第二讲 平面向量的解题技巧A

合集下载

高中数学平面向量解题技巧

高中数学平面向量解题技巧

高中数学平面向量解题技巧高中数学中,平面向量是一个重要的概念,涉及到向量的表示、运算、共线性、垂直性等方面的内容。

在解题过程中,掌握一些解题技巧可以帮助学生更好地理解和应用平面向量,提高解题效率。

本文将介绍几个常见的平面向量解题技巧,并通过具体题目来说明其应用。

一、向量的表示和运算在解题过程中,正确地表示和运算向量是非常重要的。

首先,我们需要清楚向量的表示方法。

通常,我们用一个有向线段来表示一个向量,线段的方向表示向量的方向,线段的长度表示向量的大小。

其次,我们需要掌握向量的运算法则,包括向量的加法和数乘。

向量的加法满足交换律和结合律,数乘满足分配律。

例如,考虑以下题目:已知向量$\vec{a}=\begin{pmatrix}2\\3\end{pmatrix}$,$\vec{b}=\begin{pmatrix}-1\\4\end{pmatrix}$,求$\vec{a}+\vec{b}$和$2\vec{a}-3\vec{b}$。

解答:根据向量的加法和数乘法则,我们可以得到:$\vec{a}+\vec{b}=\begin{pmatrix}2\\3\end{pmatrix}+\begin{pmatrix}-1\\4\end{pmatrix}=\begin{pmatrix}2+(-1)\\3+4\end{pmatrix}=\begin{pmatrix}1\\7\end{pmatrix}$$2\vec{a}-3\vec{b}=2\begin{pmatrix}2\\3\end{pmatrix}-3\begin{pmatrix}-1\\4\end{pmatrix}=\begin{pmatrix}4\\6\end{pmatrix}-\begin{pmatrix}-3\\12\end{pmatrix}=\begin{pmatrix}4+3\\6-12\end{pmatrix}=\begin{pmatrix}7\\-6\end{pmatrix}$通过这个例子,我们可以看到,正确地表示和运算向量可以帮助我们快速得到结果。

解决初中数学解题困扰的利器掌握平面向量的运算技巧

解决初中数学解题困扰的利器掌握平面向量的运算技巧

解决初中数学解题困扰的利器掌握平面向量的运算技巧解决初中数学解题困扰的利器——掌握平面向量的运算技巧数学是一门抽象而又具有挑战性的学科,而初中数学的学习过程中,解题往往是困扰很多学生的难题。

然而,要解决这个问题并不难,只需要掌握好平面向量的运算技巧,就能在解答数学题目时游刃有余。

本文将为大家介绍平面向量的基本概念以及运算规则,希望对解决初中数学解题困扰有所帮助。

一、平面向量的基本概念在解决初中数学问题时,我们常常需要用到平面向量。

平面向量是指能够用有向线段来表示,具有大小和方向的量。

一个平面向量通常用字母加箭头来表示,例如:→AB,其中A、B为平面上的点。

有了这个基本概念,我们就可以更好地理解和应用平面向量来解决数学问题。

二、平面向量的加法和减法平面向量的加法和减法是我们在解决数学问题中常常用到的基本运算。

其规则如下:1. 平面向量的加法:设有两个平面向量→AB和→CD,则它们的和记作→AB + →CD。

要求得这两个向量的和,只需要将它们的对应分量分别相加即可。

例如,若→AB = (x1, y1)和→CD = (x2, y2),则它们的和为→AB + →CD = (x1 + x2, y1 + y2)。

2. 平面向量的减法:设有两个平面向量→AB和→CD,则它们的差记作→AB - →CD。

要求得这两个向量的差,只需要将它们的对应分量分别相减即可。

例如,若→AB = (x1, y1)和→CD = (x2, y2),则它们的差为→AB - →CD = (x1 - x2, y1 - y2)。

通过掌握平面向量的加法和减法规则,我们能够更有效地解决初中数学解题过程中的运算问题。

三、平面向量的数量积和向量积除了加法和减法,平面向量还有两个重要的运算:数量积和向量积。

它们在解决数学问题中具有重要作用。

1. 数量积:数量积又称点积,它是两个向量的乘积。

计算数量积的公式为:→AB · →CD = AB·CD·cosθ,其中AB和CD分别为两个向量的模长,θ为它们之间的夹角。

掌握初中数学中的平面向量解题技巧

掌握初中数学中的平面向量解题技巧

掌握初中数学中的平面向量解题技巧平面向量是初中数学中的一个重要内容,解题技巧的掌握对于学生来说显得尤为关键。

在本文中,我们将分享一些帮助学生掌握初中数学中平面向量解题技巧的方法。

一、平面向量的定义和基本性质平面向量是一个有大小和方向的有序数对,通常表示为箭头。

在平面向量的研究中,我们需要关注以下几个关键概念:1. 向量的表示方法:向量可以使用坐标表示法、分解表示法或单位向量表示法进行表示。

每种表示方法都有其特定的应用场景和计算思路。

2. 向量的加法与减法:向量的加法与减法规律是平面向量的基本性质。

通过理解与运用这些规律,可以简化题目的计算过程。

3. 向量的数量乘法:向量的数量乘法包括正数乘法和零向量的乘法。

这些操作能够对向量的大小和方向产生影响,需要注意运算法则。

二、平面向量的应用领域平面向量解题技巧在初中数学中广泛应用于以下几个领域:1. 向量的平行与垂直关系:通过向量的点积和叉积,可以判断两个向量之间的平行关系或垂直关系。

这种技巧在解决几何问题时尤为常见。

2. 向量的共线与共面关系:通过向量的线性运算和共面性质,可以判断多个向量之间的共线关系或共面关系。

这种技巧在解决多个向量同时出现的问题时非常有效。

3. 向量的位移与坐标计算:通过向量的位移计算和坐标运算,可以求解物体在平面上的运动问题。

这种技巧在解决位移、速度和加速度等物理问题时被广泛应用。

三、平面向量解题技巧的实例分析为了更好地理解和应用平面向量解题技巧,以下是几个实际问题的解析:1. 平面向量的加法与减法:已知向量A和向量B的坐标分别为(A1,A2)和(B1,B2),则向量A加向量B的结果为(A1+B1, A2+B2)。

根据这个规律,我们可以解决诸如平行四边形对角线相等问题等。

2. 平面向量垂直关系的判断:已知向量A的坐标为(A1, A2),如果A1×A2=0,则向量A与坐标轴正方向垂直。

这个技巧常在解决两条线段是否垂直或平行的问题时使用。

高中数学第二讲 平面向量的解题技巧

高中数学第二讲  平面向量的解题技巧

2008年高中数学第二讲 平面向量的解题技巧【命题趋向】由2007年高考题分析可知:1.这部分内容高考中所占分数一般在10分左右.2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为:1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式.5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】1. 向量的概念,向量的基本运算(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式.例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 命题意图:本题考查能够结合图形进行向量计算的能力.解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A . 例2.(2006年安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示)命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+由得,12AM a b =+,所以,3111()()4244MN a b a b a b =+-+=-+.例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=CD ( )(A )21+- (B ) BA BC 21--(C ) BA BC 21- (D )BA BC 21+命题意图: 本题主要考查向量的加法和减法运算能力.解:21+-=+=,故选A.例4. ( 2006年重庆卷)与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是 ( ) (A) ⎪⎭⎫- ⎝⎛53,54 (B) ⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 (C )⎪⎭⎫- ⎝⎛31,322 (D )⎪⎭⎫- ⎝⎛31,322或⎪⎭⎫ ⎝⎛-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.解:设所求平面向量为,c 由433,,, 1.555c c ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭4或-时5另一方面,当7413431,,cos ,.5527a c c a c a c ⎛⎫⨯+⨯- ⎪⋅⎛⎫=-=== ⎪⋅⎝⎭⎛⎫时 当7413431,,cos ,.5527a c c a c a c ⎛⎫⎛⎫⨯-+⨯ ⎪ ⎪⋅⎛⎫=-===- ⎪⋅⎝⎭⎛⎫时故平面向量c 与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹角相等.故选B. 例5.(2006年天津卷)设向量a 与b 的夹角为θ,且)3,3(=a,)1,1(2-=-a b ,则=θc o s __.命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.解: ()()()()(),,22,3,323,231,1.b x y b a x y x y =-=-=--=-设由()2311,1,2.231 2.x xb y y -=-=⎧⎧⇒∴=⎨⎨-==⎩⎩得 2cos ,33a b a b a b⋅==⋅+例6.(2006年湖北卷)已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b = ()(A ) ⎪⎪⎭⎫ ⎝⎛21,23 (B ) ⎪⎪⎭⎫ ⎝⎛23,21 (C )⎪⎪⎭⎫ ⎝⎛433,41 (D ) ()0,1 命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.解:设(),()b x y x y =≠,则依题意有1,y +1,2x y ⎧=⎪⎪⎨⎪=⎪⎩ 故选B.例7.设平面向量1a 、2a 、3a 的和1230a a a ++=.如果向量1b 、2b 、3b ,满足2i i b a =,且i a 顺时针旋转30o 后与i b 同向,其中1,2,3i =,则( )(A )1230b b b -++= (B )1230b b b -+= (C )1230b b b +-= (D )1230b b b ++=命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.常规解法:∵1230a a a ++=,∴ 1232220.a a a ++=故把2i a (i=1,2,3),分别按顺时针旋转30后与i b 重合,故1230b b b ++=,应选 D.巧妙解法:令1a =0,则2a =3a -,由题意知2b =3b -,从而排除B ,C ,同理排除A ,故选(D). 点评:巧妙解法巧在取1a =0,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.2. 平面向量与三角函数,解析几何等问题结合(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大. 例8.(2007年陕西卷理17.)设函数f (x )=a-b ,其中向量a =(m,cos2x ),b =(1+sin2x ,1),x ∈R ,且函数y=f (x )的图象经过点⎪⎭⎫⎝⎛2,4π,(Ⅰ)求实数m 的值;(Ⅱ)求函数f (x )的最小值及此时x 的值的集合. 解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =. (Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=++⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z , 例2.(2007年陕西卷文17)设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且.(Ⅰ)求实数m 的值; (Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1例9.(2007年湖北卷理16)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大 解:(Ⅰ)设ABC △中角AB C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+-⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)θθ=+πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=.例10.(2007年广东卷理)已知ABC 的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0) (1)若c=5,求sin ∠A 的值;(2)若∠A 为钝角,求c 的取值范围; 解:(1)(3,4)AB =--,(3,4)AC c =--,若c=5, 则(2,4)AC =-,∴cos cos ,A AC AB ∠=<>=,∴sin ∠A ; (2)∠A 为钝角,则39160,0,c c -++<⎧⎨≠⎩解得253c >,∴c 的取值范围是25(,)3+∞例11.(2007年山东卷文17)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,, (1)求cos C ;(2)若52CB CA =,且9a b +=,求c .解:(1)sin tan cos CC C=∴=又22sin cos 1C C +=解得1cos 8C =±. tan 0C >,C ∴是锐角. 1cos 8C ∴=.(2)52CB CA =,5cos 2ab C ∴=, 20ab ∴=. 又9a b +=22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.例12. (2006年湖北卷)设函数()()f x a b c =⋅+,其中向量()()sin ,cos ,sin ,3cos a x x b x x =-=-, ()cos ,sin ,c x x x R =-∈.(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d . 命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.解:(Ⅰ)由题意得,f(x)=a ·(b c +)=(sinx,-cosx)·(sinx-cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π).所以,f(x)的最大值为2+2,最小正周期是22π=π.(Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z ,于是d =(832ππ-k ,-2),(k d π=-k ∈Z.因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求.例13.(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(Ⅰ)若a ⊥b ,求θ;(Ⅱ)求|a +b |的最大值. 命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.例14.(2006年陕西卷)如图,三定点(2,1),(0,1),(2,1);A B C --,,AD t AB BE tBC == ,[0,1].DM tDE t =∈(I )求动直线DE 斜率的变化范围; (II )求动点M 的轨迹方程。

