的公共点, 则将x=y ﹣2代入方程y 2+λx 2=4,整理可得(1+λ)y 2﹣4λy+4λ﹣4=0,当λ=﹣1时,y=2满足题意,∵曲线C 1:|y|﹣x=2与曲线C 2:λx 2+y 2=4恰好有两个不同的公共点, ∴△>0,2是方程的根,∴λ λ<0,即﹣1<λ<1时,方程两根异号,满足题意;综上知,实数λ的取值范围是[﹣1,1).故选:C .【点评】本题考查曲线的交点,考查学生分析解决问题的能力,考查分类讨论的数学思想,属于中档题. 三、解答题17.在△ABC 中,AB=6,AC=3 ,=﹣18. (1)求BC 边的长;(2)求△ABC 的面积. 【考点】三角形中的几何计算.【分析】(1)直接利用向量的数量积和余弦定理求出BC 的长. (2)进一步利用余弦定理和三角形的面积公式求出结果.【解答】解:(1)=﹣18,由于:AB=6,AC=3 , 所以:BC 2=AB 2+AC 2﹣2AB •ACcosA ,解得:BC=3 (2)在△ABC 中,BA=6,AC=3 ,BC=3 ,则:cosA==﹣,所以:sinA=,则:11sin 6922ABCSAB AC A ∆=⋅⋅=⋅⋅【点评】本题考查的知识要点:向量的数量积的应用,余弦定理的应用,三角形面积公式的应用. 18.已知函数(x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)当a >0时,研究函数f (x )在x ∈(0,+∞)内的单调性. 【考点】函数单调性的性质与判断;函数奇偶性的性质与判断.【分析】(1)根据函数奇偶性定义,可得当a=0时,函数f (x )为偶函数;当a ≠0时,函数f (x )为非奇非偶函数;(2)当a >0时,f (x )在(0,a )上为减函数,在(a ,+∞)上为增函数; 【解答】解:(1)当a=0时,函数f (x )=1(x ≠0),满足f (﹣x )=f (x ), 此时f (x )为偶函数;当a ≠0时,函数f (a )=0,f (﹣a )=2,不满足f (﹣x )=f (x ),也不满足f (﹣x )=﹣f (x ),此时f (x )为非奇非偶函数;(2)当a >0时,若x ∈(0,a ),则> ,为减函数;若x ∈[a ,+∞],则< ,为增函数;故f (x )在(0,a )上为减函数,在[a ,+∞)上为增函数;【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度中档. 19.松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足2≤t ≤20,经市场调研测算,电车载客量与发车时间间隔t 相关,当10≤t ≤20时电车为满载状态,载客量为400人,当2≤t <10时,载客量会减少,减少的人数与(10﹣t )的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p (t ). (1)求p (t )的表达式,并求当发车时间间隔为6分钟时,电车的载客量; (2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?【考点】根据实际问题选择函数类型.【分析】(1)由题意知,p (t )= , < , (k 为常数),结合p (2)=272求得k=2,则p (t )的表达式可求,进一步求得p (6);(2)写出分段函数Q=, <,,利用基本不等式及函数的单调性分段求出最大值,取两者中的最大者得答案.【解答】解:(1)由题意知,p (t )= , < , (k 为常数),∵p(2)=400﹣k(10﹣2)2=272,∴k=2.∴24002(10)210()4001020t t p t t ⎧--≤<=⎨≤≤⎩. ∴p(6)=400﹣2(10﹣6)2=368(人);(2)由,可得Q=, <,,当2≤t <10时,Q=180﹣(12t+),当且仅当t=5时等号成立;当10≤t ≤20时,Q=﹣60+≤﹣60+90=30,当t=10时等号成立.∴当发车时间间隔为5分钟时,该线路每分钟的净收益最大,最大为60元.【点评】本题考查函数模型的性质及应用,考查简单的数学建模思想方法,是中档题.20.已知椭圆E:=1(a>b>0)经过点,,其左焦点为,,过F点的直线l交椭圆于A、B两点,交y轴的正半轴于点M.(1)求椭圆E的方程;(2)过点F且与l垂直的直线交椭圆于C、D两点,若四边形ACBD的面积为,求直线l的方程;(3)设,,求证:λ1+λ2为定值.【考点】椭圆的性质.【分析】(1)由c=,由a2=b2+c2=b2+3,将点代入椭圆方程,即可求得a和b的值,即可求得椭圆方程;(2)设直线l的方程,代入椭圆方程,利用韦达定理及弦长公式求得|AB|及|CD|,则四边形ACBD的面积S=×|AB||CD|=,即可求得k的值,求得直线l的方程;(3)由向量的坐标运算,表示出λ1和λ2,有(2)即可求得λ1+λ2为定值.【解答】解:(1)由题意可得:c=,则a2=b2+c2=b2+3,将,代入椭圆方程:,解得:b2=1,a2=4,∴椭圆的E的方程:;(2)设直线l:y=k(x+),A(x1,y1),B(x2,y2),C(x0,y0),则D(x1,﹣y1),联立,整理得:(1+4k2)x2+8k2x+12k2﹣4=0,∴x1+x2=﹣,x1x2=,|AB|==,由直线CD的斜率为﹣,将k转化成﹣,同理|CD|=,∴四边形ACBD的面积S=×|AB||CD|==,∴2k4﹣5k2+2=0,解得:k2=2,k2=,∴k=±或k=±,由k>0,∴k=或k=,∴直线AB的方程为x﹣y+=0或x﹣y+=0;(3)λ,λ,得x1=λ1(﹣﹣x1),x2=λ2(﹣﹣x2),∴λ1=,λ2=,λ1+λ2=﹣(+)=﹣=﹣8,λ1+λ2为定值,定值为﹣8.。
2018届上海市各区高三一模数学考试客观题难题解析
2018年上海市高三一模数学考试客观题难题解析2017.12一. 宝山区11. 给出函数2()g x x bx =-+,2()4h x mx x =-+-,这里,,b m x R ∈,若不等式()10g x b ++≤(x R ∈)恒成立,()4h x +为奇函数,且函数()()()()()g x x t f x h x x t ≤⎧=⎨>⎩恰有 两个零点,则实数t 的取值范围为【解析】根据题意,210x bx b -+++≤恒成立,∴24(1)0b b ∆=++≤,即2b =-.2mx x -+为奇函数,∴0m =,即22,()4,x x x t f x x x t⎧--≤⎪=⎨->⎪⎩. 分零点讨论,如图所示,当 (,2)t ∈-∞-,1个零点;当[2,0)t ∈-,2个零点;当[0,4)t ∈,3个零点,当[4,)t ∈+∞, 2个零点. 综上,t 的取值范围为[2,0)[4,)-+∞.12. 若n (3n ≥,*n N ∈)个不同的点111(,)Q a b 、222(,)Q a b 、⋅⋅⋅、(,)n n n Q a b 满足: 12n a a a <<⋅⋅⋅<,则称点1Q 、2Q 、⋅⋅⋅、n Q 按横序排列,设四个实数k 、1x 、2x 、3x使得312()k x x -,23x ,222x 成等差数列,且两函数2y x =、13y x=+图像的所有交点 111(,)P x y 、222(,)Px y 、333(,)P x y 按横序排列,则实数k 的值为 【解析】根据题意,312()k x x -,23x ,222x 成等差数列,∴223231x x k x x -=-,1x 、2x 、3x 为 方程3310x x --=的三个解,且123x x x <<.解法一:3313104()3()222x x x x --=⇔-=,∵3cos34cos 3cos θθθ=-,设cos 2x θ=, 即1cos32θ=,360360n θ︒︒=+,20120n θ︒︒=+,n ∈Z .∵cos140cos260cos20︒︒︒<<, ∴12cos140x ︒=,22cos260x ︒=,32cos 20x ︒=,222232314cos 204cos 802cos 202cos 40x x k x x ︒︒︒︒--===-+ 22(2cos 201)(2cos 801)cos40cos160cos40cos201cos20cos40cos20cos40cos20cos40︒︒︒︒︒︒︒︒︒︒︒︒----+===+++,即1k =. 解法二:结合图像可知,123x x x <<,213y y y <<,两函数2y x =、13y x=+消去y 可得方程3310x x --=(解分别为123x x x <<),消去x 得方程326910y y y -+-=(解分别 为213y y y <<),设3()31f x x x =--,32()691g y y y y =-+-3(2)3(2)1y y =---+, 根据平移性质可知,函数()g y 图像可由()f x 图像按向量(2,2)平移得到,且()f x 对称中心 为(0,1)-,∴()g y 的对称中心为(2,1),∴()f x 与()g y 的图像关于(1,0)对称,如图所示,即AB CD =,∴3132x x y y -=-,∴22323231311x x y y k x x x x --===--解法三:利用计算器,求解三次方程3310x x --=,求出1x 、2x 、3x ,代入求出1k =.16. 称项数相同的两个有穷数列对应项乘积之和为这两个数列的内积,设:数列甲:1x 、2x 、3x 、4x 、5x 为递增数列,且i x ∈*N (1,2,,5i =⋅⋅⋅⋅);数列乙:1y 、2y 、3y 、4y 、5y 满足{1,1}i y ∈-(1,2,,5i =⋅⋅⋅⋅)则在甲、乙的所有内积中( )A. 当且仅当11x =,23x =,35x =,47x =,59x =时,存在16个不同的整数,它们同为奇数B. 当且仅当12x =,24x =,36x =,48x =,510x =时,存在16个不同的整数,它们同为偶数C. 不存在16个不同的整数,要么同为奇数,要么同为偶数D. 存在16个不同的整数,要么同为奇数,要么同为偶数【解析】取特例,数列甲:1、2、3、4、5,此时内积可能为15-、13-、11-、……、11、13、15,16个数均为奇数,排除A 、C 选项;再取特例,数列甲:1、2、3、4、6,可以排除B 选项,所以选D. 二. 徐汇区11. 若不等式1(1)(1)31n na n +--⋅<++对任意正整数n 恒成立,则实数a 的取值范围是 【解析】当n 为奇数,不等式为131a n -<++,即131a n >--+对一切奇数恒成立,∵1331n --<-+,∴3a ≥-;当n 为偶数,不等式为131a n <-+,对一切偶数恒成立, ∵1133121n -≥-++,∴83a <;综上所述,a 的取值范围是8[3,)3-. 12. 已知函数()y f x =与()y g x =的图像关于y 轴对称,当函数()y f x =与()y g x =在区 间[,]ab 上同时递增或同时递减时,把区间[,]a b 叫做函数()y f x =的“不动区间”,若区 间[1,2]为函数|2|x y t =-的“不动区间”,则实数t 的取值范围是【解析】结合图像,|2|x y t =-的零点2log x t =应满足2log [1,1]t ∈-,解得1[,2]2t ∈.16. 如图,棱长为2的正方体1111ABCD A B C D -,E 为1CC 的中点,点P 、Q 分别为面1111A B C D 和线段1B C 上动点,求PEQ ∆周长的最小值( )A. B. C. D.【解析】作11PG B C ⊥,取BC 的中点F ,∴QE QF =,作E 关于11B C 的对称点H ,∴GH GE =,∴PQ QE ++PE GQ QF GE GQ QF GH FH ≥++=++≥=所以选B.三. 普陀区11. 已知正三角形ABC M 是ABC ∆所在平面内的任一动点,若||1MA =,则||MA MB MC ++的取值范围为【解析】根据题意,作出示意图||||MA MB MC MA MA AB MA AC ++=++++|3||3|MA AB AC MA AD =++=+,||1MA =,||3AD =当MA 与AD 反向时,有最小值0,当MA 与AD 同向时,有最大值6,所以||MA MB MC ++的取值范围为[0,6].12. 双曲线2213x y -=绕坐标原点O 旋转适当角度可以成为函数()f x 的图像,关于此函 数()f x 有如下四个命题:① ()f x 是奇函数;② ()f x的图像过点3)2或3)2-;③ ()f x 的值域是33(,][,)22-∞-+∞; ④ 函数()y f x x =-有两个零点;则其中所有真命题的序号为【解析】作出双曲线图像,旋转适当角度,使得其中一条渐近线垂直于x 轴,如图中红色 实线或红色虚线所示,结合图像,可知①②正确.16. 定义在R 上的函数()f x 满足2201()4210x x x f x x -⎧+≤<=⎨--≤<⎩,且(1)(1)f x f x -=+,则 函数35()()2x g x f x x -=--在区间[1,5]-上的所有零点之和为( ) A. 4 B. 5 C. 7 D. 8【解析】作出()f x 图像如图所示,周期为2,设351()322x h x x x -==+--,即求()f x 与()h x 交点 横坐标之和. 结合图像可知,共有3个交点,其中两个交点关于(2,3)点对称,另一个交点的横坐标为1,所以交点的横坐标之和为2215⨯+=,即所有零点之和为5四. 长宁区/嘉定区11. 已知数列{}n a 的前n 项和为n S ,且11a =,12n n n S a a +=(*n N ∈),若121(1)nn n n n b a a ++=-, 则数列{}n b 的前n 项和n T =【解析】11a =,112222S a a a =⇒=,1111122()22n n n n n n n n S S a a a a a a -+-+--=-=⇒-=, ∴奇数项1、3、5、…、成等差数列,偶数项2、4、6、…、成等差数列,综上n a n =,2111(1)(1)()(1)1n n n n b n n n n +=-=-+++,∴1112b =--,21123b =+,31134b =--,……, 11(1)(1)1n nn b n n =-+-+,消项求和,11(1)1n n T n =-+-+. 12. 若不等式222()x y cx y x -≤-对满足0x y >>的任意实数x 、y 恒成立,则实数c 的 最大值为【解析】典型恒成立问题,∵()0x y x -<,∴参变分离得222212()21y x y x c y xy x x--≤=--, (0,1)y t x =∈,即求212()1t f t t -=-的最小值,22122(1)4(1)1()11t t t f t t t ------===--12(1)441t t-+-≥-,当且仅当12t =-时等号成立,∴c的最大值为4. 15. 对任意两个非零的平面向量α和β,定义||cos ||ααβθβ⊗=,其中θ为α和β的夹角, 若两个非零的平面向量a 和b 满足:① ||||a b ≥;② a 和b 的夹角(0,)4πθ∈;③ a b ⊗和 b a ⊗的值都在集合{|,}2n x x n N =∈中,则a b ⊗的值为( ) A. 52 B. 32 C. 1 D. 12 【解析】根据题意,||1||b a ≤,cos (2θ∈,∴||cos 1||b b a a θ⊗=<,∵b a ⊗的值在集合{|,}2n x x n N =∈中,∴||1cos 2||bb a a θ⊗==,∴||2cos ||a b θ=∈,∴a b ⊗= 2||cos 2cos (1,2)||a b θθ=∈,∵a b ⊗的值在集合{|,}2n x x n N =∈中,∴32a b ⊗=. 选B. 16. 已知函数1202()12212x x f x x x ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩,且1()()f x f x =,1()(())n n f x f f x -=, 1,2,3,n =⋅⋅⋅,则满足方程()n f x x =的根的个数为( )A. 2n 个B. 22n 个C. 2n 个D. 2(21)n -个【解析】画出1()f x 、2()f x 、3()f x 的图像,如图所示,由图可知,1()f x x =有2个根,2()f x x =有22个根,3()f x x =有32个根,…,归纳可得,()n f x x =有2n 个根.