因式分解测试题(含答案)

合集下载

因式分解经典测试题含解析

因式分解经典测试题含解析

因式分解经典测试题含解析一、选择题1.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.2.下列多项式不能使用平方差公式的分解因式是( )A .22m n --B .2216x y -+C .22b a -D .22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.3.下列等式从左到右的变形是因式分解的是( )A .2x (x +3)=2x 2+6xB .24xy 2=3x •8y 2C .x 2+2xy +y 2+1=(x +y )2+1D .x 2﹣y 2=(x +y )(x ﹣y )【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.设a ,b ,c 是ABC V 的三条边,且332222a b a b ab ac bc -=-+-,则这个三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a 3-b 3=a 2b-ab 2+ac 2-bc 2,∴a 3-b 3-a 2b+ab 2-ac 2+bc 2=0,(a 3-a 2b )+(ab 2-b 3)-(ac 2-bc 2)=0,a 2(a-b )+b 2(a-b )-c 2(a-b )=0,(a-b )(a 2+b 2-c 2)=0,所以a-b=0或a 2+b 2-c 2=0.所以a=b 或a 2+b 2=c 2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.5.已知12,23x y xy -==,则43342x y x y -的值为( )A .23B .2C .83D .163【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进行计算即可.【详解】 ∵12,23x y xy -==,∴43342x y x y -=x 3y 3(2x-y)=(xy)3(2x-y)=23×13=83, 故选C .【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.6.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.7.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.8.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.9.下列运算结果正确的是( )A .321x x -=B .32x x x ÷=C .326x x x ⋅=D .222()x y x y +=+【答案】B【解析】【分析】根据合并同类项法则、同底数幂乘除法法则、公式法分解因式逐项进行计算即可得.【详解】A 、3x ﹣2x =x ,故A 选项错误;B 、x 3÷x 2=x ,正确;C 、x 3•x 2=x 5,故C 选项错误;D 、x 2+2xy+y 2=(x+y)2,故D 选项错误,故选B.【点睛】本题考查了合并同类项、同底数幂乘除、公式法分解因式,熟练掌握相关的运算法则以及完全平方公式的结构特征是解题的关键.10.下列分解因式,正确的是( )A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+-C .()2x 2x l x x 21++=++D .()()22x 4y x 4y x 4y -=+- 【答案】B【解析】【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x 2−4y 2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.11.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.12.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( )A .M N <B .M N =C .M N >D .不能确定【答案】C【解析】【分析】 计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.13.下面的多项式中,能因式分解的是( )A .2m n +B .221m m -+C .2m n -D .21m m -+ 【答案】B【解析】【分析】完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+14.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-Q ,()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.15.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.16.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.17.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.18.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.19.下列因式分解正确的是( )A .()22121x x x x ++=++B .()222x y x y -=-C .()1xy x x y -=-D .()22211x x x +-=- 【答案】C【解析】【分析】根据平方差公式,提公因式法分解因式,完全平方公式,对各选项逐一分析判断即可得答案.【详解】A.x 2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,B.x 2-y 2=(x+y)(x-y),故该选项因式分解错误,不符合题意,C.xy-x=x(y-1),故该选项正确,符合题意,D.x 2+2x-1不能因式分解,故该选项因式分解错误,不符合题意,故选:C .【点睛】本题考查因式分解,因式分解首先看是否有公因式,如果有先提取公因式,然后再利用公式法或十字相乘法进行分解,要分解到不能再分解为止.20.下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 【答案】D【解析】【分析】因式分解,常用的方法有:(1)提取公因式;(2)利用乘法公式进行因式分解【详解】A 中,需要提取公因式:()26223+1x y x y +=--,A 错误;B 中,利用乘法公式:()2221x x x +=--1,B 错误;C 中,利用乘法公式:2()4()22x x x =-+-,C 错误;D 中,先提取公因式,再利用乘法公式:()()311x x x x x -=+-,正确 故选:D【点睛】在进行因式分解的过程中,若能够提取公因式,往往第一步是进行提取公因式,在观察剩下部分是否还可进行因式分解.。

因式分解经典测试题附答案

因式分解经典测试题附答案
19.下列等式从左到右的变形,属于因式分解的是()
A. B.
C. D.
【答案】B
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A.是整式乘法,故A错误;
B.是因式分解,故B正确;
C.左边不是多项式,不是因式分解,故C错误;
D.右边不是整式积的形式,故D错误.
【答案】D
【解析】
试题解析:∵(b﹣c)(a2+b2)=bc2﹣c3,
∴(b﹣c)(a2+b2)﹣c2(b﹣c)=0,
∴(b﹣c)(a2+b2﹣c2)=0,
∴b﹣c=0,a2+b2﹣c2=0,
∴b=c或a2+b2=c2,
∴△ABC是等腰三角形或直角三角形.
故选D.
13.下列各式中从左到右的变形,是因式分解的是()
6.已知a﹣b=2,则a2﹣b2﹣4b的值为()
A.2B.4C.6D.8
【答案】B
【解析】
【分析】
原式变形后,把已知等式代入计算即可求出值.
【详解】
∵a﹣b=2,
∴原式=(a+b)(a﹣b)﹣4b=2(a+b)﹣4b=2a+2b﹣4b=2(a﹣b)=4.
故选:B.
【点睛】
此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.
7.多项式 与 的公因式是()
A. B. C. D.
【答案】B
【解析】
【分析】
直接将原式分别分解因式,进而得出公因式即可.
【详解】
解:∵a2-25=(a+5)(a-5),a2-5a=a(a-5),
∴多项式a2-25与a2-5a的公因式是a-5.