平面向量解题方法完全归纳与总结

平面向量解题方法完全归纳与总结

平面向量解题方法完全归纳与总结
平面向量解题方法完全归纳与总结!
1、基底法
在处理平面向量问题时,有一类是所求的向量模长和夹角是在变化的,我们利用平面向量的基本定理,选取一组不共线的且模长和夹角知道的非零向量作为基底,把所求向量都用所选基底表示来处理问题.
2、平方法
在向量中,遇到和模长有关的问题,很多时候都可以考虑把相关式子两边同时平方来处理,并且要灵活运用:向量的平方等于它模长的平方这个规律
3、投影法
①我们可以理解成:两向量的数量积等于他们各自的模长,乘以它们夹角的余弦值;
②也可以理解成:两向量的数量积等于其中一个向量的模长,乘以另外一个向量在它上面的投影;
4、坐标法
几何问题代数化是数学中比较重要的一个思想方法,在平面向量中,这个思想在处理很多问题时比较“直接无脑”。

只要题目中给出了向量之间的夹角就可以考虑使用坐标来处理向量问题。

5、数形结合法
在处理一些平面向量的问题时,需要利用图形,结合向量的运算法则,综合分析,来处理一些动态变化问题。

这类问题主要包含:圆上动点、直线上动点等。

6、三点共线结论及其推广
7、绝对值不等式
8、极化恒等式
9、等和线
以上就是老师对高中数学向量这一板块的解题方法汇总总结,这
些方法足以应付高中数学中出现的向量题型,当然有同学想要更深入一些关于向量的解题方法的话还需要学习三角形与向量的五心相关知识,更高层次的还有复数与向量结合这种强基计划或者竞赛中的一些知识,这些我们在后期的一些文章当中会涉及。

我们这个自媒体主要服务于高中生数学,高考数学,强基计划、数学竞赛,大家有兴趣可以关注一下我们,我们上的都是一些干货,绝对不会让你失望!。

平面向量做题技巧

平面向量做题技巧

平面向量做题技巧1. 嘿,平面向量做题的时候,要学会找关键信息呀!就像你在一堆玩具中找到你最喜欢的那个一样。

比如已知向量的模和夹角,那不是很明显要去用相关公式嘛!2. 哎呀,一定要记住向量的加减法法则哦,这可太重要啦!就好比搭积木,一块一块地往上加,或者把多余的拿走,不就清楚啦。

像那种给出几个向量让你合成的题,不就用这个嘛!3. 注意啦,向量的数量积可不能马虎!这就好像你和朋友之间的默契,要好好去感受和计算呀。

比如判断向量垂直,不就看数量积是不是零嘛!4. 嘿,在做题时别死脑筋呀,要灵活运用啊!就像跳舞要随着音乐节奏变换动作一样。

碰到复杂的向量问题,多想想有没有简便方法呀!5. 哇塞,对于那些和几何图形结合的题,要把图形看透呀!这就如同你了解一个人的性格一样重要。

比如在三角形里的向量问题,不就利用三角形的特点嘛!6. 记住哦,单位向量也有大用处呢!就好像一个小小的指南针能指引方向一样。

在一些问题里,利用单位向量来转化不就简单多啦!7. 千万别忘了向量共线的条件呀!这就好比走在同一条路上的伙伴。

看到相关条件,马上就想到共线的性质呀!8. 哎呀呀,平面向量做题技巧真的很关键呢!就像拥有一把万能钥匙能打开各种难题的门。

遇到困难别退缩,用对技巧呀!9. 注意那些隐含条件呀,别漏了它们!这就像宝藏藏在角落里,你得细心才能发现。

很多时候答案就在那些被忽略的地方呢!10. 真的,平面向量做题要多用心呀!就像对自己喜欢的事情一样充满热情。

用心去体会每一个技巧,你会发现做题越来越轻松啦!我的观点结论就是:掌握这些平面向量做题技巧,能让你在解题时更加得心应手,轻松应对各种难题,一定要好好运用哦!。

平面向量的解题技巧

平面向量的解题技巧

平面向量的解题技巧简介平面向量是高中数学中的重要内容,也是解题过程中经常会遇到的知识点。

掌握平面向量的解题技巧对于提高解题效率和准确性非常关键。

本文将介绍几种常见的解题技巧,帮助读者更好地理解和应用平面向量。

基本概念回顾在介绍解题技巧之前,我们先来回顾一些平面向量的基本概念。

定义1:平面向量是具有大小和方向的量。

在平面直角坐标系中,平面向量可以用坐标表示为(x, y)。

其中,x表示向量在x轴上的分量,y表示向量在y轴上的分量。

定义2:平面向量的模是指向量的长度,用∥a∥表示。

定义3:平面向量的方向是指向量的指向,用角度表示。

定义4:平面向量的加法是指将两个向量首尾相连所得到的向量,用a + b表示。

定义5:平面向量的乘法是指将向量的模与一个标量相乘所得到的向量,用k * a表示。

解题技巧接下来,我们将介绍几种常见的平面向量解题技巧。

投影投影是指将一个向量在某个方向上的分量分解出来。

在解题过程中,我们常常需要求解一个向量在另一个向量上的投影。

例如,已知向量a = (3, 4),向量b = (1, 2),我们要求解向量a在向量b上的投影。

首先,我们需要计算向量a与向量b的夹角θ,然后计算a在b方向上的分量,即可得到投影的结果。

单位向量单位向量是指模为1的向量。

在平面向量的解题中,单位向量常常用来表示方向。

使用单位向量可以简化计算,消除向量的模的影响。

例如,已知向量a = (3, 4),我们要求解向量a的方向。

我们可以通过计算向量a的单位向量a’ = (3/∥a∥,4/∥a∥),得到向量a的方向。

平移平移是指将所有向量沿着同一方向移动相同的距离。

平移不改变向量的方向和模。

在解题中,平移常常用来简化计算。

例如,已知向量a = (3, 4),向量b = (1, 2),我们要求解向量a + b。

可以将向量a平移到原点,得到向量a’ = (-3, -4),然后计算a’ + b,最后将结果平移回去,即可得到a + b的结果。

平面向量几何法解题技巧

平面向量几何法解题技巧

平面向量几何法解题技巧平面向量几何法是高中数学中的一项重要内容,它可以解决各种几何问题,包括线的垂直、平行、中点、角平分线等等。

本文将介绍平面向量几何法的基本概念、解题技巧以及应用实例,希望对读者有所帮助。

一、平面向量的基本概念平面向量是代表平面上的一定方向和大小的量,由一个有向线段和箭头来表示。

它可以表示为一个有序数对(a,b),其中a和b分别表示向量在x方向和y方向上的分量。

向量的大小表示为模长,一般用||AB||表示,其中AB 为向量的有向线段。

模长可以使用勾股定理计算:||AB||=√(a²+b²).向量的方向表示为方向角,它与x轴正方向的夹角记为α(0°≤α<360°或0≤α<2π),可以使用以下公式计算:α=arctan(b/a) (a>0)α=π+arctan(b/a) (a<0, b≥0)α=-π+arctan(b/a) (a<0, b<0)α=π/2 (a=0, b>0)α=-π/2 (a=0, b<0)二、平面向量几何法的解题技巧1. 向量的加减两个向量的加法表示以一个向量为起点,以另一个向量为终点的有向线段,公式为:AB+BC=AC。

两个向量的减法则表示从一个向量的终点到另一个向量的起点的有向线段,例如:AC-AB=BC。

2. 向量的数量积向量的数量积是一个纯量(一个数),记作a·b,它定义为a和b的模长的乘积与它们夹角的余弦值的积,也就是a·b=||a||·||b||·cosα。

向量的数量积还可以用来求两个向量之间的夹角,公式为cosα=a·b/||a||·||b||。

3. 向量的叉积向量的叉积是一个向量,它表示的是由两个向量围成的平行四边形的面积和方向。

公式为:a×b=||a||·||b||·sinα·n,其中n为满足右手定则的单位向量,其方向与两个向量所在平面垂直,且a、b、n 组成一个右手系。

初中数学解题技巧迅速解决复杂的平面向量题目

初中数学解题技巧迅速解决复杂的平面向量题目

初中数学解题技巧迅速解决复杂的平面向量题目平面向量作为初中数学中的重要内容之一,在解题过程中可能会遇到一些较为复杂的题目。

本文将介绍一些解题技巧,帮助同学们快速解决这些复杂的平面向量题目。

一、快速计算向量的模和方向在解决平面向量题目时,经常需要计算向量的模和方向。

为了方便计算,我们可以使用平面向量的坐标表示法。

假设有一个向量AB,设点A的坐标为(A₁, A₂),点B的坐标为(B₁, B₂),则向量AB的坐标表示为(B₁ - A₁, B₂ - A₂)。

通过坐标表示法,我们可以快速计算向量的模和方向。

向量的模可以通过使用勾股定理计算得到,即向量的模为√((B₁ -A₁)² + (B₂ - A₂)²)。

向量的方向可以通过使用反正切函数计算得到,即向量的方向为arctan((B₂ - A₂) / (B₁ - A₁))。

二、夹角的计算在解决平面向量题目时,有时需要计算向量之间的夹角。

我们可以使用向量的点积来计算夹角。

设有两个向量A和B,它们的夹角记为θ,则有cosθ = (A·B) / (|A|·|B|)。

通过这个公式,可以快速计算出向量之间的夹角。

三、向量共线与共面判断在解决平面向量题目时,有时需要判断向量是否共线或共面。

可以通过计算向量的比值来判断。

1. 共线判断:如果向量A与向量B共线,那么它们的对应坐标之间的比值应该相等。

即 (B₁/A₁) = (B₂/A₂) = k。

如果向量A与向量B共线,那么我们可以通过求两个坐标之间的比值,判断出它们是否共线。

2. 共面判断:如果向量A、B和向量C共面,那么向量A与向量B的叉积与向量A与向量C的叉积应该平行。

即A×B = λ(A×C),其中λ是一个实数。

通过判断两个向量的叉积是否平行,我们可以判断出它们是否共面。

四、平面向量的运算在解决平面向量题目时,有时需要进行向量的运算。

以下是一些常见的向量运算规则:1. 向量的加法:设有向量A和向量B,它们的和记为A + B。

高中数学平面向量及其应用的解题技巧

高中数学平面向量及其应用的解题技巧

高中数学平面向量及其应用的解题技巧高中数学中,平面向量是一个重要的概念,它在各个数学分支中都有广泛的应用。

掌握平面向量的解题技巧,不仅能够帮助我们更好地理解数学知识,还能够提高解题的效率和准确性。

本文将从基本概念、解题方法和应用举例三个方面,介绍高中数学平面向量的解题技巧。

一、基本概念平面向量是空间中的一个有向线段,可以用有序数对表示。

在平面直角坐标系中,向量可以表示为(a, b),其中a和b分别表示向量在x轴和y轴上的投影。

向量的模表示向量的长度,记作|AB|或||AB||。

向量的方向可以用与x轴正方向的夹角表示。

二、解题方法1. 向量的表示与运算在解题过程中,我们需要掌握向量的表示与运算方法。

例如,已知向量A(3,4)和向量B(-2,1),求向量A与向量B的和、差以及数量积。

解答:向量A与向量B的和为A+B=(3+(-2),4+1)=(1,5);向量A与向量B的差为A-B=(3-(-2),4-1)=(5,3);向量A与向量B的数量积为A·B=3×(-2)+4×1=-6+4=-2。