五. 金山区10. 向量i 、j 是平面直角坐标系x 轴、y 轴的基本单位向量,且|||2|5a i a j -+-=,则|2|a i +的取值范围为【解析】本题与2016年虹口一模17题几乎一样, 根据题意,(1,0)i =,(0,1)j =,设(,)a x y =,根据|||2|5a i a j -+-=的几何意义,(,)x y 轨迹是一条线段(图中AB ),|2|a i +的几何意义为(,)x y 到点(2,0)-的距离,由图可知,距离最短为CD =3AD =,范围为 11. 某地区原有森林木材存有量为a ,且每年增长率为25%,因生产建设的需要,每年年末要砍伐的木材量为110a ,设n a 为第n 年末后该地区森林木材存量,则n a = 【解析】根据题意,15410n n a a a -=-,待定系数,15()4n n a a λλ--=-,可得25a λ=, ∴2{}5n a a -是首项为23232054a a a -=,公比为54的等比数列,∴1235()544n n a a a --=⋅= 35()54n a ⋅,即352()545n n a a a =⋅+. 本题要注意1a a ≠,152341020a a a a =-=. 12. 关于函数||()|||1|x f x x =-,给出以下四个命题:① 当0x >时,()y f x =单调递减且没 有最值;② 方程()f x kx b =+(0k ≠)一定有实数解;③ 如果方程()f x m =(m 为常 数)有解,则解的个数一定是偶数;④ ()y f x =是偶函数且有最小值;其中假命题的序号 是【解析】根据图像可得,① 在(0,1)单调递增,错误;② 正确;③ ()0f x =只有一个解,错误;④ 为偶函数,最小值为0,正确;∴假命题是①③.16. 给出下列四个命题:(1)函数arccos y x =(11x -≤≤)的反函数为cos y x =(x ∈R );(2)函数21m m y x +-=(m ∈N )为奇函数;(3)参数方程2221121t x t ty t ⎧-=⎪⎪+⎨⎪=⎪+⎩(t R ∈)所表示的曲线是圆;(4)函数221()sin ()32x f x x =-+,当2017x >时,1()2f x >恒成立;其中真 命题的个数为( )A. 4个B. 3个C. 2个D. 1个【解析】① cos y x =定义域为R ,arccos y x =的值域不为R ,不能互为反函数,错误; ② ∵m ∈N ,∴(1)m m +为偶数,∴21m m +-为奇数,∴21m m y x +-=为奇函数,正确; ③ 消参可得方程为221x y +=,1x ≠-,不是一个完整的圆,错误;④ 1()2f x >恒成立, 即22sin ()3x x >在(2017,)+∞上恒成立,因为2sin [0,1]x ∈且有周期性,2()(0,)3x ∈+∞,结 合图像性质可知,不能恒成立,错误. 正确的只有②,所以选D.六. 青浦区10. 已知函数22log ()0()30x a x f x x ax a x +≤⎧=⎨-+>⎩有三个不同的零点,则实数a 的取值范围是【解析】由题意,当0x ≤,2log ()y x a =+有一个零点,∴0a >且(0)0f ≥,∴1a ≥;当0x >时,23y x ax a =-+有两个不同的零点,2940a a ∆=->,49a >;综上,1a ≥. 11. 已知n S 为数列{}n a 的前n 项和,121a a ==,平面内三个不共线的向量OA 、OB 、OC 满足11()(1)n n n OC a a OA a OB -+=++-,2n ≥,*n N ∈,若A 、B 、C 在同一直线上,则2018S =【解析】由题意,A 、B 、C 在同一直线上,∴1111n n n a a a -+++-=,即11n n n a a a -++=, 121a a ==,30a =,451a a ==-,60a =,781a a ==,90a =,……,可知周期为6, 且每6项之和为0,∵201863362=⨯+,∴20181233602S a a =++⨯=.12. 已知函数()()(2)f x m x m x m =-++和()33x g x =-同时满足以下两个条件:① 对任意实数x 都有()0f x <或()0g x <;② 总存在0(,2)x ∈-∞-,使00()()0f x g x <成立;则m 的取值范围是【解析】由题意,根据① 对任意实数x 都有()0f x <或()0g x <,可得0m <,(1)0f <,解得30m -<<;根据② 总存在0(,2)x ∈-∞-,使00()()0f x g x <成立,可得(2)0f ->,解得2m <-;综上,(3,2)m ∈--16. 在平面直角坐标系xOy 中,已知两圆221:12C x y +=和222:14C x y +=,又点A 坐标为(3,1)-,M 、N 是1C 上的动点,Q 为2C 上的动点,则四边形AMQN 能构成矩形的个数为( )A. 0个B. 2个C. 4个D. 无数个【解析】数形结合,如图所示,选D七. 虹口区10. 设椭圆22143x y +=的左、右焦点分别为1F 、2F ,过焦点1F 的直线交椭圆于M 、N 两 点,若△2MNF 的内切圆的面积为π,则2MNF S ∆=【解析】设内切圆半径为r ,△2MNF 的周长为C ,根据题意,1r =,48C a ==,2142MNF S C r ∆=⨯⨯= 11. 在ABC ∆中,D 是BC 的中点,点列n P (*n N ∈)在直线AC 上,且满足1n n n n n P A a P B a P D +=⋅+,若11a =,则数列{}n a 的通项公式n a = 【解析】2n n n P B P C P D +=,11()222n n n n n n n n n n n P B P C a a P A a P B a a P B P C +++=⋅+⋅=+⋅+⋅, ∵n P A 与n P C 共线,但不与n P B 共线,∴102n n a a ++=,112n n a a +=-,11()2n n a -=-. 12. 设2()22x f x x a x b =+⋅+⋅,其中,a b N ∈,x R ∈,如果函数()y f x =与函数 (())y f f x =都有零点且它们的零点完全相同,则(,)a b 为【解析】设零点0x ,0()0f x =,0(())0(0)0f f x f =⇒=,∴0b =,∴2()2f x x ax =+, 当0a =,2()f x x =,4(())f f x x =,有唯一零点0x =,符合;当0a ≠,()(2)f x x x a =+, 有两个零点10x =和22x a =-,(())()[()2]0()0f f x f x f x a f x =+=⇒=和()2f x a =-, ∵()0f x =已满足有两个相同的零点10x =和22x a =-,∴方程()2f x a =-无解, 即2220x ax a ++=无解,248002a a a ∆=-<⇒<<,∴1a =;综上,(,)a b 为(0,0)或(1,0).16. 已知Rt ABC ∆中,90A ∠=︒,4AB =,6AC =,在三角形所在的平面内有两个动点M 和N ,满足||2AM =,MN NC =,则||BN 的取值范围是( )A. B. [4,6]C. D. 【解析】以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系,根据题意,M 点的轨迹为224x y +=,设N 点坐标为(,)m n ,∵N 为MC 中点,则M 点为(2,26)m n -,代入方程224x y +=可得到N 点轨迹22(3)1m n +-=,是一个以(0,3)为圆心,1为半径的圆,设圆心(0,3)为D ,可得5BD =,∴||BN 的最小值为14BD -=,最大值为16BD +=,选B.八. 杨浦区11. 已知函数()cos (sin )f x x x x =x R ∈,设0α>,若函数()()g x f x α=+ 为奇函数,则α的值为【解析】()cos (sin )sin(2)3f x x x x x π=+=+,()sin(22)3g x x πα=++为奇 函数,且0α>,∴23k παπ+=,26k ππα=-,k ∈*N . 12. 已知点C 、D 是椭圆2214x y +=上的两个动点,且点(0,2)M ,若MD MC λ=,则实 数λ的取值范围为【解析】数形结合,取极端情况.作CE ⊥y 轴,DF ⊥y 轴,3MD MF MB MC ME MA λ==≤=,同理13λ≥ 当D 点位于(0,1)-,C 点位于(0,1)时,λ等于3;当D 点位于(0,1),C 点位于(0,1)-时,λ等于13,∴1[,3]3λ∈. 16. 设A 、B 、C 、D 是半径为1的球面上的四个不同点,且满足0AB AC ⋅=,0AC AD ⋅=,0AD AB ⋅=,用1S 、2S 、3S 分别表示ABC ∆、ACD ∆、ABD ∆的面积,则123S S S ++的 最大值是( )A. 12B. 2C. 4D. 8 【解析】构造如图所示的长方体,根据题意,该长方体的体对角线长度等于球的直径,为2,设AD a =,AC b =,AB c =,∴2224a b c ++=,1232ab bc ac S S S ++++=≤ 22222222211[()()()][2()]244a b b c a c a b c +++++=++=, ∴选B.九. 松江区10. 已知函数()|2|1f x x x a =--有三个零点,则实数a 的取值范围为【解析】分类讨论,设()|2|g x x x a =-,可以看作()g x 与1y =有三个交点, 当0a <,()g x 图像如图所示,易知与1y =只有1个交点,不符;当0a >,()g x 图像如图所示,要与1y =有3个交点,需满足()14af >,即a >.11. 定义(,)a a b F a b b a b ≤⎧=⎨>⎩,已知函数()f x 、()g x 的定义域都是R ,则下列四个命题中 为真命题的是 (写出所有真命题的序号)① 若()f x 、()g x 都是奇函数,则函数((),())F f x g x 为奇函数;② 若()f x 、()g x 都是偶函数,则函数((),())F f x g x 为偶函数;③ 若()f x 、()g x 都是增函数,则函数((),())F f x g x 为增函数;④ 若()f x 、()g x 都是减函数,则函数((),())F f x g x 为减函数.【解析】①的反例如图所示,②③④为真命题12. 已知数列{}n a 的通项公式为2n n a q q =+(0q <,*n N ∈),若对任意*,m n N ∈都有 1(,6)6m n a a ∈,则实数q 的取值范围为 【解析】0q <,130a q =<,11(,6)6n a a ∈,∴0n a <,2220a q q =+<,1(,0)2q ∈-. ∴1a 最小,2a 最大,121(,6)6a a ∈,213662q q q <<+,解得14q >-,即1(,0)4q ∈-. 16. 已知曲线1:||2C y x -=与曲线222:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A. (,1][0,1)-∞-B. (1,1]-C. [1,1)-D. [1,0](1,)-+∞【解析】分类讨论,当0λ=,2y =±,符合题意;当0λ≠,22144x y λ+=. 当0λ>,表示椭圆,根据题意,44λ>,01λ<<;当0λ<,表示双曲线,渐近线斜率小于等于11≤,10λ-≤<,综上所述,[1,1)λ∈-,选C.(分析整理 谭峰)。
2018金山区高考数学一模试卷
上海市金山区2018届高三一模数学试卷2017.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 若全集U R =,集合{|0A x x =≤或2}x ≥,则U C A = 2. 不等式10x x-<的解为 3. 方程组321235x y x y -=⎧⎨+=⎩的增广矩阵是4. 若复数2z i =-(i 为虚数单位),则z z z ⋅+=5. 已知1F 、2F 是椭圆221259x y +=的两个焦点,P 是椭圆上一个动点,则12||||PF PF ⨯的最大值是6. 已知x 、y 满足10302x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则目标函数2k x y =+的最大值为7. 从一副混合的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽 得为黑桃”,则概率()P AB = (结果用最简分数表示)8. 已知点(2,3)A,点(B -,直线l 过点(1,0)P -,若直线l 与线段AB 相交,则直线l 的倾斜角的取值范围是9. 数列{}n a 的通项公式是12n n a -=(*n N ∈),数列{}n b 的通项公式是3n b n =(*n N ∈),令集合12{,,,,}n A a a a =⋅⋅⋅⋅⋅⋅,12{,,,,}n B b b b =⋅⋅⋅⋅⋅⋅,*n N ∈,将集合AB 中的所有元素按从小到大的顺序排列,构成的数列记为{}n c ,则数列{}n c 的前28项的和28S = 10. 向量i 、j 是平面直角坐标系x 轴、y 轴的基本单位向量,且|||2|5a i a j -+-=,则|2|a i +的取值范围为11. 某地区原有森林木材存有量为a ,且每年增长率为25%,因生产建设的需要,每年年末要砍伐的木材量为110a ,设n a 为第n 年末后该地区森林木材存量,则n a = 12. 关于函数||()|||1|x f x x =-,给出以下四个命题:①当0x >时,()y f x =单调递减且没有最值;②方程()f x kx b =+(0k ≠)一定有实数解;③如果方程()f x m =(m 为常数)有解,则解的个数一定是偶数;④()y f x =是偶函数且有最小值;其中假命题的序号是二. 选择题(本大题共4题,每题5分,共20分) 13. 若非空集合A 、B 、C 满足AB C =,且B 不是A 的子集,则( )A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”的必要条件14. 将如图所示的一个Rt ABC ∆(90C ∠=︒)绕斜边AB 旋转一周,所得到的几何体的主视图是下面四个图图形中的( )A B C D15.二项式10)x -(i 为虚数单位)的展开式中第8项是( )A. 7135x -B. 7135xC. 7D. 7-16. 给出下列四个命题:(1)函数arccos y x =(11x -≤≤)的反函数为cos y x =(x R ∈);(2)函数21m m y x +-=(m N ∈)为奇函数;(3)参数方程2221121t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩(t R ∈)所表示的 曲线是圆;(4)函数221()sin ()32x f x x =-+,当2017x >时,1()2f x >恒成立;其中真命题的个数为( )A. 4个B. 3个C. 2个D. 1个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,已知正方体1111ABCD A B C D -的棱长为2,E 、F 分别是1BB 、CD 的中点. (1)求三棱锥1F AA E -的体积; (2)求异面直线EF 与AB 所成角的大小. (结果用反三角函数值表示)18. 已知函数()2cos 21f x x x =+-(x R ∈). (1)写出函数()f x 的最小正周期以及单调递增区间;(2)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若()0f B =,32BA BC ⋅=, 且4a c +=,求b 的值.19. 