因式分解测试题(含答案)

因式分解测试题(含答案)

因式分解测试题(含答案)因式分解测试题(含答案)一、选择题1、下列从左到右的变形中,属于因式分解的是( )A、 B、C、 D、2、多项式的公因式是( )A、 B、 C、 D、3、在下列多项式中,能用平方差公式分解因式的是( )A、 B、 C、 D、4、下列各式中不是完全平方式的是( )A、 B、C、 D、5、已知多项式分解因式为,则的值为( )A、 ;B、 ;C、 ;D、二、填空题6、分解因式x(2-x)+6(x-2)=__________。

7、如果是一个完全平方式,那么k的值是___________。

8.计算93-92-8×92的结果是__________。

9.如果a+b=10,ab=21,则a2b+ab2的值为_________。

三、解答题10、分解因式(1)8a2-2b2 (2)4xy2-4x2y-y311、已知,求的值。

12、32000-4× 31999+10×31998能被7整除吗?试说明理由。

能力提升一、选择题1、在下列多项式:① ② ③④ 中,有一个相同因式的多项式是( )[A、①和②B、①和④C、①和③D、②和④2、已知(19x#61485;31)(13x#61485;17)#61485;(13x#61485;17)( 11x#61485;23)可因式分解成(ax#61483;b)(8x#61483;c),其中a、b、c均为整数,则a#61483;b#61483;c=?A、#61485;12B、#61485;32C、38D、723、若是完全平方式,则m的值应为( )A、7B、#61485;1C、#61485;7或1D、7或#61485;14、可整除的最大的数是( 是整数) ( )A、2B、4C、6D、85、已知 10, =80,则等于( )A、20B、10C、20D、-10二、填空题6、分解因式 .7、若整式是完全平方式,请你写一个满足条件的单项式Q是。

因式分解经典测试题及答案

因式分解经典测试题及答案

因式分解经典测试题及答案一、选择题1.将川口-6⑼加2*分解因式,下面是四位同学分解的结果:2K(xa-3ab},2阳(*-3b+l),〃(*白-3。

匕+1),2*t-xa+3ab-l).其中,正确的是()A. B. C. D.【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x2a-6xab+2x=2x(xa-3ab+l).故选:C.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.下列各式从左到右的变形中,是因式分解的为().A.,x(£Z-Z?)=ax—bxB.x2-14-y2=(a-1)(jc+1)4-j2C.x1—1=(%+1)(^-1)D.ax+bx-\-c=x{a+b^c【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A、是整式的乘法运算,故选项错误;叭右边不是积的形式,故选项错误;C、k2-1=(x+l)(x-l)7正确;D、等式不成立,故选项错误.故选:C.【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.3.相多项式4xql再加上一项,使它能分解因式成(a+b)之的形式,以下是四位学生所加的项,其中错误的是()A.2xB.-4nC.4X4D.4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4M+1结舍,然后判断是否为完全平方式即可得答案.【详解】A 、4炉+1+本,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B 、4M,1-取=僮肥1产,能利用完全平方公式进行因式分解,故不符合题意;C 、4e+lMd=(2x41)、能利用完全平方公式进行因式分解,故不符合题意:D.4x2+l+4x=(2x+l)21能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考杳了完全平方式.熟记完全平方式的结构特征是解题的关键.4.下列等式从左到右的变形是因式分解的是()A.2x (x+3)=及+6*B.24xy=我 8产L 1+2册/+1=(x+y)2+1D.x2-y=(x+y)Cx -y)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符舍题意:C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意:故选D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.卜列各式中,由等式的左边到右边的变形是因式分解的是(5.[x+3){x—3)=x2—9A.azb+ab2=ab(a +b}U 【答案】C【解折】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误:B 、没有把一个多项式转化成几个整式积的形式,故B 错误,B.x2+x-5=(x-2)(x+3)+l D.x2+l=x(x+—)工C.把一个多项式转化成了几个整式积的形式,故C正确:D、没有把一个多项式转化成凡个整式积的形式,故D错误;故选:Q【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式. 6.己知2"一y=;,呼=2,则2i4ys一炉了4的值为(}【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将变形为的产僮可),然后代入相关数值进行计算即可.【详解】丫2x—y=—yxy—2,3J2力-=x3y3(^x V)=(xy)3(2x-y)=2*」38=一,3故选C.【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知次是解题的关键.7.若端形的三边长分别为『、8、C,满足标b—瓜%+,r—"=0,则这个三角形是()A.直角•:角形B.等边:角形C.锐角三角形D.等腰三角形【答案】D【解析】【分析】首先将原式变形为(》一e)(1一b)S+b)=O,可以得到8—0=0或o—b=0或4+b二0,进而得到6=c或以二b.从而得出aAB匚的形状.【详解】Y a^-^c+^c-b5=0*a2(b-c^b2(c—b^=O,.,.(6-t:m苏-⑹=0,即(%一力(.一6)(q+6)=0,;*b—c=0或q—b=0或以十6=0(舍去),*\b=c^a=b,...△ABC是等腰三角形.故选: D.【点睛】本题考查了因式分解一提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.8.下列等式从左边到右边的变形,属于因式分解的是(}A.2ab(a-b)=2a%-2ab*B.x2+l=x{x+—)XC.x2-4x+3={x-2)2-lD.a2-b2={a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解{也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B,不是因式分解,等式左边的k是取任意实数,而等式右边的心0二不是因式分解,原式={,—3)(x—1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法,分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法..9.已知实数/b满足等式k=/+u+20,y=a(1b—u),则x、v的大小关系是()A.,工yB.x>yC.x<yD.x>y【答案】D【解析】【分析】判断x、y的大小关系,把N一,进行整理,判断结果的符号可得小v的大小关系.【详解】解:x-y=a~+b2+20-2ab+a~=(扭一6『+/+20,—b尸标≥0,20>0,二x-y>0,二元ay,故选:Q【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大:反之减数大.10,若实数a、b满足日+b=5『a2b+ab2=-10,则ab的值是()A.-2B.2C.-50D.5。