2. 向量的模和方向在解题过程中,我们需要计算向量的模和方向。

例如,已知向量A(3,4),求向量A的模和方向。

解答:向量A的模为|A|=√(3²+4²)=√(9+16)=√25=5;向量A的方向可以用与x轴正方向的夹角表示,tanθ=4/3,所以θ=arctan(4/3)≈53.13°。

3. 向量的共线与垂直在解题过程中,我们需要判断向量的共线与垂直关系。

例如,已知向量A(3,4)和向量B(6,8),判断向量A与向量B是否共线或垂直。

解答:向量A与向量B的方向相同,且比值相等,即3/6=4/8=1/2,所以向量A与向量B共线。

三、应用举例1. 平面向量的线性运算已知向量A(2,3)和向量B(1,2),求2A-3B的模和方向。

解答:2A-3B=2(2,3)-3(1,2)=(4,6)-(3,6)=(1,0);2A-3B的模为|2A-3B|=√(1²+0²)=√1=1;2A-3B的方向与x轴正方向平行,即与x轴的夹角为0°。

平面向量求解技巧

平面向量求解技巧

平面向量求解技巧平面向量是解决平面几何问题的重要工具之一。

在应用平面向量求解问题时,以下技巧或方法可以帮助我们更快速、准确地解决问题。

1. 确定坐标系:在解决平面向量问题时,通常需要确定一个相应的坐标系。

常用的坐标系有直角坐标系和极坐标系。

选择合适的坐标系可以简化问题,并使计算更加方便。

2. 表示向量:向量是带有方向的量,可以使用一个有序的数对来表示。

在直角坐标系中,一个向量可以表示为(x, x),其中x和x分别表示该向量在x轴和x轴上的分量。

在极坐标系中,一个向量可以表示为(x, x),其中x表示向量的长度,x表示向量与正半轴的夹角。

3. 向量的加法:向量的加法满足平行四边形法则,即将两个向量的起点放在一起,然后将它们的箭头相连接,连接后的向量为原向量的和。

在直角坐标系中,向量的加法可以通过将两个向量的对应分量相加得到。

4. 向量的减法:向量的减法可以看作是向量的加法的逆运算。

即,将被减向量进行取负操作,再将该向量与减向量进行加法运算。

在直角坐标系中,向量的减法可以通过将减向量的对应分量取负,然后与被减向量的对应分量相加得到。

5. 向量的数量乘法:向量的数量乘法是将一个向量的长度与一个标量相乘,得到一个新的向量。

数量乘法会改变向量的大小,但不会改变向量的方向。

6. 向量的点乘:向量的点乘也称为内积或数量积。

点乘的结果是一个标量,不带有方向。

点乘可以用来求解两个向量的夹角、判断两个向量是否垂直等。

7. 向量的叉乘:向量的叉乘也称为外积或向量积。

叉乘的结果是一个新的向量,方向垂直于原始向量组成的平面,并遵循右手定则。

向量的叉乘可以用来求解平行四边形的面积、判断三个向量的共面性等。

8. 解决几何问题:应用平面向量求解平面几何问题时,我们通常可以将几何问题抽象为向量问题。

通过将几何问题转化为向量问题,我们可以利用向量的性质和计算方法快速求解。

9. 利用向量运算化简问题:在求解平面向量问题时,可以利用向量运算的性质化简问题。

平面向量最值问题解题方法

平面向量最值问题解题方法

平面向量最值问题解题方法平面向量最值问题是高中数学中的重要知识点,涉及面广,难度较大。

下面介绍一些平面向量最值问题的解题方法。

一、向量模长的最值问题1、向量模长最大值设向量a的模长为|a|,则向量a的模长最大值为|a|=√(a_x+a_y),其中a_x和a_y分别代表向量a在x轴和y轴上的分量。

求出向量a的模长后,可以采用以下两种方法求出向量a的模长最大值:(1)对于a的分量a_x和a_y,分别求出它们的绝对值,即|a_x|和|a_y|,然后将它们代入|a|=√(a_x+a_y)中,求出|a|的最大值。

(2)根据勾股定理,可以得出|a|的最大值为向量a在x轴和y 轴上的分量的平方和的平方根,即|a|=√((a_x+a_y))。

2、向量模长最小值同样设向量a的模长为|a|,则向量a的模长最小值为|a|=√(a_x+a_y),其中a_x和a_y分别代表向量a在x轴和y轴上的分量。

求出向量a的模长后,可以采用以下两种方法求出向量a的模长最小值:(1)对于a的分量a_x和a_y,分别求出它们的绝对值,即|a_x|和|a_y|,然后将它们代入|a|=√(a_x+a_y)中,求出|a|的最小值。