设(,)P x y 为函数()f x =x D ∈,D 为定义域)图像上一个动点,O 为坐标原点,||OP 为点O 与点P 两点间的距离.(1)若3a =,[3,4]D =,求||OP 的最大值与最小值;(2)若[1,2]D =,是否存在实数a ,使得||OP 的最小值不小于2?若存在,请求出a 的 取值范围,若不存在,则说明理由.20. 给出定理:在圆锥曲线中,AB 是抛物线2:2y px Γ=(0p >)的一条弦,C 是AB 的 中点,过点C 且平行于x 轴的直线与抛物线的交点为D ,若A 、B 两点纵坐标之差的绝对 值||A B y y a -=(0a >),则ADB ∆的面积316ADBa S p∆=,试运用上述定理求解以下各题: (1)若2p =,AB 所在直线的方程为24y x =-,C 是AB 的中点,过C 且平行于x 轴的 直线与抛物线Γ的交点为D ,求ADB S ∆;(2)已知AB 是抛物线2:2y px Γ=(0p >)的一条弦,C 是AB 的中点,过点C 且平行于x 轴的直线与抛物线的交点为D ,E 、F 分别为AD 和BD 的中点,过E 、F 且平行于x 轴的直线与抛物线2:2y px Γ=(0p >)分别交于点M 、N ,若A 、B 两点纵坐标之差的绝对值||A B y y a -=(0a >),求AMD S ∆和BND S ∆;(3)请你在上述问题的启发下,设计一种方法求抛物线:22y px =(0p >)与弦AB 围成的“弓形”的面积,并求出相应面积.21. 在数列{}n a 中存在三项,按一定次序排列构成等比数列,则称{}n a 为“等比源数列”. (1)已知数列{}n a 中,12a =,121n n a a +=-,求数列{}n a 的通项公式; (2)在(1)的结论下,试判断数列{}n a 是否为“等比源数列”,并证明你的结论; (3)已知数列{}n a 为等差数列,且10a ≠,n a Z ∈(*n N ∈),求证:{}n a 为“等比源数列”.参考答案一. 填空题1. (0,2)2. (0,1)3. 321235-⎛⎫⎪⎝⎭4. 7i -5. 256. 77. 7268. 2[,]43ππ 9. 820 10.11. 352()545n n a a a =+ 12. ①③二. 选择题13. B 14. B 15. C 16. D三. 解答题17. 解:(1)因为△AA 1E 的面积为S =2,……………………………………………2分 点F 到平面ABB 1A 1的距离即h=2,……………………………………………………4分 所以E AA F V 1-=h S ⋅31=34;………………………………………………………………7分 (2)连结EC ,可知∠EFC 为异面直线EF 与AB 所成角,…………………………10分 在Rt △EFC 中,EC =5,FC =1,所以tan ∠EFC =5,…………………………13分 即∠EFC =arctan 5,故异面直线EF 与AB 所成角的大小为arctan 5.…………14分 18.解:(1)f (x )=2sin(2x+6π)–1,………………………………………………………2分 所以,f (x )的最小正周期T = π,………………………………………………………4分f (x )的单调递增区间是[k π–3π,k π+6π],k ∈Z ;………………………………………6分 (2) f (B )=2sin(2B +6π)–1=0,故sin(2B +6π)=21,………………………………………8分所以,2B +6π=2k π+6π或2B +6π=2k π+65π,k ∈Z ,因为B 是三角形内角,所以B =3π;…………………………………………………10分而BC BA ⋅=ac cos B =23,所以,ac =3,又a+c =4,所以a 2+c 2=10,………………12分所以,b 2=a 2+c 2–2ac cos B =7,所以b=7.…………………………………………14分19.解:(1) 当a =3,D =[3,4], |OP |=]4,3[,3)1(363)3(2222∈--=-=-+x x x x x x x ,……………………4分3||min =OP ,62||max =OP ; ………………………………………………………6分(2) ]2,1[,2||2∈-+=x a x x x OP ,因为|OP |的最小值不小于2,即x 2+2x |x –a |≥4对于x ∈[1,2]恒成立,……………………………………………………………………8分 当a ≥2时,a ≥)4(21x x +对于x ∈[1,2]恒成立,所以a ≥25,………………………10分 当1≤a <2时,取x=a 即可知,显然不成立,………………………………………11分当a <1时,a ≤)43(21x x -对于x ∈[1,2]恒成立,所以a ≤21-,……………………13分 综上知,a ≤21-或a ≥25………………………………………………………………14分(2)或解:]2,1[,2||2∈-+=x a x x x OP ,…………………………………………7分当a ≥2时, 222)(2||a a x ax x OP +--=+-=在[1,2]为增函数,12||min -=a OP ≥2,所以a ≥25,…………………………………………………9分 当1≤a <2时,取x=a ,|OP |=a 不可能大于或等于2,………………………………11分 当a <1时,22231)3(323||a a x ax x OP --=-=在[1,2]为增函数, a OP 23||min -=≥2 ,a ≤21-……………………………………………………13分综上知,a ≤21-或a ≥25………………………………………………………………14分20.解:(1) 联立直线与抛物线方程⎩⎨⎧=-=xy x y 4422,解得|y A –y B |=6,………………2分S △ADB =827;……………………………………………………………………………4分(2)设点D 、M 、N 的纵坐标分别为y D 、y M 、y N ,易知AD 为抛物线Γ:y 2=2px (p >0)的一条弦, M 是AD 的中点,且A 、D 两点纵坐标之差为定值,|y A –y D |=2a(a >0),……6分 由已知的结论,得S △AMD =pap a 168116)2(33⋅=,…………………………………………8分同理可得S △BND =pa p a 168116)2(33⋅=;……………………………………………………9分(3) 将(2)的结果看作是一次操作,操作继续下去,取每段新弦的中点作平行于x 轴的直线与 抛物线得到交点,并与弦端点连接,计算得到新三角形面积。
(11套)2018年上海市 含所有区 高考数学一模试卷 汇总(打包下载)
(11套)2018年上海市含所有区高考数学一模试卷汇总2018年上海市崇明区高考数学一模试卷一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a},若A∪B={1,2,3,5},则a=.2.(4分)抛物线y2=4x的焦点坐标为.3.(4分)不等式<0的解是.4.(4分)若复数z满足iz=1+i(i为虚数单位),则z=.5.(4分)在代数式(x﹣)7的展开式中,一次项的系数是.(用数字作答)6.(4分)若函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是π,则ω=.7.(5分)若函数f(x)=x a的反函数的图象经过点(,),则a=.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm3,则该几何体的侧面积为cm2.9.(5分)已知函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,且f(2)=2,则a=.10.(5分)若无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,且=a,则a=.S11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有 1 名女生,共有种不同的选法.(用数字作答)12.(5分)在ABC中,BC边上的中垂线分别交BC,AC于点D,E.若•=6,||=2,则AC=.二、选择题(本大题共有4题,满分20分)13.(5分)展开式为ad﹣bc的行列式是()A.B.C.D.14.(5分)设a,b∈R,若a>b,则()A.<B.lga>lgb C.sin a>sin b D.2a>2b15.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件16.(5分)直线x=2与双曲线﹣y2=1的渐近线交于A,B两点,设P为双曲线上任一点,若=a+b(a,b∈R,O为坐标原点),则下列不等式恒成立的是()A.a2+b2≥1 B.|ab|≥1 C.|a+b|≥1 D.|a﹣b|≥2三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.18.(14分)已知f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最大值及该函数取得最大值时x的值;(2)在△ABC 中,a,b,c分别是角A,B,C所对的边,若a=,b=,且f()=,求边c的值.19.(14分)2016 年崇明区政府投资8 千万元启动休闲体育新乡村旅游项目.规划从2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记2016 年为第 1 年,f (n)为第 1 年至此后第n (n∈N*)年的累计利润(注:含第n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n)为正值时,认为该项目赢利.(1)试求 f (n)的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.20.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.21.(18分)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,则称函数f(x)在其定义域D上是“k﹣利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)﹣f(x2)|≤1.2018年上海市崇明区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a},若A∪B={1,2,3,5},则a=3.【解答】解:∵集合A={1,2,5},B={2,a},A∪B={1,2,3,5},∴a=3.故答案为:3.2.(4分)抛物线y2=4x的焦点坐标为(1,0).【解答】解:∵抛物线y2=4x是焦点在x轴正半轴的标准方程,p=2∴焦点坐标为:(1,0)故答案为:(1,0)3.(4分)不等式<0的解是(﹣1,0).【解答】解:不等式<0,即x(x+1)<0,求得﹣1<x<0,故答案为:(﹣1,0).4.(4分)若复数z满足iz=1+i(i为虚数单位),则z=1﹣i.【解答】解:由iz=1+i,得z==1﹣i故答案为:1﹣i.5.(4分)在代数式(x﹣)7的展开式中,一次项的系数是21.(用数字作答)【解答】解:(x﹣)7的展开式的通项为=,由7﹣3r=1,得r=2,∴一次项的系数是.故答案为:21.6.(4分)若函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是π,则ω=2.【解答】解:根据正弦函数的图象与性质,知函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是T==π,解得ω=2.故答案为:2.7.(5分)若函数f(x)=x a的反函数的图象经过点(,),则a=.【解答】解:若函数f(x)=x a的反函数的图象经过点(,),则:(,)满足f(x)=xα,所以:,解得:,故答案为:.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm3,则该几何体的侧面积为18πcm2.【解答】解:将一个正方形绕着它的一边所在的直线旋转一周,所得几何体是圆柱体,设正方形的边长为acm,则圆柱体的体积为V=πa2•a=27π,解得a=3cm;∴该圆柱的侧面积为S=2π×3×3=18πcm2.故答案为:18π.9.(5分)已知函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,且f(2)=2,则a=﹣.【解答】解:∵函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,∴x>0时,﹣f(x)=2﹣x﹣a(﹣x),∴f(x)=﹣2﹣x﹣ax,∵f(2)=2,∴f(2)=﹣2﹣2﹣2a=2,解得a=﹣.故答案为:﹣.10.(5分)若无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,且=a,则a=2.S【解答】解:无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,=a,且S可得=a,即有=a,即为2a2﹣5a+2=0,解得a=2或,由题意可得0<|q|<1,即有0<|a﹣|<1,检验a=2成立;a=不成立.故答案为:2.11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有 1 名女生,共有780种不同的选法.(用数字作答)【解答】解:根据题意,要求服务队中至少有 1 名女生,则分3种情况讨论:①、选出志愿者服务队的4人中有1名女生,有C53C31=30种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,②、选出志愿者服务队的4人中有2名女生,有C52C32=30种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,③、选出志愿者服务队的4人中有3名女生,有C51C33=5种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有5×12=60种不同的选法,则一共有360+360+60=780;故答案为:780.12.(5分)在ABC中,BC边上的中垂线分别交BC,AC于点D,E.若•=6,||=2,则AC=4.【解答】解:建立平面直角坐标系如图所示,设B(﹣a,0),C(a,0),E(0,b),∠ABC=α,由||=2,知A(﹣a+2cosα,2sinα),∴=(a﹣2cosα,b﹣2sinα),=(2a,0),∴•=2a(a﹣2cosα)+0=2a2﹣4acosα=6,∴a2﹣2acosα=3;又=(2a﹣2cosα,﹣2sinα),∴=(2a﹣2cosα)2+(﹣2sinα)2=4a2﹣8acosα+4=4(a2﹣2acosα)+4=4×3+4=16,∴||=4,即AC=4.故答案为:4.二、选择题(本大题共有4题,满分20分)13.(5分)展开式为ad﹣bc的行列式是()A.B.C.D.【解答】解:根据叫做二阶行列式,它的算法是:ad﹣bc,由题意得,=ad﹣bc.故选B.14.(5分)设a,b∈R,若a>b,则()A.<B.lga>lgb C.sin a>sin b D.2a>2b【解答】解:由a>b,利用指数函数的单调性可得:2a>2b.再利用不等式的性质、对数函数的定义域与单调性、三角函数的单调性即可判断出A,B,C不正确.故选:D.15.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C16.(5分)直线x=2与双曲线﹣y2=1的渐近线交于A,B两点,设P为双曲线上任一点,若=a+b(a,b∈R,O为坐标原点),则下列不等式恒成立的是()A.a2+b2≥1 B.