因式分解习题50道及答案

因式分解习题50道及答案

因式分解习题50道及答案因式分解是数学中的一个重要概念,它在代数运算中起着关键的作用。

通过因式分解,我们可以将一个复杂的代数式简化为更简单的形式,从而更好地理解和解决问题。

下面我将给大家提供50道因式分解的习题及答案,希望对大家的学习有所帮助。

1. 将x^2 + 4x + 4因式分解。

答案:(x + 2)^22. 将2x^2 + 8x + 6因式分解。

答案:2(x + 1)(x + 3)3. 将x^2 - 9因式分解。

答案:(x - 3)(x + 3)4. 将x^2 - 4因式分解。

答案:(x - 2)(x + 2)5. 将x^2 + 5x + 6因式分解。

答案:(x + 2)(x + 3)6. 将x^2 - 7x + 12因式分解。

答案:(x - 3)(x - 4)7. 将x^2 + 3x - 4因式分解。

答案:(x + 4)(x - 1)8. 将x^2 + 2x - 3因式分解。

答案:(x + 3)(x - 1)9. 将x^2 - 5x + 6因式分解。

10. 将x^2 + 6x + 9因式分解。

答案:(x + 3)^211. 将x^2 - 8x + 16因式分解。

答案:(x - 4)^212. 将x^2 - 10x + 25因式分解。

答案:(x - 5)^213. 将x^2 + 4x - 5因式分解。

答案:(x + 5)(x - 1)14. 将x^2 - 6x - 7因式分解。

答案:(x - 7)(x + 1)15. 将x^2 + 7x - 8因式分解。

答案:(x - 1)(x + 8)16. 将x^2 - 3x - 10因式分解。

答案:(x - 5)(x + 2)17. 将x^2 - 11x + 28因式分解。

答案:(x - 4)(x - 7)18. 将x^2 + 8x + 15因式分解。

答案:(x + 3)(x + 5)19. 将x^2 - 13x + 40因式分解。

答案:(x - 5)(x - 8)20. 将x^2 + 9x + 20因式分解。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专题过关1.将以下各式分解因式2﹣6pq 〔 2〕 2x 2〔 1〕 3p +8x+82.将以下各式分解因式33 2 2.〔 1〕 x y ﹣ xy 〔 2〕 3a ﹣ 6a b+3ab3.分解因式2〔y ﹣ x 〕 2 2 2 2 2〔1〕 a 〔 x ﹣ y 〕 +16 〔 2〕〔 x +y 〕﹣ 4x y4.分解因式:〔1〕 2x 2﹣x 2 〔 3〕 6xy 2 ﹣ 9x 2 3 〔 4〕 4+12〔 x ﹣ y 〕+9 〔 x ﹣y 〕 2〔2〕 16x ﹣ 1 y ﹣ y5.因式分解:2﹣ 8a 〔 2〕4x 3 2 2〔1〕 2am +4x y+xy6.将以下各式分解因式:32 2 2 2 2〔1〕 3x ﹣ 12x 〔 2〕〔 x +y 〕﹣ 4x y22 3 2 27.因式分解:〔 1〕 x y ﹣ 2xy +y 〔2〕〔 x+2y 〕﹣ y8.对以下代数式分解因式:〔1〕 n 2〔 m ﹣ 2〕﹣ n 〔 2﹣m 〕〔2〕〔x ﹣ 1〕〔x ﹣ 3〕+1229.分解因式:a ﹣ 4a+4﹣ b2210.分解因式:a ﹣ b ﹣2a+111.把以下各式分解因式:424 2 2〔1〕 x ﹣ 7x +1 〔 2〕 x +x +2ax+1 ﹣ a2 2 2 4 〔1﹣ y 〕 2 43 2〔3〕〔 1+y 〕﹣ 2x 〔 1﹣ y 〕 +x 〔4〕 x +2x +3x +2x+112.把以下各式分解因式:〔1〕 4x 3﹣ 31x+15 ; 2 2 2 2 2 2 4 4 4 ; 5;〔 2〕2a b +2a c +2b c ﹣ a ﹣ b ﹣ c 〔3〕 x +x+132 ﹣ 9; 43 2〔4〕 x +5x +3x 〔 5〕2a ﹣ a ﹣ 6a ﹣a+2.因式分解专题过关1.将以下各式分解因式〔1〕 3p 2﹣ 6pq ; 〔 2〕 2x 2+8x+8分析:〔 1〕提取公因式 3p 整理即可;〔 2〕先提取公因式 2,再对余下的多项式利用完全平方公式继续分解.解答: 解:〔 1〕 3p 2﹣6pq=3p 〔 p ﹣ 2q 〕,222.〔 2〕 2x +8x+8 , =2〔x +4x+4 〕, =2〔 x+2〕2.将以下各式分解因式33 2 2.〔1〕 x y ﹣xy〔 2〕3a ﹣ 6a b+3ab分析:〔 1〕首先提取公因式xy ,再利用平方差公式进展二次分解即可;〔 2〕首先提取公因式3a ,再利用完全平方公式进展二次分解即可.解答: 解:〔 1〕原式 =xy 〔 x 2﹣1〕 =xy 〔 x+1 〕〔 x ﹣ 1〕;〔 2〕原式 =3a 〔 a 2﹣ 2ab+b 2〕 =3a 〔a ﹣ b 〕2.3.分解因式〔1〕 a 2〔 x ﹣ y 〕 +16 〔y ﹣ x 〕;〔 2〕〔 x 2 +y 2〕2﹣4x 2y 2.分析:〔 1〕先提取公因式〔x ﹣ y 〕,再利用平方差公式继续分解;〔 2〕先利用平方差公式,再利用完全平方公式继续分解.解答: 解:〔 1〕 a 2〔 x ﹣ y 〕 +16 〔y ﹣ x 〕,=〔 x ﹣ y 〕〔 a 2﹣ 16〕, =〔 x ﹣ y 〕〔 a+4〕〔 a ﹣ 4〕;22222222222〔 2〕〔 x +y 〕﹣ 4x y , =〔 x +2xy+y 〕〔 x ﹣2xy+y 〕,=〔x+y 〕〔x ﹣ y 〕 .4.分解因式:〔1〕2x 2﹣x ; 〔 2〕16x 2 ﹣ 1; 2 2 3 2〔 3〕6xy ﹣ 9x y ﹣y ; 〔 4〕4+12〔 x ﹣y 〕+9〔 x ﹣ y 〕.分析:〔 1〕直接提取公因式x 即可;( 2〕利用平方差公式进展因式分解;( 3〕先提取公因式﹣ y ,再对余下的多项式利用完全平方公式继续分解;( 4〕把〔 x ﹣ y 〕看作整体,利用完全平方公式分解因式即可.解答: 解:〔 1〕 2x 2﹣x=x 〔 2x ﹣1〕;( 2〕 16x 2﹣ 1=〔 4x+1〕〔 4x ﹣1〕;〔 3〕 2 2 32 22;6xy ﹣ 9x y ﹣ y , =﹣ y 〔 9x ﹣ 6xy+y 〕, =﹣ y 〔 3x﹣ y 〕〔 4〕 4+12〔 x ﹣ y 〕 +9〔 x ﹣ y 〕2, =[2+3 〔 x ﹣ y 〕 ]2, =〔 3x ﹣ 3y+2〕2.5.因式分解:2﹣ 8a ;〔 322〔1〕 2am2〕 4x +4x y+xy分析:〔 1〕先提公因式2a ,再对余下的多项式利用平方差公式继续分解;( 2〕先提公因式 x ,再对余下的多项式利用完全平方公式继续分解.解答: 解:〔 1〕 2am 2﹣ 8a=2a 〔 m 2﹣ 4〕 =2a 〔m+2〕〔 m ﹣ 2〕;( 2〕 4x 3+4x 2y+xy 2,=x 〔 4x 2+4xy+y 2〕, =x 〔2x+y 〕2.6.将以下各式分解因式:〔1〕 3x ﹣ 12x 3〔 2〕〔 x 2 +y 2〕2﹣ 4x 2 y 2.