(2)根据勾股定理,可以得出|a|的最小值为向量a在x轴和y 轴上的分量的平方差的平方根,即|a|=√((a_x-a_y))。

二、向量夹角的最值问题设向量a和向量b的夹角为θ,则向量a和向量b的夹角的最值为:1、夹角最大值当向量a和向量b的方向相反时,它们的夹角最大,此时θ=π。

2、夹角最小值当向量a和向量b的方向相同时,它们的夹角最小,此时θ=0。

三、向量和的模长的最值问题对于两个向量a和b,它们的和向量c=a+b。

则向量c的模长最值为:1、模长最大值当向量a和向量b的方向相同,且它们的模长相等时,它们的和向量c的模长最大,此时|c|=2|a|。

2、模长最小值当向量a和向量b的方向相反,且它们的模长相等时,它们的和向量c的模长最小,此时|c|=0。

2024新人教A版高中数学第02讲 平面向量的加、减法运算(教师版)-高一数学同步精品讲义

2024新人教A版高中数学第02讲 平面向量的加、减法运算(教师版)-高一数学同步精品讲义

第02讲平面向量的加、减法运算目标导航课程标准课标解读1.理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作出两个向量的和.2.掌握向量加法的交换律与结合律,并会用它们进行向量运算.3.掌握向量减法的概念.理解两个向量的减法就是转化为向量加法来进行的.4.掌握相反向量.5.掌握向量加、减法的几何意义.通过本节课的学习,要求掌握现面向量的加法与减法的运算法则及相关的运算定律,掌握两种运算的几何意义,会进行平面向量的相关运算,注意两种运算的条件.知识精讲知识点1.向量的加法(1)向量的加法求两个向量和的运算,叫做向量的加法.(2)向量加法的三角形法则如图,已知向量a ,b ,在平面上任取一点A ,作AB = a ,BC = b ,则向量AC叫做a 与的b 和,记作+a b ,即AB BC AC +=+=a b ,上述求两个向量和的作图法则,叫做向量加法的三角形法则.【微点拨】当两个向量共线时,三角形法则同样适用,下图分别表示两个同向共线向量和的情形,及两个异向共线向量和的情形.(3)向量加法的平行四边形法则如图,已知两个不共线的向量a 和b ,作OA = a ,OB =b ,则O 、A 、B 三点不共线,以OA 、OB 为邻边作平行四边形OACB ,则对角线上的向量OC OA OB =+,此种作法称为向量加法的平行四边形法则.【微点拨】若n 个向量顺次首尾相接,则由起始向量的起点指向末向量的终点的向量就是它们的和,即1112233411n n n n n A A A A A A A A A A A A +-+=+++⋅⋅⋅+,如图.(4)和向量的模与原向量之间的关系一般地,我们有+≤+a b a b .当a 与b 共线且同向时,+=+a b a b ;当a 与b 共线且异向时,+=-a b a b ;当a 与b 不共线时,+<+a b a b .(5)向量加法的运算律交换律:+=+a b b a ;结合律:()()++=++a b c a b c .注意:①当a 、b 至少有一个为零向量时,交换律和结合律仍成立;②当a 、b 共线时,交换律和结合律也成立.(6)向量求和的多边形法则由两个向加法的定义可知,两个向量的和仍是一个向量,这样我们就能把三个、四个或任意多个向量相加,现以四个向量为例,如图,已知向量a ,b ,c ,d ,在平面上任选一点O ,作OA = a ,AB = b ,BC = c ,CD = d ,则OD OA AB BC CD =+++=+++a b c d .已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的起点为起点、第n 个向量的终点为终点的向量叫做这n 个向量的和向量.这个法则叫做向量求和的多边形法则.(7)向量加法的实际应用向量的加法在三角形、四边形等平面几何知识,物理知识中都有着广泛的应用,在解决向量与平面几何知识相结合的题目时,要注意数形结合,这也体现了向量作为一种工具在几何学、物理学等知识领域的应用.2.向量的减法(1)相反向量我们把与向量a 长度相等、方向相反的向量,叫做a 的相反向量,记作-a .规定零向量的相反向量仍为零向量,且①()--=a a ;②()()0+-=-+=a a a a ;若a ,b 互为相反向量,则=-a b ,=-b a ,0+=a b .(2)向量减法的定义向量a 加上向量b 的相反向量,叫做a 与b 的差,即()-=+-a b a b ,求两个向量差的运算,叫做向量的减法,向量的减法实质上也是向量的加法.3.向量减法的几何意义(1)非零共线向量a ,b 的差-a b ;①若a ,b 反向,则-a b 与a 同向,且-=+a b a b .②若a ,b 同向,(ⅰ)若>a b ,则-a b 与a 同向,且-=-a b a b ;(ⅱ)若<a b ,则-a b 与a 反向,且-=-a b b a ;(ⅲ)若=a b ,则0-=a b .其几何意义分别如图(1)(2)(3)(4).(2)非零不共线向量a ,b 的差-a b :①如图,在平面内任取一点O ,作OA = a ,OB = b ,则向量BA为所求,即BA OA OB =-=-a b .即把两个向量的起点放在一起,则两个向量的差是以减向量的终点为起点、被减向量的终点为终点的向量.②如图,在平面内任取一点O ,作OA = a ,OB =b ,分别以OA ,OB 为边作平行四边形OACB ,连接BA ,则BA BC CA =+=-a b ,这种作差向量的方法实质上是利用向量减法的定义.4.向量减法的三角形法则和平行四边形法则-a b 从“相反向量”这个角度有两种作法:三角形法则和平行四边形法则.减法的三角形法则的作法:在平面内取一点O ,作OA = a ,OB = b ,则BA =-a b ,即-a b 可以表示从向量b 的终点指向向量a 的终点的向量(注意:差向量的“箭头”指向被减向量).具体作法如图(1)(a ,b 不共线)和图(2)、(3)(a ,b 共线)所示.减法的平行四边形法则的作法:当a ,b 不共线时.如图(1),在平面内任取一点O ,作OA = a ,OB =-b ,则由向量加法的平行四边形法则可得()OC =+-=- a b a b ,这是向量减法的平行四边形法则.若a ,b 同向共线,如图(2)所示;若a ,b 异向共线.如图(3)所示.5.向量的加法和减法的运算问题关于向量的加法和减法运算问题,一种解法就是依据三角形法则通过作图来解决,另一种解法就是通过表示向量的有向线段的字母符号运算来解决.具体地说,在一个用有向线段表示向量的运算式子中,将式子中的“−”改为“+”只需把表示向量的两个字母的顺序颠倒一下即可.如“AB - ”改为“BA +”.解用几个基本向量表示某向量问题的基本技巧是,第一步:观察各向量位置;第二步:寻找(或作)相应的平行四边形或三角形:第三步:运用法则找关系;第四步:化简结果.【微点拨】向量减法运算是加法的逆运算.在理解相反向量的基础上,结合向量的加法运算掌握向量的减法运算.【即学即练1】在△ABC 中,BC = a ,CA = b ,则AB等于()A .+a bB .--a bC .-a bD .-b a【答案】B【解析】AB CB CA =- =–BC CA -=--a b ,故选B .【即学即练2】如图,在矩形ABCD 中,AO OB AD ++=()A .ABB .ACC .ADD .BD【答案】B【解析】在矩形ABCD 中,AD BC = ,则AO OB AD AO ++= +OB +BC AC =,故选B .【名师点睛】(1)向量加法的多边形法则:n 个向量经过平移,顺次使前一个向量的终点与后一个向量的起点重合,组成组向量折线,这n 个向量的和等于折线起点到终点的向量.这个法则叫做向量加法的多边形法则.多边形法则实质就是三角形法则的连续应用.(2)|a +b |≤|a |+|b |.【即学即练3】向量()()AB MB BO BC OM ++++ 化简后等于()A .BCB .ABC .ACD .AM【答案】C【解析】()()AB MB BO BC OM AB ++++= +BO +OM +MB +BC AO = +OM +MB +BC =AM+MB +BC AB = +BC AC =.故选C .【名师点睛】(1)首先观察各向量字母的排列顺序,再进行恰当的组合,利用向量加法法则求解.(2)此类问题应根据三角形法则或平行四边形形法则,观察是否具备应用法则的条件,若不具备,应改变条件,以便使用法则求解.【即学即练4】在△ABC 中,BC = a ,CA = b ,则AB等于()A .+a bB .--a bC .-a bD .-b a【答案】B【解析】AB CB CA =- =–BC CA -=--a b ,故选B .【即学即练5】下列四式不能化简为PQ的是()A .()AB PA BQ ++B.()()AB PC BA QC ++- C .QC CQ QP+- D .PA AB BQ+- 【答案】D 【分析】由向量加减法法则计算各选项,即可得结论.【详解A 项中,()()AB PA BQ AB BQ AP AQ AP PQ ++=+-=-=;B 项中,()()()()AB PC BA QC AB AB PC CQ PQ ++-=-++= ;C 项中,QC CQ QP QP PQ +-=-=;D 项中,PA AB BQ PB BQ PQ +-=-≠.故选:D.【即学即练6】已知非零向量a 与b方向相反,则下列等式中成立的是()A .a b a b -=-B .a b a b+=- C .a b a b+=- D .a b a b+=+ 【答案】C 【分析】根据方向相反的两个向量的和或差的运算逐一判断.【详解】A.a b -可能等于零,大于零,小于零,0a b a b -=+> ,A 不成立B.a b a b +=-r r r r ,a b a b -=+,B 不成立C.a b a b -=+,C 成立D.a b a b a b +=-≠+,D 不成立.故选:C.【即学即练7】在平行四边形ABCD 中,BC CD BA -+等于()A .BCB .DAC .ABD .AC【答案】A【解析】∵在平行四边形ABCD 中,DC 与BA 是一对相反向量,∴DC BA =-,∴–BC CD BA BC -+= BA +BA BC =,故选A .【名师点睛】注意向量几何意义的应用,利用数形结合的思想解题.能力拓展考法011.向量加法运算及其几何意义(1)平行四边形法则的应用前提:两个向量是从同一点出发的不共线向量.三角形法则应用的前提:两个向量“首尾相接”.(2)当两个向量不共线时,三角形法则和平行四边形法则实质是一样的.三角形法则作出的图形是平行四边形法则作出图形的一半.但当两个向量共线时,平行四边形法则便不再适用.(3)向量加法的三角形法则和平行四边形法则是向量加法的几何意义.【典例1】如图,在正六边形ABCDEF 中,BA CD FB ++等于()A .0B .BEC .AD D .CF【答案】A 【分析】根据相等向量和向量加法运算直接计算即可.【详解】CD AF = ,∴0BA CD FB BA AF FB ++==++ .故选:A.考法022.向量加法的运算律(1)向量的加法与实数加法类似,都满足交换律和结合律.(2)由于向量的加法满足交换律与结合律,因此多个向量的加法运算就可按照任意的次序与任意组合来进行.例如,(a +b )+(c +d )=(b +d )+(a +c ),a +b +c +d +e =[d +(a +c )]+(b +e ).【典例2】化简下列各式:①AB BC CA ++ ;②()AB MB BO OM +++uu u r uuu r uu u r uuu r ;③OA OC BO CO +++;④AB CA BD DC +++.其中结果为0 的个数是()A .1B .2C .3D .4【答案】B 【分析】根据向量的加减运算法则计算,逐一判断①②③④的正确性,即可得正确答案.【详解】对于①:0AB BC CA AC CA ++=+=,对于②:()AB MB BO OM AB BO OM MB AM MB AB +++=+++=+=uu u r uuu r uu u r uuu r uu u r uu u r uuu r uuu r uuu r uuu r uu u r,对于③:()()0OA OC BO CO BO OA CO OC BA BA +++=+++=+=,对于④:()()0AB CA BD DC AB BD DC CA AD DA +++=+++=+= ,所以结果为0的个数是2,故选:B考法033.向量的減法运算及其几何意义(1)向量减法的实质是向量加法的逆运算.利用相反向量的定义可以把减法化为加法.在用三角形法则作向量减法时,只要记住“连接两向量的终点,箭头指向被减向量”即可.(2)以向量AB =a ,A 6=b 为邻边作平行四边形ABCD ,则两条对角线的向量为AC =a +b ,BD =b –a ,DB =a –b ,这一结论在以后应用非常广泛,应该牢记并加强理解.【典例3】已知85AB AC == ,,则BC的取值范围是__________.【答案】[3,13]【解析】∵–BC AC AB = ,∴BC =|–AC AB|,∴AB AC - ≤BC ≤AB AC + ,即3≤BC≤13.故答案为:[3,13].【名师点睛】本题考查的知识点是两向量的和或差的模的最值,两向量反向,差的模有最大值,两向量反向,差的模有最小值是解答本题的关键.|a –b |、|a |–|b |、|a |+|b |三者的大小关系(1)当向量a 与b 共线时,当两非零向量a 与b 同向时,|a –b |=|a |–|b |<|a |+|b |;当两非零向量a 与b 反向时,|a –b |=|a |+|b |>|a |–|b |;当a 与b 中至少有一个为零向量时,|a –b |=|a |–|b |=|a |+|b |.(2)当两非零向量a 与b 不共线时,如在△ABC 中,AC =a ,AB =b ,则BC =AC –AB =a –b ,根据三角形中任意两边之差总小于第三边,任意两边之和总大于第三边,可得||a |–|b ||<|a –b |<|a |+|b |.综合可知,对任意的向量a 与b 都有||a |–|b ||≤|a –b |≤|a |+|b |.只当a 与b 同向或a 与b 中至少有一个为零向量时||a |–|b ||≤|a –b |中的等号成立;当a 与b 反向或a 与b 中至少有一个为零向量时|a –b |≤|a |+|b |中的等号成立.考法044.向量加、减法的综合应用向量的几何意义及加、减法运算常用来解决平面几何问题,解题时要将所给向量式中各向量进行移项或重新组合,并灵活运用相反向量,把向量相等、平行、模的关系进行转化.【典例4】化简(1)()()AB CD AC BD --- (2)OA OD AD -+ ;(3)AB DA + +BD BC CA --.【答案】(1)0 ;(2)0 ;(3)AB.【分析】(1)方法一:将CD - 转化为DC,将AC - 转化为CA ,利用向量的加法法则,即可求得答案.方法二:利用向量的减法法则,化简整理,即可得答案.(2)利用向量的减法法则,化简整理,即可得答案.(3)根据向量的线性运算法则,即可求得答案.【详解】(1)方法一(统一成加法):()()AB CD AC BD AB AC CD BD ---=--+AB BD DC CA AD DA =+++=+= 方法二(利用OA OB BA -=uu r uu u r uu r):()()AB CD AC BD AB CD AC BD ---=--+ 0AB AC CD BD CB CD BD DB BD =--+=-+=+= (2)0OA OD AD DA AD -+=+=uu r uuu r uuu r uu u r uuu r r .(3)AB DA BD BC CA AB DA AC BD BC ++--=+++- AB DC CD AB=++= 【典例5】如图,M 、N 在线段BC 上,且BM CN =,试探求AB AC + 与AM AN +的关系,并证明之.【答案】相等,证明见解析【分析】求AB AC + 与AM AN +的关系为相等,利用向量加法的三角形法则即可证明.【详解】A A M C ANB A =++ 证明:由向量加法三角形法则知:,AB AM MB AC AN NC =+=+,所以AB AC AM MB AN NC +=+++ ,因为BM CN =,所以MB NC =- ,所以AB AC AM MB AN NC AM AN NC NC AM AN +=+++=++-=+ 【点睛】本题主要考查了向量的加法法则,相反向量,属于中档题.【典例6】如图所示,已知在矩形ABCD 中,3AD = ,8AB = .设,,AB a BC b BD c ===,求a b c -- .【答案】87a b c --=r r r【分析】延长直线AB ,使得直线AB 上一点B '满足AB BB '=,同理,延长直线AD ,使得直线AD 上一点D ¢满足AD DD '=,画出图形,则''a b c D B --=,进而求解即可【详解】延长直线AB ,使得直线AB 上一点B '满足AB BB '=,同理,延长直线AD ,使得直线AD 上一点D ¢满足AD DD '=,如图所示,则'b c BD += ,()'''''a b c a b c a BD BB BD D B --=-+=-=-=,则()()22''2432887a b c D B --==⨯+⨯=【点睛】本题考查向量的加法,减法在几何中的应用,考查向量的模.分层提分题组A 基础过关练1.向量AB CB BD BE DC ++++化简后等于()A .A EB .AC C .ADD .AB【答案】A 【分析】根据向量的线性运算求解即可.【详解】由AB CB BD BE DC AC CB BE AE →→++++=++= ,故选:A2.如图,向量AB a =,AC b = ,CD c = ,则向量BD 可以表示为()A .a b c ++B .a b c-+ C .b a c-+D .b a c-- 【答案】C 【分析】利用向量加法和减法的三角形法则计算即可.【详解】AD AB AC CD AB BD b a c=-=-+-=+ 故选:C.3..设D 为∆ABC 中BC 边上的中点,且O 为AD 边上靠近点A 的三等分点,则()A.5166BO AB AC=-+B.1162BO AB AC=-C.5166BO AB AC=- D.1162BO AB AC=-+【答案】A【解析】本题考点是平面向量的加减法运算法则,由题意可知在三角形BAO 中:()11513666BO AO AB AD AB AB AC AB AB AC =-=-=+-=-+,故选A.4.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB FC +=().A .ADB .12ADC .BCD .12BC【答案】A【解析】本题的考点是平面向量的加法、减法法则,线段中点的性质,考查转化能力,用向量法表示三角形中线的性质要引起重视,由题意可知D ,E ,F 分别是BC ,CA ,AB 的中点,所以有以下结论:()()1122EB FC BA BC CA CB+=-+-+()()1112222BA CA AB AC AD AD =-+=+==,故选A.5.已知点G 是三角形ABC 所在平面内一点,满足0GA GB GC ++=,则G 点是三角形ABC的()A .垂心B .内心C .外心D .重心【答案】D 【分析】由题易得GA GB CG +=,以GA 、GB 为邻边作平行四边形GADB ,连接GD ,交AB 于点O ,进而可得CG GD =,进而可得13GO CO = ,所以CG 所在的直线CO 是AB 边上的中线,同理可证AG 所在的直线是BC 边上的中线,BG 所在的直线是AC 边上的中线,最后得出答案即可.【详解】因为0GA GB GC ++= ,所以GA GB GC CG +=-= ,以GA 、GB 为邻边作平行四边形GADB ,连接GD ,交AB 于点O ,如图所示:则CG GD =,所以13GO CO = ,点O 是AB 边的中点,所以CG 所在的直线CO 是AB 边上的中线,同理可证AG 所在的直线是BC 边上的中线,BG 所在的直线是AC 边上的中线,所以G 点是三角形ABC 的重心.