|ab|≥1 C.|a+b|≥1 D.|a﹣b|≥2【解答】解:双曲线﹣y2=1的渐近线为:y=±x.把x=2代入上述方程可得:y=±1.不妨取A(2,1),B(2,﹣1).=a+b=(2a+2b,a﹣b).代入双曲线方程可得:﹣(a﹣b)2=1,化为ab=.∴=ab,化为:|a+b|≥1.故选:C.三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.18.(14分)已知f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最大值及该函数取得最大值时x的值;(2)在△ABC 中,a,b,c分别是角A,B,C所对的边,若a=,b=,且f()=,求边c的值.【解答】解:f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=2sin(2x+)(1)当2x+=时,即x=(k∈Z),f(x)取得最大值为2;(2)由f()=,即2sin(A+)=可得sin(A+)=∵0<A<π∴<A<∴A=或∴A=或当A=时,cosA==∵a=,b=,解得:c=4当A=时,cosA==0∵a=,b=,解得:c=2.19.(14分)2016 年崇明区政府投资8 千万元启动休闲体育新乡村旅游项目.规划从2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记2016 年为第 1 年,f (n)为第 1 年至此后第n (n∈N*)年的累计利润(注:含第n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n)为正值时,认为该项目赢利.(1)试求 f (n)的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.【解答】解:(1)由题意知,第1年至此后第n(n∈N*)年的累计投入为8+2(n﹣1)=2n+6(千万元),第1年至此后第n(n∈N*)年的累计净收入为+×+×+…+×=(千万元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千万元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣4],∴当n≤3时,f(n+1)﹣f(n)<0,故当n≤4时,f(n)递减;当n≥4时,f(n+1)﹣f(n)>0,故当n≥4时,f(n)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利;方法二:设f(x)=﹣2x﹣7(x≥1),则f′(x)=,令f'(x)=0,得=≈=5,∴x≈4.从而当x∈[1,4)时,f'(x)<0,f(x)递减;当x∈(4,+∞)时,f'(x)>0,f(x)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利.20.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.【解答】解:(1)∵M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,∴△MF1F2为等腰直角三角形,∴OF1=OM,当a>1时,=1,解得a=,当0<a<1时,=a,解得a=,(2)当k=1时,y=x+m,设A(x1,y1),(x2,y2),由,即(1+a2)x2+2a2mx+a2m2﹣a2=0,∴x1+x2=﹣,x1x2=,∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2=,∵△OAB是以O为直角顶点的直角三角形,∴•=0,∴x1x2+y1y2=0,∴+=0,∴a2m2﹣a2+m2﹣a2=0∴m2(a2+1)=2a2,(3)证明:当a=2时,x2+4y2=4,设A(x1,y1),(x2,y2),∵k OA•k OB=﹣,∴•=﹣,∴x1x2=﹣4y1y2,由,整理得,(1+4k2)x2+8kmx+4m2﹣4=0.∴x1+x2=,x1x2=,∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=++m2=,∴=﹣4×,∴2m2﹣4k2=1,∴|AB|=•=•=2•=∵O到直线y=kx+m的距离d==,=|AB|d==•==1∴S△OAB21.(18分)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,则称函数f(x)在其定义域D上是“k﹣利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)﹣f(x2)|≤1.【解答】解:(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x1,x2(x1≠x2),均有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,不妨设x1>x2,则k≥=恒成立.∵1≤x2<x1≤4,∴<<,∴k的最小值为.(2)f(x)=log2x的定义域为(0,+∞),令x1=,x2=,则f()﹣f()=log2﹣log2=﹣1﹣(﹣2)=1,而2|x1﹣x2|=,∴f(x1)﹣f(x2)>2|x1﹣x2|,∴函数f(x)=log2x 不是“2﹣利普希兹条件函数”.证明:(3)设f(x)的最大值为M,最小值为m,在一个周期[0,2]内f(a)=M,f(b)=m,则|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b)≤|a﹣b|.若|a﹣b|≤1,显然有|f(x1)﹣f(x2)|≤|a﹣b|≤1.若|a﹣b|>1,不妨设a>b,则0<b+2﹣a<1,∴|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b+2)≤|a﹣b﹣2|<1.综上,|f(x1)﹣f(x2)|≤1.2018年上海市虹口区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)函数f(x)=lg(2﹣x)定义域为.2.(4分)已知f(x)是定义在R上的奇函数,则f(﹣1)+f(0)+f(1)=.3.(4分)首项和公比均为的等比数列{a n},S n是它的前n项和,则=.4.(4分)在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,如果a:b:c=2:3:4,那么cosC=.5.(4分)已知复数z=a+bi(a,b∈R)满足|z|=1,则a•b的范围是.6.(4分)某学生要从物理、化学、生物、政治、历史、地理这六门学科中选三门参加等级考,要求是物理、化学、生物这三门至少要选一门,政治、历史、地理这三门也至少要选一门,则该生的可能选法总数是.7.(5分)已知M、N是三棱锥P﹣ABC的棱AB、PC的中点,记三棱锥P﹣ABC 的体积为V1,三棱锥N﹣MBC的体积为V2,则等于.8.(5分)在平面直角坐标系中,双曲线的一个顶点与抛物线y2=12x的焦点重合,则双曲线的两条渐近线的方程为.9.(5分)已知y=sinx和y=cosx的图象的连续的三个交点A、B、C构成三角形△ABC,则△ABC的面积等于.10.(5分)设椭圆的左、右焦点分别为F1、F2,过焦点F1的直线交椭圆于M、N两点,若△MNF 2的内切圆的面积为π,则=.11.(5分)在△ABC中,D是BC的中点,点列P n(n∈N*)在线段AC上,且满足,若a1=1,则数列{a n}的通项公式a n=.12.(5分)设f(x)=x2+2a•x+b•2x,其中a,b∈N,x∈R,如果函数y=f(x)与函数y=f(f(x))都有零点且它们的零点完全相同,则(a,b)为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)异面直线a和b所成的角为θ,则θ的范围是()A.B.(0,π) C.D.(0,π]14.(5分)命题:“若x2=1,则x=1”的逆否命题为()A.若x≠1,则x≠1或x≠﹣1 B.若x=1,则x=1或x=﹣1C.若x≠1,则x≠1且x≠﹣1 D.若x=1,则x=1且x=﹣115.(5分)已知函数,则f(1)+f(2)+f(3)+…+f(2017)=()A.2017 B.1513 C.D.16.(5分)已知Rt△ABC中,∠A=90°,AB=4,AC=6,在三角形所在的平面内有两个动点M和N,满足,,则的取值范围是()A.B.[4,6]C.D.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在三棱锥P﹣ABC中,PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点.(1)求证:PM⊥平面ABC;(2)求直线PB和平面ABC所成的角的大小.18.(14分)已知函数,其中x∈R,ω>0,且此函数的最小正周期等于π.(1)求ω的值,并写出此函数的单调递增区间;(2)求此函数在的最大值和最小值.19.(14分)如图,阴影部分为古建筑群所在地,其形状是一个长为2km,宽为1km的矩形,矩形两边AB、AD紧靠两条互相垂直的路上,现要过点C修一条直线的路l,这条路不能穿过古建筑群,且与另两条路交于点P和Q.(1)设AQ=x(km),将△APQ的面积S表示为x的函数;(2)求△APQ的面积S(km)的最小值.20.(16分)已知平面内的定点F到定直线l的距离等于p(p>0),动圆M过点F且与直线l相切,记圆心M的轨迹为曲线C,在曲线C上任取一点A,过A 作l的垂线,垂足为E.(1)求曲线C的轨迹方程;(2)记点A到直线l的距离为d,且,求∠EAF的取值范围;(3)判断∠EAF的平分线所在的直线与曲线的交点个数,并说明理由.21.(18分)已知无穷数列{a n}的各项均为正数,其前n项和为S n,a1=4.(1)如果a2=2,且对于一切正整数n,均有,求S n;(2)如果对于一切正整数n,均有a n•a n+1=S n,求S n;(3)如果对于一切正整数n,均有a n+a n=3S n,证明:a3n﹣1能被8整除.+12018年上海市虹口区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)函数f(x)=lg(2﹣x)定义域为(﹣∞,2).【解答】解:要使函数有意义,可得2﹣x>0,即x<2.函数f(x)=lg(2﹣x)定义域为:(﹣∞,2).故答案为:(﹣∞,2).2.(4分)已知f(x)是定义在R上的奇函数,则f(﹣1)+f(0)+f(1)=0.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣1)=﹣f(1),f(0)=0,即f(﹣1)+f(0)+f(1)=0,故答案为:0.3.(4分)首项和公比均为的等比数列{a n},S n是它的前n项和,则= 1.【解答】解:根据题意,等比数列{a n}的首项和公比均为,则其前n项和S n==1﹣()n,则=1;故答案为:1.4.(4分)在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,如果a:b:c=2:3:4,那么cosC=﹣.【解答】解:因为a:b:c=2:3:4,所以设a=2k,b=3k,c=4k,则根据余弦定理得:cosC===﹣.故答案为:﹣5.(4分)已知复数z=a+bi(a,b∈R)满足|z|=1,则a•b的范围是[,] .【解答】解:∵z=a+bi(a,b∈R),且|z|=1,∴,即a2+b2=1,令a=cosθ,b=sinθ,则ab=cosθ•sinθ=,∴ab∈[,].故答案为:.6.(4分)某学生要从物理、化学、生物、政治、历史、地理这六门学科中选三门参加等级考,要求是物理、化学、生物这三门至少要选一门,政治、历史、地理这三门也至少要选一门,则该生的可能选法总数是18.【解答】解:根据题意,要求是物理、化学、生物这三门至少要选一门,政治、历史、地理这三门也至少要选一门,分2种情况讨论:①、从物理、化学、生物这三门中选1门,政治、历史、地理这三门选2门,有C31C32=9种选法,②、从物理、化学、生物这三门中选2门,政治、历史、地理这三门选1门,有C31C32=9种选法,则一共有9+9=18种选法;故答案为:187.(5分)已知M、N是三棱锥P﹣ABC的棱AB、PC的中点,记三棱锥P﹣ABC的体积为V1,三棱锥N﹣MBC的体积为V2,则等于.【解答】解:如图,设三棱锥P﹣ABC的底面积为S,高为h,∵M是AB的中点,∴,∵N是PC的中点,∴三棱锥N﹣MBC的高为,则,,∴=.故答案为:.8.(5分)在平面直角坐标系中,双曲线的一个顶点与抛物线y2=12x的焦点重合,则双曲线的两条渐近线的方程为.【解答】解:根据题意,抛物线y2=12x的焦点为(3,0),若双曲线的一个顶点与抛物线y2=12x的焦点重合,则双曲线的顶点坐标为(±3,0),则有a2=9,则双曲线的方程为:﹣y2=1,双曲线的焦点在x轴上,则其渐近线方程为故答案为:9.(5分)已知y=sinx和y=cosx的图象的连续的三个交点A、B、C构成三角形△ABC,则△ABC的面积等于.【解答】解:由题意正余弦函数的图象可得:y=sinx和y=cosx的图象的连续的三个交点A、B、C构成三角形△ABC是等腰三角形,∵底边长为一个周期T=2π,高为,∴△ABC的面积=2=,故答案为:.10.(5分)设椭圆的左、右焦点分别为F1、F2,过焦点F1的直线交椭圆于M、N两点,若△MNF 2的内切圆的面积为π,则=4.【解答】解:∵椭圆+的左右焦点分别为F1,F2,a=2,过焦点F1的直线交椭圆于M(x1,y1),N(x2,y2)两点,△MNF2的内切圆的面积为π,∴△MNF2内切圆半径r=1.∴△MNF2面积S=×1×(MN+MF2+MF2)=2a=4,故答案为:411.(5分)在△ABC中,D是BC的中点,点列P n(n∈N*)在线段AC上,且满足,若a1=1,则数列{a n}的通项公式a n=.【解答】解:如图所示,∵D是BC的中点,∴=+=+,又=+,,∴+=+a n(+),)+,化为:=(1﹣a n﹣a n+1∵点列P n(n∈N*)在线段AC上,+=1,∴1﹣a n﹣a n+1化为:a n=﹣,又a1=1,+1则数列{a n}是等比数列,首项为1,公比为﹣.∴a n=.故答案为:.12.(5分)设f(x)=x2+2a•x+b•2x,其中a,b∈N,x∈R,如果函数y=f(x)与函数y=f(f(x))都有零点且它们的零点完全相同,则(a,b)为(0,0)或(1,0).【解答】解:根据题意,函数y=f(x)的零点为方程x2+2a•x+b•2x=0的根,如果函数y=f(x)与函数y=f(f(x))的零点完全相同,则有f(x)=x,即x2+2a•x+b•2x=x,方程x2+2a•x+b•2x=x的根就是函数y=f(x)与函数y=f(f(x))的零点,则有,解可得x=0,即x2+2a•x+b•2x=0的1个根为x=0,分析可得b=0,则f(x)=x2+2a•x,解可得x1=0或x2=﹣2a,f(f(x))=(x2+2a•x)2+2a(x2+2a•x),若函数y=f(x)与函数y=f(f(x))的零点完全相同,分析可得a=0或a=1,则(a,b)为(0,0)或(1,0);故答案为(0,0)或(1,0).二.选择题(本大题共4题,每题5分,共20分)13.(5分)异面直线a和b所成的角为θ,则θ的范围是()A.B.(0,π) C.D.(0,π]【解答】解:∵异面直线a和b所成的角为θ,∴θ的范围是(0,].故选:C.14.(5分)命题:“若x2=1,则x=1”的逆否命题为()A.若x≠1,则x≠1或x≠﹣1 B.若x=1,则x=1或x=﹣1C.若x≠1,则x≠1且x≠﹣1 D.若x=1,则x=1且x=﹣1【解答】解:命题:“若x2=1,则x=1”的逆否命题为“若x≠1,则x2≠1”;即“若x≠1,则x≠1且x≠﹣1”.故选:C.15.(5分)已知函数,则f(1)+f(2)+f(3)+…+f(2017)=()A.2017 B.1513 C.D.