分析:〔 1〕先提公因式 3x ,再利用平方差公式继续分解因式;〔 2〕先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答: 解:〔 1〕 3x ﹣12x 3 =3x 〔 1﹣ 4x 2〕 =3x 〔 1+2x 〕〔 1﹣ 2x 〕;22 2 2 2 2 2 2 2﹣ 2xy 2 2.〔 2〕〔 x +y 〕 ﹣ 4x y =〔 x +y +2xy 〕〔 x +y 〕 =〔x+y 〕 〔 x ﹣ y 〕7.因式分解:22 3 ; 2 2〔1〕 x y ﹣2xy +y 〔 2〕〔 x+2y 〕﹣ y .分析:〔 1〕先提取公因式y ,再对余下的多项式利用完全平方式继续分解因式;〔 2〕符合平方差公式的构造特点,利用平方差公式进展因式分解即可.223222解答: 解:〔 1〕 x y ﹣ 2xy +y =y 〔 x ﹣ 2xy+y 〕 =y 〔x ﹣ y 〕 ;8.对以下代数式分解因式:〔1〕 n 2〔 m ﹣ 2〕﹣ n 〔 2﹣m 〕;〔 2〕〔x ﹣ 1〕〔 x ﹣ 3〕 +1.分析:〔 1〕提取公因式n 〔 m ﹣ 2〕即可;( 2〕根据多项式的乘法把 〔 x ﹣ 1〕〔 x ﹣ 3〕展开,再利用完全平方公式进展因式分解.解答:解:〔 1〕 n 2〔 m ﹣ 2〕﹣ n 〔 2﹣ m 〕 =n 2〔 m ﹣ 2〕 +n 〔 m ﹣ 2〕 =n 〔 m ﹣ 2〕〔n+1 〕;( 2〕〔 x ﹣ 1〕〔 x ﹣ 3〕 +1=x 2﹣ 4x+4= 〔 x ﹣2〕2.229.分解因式:a ﹣4a+4﹣ b.分析: 此题有四项,应该考虑运用分组分解法.观察后可以发现,此题中有 a 的二次项 a 2,a 的一次项﹣ 4a ,常数项 4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进展分解.222222解答: 解: a ﹣ 4a+4﹣ b =〔 a ﹣ 4a+4〕﹣ b =〔 a ﹣ 2〕 ﹣ b =〔 a ﹣ 2+b 〕〔 a ﹣ 2﹣ b 〕.22 ﹣ 2a+110.分解因式: a ﹣ b分析: 当被分解的式子是四项时,应考虑运用分组分解法进展分解.此题中有 a 的二次项,a 的一次项,有常数项.所以要考虑2为一组.a ﹣2a+12 2 22 2 2解答: 解: a ﹣ b ﹣ 2a+1=〔 a ﹣ 2a+1〕﹣ b =〔 a ﹣ 1〕 ﹣ b =〔 a ﹣ 1+b 〕〔 a ﹣ 1﹣ b 〕.11.把以下各式分解因式:42;422〔1〕 x ﹣ 7x +1〔 2〕 x +x +2ax+1 ﹣ a22 2 4 〔1﹣ y 〕 2 43 2〔3〕〔 1+y 〕﹣ 2x 〔 1﹣ y 〕 +x 〔 4〕x +2x +3x +2x+1分析:〔 1〕首先把﹣ 7x 2变为 +2x 2﹣ 9x 2,然后多项式变为 x 4﹣ 2x 2 +1﹣ 9x 2,接着利用完全平方公式和平方差公式分解因式即可求解;〔 2〕首先把多项式变为42 22x +2x +1 ﹣ x +2ax ﹣ a ,然后利用公式法分解因式即可解;〔 3〕首先把﹣ 2x 2〔1﹣ y 2〕变为﹣ 2x 2〔 1﹣ y 〕〔 1﹣y 〕,然后利用完全平方公式分解因式即可求解;4 32 3 22〔 4〕首先把多项式变为x +x +x ++x+x +x+x +x+1 ,然后三个一组提取公因式,接着提取公因式即可求解.4 2 4 2 ﹣ 9x 2 22 ﹣〔 3x 〕 2 2 2 解答: 解:〔 1〕 x ﹣ 7x +1=x +2x +1 =〔x +1〕 =〔 x +3x+1 〕〔x ﹣ 3x+1 〕;4 24 2 2 2 22 2 〔 2〕 x +x +2ax+1﹣ a=x+2x +1﹣ x +2ax ﹣ a =〔 x +1〕﹣〔 x ﹣ a 〕 =〔x +1+x﹣ a 〕〔 x 2﹣ x+a 〕;+12 ﹣ 2x 2〔1﹣ y242221+y 〕 +x 4〔 3〕〔 1+y 〕 〕 +x 〔 1﹣ y 〕 =〔 1+y 〕﹣2x 〔 1﹣y 〕〔〔 1﹣ y 〕 22 2222〔 1=〔 1+y 〕 ﹣ 2x 〔 1﹣ y 〕〔1+y 〕 +[x 〔1﹣ y 〕 ]=[ 〔1+y 〕﹣ x22 22﹣ y 〕 ]=〔 1+y ﹣x +x y 〕3 2 22 2243243 2( 4〕 x +2x +3x +2x+1=x +x +x ++x +x +x+x +x+1=x 〔 x +x+1 〕 +x 〔x +x+1 〕+x 2+x+1= 〔 x 2+x+1 〕2.12.把以下各式分解因式:〔1〕 4x 3﹣ 31x+15 ; 2 2 2 2 2 2 4 4 4;〔 2〕 2a b +2a c +2b c ﹣a ﹣ b ﹣ c5 ;3 2﹣ 9;〔3〕 x +x+1 〔 4〕x +5x +3x( 5〕 2a 4﹣ a 3﹣6a 2﹣ a+2.分析:〔 1〕需把﹣ 31x 拆项为﹣ x ﹣ 30x ,再分组分解;2 2 2 2 2 2 ,再按公式法因式分解;〔 2〕把 2ab 拆项成 4a b ﹣2ab 5 522〔 3〕把 x +x+1 添项为 x ﹣ x+x +x+1 ,再分组以及公式法因式分解;32322﹣ 9〕,再提取公因式因〔 4〕把 x +5x +3x ﹣ 9 拆项成〔 x ﹣x 〕 +〔 6x ﹣ 6x 〕 +〔 9x 式分解;〔 5〕先分组因式分解,再用拆项法把因式分解彻底.解答: 解:〔 1〕4x 3﹣31x+15=4x 3﹣ x ﹣ 30x+15=x 〔 2x+1 〕〔2x ﹣ 1〕﹣ 15〔 2x ﹣1〕 =〔 2x ﹣ 1〕( 2x 2+1﹣ 15〕=〔 2x ﹣ 1〕〔 2x ﹣5〕〔 x+3 〕;2 2 2 2 2 2 4 4 4 2 2 4 4 4 2 2 2 2 2 2〔 2〕2a b +2a c +2b c﹣a﹣ b ﹣ c =4a b ﹣〔 a +b +c +2a b﹣2a c ﹣ 2bc 〕=2 222222 2222〔 2ab 〕 ﹣〔 a +b ﹣ c 〕 = 〔2ab+a +b ﹣ c 〕〔 2ab ﹣ a ﹣b +c 〕 =〔a+b+c 〕 〔 a+b ﹣c 〕〔 c+a ﹣b 〕〔 c ﹣ a+b 〕;5 5 22 2 322 2〔 3〕 x +x+1=x ﹣ x+x +x+1=x 〔 x﹣ 1〕 +〔 x +x+1 〕 =x 〔 x ﹣ 1〕〔x +x+1 〕+2232〔 x +x+1 〕 =〔 x +x+1 〕〔 x ﹣ x +1〕;3232 2﹣6x 〕+〔9x2〔 4〕x +5x +3x ﹣ 9=〔 x ﹣ x 〕+〔 6x ﹣ 9〕=x 〔 x ﹣ 1〕+6x 〔 x ﹣ 1〕+9〔x ﹣ 1〕=〔 x ﹣ 1〕〔 x+3 〕2;〔 5〕2a 4﹣ a 3﹣ 6a 2﹣ a+2=a 3〔2a ﹣ 1〕﹣〔2a ﹣ 1〕〔 3a+2〕=〔 2a ﹣1〕〔 a 3﹣ 3a ﹣ 2〕3 2 2 2〔 a+1〕﹣ a 〔 a+1〕﹣ 2=〔2a ﹣ 1〕〔 a +a ﹣ a ﹣ a ﹣ 2a ﹣2〕 =〔 2a ﹣ 1〕 [a ( a+1〕 ]= 〔 2a ﹣ 1〕〔 a+1〕〔a2﹣ a ﹣ 2〕=〔 a+1〕2〔a ﹣ 2〕〔 2a ﹣ 1〕.。