故选:D .6.如图,D ,E ,F 分别为ABC 的边AB ,BC ,CA 的中点,则()A .0AD BE CF ++= B .0++= BD CF DF C .0++= AD CE CF D .0++= BD BE FC 【答案】A 【分析】根据平面向量的线性运算法则计算可得;【详解】解:D Q ,E ,F 分别是ABC 的边AB ,BC ,CA 的中点,∴12AD AB = ,12BE BC = ,12CF CA =,则1111()02222AD BE CF CA AB CA CA AB CA ++=++=++=,故A 正确;()1111122222BD CF DF BA CA BA CA BA BC BC ++=++=++=,故B 错误;()1111122222AD CE CF AB CB CA CA AB CB CB ++=++=++=,故C 错误;()1111122222BD BE FC BA BC AC BA AC BC BC ++=++=++=,故D 错误;故选:A .7.在ABC 中,点P 满足2AP AB AC =-,则()A .点P 不在直线BC 上B .点P 在CB 的延长线上C .点P 在线段BC 上D .点P 在BC 的延长线上【答案】B 【分析】由已知条件可得BP CB = ,从而可得BP 与CB共线,进而可得结论【详解】因为2AP AB AC =-,得AP AB AB AC =-- ,所以BP CB = ,所以,,B P C 三点共线,且点P 在CB 的延长线上,故选:B8.五角星是指有五只尖角、并以五条直线画成的星星图形,有许多国家的国旗设计都包含五角星,如中华人民共和国国旗.如图在正五角星中,每个角的角尖为36°,则下列说法正确的是()A .0CH ID += B .AB FE∥ C .2AF FG HG+= D .AF AB AJ=+ 【答案】D 【分析】利用相反向量可判断A ;利用向量共线可判断B ,利用向量的加法可判断C 、D.【详解】A ,由图可知CH 与ID 相交,所以CH 与ID不是相反向量,故A 错误;B ,AB 与DE 共线,所以DE 与FE 不共线,所以AB 与FE不共线,故B 错误;C ,2AF FG AG HG +=≠,故C 错误;D ,连接,BF JF ,由五角星的性质可得ABJF 为平行四边形,根据平行四边形法则可得AF AB AJ =+,故D 正确.故选:D9.已知A ,B ,C 为三个不共线的点,P 为△ABC 所在平面内一点,若PA PB PC AB +=+,则下列结论正确的是()A .点P 在△ABC 内部B .点P 在△ABC 外部C .点P 在直线AB 上D .点P 在直线AC 上【答案】D 【分析】由向量的运算可得CA AP =,进而可得解.【详解】∵PA PB PC AB +=+ ,∴PB PC AB PA -=- ,∴CB AB AP CB AB AP =+-= ,,即CA AP = .故点P 在边AC 所在的直线上.故选:D.10.平面上有三点A ,B ,C ,设m AB BC =+ ,n AB BC =-,若,m n 的长度恰好相等,则有()A .A ,B ,C 三点必在同一条直线上B . ABC 必为等腰三角形,且∠B 为顶角C . ABC 必为直角三角形,且∠B=90°D . ABC 必为等腰直角三角形【答案】C【分析】根据,m n 的长度相等,由|AC |=|BD|得到ABCD 是矩形判断.【详解】如图:因为,m n的长度相等,所以|AB BC + |=|AB BC - |,即|AC |=|BD |,所以ABCD 是矩形,故 ABC 是直角三角形,且∠B=90°.故选:C11.在平行四边形ABCD 中,设M 为线段BC 的中点,N 为线段AB 上靠近A 的三等分点,AB a = ,AD b = ,则向量NM =()A .1132a b+B .2132a b+C .1132a b-D .2132a b-【答案】B【分析】根据题意作出图形,将AM 用a 、b的表达式加以表示,再利用平面向量的减法法则可得出结果.【详解】解:由题意作出图形:在平行四边形ABCD 中, M 为BC 的中点,则12AM AB BM a b =+=+又 N 为线段AB 上靠近A 的三等分点,则1133AN AB ==11212332NM AM AN a b a a b∴=-=+-=+故选:B12.若O 是平面上的定点,A ,B ,C 是平面上不共线的三点,且满足()OP OC CB CAλ=++(R λ∈),则P 点的轨迹一定过ABC 的()A .外心B .内心C .重心D .垂心【答案】C【分析】由()OP OC CB CA λ=++ (R λ∈),得到()CP CB CA λ=+ ,再根据CB CA +经过在ABC 的重心判断.【详解】因为()OP OC CB CA λ=++(R λ∈),所以()CP CB CA λ=+,所以CB CA +在ABC 的边AB 上的中线所在直线上,则()CB CA λ+ 在ABC 的中线所在直线上,所以P 点的轨迹一定过ABC 的重心,故选:C13.下列命题中正确的是()A .如果非零向量a 与b 的方向相同或相反,那么a b + 的方向必与a ,b之一的方向相同B .在ABC 中,必有0AB BC CA ++=C .若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点D .若a ,b均为非零向量,则||a b + 与||||a b + 一定相等【答案】B 【分析】根据向量的线性运算法则,逐一分析各个选项,即可得答案.【详解】对于A :当a 与b 为相反向量时,0a b +=,方向任意,故A 错误;对于B :在ABC 中,0AB BC CA ++=,故B 正确;对于C :当A 、B 、C 三点共线时,满足0AB BC CA ++=,但不能构成三角形,故C 错误;对于D :若a ,b 均为非零向量,则a b a b +≤+ ,当且仅当a 与b同向时等号成立,故D错误.故选:B14.如右图,D ,E ,P 分别是ABC 的边AB ,BC ,CA 的中点,则()A .0AD BE CF ++= B .0BD CF DF -+=uu u r uu u r uuu r r C .0AD CE CF +-=uuu r uur uu u r r D .0BD BE FC --= 【答案】A 【分析】根据向量加法和减法的运算法则结合图像逐一运算即可得出答案.【详解】解:0AD BE CF DB BE ED DE ED ++=++=+=,故A 正确;BD CF DF BD FC DF BC -+=++=,故B 错误;AD CE CF AD FE AD DB AB +-=+=+=,故C 错误;2BD BE FC ED FC ED DE ED --=-=-=,故D 错误.故选:A.15.如图,在ABC 中,3BC BD →→=,23AE AD →→=,则CE →=()A .4599AB AC→→+B .4799AB AC→→-C .4133AB AC→→-D .4799AB AC→→-+【答案】B 【分析】利用向量定义,22()33CE AE AC AD AC AB BD AC →→→→→→→→=-=-=+-,最后化简为,AB AC →→来表示向量即可.【详解】22()33CE AE AC AD AC AB BD AC→→→→→→→→=-=-=+-2122()()3339AB BC AC AB AC AB AC →→→→→→→=+-=+--4799AB AC →→=-故选:B题组B 能力提升练1.在等腰梯形ABCD 中,//AB DC ,2AB DC =,E 为BC 的中点,则()A .3142AE AB AD→→→=+B .3122AE AB AD→→→=+C .1142AE AB AD →→→=+D .3144AE AB AD →→→=+【答案】A 【分析】作出示意图,利用数形结合,在梯形ABCD 中,利用三角形法则即可求解.【详解】如图所示:在三角形ABE 中,12AE AB BE AB BC→→→→→=+=+12AB BA AD DC →→→→⎛⎫=+++ ⎪⎝⎭1122AB AB AD AB →→→→⎛⎫=+-++ ⎪⎝⎭1122AB AB AD →→→⎛⎫ ⎪=+-+ ⎪⎝⎭3142AB AD →→=+.故选:A.2.已知O 是三角形ABC 内部的一点,230OA OB OC ++=,则OAC 的面积与OAB 的面积之比是()A .32B .23C .2D .1【答案】B 【分析】取D 、E 分别是BC 、AC 中点,根据向量的加法运算以及向量共线可得2OE OD =,再由三角形的相似比即可求解.【详解】如下图所示,D 、E 分别是BC 、AC 中点,由230OA OB OC ++=得()2OA OC OB OC +=-+ 即2OE OD =- ,所以2OE OD =,由COE AOE S S = ,COD BOD S S =△△,设1AOC S S = ,2BOC S S = ,则12COE AOE S S S ==,22COD BOD SS S == ,由三角形相似比可得1212122322AOB S S S S S +=++ ,解得12AOB S S S += ,因为:2:1AOE BOD S S = ,所以12:2:1S S =,即122S S =,所以112AOB S S S += ,所以123AOB S S = ,即OAC 的面积与OAB 的面积之比是23故选:B.3.已知平面向量a ,b ,c满足222a c a b b c ==-=-= ,则b 的取值范围为()A .[]1,3B .7⎡⎣C .[]2,3D .7⎡⎣【答案】C 【分析】由复数的几何意义画出简图,数形结合可得结果.【详解】令a OA =,由2a = 知点A 在以O 为圆心,2为半径的圆上;令2a OD =,由2a = 知点D 在以O 为圆心,4为半径的圆上;令c OC =,由2c = 知点C 在以O 为圆心,2为半径的圆上;令b OB =,由22a b -= 知点B 在以D 为圆心,2为半径的圆上,由1b c -= 知点B 也在以C为圆心,1为半径的圆上,所以点B 在以O 为圆心,内径为2,外径为3的圆环上,如图阴影部分,从而[]2,3b ∈.故选:C.4.在平行四边形ABCD 中,设CB a = ,CD b =,E 为AD 的靠近D 的三等分点,CE 与BD交于F ,则AF =()A .3144a b--B .3144a b-+C .1344a b--D .1344a b-【答案】A 【分析】找到AD 、BC 上的三等分点,则////AK GH EC ,结合图形易得4DBDF =,由AF AD DF =+ 即可知正确选项.【详解】如图,在AD 上取G 点,使得AG GE ED ==,在BC 上由左到右取K ,H ,使得BK KH HC ==,连接AK ,GH ,则////AK GH EC ,∵//DE BC 且13DE BC =,∴由相似比可知:4DBDF =,∴()131444AF AD DF a a b a b =+=-+-=-- .故选:A5.在ABC 中,D 、E 、F 分别是边BC 、CA 、AB 的中点,AD 、BE 、CF 交于点G ,则:①1122EF CA BC =- ;②1122BE AB BC =-+ ;③AD BE FC += ;④0GA GB GC ++= .上述结论中,正确的是()A .①②B .②③C .②③④D .①③④【答案】C 【分析】作出图形,利用平面向量的加法法则可判断①②③④的正误.【详解】如下图所示:对于①,F 、E 分别为AB 、AC 的中点,111222FE BC CA BC ∴=≠-,①错误;对于②,以BA 、BC 为邻边作平行四边形ABCO ,由平面向量加法的平行四边形法则可得2BE BO BA BC AB BC ==+=-+,1122BE AB BC ∴=-+,②正确;对于③,由②同理可得2AD AB AC =+uuu r uu u r uuu r,1122AD AB AC ∴=+ ,同理可得1122CF CA CB =+ ,()102AD BE CF AB AC BA BC CA CB ∴++=+++++=,AD BE CF FC ∴+=-=,③正确;对于④,易知点G 为ABC 的重心,所以,23GA AD =- ,23GB BE =- ,23GC CF =-,因此,()203GA GB GC AD BE CF ++=-++=,④正确.故选:C.【点睛】本题考查平面向量加法运算的相关判断,考查平面向量加法法则的应用,考查计算能力,属于中等题.6.八卦是中国文化中的哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则给出下列结论:①0BF HF HD -+= ;②2OA OC OF +=- ;③AE FC GE AB +-=.其中正确的结论为()A .①②B .①③C .②③D .①②③【答案】C 【分析】根据平面向量的线性运算逐项进行化简计算,由此确定出正确选项.【详解】对于①:因为BF HF HD BF FH HD BH HD BD -+=++=+=,故①错误;对于②:因为3602908AOC ︒∠=⨯=︒,则以,OA OC 为邻边的平行四边形为正方形,又因为OB 平分AOC ∠,所以22OA OC +=-,故②正确;对于③:因为AE FC GE AE FC G EG A FC +-=++=+ ,且FC GB =,所以AE FC GE AG GB AB +-=+=,故③正确,故选:C.【点睛】关键点点睛:解答本题的关键利用合适的转化对向量的减法运算进行化简,由此验证关于向量的等式是否正确.7.ABC 中,AD DC =,点M 在BD 上,且满足37AM AB t AC =+ ,则实数t 的值为()A .67B .47C .27D .59【答案】C 【分析】由题意,可设DM k DB =,结合条件整理可得11(1)22AM AC DM k AC k AB =+=-+ ,得到关于k 与t 的方程组,解出t 即可.【详解】如图,因为AD DC =,所以12AD AC= 则12AM AD DM AC DM =+=+ ,因为M 在BD 上,不妨设1()()2DM k DB k AB AD k AB AC ==-=- ,则1111()(1)2222AM AC DM AC k AB AC k AC k AB =+=+-=-+ ,因为37AM AB t AC =+,所以371(1)2⎧⎪⎪⎨⎪⎩=-=⎪k k t ,解得27t =,故选:C【点睛】本题主要考查了平面向量的线性运算的应用及平面向量基本定理的应用,意在考查学生对这些知识的理解掌握水平.8.(多选题)下列各式结果为零向量的有()A .AB CA BC→→→++B .AB AC BD CD+++ C .OA OD AD-+ D .NQ QP MN MP++- 【答案】ACD 【分析】根据平面向量的线性运算逐个求解即可【详解】对A ,0AB CA BC CA AB BC CB BC ++=++=+=,故A 正确;对B ,()()2AB AC BD CD AB BD AC CD AD AD AD +++=+++=+=,故B 错误;对C ,0OA OD AD DA AD -+=+=,故C 正确;对D ,0NQ QP MN MP NP PN ++-=+=,故D 正确;故选:ACD 【点睛】本题主要考查了平面向量的线性运算9.(多选题)在平行四边形ABCD 中,点E ,F 分别是边BC 和DC 的中点,P 是DE 与BF 的交点,则有()A .12AE AB AD=+uu u r uu u r uuu rB .1122AF AB AD=+ C .2233AP AB AD=+ D .1122CP CD CB=+【答案】AC 【分析】对A ,B ,由向量的加法法则即可判断;对C ,D ,由向量的加法法则以及三角形重心的性质即可判断.【详解】解:如图所示:对A ,12AE AB BE AB BC =+=+,又BC AD = ,即12AE AB AD =+uu u r uu u r uuu r,故A 正确;对B ,1122AF AD DC AB AD =+=+,故B 错误;对C ,设O 为AC 与BD 的交点,由题意可得:P 是CBD 的重心,故2CP PO = ,222333AP AO OP AC AB AD =+==+,故C 正确;对D ,221111332233CP CO CB CD CB CD ⎛⎫==⨯+=+ ⎪⎝⎭,故D 错误.故选:AC.10.(多选题)设P 是OAB 内部(不含边界)的一点,以下可能成立的是()A .2155OP OA OB =+B .2455OP OA OB =+C .2155OP OA AB=+ D .2455OP OA AB=+【答案】AC 【分析】作出图示,根据向量的平行四边形法则逐项进行判断即可.【详解】对于A :如下图所示,可知P 在OAB 内部,故成立;对于B :如下图所示,可知P 在OAB 外部,故不成立;对于C :因为21211115555555OP OA AB OA AO OB OA OB =+=++=+,如下图所示,可知P 在OAB 内部,故成立;对于D :因为24244245555555OP OA AB OA AO OB OA OB =+=++=-+ ,如下图所示,可知P 在OAB 外部,故不成立;故选:AC.【点睛】关键点点睛:解答本题的关键是采用图示结合向量的平行四边形法则进行说明,其中CD 选项中的向量关系式要根据AB AO OB =+进行化简.11.(多选题)设点D 是ABC 所在平面内一点,则下列说法正确的有()A .若()12AD AB AC =+,则点D 是边BC 的中点B .若()13AD AB AC =+,则点D 是ABC 的重心C .若2AD AB AC =-,则点D 在边BC 的延长线上D .若AD xAB y AC =+ ,且12x y +=,则BCD △是ABC 面积的一半【答案】ABD 【分析】对A ,根据中点的性质即可判断;对B ,根据重心的性质即可判断;对C ,根据向量的运算得到BD CB =,即可判断;对D ,根据三点共线的性质即可求解.【详解】解:对A ,()12AD AB AC =+,即11112222AD AB AC AD -=-,即BD DC = ,即点D 是边BC 的中点,故A 正确;对B ,设BC 的中点为M ,()1122333AD AB AC AM AM =+=⨯= ,即点D 是ABC 的重心,故B 正确;对C ,2AD AB AC =-,即AD AB AB AC -=- ,即BD CB = ,即点D 在边CB 的延长线上,故C 错误;对D ,AD xAB y AC =+,且12x y +=,故222AD xAB y AC =+,且221x y +=,设2AM AD =,则22AM xAB y AC =+,且221x y +=,故,,M B C 三点共线,且2AM AD =,即BCD △是ABC 面积的一半,故D 正确.故选:ABD.12.对于菱形ABCD ,给出下列各式,其中结论正确的为()A .AB BC =B .AB BC = C .AB CD AD BC-=+D .AD CD CD CB+=- 【答案】BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量AB 与BC的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为2AB CD AB DC AB -=+= ,2AD BC BC +=,且AB BC = ,所以AB CD AD BC -=+ ,即C 结论正确;因为AD CD BC CD BD +=+= ,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.13..四边形ABCD 中,若BD BC BA =+,则四边形ABCD 的形状为_____.【答案】平行四边形【分析】由平面向量的加法法则直接可得答案【详解】解:因为四边形ABCD 中,BD BC BA =+,所以BC CD BC BA +=+ ,所以CD BA = ,所以CD BA = ,且CD ‖BA ,所以四边形ABCD 为平行四边形,故答案为:平行四边形。