【解答】解:∵函数,∴f(1)+f(2)+f(3)+…+f(2017)=1009×f(﹣1)+1008×f(0)=1009×2﹣1+1008×20=.故选:D.16.(5分)已知Rt△ABC中,∠A=90°,AB=4,AC=6,在三角形所在的平面内有两个动点M和N,满足,,则的取值范围是()A.B.[4,6]C.D.【解答】解:以AB,AC为坐标轴建立坐标系,则B(4,0),C(0,6),∵||=2,∴M的轨迹是以A为圆心,以2为半径的圆.∵,∴N是MC的中点.设M(2cosα,2sinα),则N(cosα,sinα+3),∴=(cosα﹣4,sinα+3),∴||2=(cosα﹣4)2+(sinα+3)2=6sinα﹣8cosα+26=10sin(α﹣φ)+26,∴当sin(α﹣φ)=﹣1时,||取得最小值=4,当sin(α﹣φ)=1时,||取得最大值=6.故选B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在三棱锥P﹣ABC中,PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点.(1)求证:PM⊥平面ABC;(2)求直线PB和平面ABC所成的角的大小.【解答】证明:(1)在三棱锥P﹣ABC中,∵PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点.∴PM⊥AC,AB⊥平面PAC,∴PM⊥AB,∵AB∩AC=A,∴PM⊥平面ABC.解:(2)连结BM,∵PM⊥平面ABC,∴∠PBM是直线PB和平面ABC所成的角,∵PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点,∴PM==,BM===,∴tan∠PBM===,∴.∴直线PB和平面ABC所成的角为arctan.18.(14分)已知函数,其中x∈R,ω>0,且此函数的最小正周期等于π.(1)求ω的值,并写出此函数的单调递增区间;(2)求此函数在的最大值和最小值.【解答】解:函数=sinωx+cosωx=2sin (ωx),(1)∵函数的最小正周期等于π.即∴ω=2.可得f(x)=2sin(2x),由2x,k∈Z得:≤x≤故得函数的单调递增区间为[,],k∈Z(2)∵f(x)=2sin(2x),当,(2x)∈[]∴当2x=时,函数f(x)取得最大值为2.当2x=时,函数f(x)取得最小值为﹣1.19.(14分)如图,阴影部分为古建筑群所在地,其形状是一个长为2km,宽为1km的矩形,矩形两边AB、AD紧靠两条互相垂直的路上,现要过点C修一条直线的路l,这条路不能穿过古建筑群,且与另两条路交于点P和Q.(1)设AQ=x(km),将△APQ的面积S表示为x的函数;(2)求△APQ的面积S(km)的最小值.【解答】解:(1)设AQ=x,则由得:即AP=故S==(x>1);(2)由(1)得:S′=(x>1);当x∈(1,2)时,S′<0,当x∈(2,+∞)时,S′>0,故x=2时,S min=4.20.(16分)已知平面内的定点F到定直线l的距离等于p(p>0),动圆M过点F且与直线l相切,记圆心M的轨迹为曲线C,在曲线C上任取一点A,过A 作l的垂线,垂足为E.(1)求曲线C的轨迹方程;(2)记点A到直线l的距离为d,且,求∠EAF的取值范围;(3)判断∠EAF的平分线所在的直线与曲线的交点个数,并说明理由.【解答】解:(1)如图,以FK的中点为坐标原点O,FK所在的直线为x轴,过O的垂线为y轴建立直角坐标系,即有F(,0),直线l:x=﹣,动圆M过点F且与直线l相切,可得|AE|=|AF|,由抛物线的定义可得曲线C的轨迹为F为焦点、直线l为准线的抛物线,可得方程为y2=2px;(2)点A到直线l的距离为d,可得|AE|=|AF|=d,且,设A(x0,y0),可得y02=2px0,即有d=x0+,则x0=d﹣,即有|EF|2=p2+y02=p2+2p(d﹣)=2pd,在△EAF中,cos∠EAF==1﹣,可得﹣≤cos∠EAF≤,可得arccos≤π﹣arccos,则∠EAF的取值范围是[arccos];(3)∠EAF的平分线所在的直线与曲线的交点个数为1.设A(x0,y0),可得y02=2px0,当A与O重合时,显然一个交点;当A不与O重合,由∠EAF的平分线交x轴于M,连接EM,可得∠AMF=∠MAF,即有|MF|=|AF|=d,四边形AEMF为菱形,EF垂直平分AM,可得∠AMF+∠EFM=90°,tan∠AMF=cot∠EFM==,可设y0>0,则直线AM的方程为y﹣y0=(x﹣x0),则y0y﹣y02=px﹣px0,化为y0y=px+px0,代入抛物线的方程y2=2px,消去x可得,y2﹣2y0y+2px0=0,即为(y﹣y0)2=0,可得y=y0,x=x0,即∠EAF的平分线所在的直线与曲线的交点个数为1.21.(18分)已知无穷数列{a n}的各项均为正数,其前n项和为S n,a1=4.(1)如果a2=2,且对于一切正整数n,均有,求S n;(2)如果对于一切正整数n,均有a n•a n+1=S n,求S n;(3)如果对于一切正整数n,均有a n+a n=3S n,证明:a3n﹣1能被8整除.+1【解答】解:(1)∵无穷数列{a n}的各项均为正数,其前n项和为S n,a1=4.a2=2,且对于一切正整数n,均有,∴==1,=,由此猜想=23﹣n.再利用数学归纳法证明:①当n=1时,=4,成立.②假设n=k时,成立,即,则a k+1====2(6﹣2k)﹣(4﹣k)=22﹣k=23﹣(k+1).由①②得,∴{a n}是首项为4,公比为的等比数列,∴S n==8(1﹣).(2)∵对于一切正整数n,均有a n•a n+1=S n,∴S n=a n a n+1,S n﹣1=a n﹣1a n,∴a n=a n(a n+1﹣a n﹣1),∴a n+1﹣a n﹣1=1.a1=4,由a n•a n+1=S n,得a2=1,a3=5,a4=3,…∴当n为偶数时,+===.当n为奇数时,S n=++==.证明:(3)∵对于一切正整数n,均有a n+a n+1=3S n,∴a n+a n+1=3S n,a n﹣1+a n=3S n﹣1,∴a n+1﹣a n﹣1=3a n,a1+a2=3a1,a2=2a1=8,能被8整除,a3﹣a1=3a2,a3=28,假设a3k﹣1=8m,m∈N*.=3a2k+1+a3k=3(3a3k+a3k﹣1)+a3k则a3k+2=10a3k+a3k﹣1=40p+24q,p,q∈N*能被8整除,综上,a3n能被8整除.﹣12018年上海市黄浦区高考数学一模试卷一、填空题(本大题共有12题,满分36分.其中第1~6题每题满分36分,第7~12题每题满分36分)1.(3分)已知全集U=R,集合,则(∁U B)∩A=.2.(3分)函数的定义域是.3.(3分)若复数z满足(i为虚数单位),则z=.4.(3分)已知sin(α+)=,α∈(﹣,0),则tanα=.5.(3分)若无穷等比数列中任意一项均等于其之后所有项的和,则其公比为.6.(3分)若函数y=a+sinx在区间[π,2π]上有且只有一个零点,则a=.7.(3分)已知向量=(x,y)(x,y∈R),=(1,2),若x2+y2=1,则|﹣|的最小值为.8.(3分)已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g(x)是y=f(x)的反函数,则g(﹣3)=.9.(3分)已知m,n,α,β∈R,m<n,α<β,若α,β是函数f(x)=2(x﹣m)(x﹣n)﹣7的零点,则m,n,α,β四个数按从小到大的顺序是(用符号“<“连接起来).10.(3分)已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.11.(3分)已知x∈R,定义:A(x)表示不小于x的最小整数.如,A(﹣1.1)=﹣1.若A(2x•A(x))=5,则正实数x的取值范围是.12.(3分)已知点M(m,0),m>0和抛物线C:y2=4x.过C的焦点F的直线与C交于A,B两点,若=2,且||=||,则m=.二、选择题(本大题共有4题,满分12分.)13.(3分)若x∈R,则“x>1”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件14.(3分)已知向量,则下列能使成立的一组向量是()A.B.C.D.15.(3分)一个算法的程序框图如图所示,则该程序运行后输出的值是()A.4 B.5 C.6 D.716.(3分)已知a1,a2,a3,a4是各项均为正数的等差数列,其公差d大于零,若线段l1,l2,l3,l4的长分别为a1,a2,a3,a4,则()A.对任意的d,均存在以l1,l2,l3为三边的三角形B.对任意的d,均不存在以为l1,l2,l3三边的三角形C.对任意的d,均存在以l2,l3,l4为三边的三角形D.对任意的d,均不存在以l2,l3,l4为三边的三角形三、解答题(本大题共有5题,满分74分.)17.(12分)在长方体ABCD﹣A1B1C1D1中,AB=AA1=4,BC=3,E,F分别是所在棱AB,BC的中点,点P是棱A1B1上的动点,联结EF,AC1.如图所示.(1)求异面直线EF,AC1所成角的大小(用反三角函数值表示);(2)求以E,F,A,P为顶点的三棱锥的体积.18.(12分)如图,已知点A是单位圆上一点,且位于第一象限,以x轴的正半轴为始边,OA为终边的角设为α,将OA绕坐标原点逆时针旋转至OB.(1)用α表示A,B两点的坐标;(2)M为x轴上异于O的点,若MA⊥MB,求点M横坐标的取值范围.19.(14分)已知函数g(x)=,x∈R,函数y=f(x)是函数y=g(x)的反函数.(1)求函数y=f(x)的解析式,并写出定义域D;(2)设h(x)=,若函数y=h(x)在区间(0,1)内的图象是不间断的光滑曲线,求证:函数y=h(x)在区间(﹣1,0)内必有唯一的零点(假设为t),且﹣1.20.(18分)(理科)定义:若各项为正实数的数列{a n}满足,则称数列{a n}为“算术平方根递推数列”.,x n)在二次函数f(x)=2x2+2x 已知数列{x n}满足,且,点(x n+1的图象上.(1)试判断数列{2x n+1}(n∈N*)是否为算术平方根递推数列?若是,请说明你的理由;(2)记y n=lg(2x n+1)(n∈N*),求证:数列{y n}是等比数列,并求出通项公式y n;}中依据某种顺序自左至右取出其中的项,(3)从数列{y把这些项重新组成一个新数列{z n}:.若数列{z n}是首项为、公比为的无穷等比数列,且数列{z n}各项的和为,求正整数k、m的值.21.(18分)已知椭圆Γ:+=1(a>b>0),过原点的两条直线l1和l2分别与Γ交于点A、B和C、D,得到平行四边形ACBD.(1)当ACBD为正方形时,求该正方形的面积S;(2)若直线l1和l2关于y轴对称,Γ上任意一点P到l1和l2的距离分别为d1和d2,当d12+d22为定值时,求此时直线l1和l2的斜率及该定值.(3)当ACBD为菱形,且圆x2+y2=1内切于菱形ACBD时,求a,b满足的关系式.2018年上海市黄浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分36分.其中第1~6题每题满分36分,第7~12题每题满分36分)1.(3分)已知全集U=R,集合,则(∁U B)∩A= {x|﹣1<x≤} .【解答】解:A={x|﹣1<x<1},∁U B={x|x≤},则(∁U B)∩A={x|﹣1<x≤},故答案为:{x|﹣1<x≤},2.(3分)函数的定义域是(1,+∞).【解答】解:要使函数有意义,需满足解得x>1故答案为:(1,+∞)3.(3分)若复数z满足(i为虚数单位),则z=1+2i.【解答】解:由,得z=1+2i.故答案为:1+2i.4.(3分)已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.【解答】解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.5.(3分)若无穷等比数列中任意一项均等于其之后所有项的和,则其公比为.【解答】解:设数列中的任意一项为a,由无穷等比数列中的每一项都等于它后面所有各项的和,得a=,即1﹣q=q∴q=.故答案为:.6.(3分)若函数y=a+sinx在区间[π,2π]上有且只有一个零点,则a=1.【解答】解:作函数y=sinx在区间[π,2π]上的图象如下,,结合图象可知,若函数y=a+sinx在区间[π,2π]上有且只有一个零点,则a﹣1=0,故a=1;故答案为:1.7.(3分)已知向量=(x,y)(x,y∈R),=(1,2),若x2+y2=1,则|﹣|的最小值为﹣1.【解答】解:设O(0,0),P(1,2),∴|﹣|=≥||﹣1=﹣1=﹣1,∴|﹣|的最小值为﹣18.(3分)已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g(x)是y=f(x)的反函数,则g(﹣3)=﹣7.【解答】解:∵反函数与原函数具有相同的奇偶性.∴g(﹣3)=﹣g(3),∵反函数的定义域是原函数的值域,∴log2(x+1)=3,解得:x=7,即g(3)=7,故得g(﹣3)=﹣7.故答案为:﹣7.9.(3分)已知m,n,α,β∈R,m<n,α<β,若α,β是函数f(x)=2(x﹣m)(x﹣n)﹣7的零点,则m,n,α,β四个数按从小到大的顺序是α<m<n <β(用符号“<“连接起来).【解答】解:∵α、β是函数f(x)=2(x﹣m)(x﹣n)﹣7的零点,∴α、β是函数y=2(x﹣m)(x﹣n)与函数y=7的交点的横坐标,且m、n是函数y=2(x﹣m)(x﹣n)与x轴的交点的横坐标,故由二次函数的图象可知,α<m<n<β;故答案为:α<m<n<β.10.(3分)已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.【解答】解:如图,A(﹣a,0),B(0,b),F(c,0),则P(c,),∴,,由,得,即b=c,∴a2=b2+c2=2b2,.则.故答案为:.11.(3分)已知x∈R,定义:A(x)表示不小于x的最小整数.如,A(﹣1.1)=﹣1.若A(2x•A(x))=5,则正实数x的取值范围是(1,] .【解答】解:当A(x)=1时,0<x≤1,可得4<2x≤5,得2<x≤,矛盾,故A(x)≠1,当A(x)=2时,1<x≤2,可得4<4x≤5,得1<x≤,符合题意,故A(x)=2,当A(x)=3时,2<x≤3,可得4<6x≤5,得<x≤,矛盾,故A(x)≠3,由此可知,当A(x)≥4时也不合题意,故A(x)=2∴正实数x的取值范围是(1,]故答案为:(1,]12.(3分)已知点M(m,0),m>0和抛物线C:y2=4x.过C的焦点F的直线与C交于A,B两点,若=2,且||=||,则m=.【解答】解:由题意可知:F(1,0),由抛物线定义可知A(x1,y1),可知B(x2,y2),∵=2,可得:2(x2﹣1,y2)=(1﹣x1,﹣y1),可得y2=﹣,x2=,,解得x1=2,y1=±2.||=||,。
上海金山中学2018-2019学年度第一学期高三数学双周考试题
上海金山中学2018-2019学年度第一学期高三数学试题一、填空题1.设复数z 满足(),i z i +=-31其中i 为虚数单位,则=z ________.2.函数()()x x y 2arccos 1arcsin +-=的定义域为________.3.二项式431⎪⎪⎭⎫ ⎝⎛-x x 展开式中常数项为__________. 4.若,54cos =α则()()=⎪⎭⎫ ⎝⎛+++-+⎪⎭⎫ ⎝⎛-αααα2cot tan 2sin 22cos ππππ________. 5.已知实数y x 、满足,⎪⎩⎪⎨⎧≤+≤+-≥m y x y x x 0121若此时不等式组所表示的平面区域形状为三角形,则m 的取值范围是__________.6.甲乙两个袋子中均装有红、白两种颜色的小球,这些小球除了颜色外完全相同,其中甲袋子装有4个红球、2个白球,乙袋子有1个红球、5个白球。