因式分解100题试题附答案

因式分解100题试题附答案

100题搞定因式分解计算因式分解100题(试题版)日期:________时间:________姓名:________成绩:________一、解答题(共100小题)1.因式分解:4a2b﹣b.2.因式分解:a2(a﹣b)+25(b﹣a).3.因式分解:x3+3x2y﹣4x﹣12y.4.因式分解:9(x+y)2﹣(x﹣y)2.5.因式分解:2a2b﹣12ab+18b.6.因式分解:﹣x3y+4x2y2﹣4xy3.7.因式分解:a2(x﹣y)+4b2(y﹣x).8.因式分解:4a3b+4a2b2+ab3.9.因式分解:(a+b)2﹣4a2.10.因式分解:3ax2﹣6axy+3ay2.11.因式分解:6x4﹣5x3﹣4x2.12.因式分解:(x﹣3y)(x﹣y)﹣(﹣x﹣y)213.因式分解:2m(a﹣b)﹣3n(b﹣a)14.因式分解:m2﹣(2m+3)2.16.因式分解:x2﹣4xy+4y2﹣117.因式分解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)18.因式分解:a2﹣4﹣3(a+2)19.因式分解:(x﹣1)2+2(x﹣5).20.因式分解:4x3﹣8x2+4x.21.因式分解:x3﹣2x2﹣3x22.因式分解:2x2﹣4xy+3x﹣6y24.因式分解:9x2﹣6x+1.25.因式分解:4ma2﹣mb2.26.因式分解:x2﹣2xy﹣8y2.27.因式分解:a2+4a(b+c)+4(b+c)2.28.因式分解:x2﹣4y2+4﹣4x29.因式分解:xy2﹣4xy+4x.30.因式分解:x4﹣5x2﹣36.31.因式分解:x3﹣2x2y+xy2.32.在实数范围内因式分解:x2﹣4xy﹣3y2.33.因式分解:9a2(x﹣y)+4b2(y﹣x)34.因式分解:x4﹣10x2+9.35.因式分解:x2﹣y2﹣2x+1.36.因式分解:(2x﹣y)(x+3y)﹣(x+y)(y﹣2x).37.因式分解:6(x+y)2﹣2(x﹣y)(x+y).38.因式分解:2m4n﹣12m3n2+18m2n3.39.因式分解:a2(x﹣y)+4(y﹣x).40.在实数范围内因式分解:﹣2a2b2+ab+2.41.因式分解:x2﹣9+3x(x﹣3)42.因式分解:4xy2+4x2y+y3.43.因式分解:(x2+4x)2﹣2(x2+4x)﹣15.44.因式分解:6xy2+9x2y+y3.45.因式分解:x3﹣3x2+2x.46.因式分解:x(a﹣b)+y(b﹣a)﹣3(b﹣a).47.因式分解:3ax﹣18by+6bx﹣9ay48.因式分解:(2a﹣b)(3a﹣2)+b(2﹣3a)49.因式分解:(a﹣3)2+(3﹣a)50.因式分解:(a+b)﹣2a(a+b)+a2(a+b)51.因式分解:12x4﹣6x3﹣168x252.因式分解:(2m+3n)(2m﹣n)﹣n(2m﹣n)53.因式分解:3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)54.因式分解:(x﹣1)(x+1)(x﹣2)﹣(x﹣2)(x2+2x+4)55.因式分解:8x2y2﹣10xy﹣1256.因式分解:6(x+y)2﹣2(x+y)(x﹣y)57.因式分解:9(a﹣b)(a+b)﹣3(a﹣b)258.因式分解:4xy(x+y)2﹣6x2y(x+y)59.因式分解:﹣24m2x﹣16n2x.60.因式分解:4a(x﹣y)﹣2b(y﹣x)61.因式分解:ax4﹣14ax2﹣32a.62.因式分解:x3+5x2y﹣24xy2.63.因式分解:(1﹣3a)2﹣3(1﹣3a)64.因式分解:x(x﹣y)3+2x2(y﹣x)2﹣2xy(x﹣y)2.65.因式分解:x5﹣2x3﹣8x.366.因式分解:x2-y2+2x+y+467.因式分解:2(x+y)2﹣20(x+y)+50.68.因式分解:1+a+a(1+a)+a(1+a)2+a(1+a)3.69.因式分解:x2y﹣x2z+xy﹣xz.70.因式分解:(x2﹣x)2﹣8x2+8x+12.71.因式分解:x4﹣(3x﹣2)2.72.因式分解:(3m﹣1)2﹣(2m﹣3)2.73.因式分解:(2x+5)2﹣(2x﹣5)2.74.因式分解:(﹣2x﹣1)2(2x﹣1)2﹣(4x2﹣2x﹣1)275.因式分解:(m+1)(m﹣9)+8m.76.因式分解:9(a﹣b)2+36(b2﹣ab)+36b277.因式分解:(a2+4)2﹣16a2.78.因式分解:9(m+n)2﹣(m﹣n)279.因式分解:x4﹣8x2y2+16y4.80.因式分解:25x2﹣9(x﹣2y)281.因式分解:4x2y2﹣(x2+y2)2.82.因式分解:x(x﹣12)+4(3x﹣1).83.因式分解:(x2﹣3)2+2(3﹣x2)+1.84.因式分解:(x+2)(x﹣6)+16.85.因式分解:2m(2m﹣3)+6m﹣1.86.因式分解:x4﹣16y4.87.因式分解:(a2+1)2﹣4a2.88.因式分解:(2x+y)2﹣(x+2y)2.89.因式分解:(x2﹣6)2﹣6(x2﹣6)+990.因式分解:(x2+x)2﹣(x+1)2.91.因式分解:8(x2﹣2y2)﹣x(7x+y)+xy.92.因式分解:x4﹣10x2y2+9y4.93.因式分解:(x2+x﹣5)(x2+x﹣3)﹣394.因式分解:(m2+2m)2﹣7(m2+2m)﹣895.因式分解:(x2+2x)2﹣2(x2+2x)﹣396.因式分解:2x2+6x﹣3.5.97.因式分解:3x2﹣12x+998.因式分解:(x﹣4)(x+7)+18.99.因式分解:5a2b2+23ab﹣10.100.因式分解:(x+y)2﹣(4x+4y)﹣32.因式分解100题参考答案部分可能有误仅供参考一、解答题(共100小题)1.【解答】解:4a2b﹣b=b(4a2﹣1)=b(2a+1)(2a﹣1).2.【解答】解:a2(a﹣b)+25(b﹣a)=a2(a﹣b)﹣25(a﹣b)=(a﹣b)(a2﹣52)=(a﹣b)(a+5)(a﹣5).3.【解答】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).4.【解答】解:9(x+y)2﹣(x﹣y)2=[3(x+y)﹣(x﹣y)][3(x+y)+(x﹣y)]=(2x+4y)(4x+2y)=4(x+2y)(2x+y).5.