平面向量的应用与解题技巧

平面向量的应用与解题技巧

平面向量的应用与解题技巧在数学中,平面向量是一个重要的概念,它在多个领域中得到广泛的应用,并且有许多解题技巧可供我们学习和运用。

本文将介绍平面向量的基本概念及其应用,并探讨一些解题技巧,希望能为读者提供帮助。

1. 平面向量的基本概念平面向量可以用有向线段来表示,它具有大小和方向两个特征。

我们通常用字母加上一个箭头来表示平面向量,比如AB→表示由点A指向点B的向量。

平面向量的大小通常用它的模表示,记作|AB→|,可以通过勾股定理求得。

2. 平面向量的加法与减法平面向量的加法与减法是指将两个向量相加或相减得到一个新的向量。

(1)加法:将两个向量的对应分量分别相加即可。

例如,对于向量A→(a,b)和向量B→(c,d),它们的和为C→(a+c,b+d)。

这意味着我们可以将向量的加法转化为对应分量的数加法,简化计算过程。

(2)减法:将第二个向量的对应分量取相反数,然后进行向量的加法运算。

例如,向量A→(a,b)减去向量B→(c,d)得到的结果为A→-B→(a-c,b-d)。

3. 平面向量的数量积和向量积平面向量的数量积和向量积是向量的重要运算,它们在几何和物理问题中广泛应用。

(1)数量积:数量积又称为点积,表示为A→·B→,计算公式为A→·B→=|A→||B→|cosθ,其中θ为A→与B→之间的夹角。

数量积的结果是一个实数,它可以判断两个向量之间的夹角大小和它们的相互关系。

(2)向量积:向量积又称为叉积,表示为A→×B→,计算公式为A→×B→= |A→||B→|sinθn→,其中θ为A→与B→之间的夹角,n→为垂直于A→和B→所确定的向量。