现分别从甲、乙两袋子中个随机抽取1个球,则取出的两球颜色不同的概率为________(用分数作答).7.已知复数z 满足:zz 2-为纯虚数,则复数z 对应点()y x Z ,的轨迹方程为________. 8.规定记号“△”表示一种运算,即(),,△+∈++=R b a b a ab b a 若,△31=k 则函数 ()k k x f △=的值域为_______.9.已知函数()(),,34122-+-=-=x x x g x f x 若存在()(),b g a f =则实数b 的取值范围为_________. 10.等比数列{}n a 的前n 项的和为,n S ,若对于任意正整数k 均有()k n n k S S a -=∞→lim 成立,则公比为______. 11.如图直角梯形ABCD 中,AB=BC=2,CD=1,AB ∥CD ,AD ⊥AB,点P 是直角梯形区域内任意一点,若,0≤∙,则点P 所在区域的面积为________.12.已知定义在R 上的函数()x f 满足()()x f x f -=+11且在[)∞+,1上是增函数,若不等式()()12-≤+x f ax f 对任意⎥⎦⎤⎢⎣⎡∈121,x 成立,则实数a 的取值范围是________. 二、选择题13.已知R b a ∈,,下列四个条件中,使b a >成立的必要不充分条件是A.1-b a >B.1+b a >C.b a >D.b a 22>14.函数()()ϕω+=x A x f sin (其中20π<,>ϕA )的图像如图所示,为了得到()()x x g ωcos = 的图像,则只要将()x f 的图像A.向左平移12π个单位长度B.向右平移12π个单位长度 C.向左平移6π个单位长度 D.向右平移6π个单位长度 15.在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设==则向量=BFA.3231+ B.3231-- C.3231+- D.3231- 16.在锐角三角形ABC 中,,B ac C A b 22cos cos cos =则B 的取值范围是 A.⎪⎭⎫ ⎝⎛23π,π B.⎪⎭⎫⎢⎣⎡232π,π C.⎪⎭⎫⎢⎣⎡24π,π D.⎪⎭⎫⎢⎣⎡26π,π 三、解答题17.已知集合,,⎭⎬⎫⎩⎨⎧∈≤+-=R x x x x A 1112|集合{}.1|R x a x x B ∈≤-=, (1)求集合A ;(2)若(),B A C B R = 求实数a 的取值范围.18.已知三角形ABC,B=,π3点D 在BC 边上,且AC=.22 (1)若CD=,2AD=2,求AB ;(2)求三角形ABC 的周长的取值范围。
2018年12月上海市金山区高三数学一模卷
金山区2018学年第一学期质量监控高三数学试卷(满分:150分,完卷时间:120分钟)(答题请写在答题纸上)一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 考生应在答题纸相应编号的空格内直接填写结果.1.已知集合{}7,6,5,3,1=A ,{}8,6,5,4,2=B ,则A B = .2.抛物线x y 42=的准线方程是 .3.计算:=+-∞→2312lim n n n . 4.不等式1|23|<-x 的解集是 .5.若复数)i 1)(i 43(-+=z ( i 为虚数单位) ,则||z = .6.已知函数x x f 2log 1)(+=,则=-)5(1f .7.从1,2,3,4这四个数中一次随机地抽取两个数,则其中一个数是另一个数的两倍的概率是 .(结果用数值表示)8.在10231⎪⎭⎫ ⎝⎛-x x 二项展开式中,常数项的值是______. (结果用数值表示) 9.无穷等比数列}{n a 各项和S 的值为2,公比0<q ,则首项1a 的取值范围是 .10.在120º的二面角内放置一个半径为6的小球,它与二面角的两个半平面相切于 A 、B 两点,则这两个点在球面上的距离是 .11.设函数211|)|1lg()(xx x f +-+=,则使得)23()2(-<x f x f 成立的x 的取值范围是 .12.已知平面向量、满足条件:0=⋅,α=cos ||,α=sin ||,)2,0(π∈α.若向量μ+λ=(∈μλ,R ),且91sin )12(cos )12(2222=α-μ+α-λ,则||的最小值为 .二、选择题(本大题共4小题,满分20分,每小题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知方程12222=++m y m x 表示焦点在x 轴上的椭圆,则m 的取值范围是( ). (A) 2>m 或1-<m (B) 2->m(C) 21<<-m (D) 2>m 或12-<<-m14.给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的( ).(A) 充分非必要条件 (B) 必要非充分条件(C) 充要条件 (D) 既非充分也非必要条件.15.欧拉公式x x x sin i cos e i += (i 为虚数单位,x ∈R ,e 为自然底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式可知,i 2018e 表示的复数在复平面中位于( ).(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限16.已知函数52|(1)|,1()(2)2og 1,l x x f x x x -<--+≥⎧=⎨⎩,则方程1(2)f x a x +-=(a ∈R )的实数根个数不可能为( ).(A) 5个 (B) 6个 (C) 7个 (D) 8个三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分,第1小题满分7分,第2小题满分7分)如图,三棱锥ABC P -中,PA ⊥底面ABC ,M 是BC 的中点,若底面ABC 是边长为2的正三角形,且PB 与底面ABC 所成的角为3π.求: (1) 三棱锥ABC P -的体积;(2) 异面直线PM 与AC 所成角的大小(结果用反三角函数值表示).18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,终边经过点)3,3(-P .(1) 求行列式αααcos tan 1sin 的值;(2)若函数αα++αα+=sin )sin(cos )cos()(x x x f (x ∈R ),求函数)(2)22(32x f x f y +-π=的最大值,并指出取得最大值时x 的值.19.(本题满分14分,第1小题满分6分,第2小题满分8分)设函数12)(-=x x f 的反函数为)13(log )(),(41+=-x x g x f. (1) 若)(1x f -≤)(x g ,求x 的取值范围D ;(2) 在(1)的条件下,设)(21)()(1x f x g x H --=,当D x ∈时,函数)(x H 的图像与直线a y =有公共点,求实数a 的取值范围.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知椭圆C 以坐标原点为中心,焦点在y 轴上,焦距为2,且经过点)0,1(.(1) 求椭圆C 的方程;(2) 设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ;(3) 在(2)的条件下,当10<<a 时,设△QOA 的面积为1S (O 是坐标原点,Q 是曲线C 上横坐标为a 的点),以)(a d 为边长的正方形的面积为2S .若正数m 满足1S ≤2mS ,问m 是否存在最小值,若存在,请求出此最小值;若不存在,请说明理由.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)在等差数列}{n a 中,15531=++a a a ,116=a .(1) 求数列}{n a 的通项公式;(2) 对任意∈m N *,将数列}{n a 中落入区间)2,2(121++m m 内的项的个数记为}{m b ,记数列}{m b 的前m 项和m S ,求使得2018>m S 的最小整数m ;(3) 若∈n N *,使不等式n n a a 1+≤λ+)12(n ≤111+++n n a a 成立,求实数λ的取值范围.。
金山区第一中学2018-2019学年高三上学期11月月考数学试卷含答案
金山区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞ 2. “”是“A=30°”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也必要条件3. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( ) A. B.C.D.4. 复数Z=(i 为虚数单位)在复平面内对应点的坐标是( )A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)5. 设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=( )A .5B.C.D.6. 在函数y=中,若f (x )=1,则x 的值是( )A .1B .1或 C .±1 D.7. 已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )ABD .348. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥9. 如图,棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 为线段A 1B 上的动点,则下列结论正确的有( ) ①三棱锥M ﹣DCC 1的体积为定值 ②DC 1⊥D 1M ③∠AMD 1的最大值为90° ④AM+MD 1的最小值为2.A .①②B .①②③C .③④D .②③④10.如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )A .B .C .D .11.某几何体的三视图如图所示,则该几何体的体积为( ) A .16163π-B .32163π-C .1683π-D .3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.12.在等比数列{a n }中,已知a 1=9,q=﹣,a n =,则n=( )A .4B .5C .6D .7二、填空题13.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点,则直线A 1P 与DQ 的位置关系是 .(填“平行”、“相交”或“异面”)14.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .15.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ . 16.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 .17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .18.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .三、解答题19.已知等比数列{a n }的前n 项和为S n ,a n >0,a 1=,且﹣,,成等差数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设数列{b n }满足b n •log 3(1﹣S n+1)=1,求适合方程b 1b 2+b 2b 3+…+b n b n+1=的正整数n 的值.20.已知函数f (x )=e ﹣x (x 2+ax )在点(0,f (0))处的切线斜率为2. (Ⅰ)求实数a 的值;(Ⅱ)设g (x )=﹣x (x ﹣t ﹣)(t ∈R ),若g (x )≥f (x )对x ∈[0,1]恒成立,求t 的取值范围;(Ⅲ)已知数列{a n }满足a 1=1,a n+1=(1+)a n ,求证:当n ≥2,n ∈N 时 f ()+f ()+L+f ()<n •()(e 为自然对数的底数,e ≈2.71828).21.已知函数f (x )=lnx ﹣ax ﹣b (a ,b ∈R )(Ⅰ)若函数f (x )在x=1处取得极值1,求a ,b 的值 (Ⅱ)讨论函数f (x )在区间(1,+∞)上的单调性(Ⅲ)对于函数f (x )图象上任意两点A (x 1,y 1),B (x 2,y 2)(x 1<x 2),不等式f ′(x 0)<k 恒成立,其中k 为直线AB 的斜率,x 0=λx 1+(1﹣λ)x 2,0<λ<1,求λ的取值范围.22.(本小题满分12分)已知抛物线C :x y 42=,过其焦点F 作两条相互垂直且不平行于x 轴的直线,分别交抛物线C 于点1P 、2P 和点3P 、4P ,线段21P P 、43P P 的中点分别为1M 、2M . (1)求21M FM ∆面积的最小值; (2)求线段21M M 的中点P 满足的方程.23.如图所示,在正方体1111ABCD A BC D -中. (1)求11AC 与1B C 所成角的大小;(2)若E 、F 分别为AB 、AD 的中点,求11AC 与EF 所成角的大小.24.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.金山区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当12a ≤时,12a -≥-,z ax y =+在点1,0A ()取得最小值a ;当12a >时,12a -<-,z ax y =+在点11,33B ()取得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121a a ⎧≤⎪⎨⎪<⎩或12111a a ⎧>⎪⎪⎨⎪+<⎪,∴2a <,选A . 2. 【答案】B 【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.3. 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个, 所以共有4×6=24个,而在8个点中选3个点的有C 83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.4. 【答案】A 【解析】解:复数Z===(1+2i )(1﹣i )=3+i 在复平面内对应点的坐标是(3,1).故选:A.【点评】本题考查了复数的运算法则、几何意义,属于基础题.5.【答案】C【解析】解:∵双曲线焦点在y轴上,故两条渐近线为y=±x,又已知渐近线为,∴=,b=2a,故双曲线离心率e====,故选C.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键.6.【答案】C【解析】解:∵函数y=中,f(x)=1,∴当x≤﹣1时,x+2=1,解得x=﹣1;当﹣1<x<2时,x2=1,解得x=1或x=﹣1(舍);当x≥2时,2x=1,解得x=(舍).综上得x=±1故选:C.7.【答案】D【解析】考点:异面直线所成的角.8.【答案】C【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.9. 【答案】A【解析】解:①∵A 1B ∥平面DCC 1D 1,∴线段A 1B 上的点M 到平面DCC 1D 1的距离都为1,又△DCC 1的面积为定值,因此三棱锥M ﹣DCC 1的体积V==为定值,故①正确.②∵A 1D 1⊥DC 1,A 1B ⊥DC 1,∴DC 1⊥面A 1BCD 1,D 1P ⊂面A 1BCD 1,∴DC 1⊥D 1P ,故②正确. ③当0<A 1P <时,在△AD 1M 中,利用余弦定理可得∠APD 1为钝角,∴故③不正确;④将面AA 1B 与面A 1BCD 1沿A 1B 展成平面图形,线段AD 1即为AP+PD 1的最小值,在△D 1A 1A 中,∠D 1A 1A=135°,利用余弦定理解三角形得AD 1==<2,故④不正确. 因此只有①②正确. 