【解答】解:原式=2b(a2﹣6a+9)=2b(a﹣3)2.6.【解答】解:原式=﹣xy(x2﹣4xy+4y2)=﹣xy(x﹣2y)2.7.【解答】解:原式=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b).故答案为:(x﹣y)(a+2b)(a﹣2b).8.【解答】解:原式=ab(4a2+4ab+b2)=ab(2a+b)2.9.【解答】解:原式=(a+b+2a)(a+b﹣2a)=(3a+b)(b﹣a).10.【解答】解:原式=3a(x2﹣2xy+y2)=3a(x﹣y)2.11.【解答】解:6x4﹣5x3﹣4x2=x2(6x2﹣5x﹣4)=x2(2x+1)(3x﹣4).12.【解答】解:原式=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).13.【解答】解:2m(a﹣b)﹣3n(b﹣a)=(a﹣b)(2m+3n).14.【解答】解:原式=(m+2m+3)(m﹣2m﹣3)=(3m+3)(﹣m﹣3)=﹣3(m+1)(m+3).15.【解答】解:原式=[3(x﹣y)+2]2=(3x﹣3y+2)2.16.【解答】解:x2﹣4xy+4y2﹣1=(x2﹣4xy+4y2)﹣1=(x﹣2y)2﹣1=(x﹣2y+1)(x﹣2y﹣1).17.【解答】解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)=(2y﹣x)(9x+y+3x+2y)=3(2y﹣x)(4x+y).18.【解答】解:原式=(a+2)(a﹣2)﹣3(a+2)=(a+2)(a﹣5).19.【解答】解:原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).20.【解答】解:原式=4x(x2﹣2x+1)=4x(x﹣1)2.21.【解答】解:x3﹣2x2﹣3x=x(x2﹣2x﹣3)=x(x﹣3)(x+1).22.【解答】解:原式=2x(x﹣2y)+3(x﹣2y)=(x﹣2y)(2x+3).23.【解答】解:(x﹣2y)(x+3y)﹣(x﹣2y)2=(x﹣2y)(x+3y﹣x+2y)=5y(x﹣2y).24.【解答】解:原式=(3x﹣1)2.25.【解答】解:4ma2﹣mb2,=m(4a2﹣b2),=m(2a+b)(2a﹣b).26.【解答】解:x2﹣2xy﹣8y2=(x﹣4y)(x+2y).27.【解答】解:原式=[a+2(b+c)]2=(a+2b+2c)2.28.【解答】解:x2﹣4y2+4﹣4x=(x2﹣4x+4)﹣4y2=(x﹣2)2﹣4y2=(x+2y﹣2)(x﹣2y﹣2).29.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.30.【解答】解:原式=(x2﹣9)(x2+4)=(x+3)(x﹣3)(x2+4).31.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.32.【解答】解:x2﹣4xy﹣3y2=x2﹣4xy+4y2﹣7y2=(x﹣2y)2﹣7y2=(x﹣2y+y)(x﹣2y﹣y).33.【解答】解:9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).34.【解答】解:原式=(x2﹣1)(x2﹣9)=(x+1)(x﹣1)(x+3)(x﹣3).35.【解答】解:原式=(x2﹣2x+1)﹣y2=(x﹣1)2﹣y236.【解答】解:原式=(2x﹣y)(x+3y)+(x+y)(2x﹣y)=(2x﹣y)(x+3y+x+y)=(2x﹣y)(2x+4y)=2(2x﹣y)(x+2y).37.【解答】解:6(x+y)2﹣2(x﹣y)(x+y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y)38.【解答】解:2m4n﹣12m3n2+18m2n3=2m2n(m2﹣6mn+9n2)=2m2n(m﹣3n)2.39.【解答】原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).40.【解答】解:令﹣2a2b2+ab+2=0,则ab=,所以﹣2a2b2+ab+2=﹣2(ab﹣)(ab﹣).41.【解答】解:x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).42.【解答】解:4xy2+4x2y+y3=y(4xy+4x2+y2)=y(y+2x)2.43.【解答】解:原式=(x2+4x﹣5)(x2+4x+3)=(x+5)(x﹣1)(x+3)(x+1).44.【解答】解:原式=y(6xy+9x2+y2)=y(3x+y)2.45.【解答】解:x3﹣3x2+2x=x(x2﹣3x+2)=x(x﹣1)(x﹣2)46.【解答】解:原式=x(a﹣b)﹣y(a﹣b)+3(a﹣b)=(a﹣b)(x﹣y+3).47.【解答】解:原式=(3ax﹣9ay)+(6bx﹣18by)=3a(x﹣y)+6b(x﹣y)=3(x﹣y)(a+2b).48.【解答】解:(2a﹣b)(3a﹣2)+b(2﹣3a)=(2a﹣b)(3a﹣2)﹣b(3a﹣2)=(3a﹣2)(2a﹣b﹣b)=2(3a﹣2)(a﹣b).49.【解答】解:原式=(3﹣a)2+(3﹣a)=(3﹣a)(3﹣a+1)=(3﹣a)(4﹣a).50.【解答】解:原式=(a+b)(1﹣2a+a2)=(a+b)(1﹣a)251.【解答】解:12x4﹣6x3﹣168x2=6x2(2x2﹣x﹣28)52.【解答】解:原式=(2m ﹣n )(2m +3n ﹣n )=(2m ﹣n )(2m +2n )=2(2m ﹣n )(m +n ).53.【解答】解:3x 2(x ﹣2y )﹣18x (x ﹣2y )﹣27(2y ﹣x )=3x 2(x ﹣2y )﹣18x (x ﹣2y )+27(x ﹣2y )=3(x ﹣2y )(x 2﹣6x +9)=3(x ﹣2y )(x ﹣3)2.54.【解答】解:原式=(x ﹣2)(x 2﹣1﹣x 2﹣2x ﹣4)=(x ﹣2)(﹣2x ﹣5)=﹣2x 2﹣x +10.55.【解答】解:原式=2(4x 2y 2﹣5xy ﹣6)=2(4xy +3)(xy ﹣2).56.