向量积的结果是一个向量,它的方向垂直于A→和B→所在的平面,并遵循右手法则。

4. 平面向量的应用平面向量广泛应用于解决几何问题、物理问题和工程问题。

(1)几何问题:平面向量可以用来表示几何图形的性质,比如线段的垂直、平行、共线等关系。

平面向量解题技巧

平面向量解题技巧

平面向量解题技巧1. 什么是平面向量?平面向量是指在平面上具有大小和方向的量。

它可以用有向线段来表示,线段的长度表示向量的大小,线段的方向表示向量的方向。

平面向量常用字母加箭头表示,如a⃗。

平面向量有两个重要的性质:大小和方向。

大小表示向量的长度,也称为向量的模或向量的大小,用|a⃗|表示。

方向表示向量的指向,可以用一个角度来表示,也可以用一个有向角度来表示。

2. 平面向量的表示方法平面向量可以用坐标表示法和基本向量表示法来表示。

2.1 坐标表示法在平面直角坐标系中,每个向量可以用两个有序实数(x,y)来表示,其中x表示向量在x轴上的投影,y表示向量在y轴上的投影。

这种表示方法称为坐标表示法。

2.2 基本向量表示法在平面直角坐标系中,我们可以选取两个互相垂直的单位向量i⃗和j⃗作为基本向量,它们的长度都为1。

任意向量a⃗可以表示为a⃗=xi⃗+yj⃗,其中x和y为实数。

这种表示方法称为基本向量表示法。

3. 平面向量的运算平面向量有加法和数乘两种运算。

3.1 平面向量的加法设a⃗=(x1,y1),b⃗⃗=(x2,y2)是平面上的两个向量,它们的和记作a⃗+b⃗⃗,定义为(x1+x2,y1+y2)。

即a⃗+b⃗⃗=(x1+x2,y1+y2)。

3.2 平面向量的数乘设a⃗=(x,y)是平面上的一个向量,k是实数,ka⃗定义为(kx,ky)。

即ka⃗=(kx,ky)。

3.3 平面向量的减法设a⃗=(x1,y1),b⃗⃗=(x2,y2)是平面上的两个向量,它们的差记作a⃗−b⃗⃗,定义为a⃗−b⃗⃗=a⃗+(−b⃗⃗)。

即a⃗−b⃗⃗=(x1−x2,y1−y2)。

4. 平面向量的性质平面向量具有一些重要的性质,包括相等性、共线性、平行性和垂直性。

4.1 相等性两个向量a⃗和b⃗⃗相等,记作a⃗=b⃗⃗,当且仅当它们的坐标相等,即x1=x2,y1=y2。

4.2 共线性两个向量a⃗和b⃗⃗共线,当且仅当它们的坐标成比例,即x1x2=y1y2。

平面向量的解题技巧

平面向量的解题技巧

平面向量的解题技巧
平面向量的解题技巧主要包括以下几个方面:
1. 理解平面向量的性质:平面向量有大小和方向,可以进行加减法、数乘等运算。

理解平面向量的性质是解题的基础。

2. 建立坐标系:建立一个适当的坐标系,可以方便地表示平面向量的位置和方向。

通常可以选择直角坐标系或极坐标系。

3. 平面向量的表示方法:平面向量可以用坐标表示,也可以用向量表示。

在解题时,灵活选择适当的表示方法,使问题变得简化。

4. 平面向量的运算法则:平面向量可以进行向量的加法、减法和数乘运算。

根据运算法则,可以进行组合运算,简化计算过程。

5. 理解平面向量的几何意义:平面向量可以表示平移、旋转和缩放等几何变换。

在解题时,可以把平面向量与几何问题相联系,更好地理解和解决问题。

6. 利用向量的性质解题:平面向量具有一些特殊的性质,如平行、垂直、共线等。

在解题时,可以利用这些性质将问题转化为已知的条件,从而更好地解决问题。

总之,平面向量的解题技巧在于灵活运用向量的定义、表示、
运算法则和几何性质,以及适当选择合适的坐标系和表示方法,从而解决平面向量相关的问题。

高中数学平面向量解题技巧

高中数学平面向量解题技巧

高中数学平面向量解题技巧1.平面向量的实际背景及基本概念(1)了解向量的实际背景。

(2)理解平面向量的概念,理解两个向量相等的含义。

(3)理解向量的几何意义。

2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义。

(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。

(3)了解向量线性运算的性质及其几何意义。

3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义。

(2)掌握平面向量的正交分解及其坐标表示。

(3)会用坐标表示平面向量的加法、减法与数乘运算。

(4)理解用坐标表示的平面向量共线的条件。

4.平面向量的数量积。

(1)理解平面向量数量积的含义及其物理意义。

(2)了解平面向量的数量积与向量投影的关系。

(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。

(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

5.向量的应用(1)会用向量方法解决某些简单的平面几何问题。

(2)会用向量方法解决简单的力学问题与其他一些实际问题。

好了,搞清楚平面向量的上述内容之后,下面我们就看下针对这方面内容的具体的解题技巧。

一、向量的有关概念及运算考情聚焦:1.向量的有关概念及运算,在近几年的高考中年年都会出现。

2.该类问题多数是单独命题,考查有关概念及其基本运算;有时作为一种数学工具,在解答题中与其他知识点交汇在一起考查。

3.多以选择、填空题的形式出现,有关会渗透在解答题中。

解题技巧:向量的有关概念及运算要注意以下几点:(1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。

(2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻例1:(2022·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b(p,q),令a⊙bmqnp,下面说法错误的是()A.若a与b共线,则a⊙b0B.a⊙bb⊙a2222C.对任意的R,有(a)⊙b(a⊙b)D.(a⊙b)(ab)ab【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题。

快速解决平面向量题目的技巧

快速解决平面向量题目的技巧

快速解决平面向量题目的技巧解决平面向量题目的技巧在学习平面向量时,很多学生常常觉得题目难以解决,因为涉及到复杂的计算和概念。

然而,只要我们掌握一些解题技巧,就能够快速解决这类问题。

本文将介绍一些快速解决平面向量题目的技巧,帮助读者更好地掌握这一知识点。

一、向量的加减运算在解决平面向量题目时,向量的加减运算是非常基础也是重要的一步。

我们可以使用三角形法则或平行四边形法则来进行运算。

1. 三角形法则三角形法则适用于解决两个向量相加的问题。

即将两个向量的起点和终点相连接,构成一个三角形,那么连接起点和三角形的终点的向量就是所要求的向量。

例如,已知向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),我们可以得到向量C的坐标为(Cx, Cy)。

其中,Cx = Ax + Bx,Cy = Ay + By。

2. 平行四边形法则平行四边形法则适用于解决两个向量相减的问题。

即将两个向量的起点相连,形成一个平行四边形,那么连接起点和平行四边形的对角线的向量就是所要求的向量。

例如,已知向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),我们可以得到向量C的坐标为(Cx, Cy)。

其中,Cx = Ax - Bx,Cy = Ay - By。

二、向量的数量积和向量积除了向量的加减运算外,向量的数量积和向量积也是平面向量题目中常见的计算方法。

这两个概念在解决平面向量问题时非常重要。

1. 向量的数量积向量的数量积又称点积,表示为A·B。

计算公式为A·B=|A||B|cosθ,其中|A|和|B|分别表示向量A和向量B的模长,θ表示两个向量的夹角。

在解决平面向量问题时,我们可以通过计算两个向量的数量积来判断它们的关系,例如判断是否正交、平行或夹角大小等。

2. 向量的向量积向量的向量积又称叉积,表示为A×B。

计算公式为A×B=|A||B|sinθn,其中|A|和|B|分别表示向量A和向量B的模长,θ表示两个向量的夹角,n表示单位法向量。

(完整word版)20高考数学平面向量的解题技巧

(完整word版)20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧【命题趋向】由2007年高考题分析可知:1.这部分内容高考中所占分数一般在10分左右.2.题目类型为一个选择或填空题,一个与其他知识综合的解答题.3.考查内容以向量的概念、运算、数量积和模的运算为主.【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主.透析高考试题,知命题热点为:1.向量的概念,几何表示,向量的加法、减法,实数与向量的积.2.平面向量的坐标运算,平面向量的数量积及其几何意义.3.两非零向量平行、垂直的充要条件.4.图形平移、线段的定比分点坐标公式.5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】1. 向量的概念,向量的基本运算(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念.(2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式.例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD =B.2AO OD =C.3AO OD =D.2AO OD =命题意图:本题考查能够结合图形进行向量计算的能力.解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A .例2.(2006年安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积.解:343A =3()AN NC AN C a b ==+由得,12AM a b =+,所以,3111()()4244MN a b a b a b =+-+=-+.例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=CD ( )(A )BA BC 21+- (B ) BA BC 21-- (C )BA BC 21- (D )BA BC 21+命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 21+-=+=,故选A.例4. ( 2006年重庆卷)与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是 ( ) (A) ⎪⎭⎫- ⎝⎛53,54 (B)⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 (C )⎪⎭⎫- ⎝⎛31,322 (D )⎪⎭⎫- ⎝⎛31,322或⎪⎭⎫ ⎝⎛-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.解:设所求平面向量为,c 由433,,, 1.555c c ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭4或-时5另一方面,当222274134312525,,cos ,.55271432255a c c a c a c ⎛⎫⨯+⨯- ⎪⋅⎛⎫⎝⎭=-=== ⎪⋅⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫+++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭时当7413431,,cos ,.5527a c c a c a c ⎛⎫⎛⎫⨯-+⨯ ⎪ ⎪⋅⎛⎫=-===- ⎪⋅⎝⎭⎛⎫时故平面向量c 与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹角相等.故选B. 例5.(2006年天津卷)设向量a 与b 的夹角为θ,且)3,3(=a,)1,1(2-=-a b ,则=θcos __.命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.解: ()()()()(),,22,3,323,231,1.b x y b a x y x y =-=-=--=-设由 ()2311,1,2.231 2.xx b y y -=-=⎧⎧⇒∴=⎨⎨-==⎩⎩得 23cos ,33a b a b a b⋅⨯==⋅+例6.(2006年湖北卷)已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b = () (A ) ⎪⎪⎭⎫⎝⎛21,23(B )⎪⎪⎭⎫ ⎝⎛23,21 (C)⎪⎪⎭⎫ ⎝⎛433,41 (D ) ()0,1 命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.解:设(),()b x y x y =≠,则依题意有1,y +=1,2x y ⎧=⎪⎪⎨⎪⎪⎩ 故选B.例7.设平面向量1a 、2a 、3a 的和1230a a a ++=.如果向量1b 、2b 、3b ,满足2i i b a =,且i a 顺时针旋转30o 后与i b 同向,其中1,2,3i =,则( )(A )1230b b b -++= (B )1230b b b -+= (C )1230b b b +-= (D )1230b b b ++=命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.常规解法:∵1230a a a ++=,∴ 1232220.a a a ++=故把2i a (i=1,2,3),分别按顺时针旋转30 后与i b 重合,故1230b b b ++=,应选D.巧妙解法:令1a =0,则2a =3a -,由题意知2b =3b -,从而排除B ,C ,同理排除A ,故选(D). 点评:巧妙解法巧在取1a =0,使问题简单化.本题也可通过画图,利用数形结合的方法来解决. 2. 平面向量与三角函数,解析几何等问题结合(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大.例8.(2007年陕西卷理17.)设函数f (x )=a-b ,其中向量a =(m,cos2x ),b =(1+sin2x ,1),x ∈R ,且函数y=f (x )的图象经过点⎪⎭⎫ ⎝⎛2,4π, (Ⅰ)求实数m 的值;(Ⅱ)求函数f (x )的最小值及此时x 的值的集合. 解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z ,例2.(2007年陕西卷文17)设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且.(Ⅰ)求实数m 的值;(Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1.例9.(2007年湖北卷理16)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+ ⎪⎝⎭π的最大解:(Ⅰ)设ABC △中角AB C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+ ⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)θθ=+πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 例10.(2007年广东卷理)已知ABC 的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0) (1)若c=5,求sin ∠A 的值;(2)若∠A 为钝角,求c 的取值范围; 解:(1)(3,4)AB =--,(3,4)AC c =--,若c=5, 则(2,4)AC =-,∴cos cos ,A AC AB ∠=<,∴sin ∠A ; (2)∠A 为钝角,则39160,0,c c -++<⎧⎨≠⎩解得253c >,∴c 的取值范围是25(,)3+∞例11.(2007年山东卷文17)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA =,且9a b +=,求c . 解:(1)sintan cos CC C=∴= 又22sin cos 1C C += 解得1cos 8C =±.tan 0C >,C ∴是锐角. 1cos 8C ∴=. (2)52CB CA =, 5cos 2ab C ∴=, 20ab ∴=.又9a b +=22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.例12. (2006年湖北卷)设函数()()f x a b c =⋅+,其中向量()()sin ,cos ,sin ,3cos a x x b x x =-=-,()cos ,sin ,c x x x R =-∈.(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.解:(Ⅰ)由题意得,f(x)=a ·(b c +)=(sinx,-cosx)·(sinx-cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π).所以,f(x)的最大值为2+2,最小正周期是22π=π.(Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z ,于是d =(832ππ-k ,-2),(2k d π=-k ∈Z.因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求.例13.(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(Ⅰ)若a ⊥b ,求θ; (Ⅱ)求|a +b |的最大值.命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.例14.(2006年陕西卷)如图,三定点(2,1),(0,1),(2,1);A B C --,,AD t AB BE tBC == ,[0,1].DM tDE t =∈ (I )求动直线DE 斜率的变化范围;(II )求动点M 的轨迹方程。