故选:A .10.【答案】 D【解析】解:由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E 与C 重合时,AK==,取O 为AD ′的中点,得到△OAK 是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D .11.【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为21132244428233V =π⨯⨯-⨯⨯⨯=π-,故选D . 12.【答案】B【解析】解:由等比数列的性质可知,∴∴n=5 故选B【点评】本题主要考查了等比数列的通项公式的应用,属于基础试题二、填空题13.【答案】 相交【分析】由已知得PQ ∥A 1D ,PQ=A 1D ,从而四边形A 1DQP 是梯形,进而直线A 1P 与DQ 相交.【解析】解:∵在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点, ∴PQ ∥A 1D ,∵直线A 1P 与DQ 共面,∴PQ=A 1D ,∴四边形A 1DQP 是梯形, ∴直线A 1P 与DQ 相交. 故答案为:相交.【点评】本题考查两直线位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.14.【答案】:.【解析】解:∵•=cosα﹣sinα=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin(α+)>0,∴sin(α+)====.故答案为:.15.【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.16.【答案】②③.【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,②函数=cosx是偶函数,故②正确,③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数的一条对称轴方程,故③正确,④当α=,β=,满足α、β是第一象限的角,且α<β,但sinα=sinβ,即sinα<sinβ不成立,故④错误,故答案为:②③.【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.17.【答案】=.【解析】解:在△ABC中,角A,B,C的对边分别为a,b,c,∵已知sinAsinB+sinBsinC+cos2B=1,∴sinAsinB+sinBsinC=2sin2B.再由正弦定理可得ab+bc=2b2,即a+c=2b,故a,b,c成等差数列.C=,由a,b,c成等差数列可得c=2b﹣a,由余弦定理可得(2b﹣a)2=a2+b2﹣2abcosC=a2+b2+ab.化简可得5ab=3b2,∴=.故答案为:.【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.18.【答案】12【解析】考点:分层抽样三、解答题19.【答案】【解析】解:(Ⅰ)设数列{a n}的公比q,由﹣,,,成等差数列,得,解得或q=﹣1(舍去),∴;(Ⅱ)∵,∴=﹣n﹣1,∴,,==,解得:n=100.【点评】本题考查等比数列和等差数列的概念与性质,以及等比数列的前n项和公式和裂项相消法求和,属于中档题.20.【答案】【解析】解:(Ⅰ)∵f(x)=e﹣x(x2+ax),∴f′(x)=﹣e﹣x(x2+ax)+e﹣x(2x+a)=﹣e﹣x(x2+ax﹣2x﹣a);则由题意得f′(0)=﹣(﹣a)=2,故a=2.(Ⅱ)由(Ⅰ)知,f(x)=e﹣x(x2+2x),由g(x)≥f(x)得,﹣x(x﹣t﹣)≥e﹣x(x2+2x),x∈[0,1];当x=0时,该不等式成立;当x∈(0,1]时,不等式﹣x+t+≥e﹣x(x+2)在(0,1]上恒成立,即t≥[e﹣x(x+2)+x﹣]max.设h(x)=e﹣x(x+2)+x﹣,x∈(0,1],h′(x)=﹣e﹣x(x+1)+1,h″(x)=x•e﹣x>0,∴h′(x)在(0,1]单调递增,∴h′(x)>h′(0)=0,∴h(x)在(0,1]单调递增,∴h(x)max=h(1)=1,∴t≥1.(Ⅲ)证明:∵a n+1=(1+)a n,∴=,又a1=1,∴n≥2时,a n=a1••…•=1••…•=n;对n=1也成立,∴a n=n.∵当x∈(0,1]时,f′(x)=﹣e﹣x(x2﹣2)>0,∴f(x)在[0,1]上单调递增,且f(x)≥f(0)=0.又∵f()(1≤i≤n﹣1,i∈N)表示长为f(),宽为的小矩形的面积,∴f()<f(x)dx,(1≤i≤n﹣1,i∈N),∴[f()+f()+…+f()]=[f()+f()+…+f()]<f(x)dx.又由(Ⅱ),取t=1得f(x)≤g(x)=﹣x2+(1+)x,∴f(x)dx≤g(x)dx=+,∴[f()+f()+…+f()]<+,∴f()+f()+…+f()<n(+).【点评】本题考查函数、导数等基础知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.21.【答案】【解析】解:(Ⅰ)f(x)的导数为f′(x)=﹣a,由题意可得f′(1)=0,且f(1)=1,即为1﹣a=0,且﹣a﹣b=1,解得a=1.b=﹣2,经检验符合题意.故a=1,b=﹣2;(Ⅱ)由(Ⅰ)可得f′(x)=﹣a,x>1,0<<1,①若a≤0,f′(x)>0,f(x)在(1,+∞)递增;②0<a<1,x∈(1,),f′(x)>0,x∈(,+∞),f′(x)<0;③a≥1,f′(x)<0.f(x)在(1,+∞)递减.综上可得,a≤0,f(x)在(1,+∞)递增;0<a<1,f(x)在(1,)递增,在(,+∞)递减;a≥1,f(x)在(1,+∞)递减.(Ⅲ)f′(x0)=﹣a=﹣a,直线AB的斜率为k===﹣a,f′(x0)<k⇔<,即x2﹣x1<ln[λx1+(1﹣λ)x2],即为﹣1<ln[λ+(1﹣λ)],令t=>1,t﹣1<lnt[λ+(1﹣λ)t],即t﹣1﹣tlnt+λ(tlnt﹣lnt)<0恒成立,令函数g(t)=t﹣1﹣tlnt+λ(tlnt﹣lnt),t>1,①当0<λ时,g′(t)=﹣lnt+λ(lnt+1﹣)=,令φ(t)=﹣tlnt+λ(tlnt+t﹣1),t>1,φ′(t)=﹣1﹣lnt+λ(2+lnt)=(λ﹣1)lnt+2λ﹣1,当0<λ≤时,φ′(t)<0,φ(t)在(1,+∞)递减,则φ(t)<φ(1)=0,故当t>1时,g′(t)<0,则g(t)在(1,+∞)递减,g(t)<g(1)=0符合题意;②当<λ<1时,φ′(t)=(λ﹣1)lnt+2λ﹣1>0,解得1<t<,当t∈(1,),φ′(t)>0,φ(t)在(1,)递增,φ(t)>φ(1)=0;当t∈(1,),g′(t)>0,g(t)在(1,)递增,g(t)>g(1)=0,则有当t∈(1,),g(t)>0不合题意.即有0<λ≤.【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键.22.【答案】【解析】(1)由题设条件得焦点坐标为(1,0)F,设直线12PP的方程为(1)y k x=-,0k≠.联立2(1)4y k xy x=-⎧⎨=⎩,得22222(2)0k x k x k-++=.(*)22222[2(2)]416(1)0k k k k∆=-+-=+>.设111(,)P x y ,222(,)P x y ,则21222(2)k x x k++=. 设111(,)M M M x y ,则1112122222(1)M M M x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩. 类似地,设222(,)M M M x y ,则2222212211221M M k x k k y k k ⎧+⎪==+⎪⎪⎨⎪==-⎪⎪-⎩.∴1||FM ==2||2||FM k ==,因此121211||||2(||)2||FM M S FM FM k k ∆=⋅=+. ∵1||2||k k ≥+,∴124FM M S ∆≥, 当且仅当1||||k k =,即1k =±时,12FM M S ∆取到最小值4. (2)设线段12M M 的中点(,)P x y ,由(1)得121222221121()(22)1221121()(2)22M M M M x x x k k k k y y y k k k k ⎧=+=++=++⎪⎪⎨⎪=+=-=-+⎪⎩, 消去k 后得23y x =-.∴线段12M M 的中点P 满足的方程为23y x =-.23.【答案】(1)60︒;(2)90︒.【解析】试题解析:(1)连接AC ,1AB ,由1111ABCD A BC D -是正方体,知11AAC C 为平行四边形,所以11//AC AC ,从而1B C 与AC 所成的角就是11AC 与1B C 所成的角.由11AB AC B C ==可知160B CA ∠=︒,即11AC 与BC 所成的角为60︒.考点:异面直线的所成的角. 【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所成角的概念、三角形中位线与正方形的性质、正方体的结构特征等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,本题的解答中根据异面直线所成角的概念确定异面直线所成的角是解答的关键,属于中档试题.24.【答案】【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为﹣=1(λ≠0), 由题意可得c 2=4|λ|+9|λ|=13,解得λ=±1.即有双曲线的方程为﹣=1或﹣=1.。
上海市金山区高三一模数学试卷
上海市金山区......2017....届高三一模数学试卷.........2016.12.......一.. .填空题(本大题共........12..题,..1.-.6.每题..4.分,..7.-.12..每题..5.分,共...54..分)..1. ..若集合...2{|20}M x x x =-<,.{|||1}N x x =>,则..MN =2. ..若复数...z 满足..232z z i +=-,其中...i 为虚数单....位,则...z =3. ..如果..5sin 13α=-,且..α为第四象限角,则........tan α的值是...4... 函数..cos sin ()sin cos x x f x x x =的最小正周期是.......5. ..函数..()2x f x m =+的反函数为.....1()y f x -=,且..1()y f x -=的图像过点.....(5,2)Q ,那么...m =6. ..点.(1,0)到双曲线....2214x y -=的渐近线的距离是........7. ..如果实数....x 、.y 满足..2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则..2x y +的最大值是.....8. ..从.5.名学生中任选......3.人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课............................. 代表,共有..... 种不同的选法(结果用数值表示)...............9. ..方程..22242340x y tx ty t +--+-=(.t 为参数)所表示.......的圆的圆心轨迹方程是.......... (结果化为普通方程).......... 10. ...若.n a 是.(2)nx +(.*n N ∈,.2n ≥,.x R ∈)展开式中.....2x 项的二项式系数,则.........23111lim()n na a a →∞++⋅⋅⋅+= 11. ...设数列...{}n a 是集合...{|33,s tx x s t =+<且.,}s t N ∈中所有的数从小到大排列成的数列,................ 即.14a =,.210a =,.312a =,.428a =,.530a =,.636a =,,将数列.....{}n a 中各项按.... 照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则.............................15a 的值为...12. ...曲线..C 是平面内到直线.......1:1l x =-和直线...2:1l y =的距离之积等于常数.........2k (.0k >)的..点的轨迹,下列四个结论:①............. 曲线..C 过点..(1,1)-;②.. 曲线..C 关于点...(1,1)-成中心对称;......41012283036⋅⋅⋅③. 若点..P 在曲线...C 上,点...A 、.B 分别在直线.....1l 、.2l 上,则...||||PA PB +不小于...2k ;. ④. 设.0P 为曲线...C 上任意一点,则点........0P 关于直线....1:1l x =-,点..(1,1)-及直线...2:1l y =对称..的点分别为.....1P 、.2P 、.3P ,则四边形.....0123P PP P 的面积为定值......24k ;.其中,所有正确结论的序号是.............二.. .选择题(本大题共........4.题,每题....5.分,共...20..分)..13. ...给定空间中的直线........l 与平面...α,则“直线.....l 与平面...α垂直”是“直线.......l 垂直于平面.....α上. 无数条直线”的(........ )条件...A. ..充分非必要.....B. ..必要非充分.....C. ..充要..D... 既不充分也不必要........ 14. ...已知..x 、.y R ∈,且..0x y >>,则..(. ). A. ..110x y-> B. ..11()()022x y-< C. ..22log log 0x y +> D... sin sin 0x y -> 15. ...某几何体的三视图如图所示,则它的体积是(.................... ). A. ..283π-B. ..83π- C. ..82π- D... 23π16. ...已知函数....2(43)30()log (1)10a x a x a x f x x x ⎧+-+<=⎨++≥⎩(.0a >且.1a ≠)在..R 上单调递减,且关........于.x 的方程...|()|2f x x =-恰好有两个不相等的实数解,则..............a 的取值范围是(....... ). A... 2(0,]3 B. ..23[,]34 C. ..123[,]{}334 D... 123[,){}334三.. .解答题(本大题共........5.题,共...14+14+14+16+18=76.................分)..17. ...如图,在四棱锥.......P ABCD -中,底面....ABCD 是矩形,....PA ⊥平面..ABCD ,.PB 、.PD 与. 平面..ABCD 所成的角依次是.......4π和.1arctan 2,.2AP =,.E 、.F 依次是...PB 、.PC 的中点;.... (.1.)求异面直线......EC 与.PD 所成角的大小;(结果用反三角函数值表示).................... (.2.)求三棱锥.....PAFD -的体积;....18. ...已知△...ABC 中,..1AC =,.23ABC π∠=,设..BAC x ∠=,记..()f x AB BC =⋅;. (.1.)求函数....()f x 的解析式及定义域;.........(.2.)试写出函数......()f x 的单调递增区间,并求方程............1()6f x =的解;...19. ...已知椭圆....C 以原点为中心,左焦点..........F 的坐标是....(1,0)-... 