【解答】解:6(x +y )2﹣2(x +y )(x ﹣y )=2(x +y )[3(x +y )﹣(x ﹣y )]=2(x +y )(2x +4y )=4(x +y )(x +2y ).57.【解答】解:原式=3(a ﹣b )[3(a +b )﹣(a ﹣b )]=6(a ﹣b )(a +2b ).58.【解答】解:原式=2xy (x +y )•2(x +y )﹣2xy (x +y )•3x =2xy (x +y )•[2(x +y )﹣3x ]=2xy (x +y )(2y ﹣x ).59.【解答】解:原式=﹣8x (3m 2+2n 2).60.【解答】解:4a (x ﹣y )﹣2b (y ﹣x )=4a (x ﹣y )+2b (x ﹣y )=2(x ﹣y )(2a +b ).61.【解答】解:ax 4﹣14ax 2﹣32a =a (x 4﹣14x 2﹣32)=a (x 2+2)(x 2﹣16)=a (x 2+2)(x +4)(x ﹣4).62.【解答】解:原式=x (x 2+5xy ﹣24y 2)=x (x +8y )(x ﹣3y ).63.【解答】解:(1﹣3a )2﹣3(1﹣3a )=(1﹣3a )(1﹣3a ﹣3)=(1﹣3a )(﹣3a ﹣2)=﹣(1﹣3a )(3a +2)=﹣3a ﹣2+9a 2+6a =9a 2+3a ﹣2.64.【解答】解:x (x ﹣y )3+2x 2(y ﹣x )2﹣2xy (x ﹣y )2=x (x ﹣y )2[(x ﹣y )+2x ﹣2y ]=3x (x ﹣y )3.65.【解答】解:原式=x (x 4﹣2x 2﹣8)=x (x 2﹣4)(x 2+2)=x (x +2)(x ﹣2)(x 2+2).66.【解答】解:原式=x 2+2x +1-y 2+y +43=(x +1)2-(y ﹣)2⎫⎛⎫⎛31y x y x ()()322122167.【解答】解:2(x+y)2﹣20(x+y)+50.=2[(x+y)2﹣10(x+y)+25].=2(x+y﹣5)2.68.【解答】解:1+a+a(1+a)+a(1+a)2+a(1+a)3=(1+a)[1+a+a(1+a)+a(1+a)2]=(1+a)2[1+a+a(1+a)]=(1+a)4.69.【解答】解:x2y﹣x2z+xy﹣xz.=(x2y﹣x2z)+(xy﹣xz).=x2(y﹣z)+x(y﹣z).=x(x+1)(y﹣z).70.【解答】解:原式=(x2﹣x)2﹣8(x2﹣x)+12=(x2﹣x﹣2)(x2﹣x﹣6)=(x+1)(x﹣2)(x+2)(x﹣3)71.【解答】解:原式=(x2)2﹣(3x﹣2)2=(x2+3x﹣2)(x2﹣3x+2)=(x2+3x﹣2)(x﹣1)(x﹣2).72.【解答】解:原式=[(3m﹣1)+(2m﹣3)][(3m﹣1)﹣(2m﹣3)]=(5m﹣4)(m+2).73.【解答】解:原式=[(2x+5)+(2x﹣5)][(2x+5)﹣(2x﹣5)]=4x•10=40x.74.【解答】解:原式=[(﹣2x﹣1)(2x﹣1)+4x2﹣2x﹣1][(﹣2x﹣1)(2x﹣1)﹣4x2+2x+1]=﹣4x(﹣4x2+x+1).75.【解答】解:原式=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3).76.【解答】解:原式=9[(a﹣b)2+4b(a﹣b)+4b2]=9(a﹣b+2b)2=9(a+b)2.77.【解答】解:原式=(a2+4)2﹣(4a)2,=(a2+4+4a)(a2+4﹣4a),=(a+2)2(a﹣2)2.78.【解答】解:原式=[3(m+n)]2﹣(m﹣n)2=(3m+3n+m﹣n)(3m+3n﹣m+n)=4(2m+n)(m+2n).79.【解答】解:原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.80.【解答】解:原式=[5x﹣3(x﹣2y)][5x+3(x﹣2y)]=(2x﹣6y)(8x﹣6y)=4(x+3y)(4x﹣3y).81.【解答】解:4x2y2﹣(x2+y2)2=﹣[(x2+y2)2﹣(2xy)2]=﹣(x2+y2+2xy)(x2+y2﹣2xy)=﹣(x+y)2(x﹣y)2.82.【解答】解:原式=x2﹣12x+12x﹣4=x2﹣4=(x+2)(x﹣2).83.【解答】解:(x2﹣3)2+2(3﹣x2)+1=(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.84.【解答】解:原式=x2﹣4x+4=(x﹣2)2.85.【解答】解:原式=4m2﹣6m+6m﹣1=4m2﹣1=(2m+1)(2m﹣1).86.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).87.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.88.【解答】解:(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).89.【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.90.【解答】解:原式=(x2+x+x+1)(x2+x﹣x﹣1)=(x2+2x+1)(x2﹣1)=(x+1)2(x+1)(x﹣1)=(x+1)3(x﹣1).91.【解答】解:原式=8x2﹣16y2﹣7x2﹣xy+xy=x2﹣16y2=(x+4y)(x﹣4y).92.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).93.【解答】解:原式=(x2+x)2﹣8(x2+x)+12=(x2+x﹣2)(x2+x﹣6)=(x﹣1)(x+2)(x﹣2)(x+3).94.【解答】解:(m2+2m)2﹣7(m2+2m)﹣8,=(m2+2m﹣8)(m2+2m+1),=(m+4)(m﹣2)(m+1)2.95.【解答】解:原式=(x2+2x﹣3)(x2+2x+1),=(x+3)(x﹣1)(x+1)2;96.【解答】解:原式=(2x﹣1)(x+).97.【解答】解:3x2﹣12x+9=3(x2﹣4x+3)=3(x﹣3)(x﹣1).98.【解答】解:(x﹣4)(x+7)+18=x2+3x﹣10=(x﹣2)(x+5).99.【解答】解:原式=(5ab﹣2)(ab+5).100.【解答】解:(x+y)2﹣(4x+4y)﹣32=(x+y)2﹣4(x+y)﹣32=(x+y+4)(x+y﹣8).。