高中数学核心考点:平面向量 重难点2 向量的模长 - 解析

高中数学核心考点:平面向量 重难点2 向量的模长 - 解析

第2讲 平面向量的模长问题【方法点拨】利用代数方法处理向量的模长问题,主要采取模长平方和坐标两种方式模长平方:(已知模长,夹角的基向量)通过22cos0a a a a =⋅=可得:22a a =,将模长问题转化为数量积问题,要注意计算完向量数量积后别忘记开方。

坐标运算:(已知几何图形为特殊几何图形或有特殊角,可以构建直角坐标系)若(),a x y =,则2a x =+“模长平方”或“坐标化”得到模长与某个变量间的函数关系,从而将问题转化为求函数最值问题【典型题示例】【例1】已知平面向量,OA OB 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,且3OA OB ==, 若1233OP OA OB =+,则OP 的取值范围是__________ 思路:由3OA OB ==和夹角范围即可得到OA OB ⋅的范围,从而可想到将OP 模长平方,再利用1233OP OA OB =+转变为关于,OA OB 的问题,从而得到关于夹角θ的函数,求得范围。

解:22221214433999OP OA OB OA OA OB OB ⎛⎫=+=+⋅+ ⎪⎝⎭54cos θ=+2,33ππθ⎡⎤∈⎢⎥⎣⎦ 11cos ,22θ⎡⎤∴∈-⎢⎥⎣⎦,[]23,7OP ∴∈ 3,OP ⎡∴∈⎣ 【变式1-1】平面上的向量,MA MB 满足24MA MB +=,且0MA MB ⋅=,若1233MC MA MB =+,则MC 的最小值为___________思路:发现所给条件均与,MA MB 相关,且MC 可以用,MA MB 表示,所以考虑MC 进行模长平方,然后转化为,MA MB 的运算。

从而求出最小值解:()222212144339MC MA MB MA MA MB MB ⎛⎫=+=+⋅+ ⎪⎝⎭0MA MB ⋅= 24MA MB =-,代入可得:()2221116316374449981691616MC MB MB MB ⎡⎤⎛⎫=+-=-+≥⋅=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,min MC ∴= 【变式1-2】在ABC 中,O 为BC 中点,若1,3,60AB AC A ==∠=,则OA = _____ 思路:题目条件有1,3,60AB AC A ==∠=,进而AB AC ⋅可求,且OA 可用,AB AC 表示,所以考虑模长平方转化为数量积问题 解:O 为BC 中点 ∴可得:()12AO AB AC =+ ()()2222211224AO AO AB AC AB AB AC AC ⎡⎤∴==+=+⋅+⎢⎥⎣⎦3cos 2AB AC AB AC A ⋅=⋅=,代入可求出:213=4AO 132AO ∴=【例2】若,,a b c 均为单位向量,且()()0,0a b a c b c ⋅=-⋅-≤,则a b c +-的最大值为() A.1 B. 1 C. D. 2思路:题目中所给条件与模和数量积相关,几何特征较少,所以考虑将a b c +-平方,转化为数量积问题,再求最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
②若 e 为单位向量且 a // e ,则 a =| a |· e . )
③ a · a · a =| a | . ④若 a 与 b 共线, b 与 c 共线,则 a 与 c 共线.其中正确的个数是 ( A.0 B.1 C.2 5.在以下关于向量的命题中,不正确的是( ) A.若向量 a=(x,y),向量 b=(-y,x)(x、y≠0),则 a⊥b B.四边形 ABCD 是菱形的充要条件是 AB = DC ,且| AB |=| AD | C.点 G 是△ABC 的重心,则 GA + GB + CG =0 D.△ABC 中, AB 和 CA 的夹角等于 180°-A 6.若 O 为平行四边形 ABCD 的中心, AB = 4e1, A. AO B. BO C. CO = 6e2,则 3e2-2e1 等于( D. DO ) D.3
命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性 质等基本知识,考查推理和运算能力.
例 14.如图,三定点 A(2,1), B(0, 1), C (2,1); 三动点 D、E、M 满足
AD t AB, BE tBC, DM tDE, t [0,1].
后与 bi 同向,其中 i 1, 2,3 ,则(
) (B) b1 b2 b3 0 (D) b1 b2 b3 0

(A) b1 b2 b3 0 (C) b1 b2 b3 0

例 6.已知向量 a
3 1 (A) 2 ,2

3,1 , b 是不平行于 x 轴的单位向量,且 a b 3 ,则 b = ()

1 3 (B) , 2 2
1 3 3 (C) , 4 4
例 10.已知 ABC 的三个顶点的直角坐标分别为 A(3,4)、B(0,0)、C(c,0) (1)若 c=5,求 sin∠A 的值; (2)若∠A 为钝角,求 c 的取值范围;
例 11.在 △ ABC 中,角 A,B,C 的对边分别为 a,b,c, tan C 3 7 .
CA (1)求 cos C ; (2)若 CB
(D) 1,0
命题意图 : 本题主要考查应用平面向量的坐标运算和平面向量的数量积 ,以及方程的思想解题的能 力.
例 7.设平面向量 a1 、 a2 、 a3 的和 a1 a2 a3 0 .如果向量 b1 、b2 、b3 ,满足 bi 2 ai ,且 ai 顺时针旋转 30o
2
2
1
(C) BC 1 BA
2
(D) BC 1 BA
2
命题意图: 本题主要考查向量的加法和减法运算能力.
1 7 例 4.与向量 a = 7 , 1 , b , 的夹解相等,且模为 1 的向量是 ( )
2 2
2 2 4 3 (A) , 5 5 2 2 1 (C) 3 , 3 5 5 5 5 2 2 1 或 2 2 1 (D) , 3 , 3 3 3 4 3 4 3 (B) , 或 ,
例 2.在 ABCD 中, AB a, AD b, AN 3NC ,M 为 BC 的中点,则 MN ______.(用 a、 b 表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:由AN 3NC得4 AN 3AC=3(a b) , AM a 1 b ,所
2

(Ⅰ)求实数 m 的值; (Ⅱ)求函数 f(x)的最小值及此时 x 的值的集合.
例 2.设函数 f ( x) a、b .其中向量 a (m, cos x), b (1 sin x,1), x R, 且f ( ) 2 . (Ⅰ)求实数 m 的值; (Ⅱ)求函数 f ( x) 的最小值.
(Ⅰ)求函数 f x 的最大值和最小正周期; (Ⅱ)将函数 y f x 的图像按向量 d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度 最小的 d . 命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识, 考查推理和运算能力.
3

π π 例 13.已知向量 a =(sinθ ,1), b =(1,cosθ ),- <θ < . 2 2 (Ⅰ)若 a ⊥ b ,求 θ ; (Ⅱ)求| a + b |的最大值.

5 ,且 a b 9 ,求 c . 2
,其中向量 a sin x, cos x , b sin x, 3cos x 例 12.设函数 f x a b c ,
c cos x,sin x , x R .
2 3
B.
4 3
C.-3
D.0
3.把直线 x 2 y 0 按向量 a (1,2) 平移后,所得直线与圆 x 2 y 2 2 x 4 y 相
5
切,则实数 的值为 A.39 B.13
( A ) C.-21 D.-39
4.给出下列命题:① a · b =0,则 a =0 或 b =0.
பைடு நூலகம்第二讲
平面向量的解题技巧
金堂中学 刘际成选编
【命题趋向】 由 2012 年高考题分析可知: 1.这部分内容高考中所占分数一般在 10 分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以 与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几 何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、 夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的 运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问 题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例 1 已知 O 是 △ ABC 所在平面内一点, D 为 BC 边中点,且 2OA OB OC 0 ,那么( ) A. AO OD B. AO 2OD C. AO 3OD D. 2 AO OD 命题意图:本题考查能够结合图形进行向量计算的能力.
7.将函数 y=x+2 的图象按 a=(6,-2)平移后,得到的新图象的解析式为( ) A.y=x+10 B.y=x-6 C.y=x+6 D.y=x-10 8.已知向量 m=(a,b),向量 m⊥n 且|m|=|n|,则 n 的坐标为 A.(a, -b) B.( -a,b) C.(b, -a) D.( -b, -a) 9.给出如下命题:命题(1)设 e1、e2 是平面内两个已知向量,则对于平面内任意向量 a,都存在惟一的 一对实数 x、y,使 a=xe1+ye 2 成立;命题( 2)若定义域为 R 的函数 f(x)恒满足| f(-x)|=|f(x)|, 则 f(x)或为奇函数,或为偶函数.则下述判断正确的是( ) A.命题(1) (2)均为假命题 B.命题(1) (2)均为真命题 C.命题(1)为真命题,命题(2)为假命题 D.命题(1)为假命题,命题(2)为真命题 10.若|a+b|=|a-b|,则向量 a 与 b 的关系是( ) A. a= 0 或 b= 0
π 2
例 9.已知 △ ABC 的面积为 3 ,且满足 0 ≤ ABAC ≤ 6 ,设 AB 和 AC 的夹角为 . (I)求 的取值范围; (II)求函数 f ( ) 2sin 2



π 3 cos 2 的最大 4
以, MN 3 (a b) (a 1 b) 1 a 1 b . 4 2 4 4
2
例 3. (2006 年广东卷)如图 1 所示,D 是△ABC 的边 AB 上的中点,则向量 CD ( ) (A) BC 1 BA (B) BC 1 BA
命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.
例 5.设向量 a 与 b 的夹角为 ,且 a (3,3) , 2b a (1,1) ,则 cos __. 命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关 角度的问题.
4
【专题训练与高考预测 2】 一、选择题 1.已知 a (2,3),b (4, x),且a // b, 则x 的值为 A.-6 B.6 C. ( )
8 3
D.-
8 3
2.已知△ABC 中,点 D 在 BC 边上,且 CD 2DB, CD r AB s AC, 则 r s 的值是( ) A.
相关文档
最新文档