线.l 与椭圆...C 交于点...A 与.B ,且..A 、.B 都在..x 轴上方,满足......180OFA OFB ︒∠+∠=;. (.1.)求椭圆....C 的标准方程;......(.2.)对于动直线......l ,是否存在一个定点,无论............OFA ∠如何变化,直线.......l 总经过此定点?若........ 存在,求出该定点的坐标;若不存在,请说明理由;.......................20. ...已知函数....2()21g x ax ax b =-++(0)a >在区间...[2,3]上的最大值为......4,最小值为.....1,.记.()(||)f x g x =,.x R ∈;. (.1.)求实数....a 、.b 的值;...(.2.)若不等式.....222()()log 2log 3f x g x k k +≥--对任意...x R ∈恒成立,求实数.......k 的范围;....(.3.)对于定义在......[,]p q 上的函数....()m x ,设..0x p =,.n x q =,用任意....i x (1,2,,1)i n =⋅⋅⋅- 将.[,]p q 划分成...n 个小区间,其中.......11i i i x x x -+<<,若存在一个常数........0M >,使得不等式...... 01121|()()||()()||()()|n n m x m x m x m x m x m x M --+-+⋅⋅⋅+-≤恒成立...,则称函数.....()m x 为在..[,]p q 上的有界变差函数,试证明函数..............()f x 是在..[1,3]上的有界变差函数,并求出............M 的最小值;.....21. ...数列..{}n b 的前..n 项和为...n S ,且对任意正整数........n ,都有...(1)2n n n S +=;.(.1.)试证明数列......{}n b 是等差数列,并求其通项公式;..............(.2.)如果等比数列.......{}n a 共有..2017....项,其首项与公比均为..........2.,在数列....{}n a 的每相邻两项......i a与.1i a +之间插入....i 个.(1)i i b -*()i N ∈后,得到一个新数列.........{}n c ,求数列....{}n c 中所有项的和;....... (.3.)如果存在.....*n N ∈,使不等式.....11820(1)()(1)n n n n n b n b b b λ++++≤+≤+成立,若存在,.......求实数...λ的范围,若不存在,请说明理由;...............参考答案....一.. .填空题...1. ..(1,2)2. ..12i -3. ..512- 4. ..π 5. ..1 6. .7. ..4 8. ..48 9. ..20x y -= 10. ...2 11. ...324 12. ...②③④...二.. .选择题...13. A 14. B 15. A 16. ...............C三.. .解答题... 17....(.1.).(..2.).43;. 18....(.1.).2211()sin sin()sin(2)33366f x x x x ππ=+=+-,.(0,)3x π∈;. (.2.)递增区间.....(0,]6π,.6x π=;.19....(.1.).2212x y +=;(..2.).(2,0)-;.20....(.1.).0b =,.1a =;(..2.).1[,8]2;(..3.).min 4M =;. 21....(.1.).n b n =;(..2.).201822033134+;(..3.)不存在;.....。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金山区2017学年第一学期质量监控高三数学试卷(满分:150分,完卷时间:120分钟)(答题请写在答题纸上)一、填空题(本大题共有12题,满分54分,第1–6题每题4分,第7–12题每题5分) 考生应在答题纸相应编号的空格内直接填写结果.1.若全集U =R ,集合A ={x |x ≤0或x ≥2},则U A = .2.不等式01<-xx 的解为 . 3.方程组⎩⎨⎧=+=-532123y x y x 的增广矩阵是 .4.若复数z =2–i (i 为虚数单位),则z z z +⋅= .5.已知F 1、F 2是椭圆192522=+y x 的两个焦点,P 是椭圆上的一个动点,则|PF 1|⨯|PF 2|的最大值是_______.6.已知x ,y 满足⎪⎩⎪⎨⎧≤≥-+≥+-20301x y x y x ,则目标函数k =2x +y 的最大值为 .7.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为黑桃”,则概率P (A ∪B )= (结果用最简分数表示).8.已知点A (2,3)、点B (–2,3),直线l 过点P (–1,0),若直线l 与线段AB 相交,则直线l 的倾斜角的取值范围是 .9. 数列{a n }的通项公式是a n =2n –1(n ∈N *),数列{b n }的通项公式是b n =3n (n ∈N *),令集合A ={a 1,a 2,…,a n ,…},B ={b 1,b 2,…,b n ,…},n ∈N *.将集合A ∪B 中的所有元素按从小到大的顺序排列,构成的数列记为{c n }.则数列{c n }的前28项的和S 28= .10.向量、是平面直角坐标系x 轴、y 轴的基本单位向量,且|a –|+|a –2|=5,则|2|i a +的取值范围为 .11.某地区原有森林木材存有量为a ,且每年增长率为25%,因生产建设的需要,每年年末要砍伐的木材量为101a ,设a n 为第n 年末后该地区森林木材存量,则a n = . 12.关于函数()1xf x x =-,给出以下四个命题:(1)当x >0时,y=f (x )单调递减且没有最值;(2)方程f (x )=kx+b (k ≠0)一定有实数解;(3)如果方程f (x )=m (m 为常数)有解,则解的个数一定是偶数;(4) y=f (x )是偶函数且有最小值.其中假命题的序号是 .二、选择题(本大题共4小题,满分20分,每小题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.若非空集合A 、B 、C 满足A ∪B =C ,且B 不是A 的子集,则( ).(A) “x ∈C ”是“x ∈A ”的充分条件但不是必要条件(B) “x ∈C ”是“x ∈A ”的必要条件但不是充分条件(C) “x ∈C ”是“x ∈A ”的充要条件(D) “x ∈C ”既不是“x ∈A ”的充分条件也不是“x ∈A ”的必要条件14.将如图所示的一个Rt △ABC (∠C =90°)绕斜边AB 旋转一周,所得到的几何体的主视图是下面四个图形中的( ).15.二项式(3i –x )10(i 为虚数单位)的展开式中第8项是( ).第14题图(A) (B) (C)(D) C B A(A) –135x 7 (B)135x 7 (C)3603i x 7 (D)–3603i x 716.给出下列四个命题:(1)函数y =arccos x (–1≤x ≤1)的反函数为y =cos x (x ∈R );(2)函数12-+=m m xy (m ∈N )为奇函数;(3)参数方程⎪⎪⎩⎪⎪⎨⎧+=+-=2221211t ty t t x (t ∈R )所表示的曲线是圆;(4)函数f (x )=sin 2x –21)32(+x ,当x >2017时,f (x )>21恒成立.其中真命题的个数为( ). (A) 4个 (B) 3个 (C) 2个 (D) 1个三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分,第1小题满分7分,第2小题满分7分)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1、CD 的中点.(1) 求三棱锥F –AA 1E 的体积;(2) 求异面直线EF 与AB 所成角的大小(结果用反三角函数值表示).18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数f (x )=3sin2x+cos2x –1 (x ∈R ).(1) 写出函数f (x )的最小正周期以及单调递增区间;(2) 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若f (B )=0,23=⋅BC BA ,且a+c =4,求b 的值.19.(本题满分14分,第1小题满分6分,第2小题满分8分)设P (x , y )为函数f (x )=a x x -2(x ∈D ,D 为定义域)图像上的一个动点,O 为坐标A 1 B 1 C 1 D 1 A B C D E F原点,|OP |为点O 与点P 两点间的距离.(1) 若a =3,D =[3,4],求|OP |的最大值与最小值;(2) 若D =[1,2],是否存在实数a ,使得|OP |的最小值不小于2?若存在,请求出a 的取值范围;若不存在,则说明理由.20.(本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分)给出定理:在圆锥曲线中, AB 是抛物线Γ:y 2=2px (p >0)的一条弦,C 是AB 的中点,过点C 且平行于x 轴的直线与抛物线的交点为D ,若A 、B 两点纵坐标之差的绝对值||B A y y -=a (a >0),则△ADB 的面积 S △ADB =pa 163.试运用上述定理求解以下各题: (1) 若p =2,AB 所在直线的方程为y =2x –4,C 是AB 的中点,过C 且平行于x 轴的直线与抛物线Γ的交点为D ,求S △ADB ;(2) 已知AB 是抛物线Γ:y 2=2px (p >0)的一条弦,C 是AB 的中点,过点C 且平行于x 轴的直线与抛物线的交点为D ,E 、F 分别为AD 和BD 的中点,过E 、F 且平行于x 轴的直线与抛物线Γ:y 2=2px (p >0)分别交于点M 、N ,若A 、B 两点纵坐标之差的绝对值||B A y y -=a (a >0),求S △AMD 和S △BND ;(3) 请你在上述问题的启发下,设计一种方法求抛物线:y 2=2px (p >0)与弦AB 围成的“弓形”的面积,并求出相应面积.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)若数列{a n }中存在三项,按一定次序排列构成等比数列,则称{a n }为“等比源数列”.(1) 已知数列{a n }中,a 1=2,a n +1=2a n –1.求数列{a n }的通项公式;(2) 在(1)的结论下,试判断数列{a n }是否为“等比源数列”,并证明你的结论;(3) 已知数列{a n }为等差数列,且a 1≠0,a n ∈Z (n ∈N *),求证:{a n }为“等比源数列”.金山区2017学年第一学期期末考试高三数学试卷评分参考答案(满分:150分,完卷时间:120分钟)一、填空题(本大题共有12题,满分54分,第1–6题每题4分,第7–12题每题5分)1.A ={x |0<x<2};2.0<x <1;3. ⎪⎪⎭⎫ ⎝⎛-513223;4.7–i ;5.25;6.7;7.726; 8 [4π,32π].;9.820;10.⎤⎥⎦;11. a a a n n 52)45(53+=;12.(1)、(3) 二、选择题(本大题共4小题,满分20分,每小题5分)13.B ; 14.B ; 15.C ; 16.D三、解答题(本大题共有5题,满分76分)17. 解:(1)因为△AA 1E 的面积为S =2,……………………………………………2分 点F 到平面ABB 1A 1的距离即h=2,……………………………………………………4分 所以E AA F V 1-=h S ⋅31=34;………………………………………………………………7分 (2)连结EC ,可知∠EFC 为异面直线EF 与AB 所成角,…………………………10分 在Rt △EFC 中,EC =5,FC =1,所以tan ∠EFC =5,…………………………13分 即∠EFC =arctan 5,故异面直线EF 与AB 所成角的大小为arctan 5.…………14分18.解:(1)f (x )=2sin(2x+6π)–1,………………………………………………………2分 所以,f (x )的最小正周期T = π,………………………………………………………4分f (x )的单调递增区间是[k π–3π,k π+6π],k ∈Z ;………………………………………6分 (2) f (B )=2sin(2B +6π)–1=0,故sin(2B +6π)=21,………………………………………8分 所以,2B +6π=2k π+6π或2B +6π=2k π+65π,k ∈Z , 因为B 是三角形内角,所以B =3π;…………………………………………………10分 而⋅=ac cos B =23,所以,ac =3,又a+c =4,所以a 2+c 2=10,………………12分 所以,b 2=a 2+c 2–2ac cos B =7,所以b=7.…………………………………………14分19.解:(1) 当a =3,D =[3,4],|OP |=]4,3[,3)1(363)3(2222∈--=-=-+x x x x x x x ,……………………4分 3||min =OP ,62||max =OP ; ………………………………………………………6分(2) ]2,1[,2||2∈-+=x a x x x OP ,因为|OP |的最小值不小于2,即x 2+2x |x –a |≥4对于x ∈[1,2]恒成立,……………………………………………………………………8分 当a ≥2时,a ≥)4(21x x +对于x ∈[1,2]恒成立,所以a ≥25,………………………10分 当1≤a <2时,取x=a 即可知,显然不成立,………………………………………11分当a <1时,a ≤)43(21x x -对于x ∈[1,2]恒成立,所以a ≤21-,……………………13分 综上知,a ≤21-或a ≥25………………………………………………………………14分 (2)或解:]2,1[,2||2∈-+=x a x x x OP ,…………………………………………7分 当a ≥2时, 222)(2||a a x ax x OP +--=+-=在[1,2]为增函数,12||min -=a OP ≥2,所以a ≥25,…………………………………………………9分 当1≤a <2时,取x=a ,|OP |=a 不可能大于或等于2,………………………………11分 当a <1时,22231)3(323||a ax ax x OP --=-=在[1,2]为增函数, a OP 23||min -=≥2 ,a ≤21-……………………………………………………13分 综上知,a ≤21-或a ≥25………………………………………………………………14分 20.解:(1) 联立直线与抛物线方程⎩⎨⎧=-=xy x y 4422,解得|y A –y B |=6,………………2分S △ADB =827;……………………………………………………………………………4分 (2)设点D 、M 、N 的纵坐标分别为y D 、y M 、y N ,易知AD 为抛物线Γ:y 2=2px (p >0)的一条弦,M 是AD 的中点,且A 、D 两点纵坐标之差为定值,|y A –y D |=2a (a >0),……6分由已知的结论,得S △AMD =pa p a 168116)2(33⋅=,…………………………………………8分 同理可得S △BND =pa p a 168116)2(33⋅=;……………………………………………………9分 (3) 将(2)的结果看作是一次操作,操作继续下去,取每段新弦的中点作平行于x 轴的直线与抛物线得到交点,并与弦端点连接,计算得到新三角形面积。