《因式分解》测试题及答案

《因式分解》测试题及答案

《因式分解》一、填空题(每题3分,共30分)1.若m 2+2m+n 2-6n+6=0,则m= .n= .2.分解因式y 4+2y 2+81= .3.多项式x 4-2x 2+ax+b 有因式x 2-x+1,试将这多项式分解因式,则x4-2x 2+ax+b= ,其中a= .b= .4.若(x 2+y 2)(x 2+y 2-1)-12=0,则x 2+y 2= .5.分解因式a 2(b-c)+b 2(c-a)+c 2(a-b)= .6.如果m=31a(a+1)(a+2),n=31a(a-1)(a+1),那么m-n= . 7. 分解因式7x n+1-14x n +7x n-1(n 为不小于1的整数)= .8. 已知a-b =1,ab =2,则a 2b-2a 2b 2+ab 2的值是9. 观察下列算式,32-12=8 52-32=16 72-52=24 92-72=32……根据探寻到的规律,请用n 的等式表示第n 个等式10.若x-1是x 2-5x+c 的一个因式,则c= .二、选择题(每题3分,共24分)11.下列从左边到右边的变形①15x 2y =3x ·5xy ②(a+b )(a-b )=a 2-b 2 ③a 2-2a+1=(a-1)2④x 2+3x+1=x(x+3+x1)其中因式分解的个数为( ) A .0个 B .2个 C .3个 D .1个12.在多项式①x 2+2y 2,②x 2-y 2,③-x 2+y 2,④-x 2-y 2中能用两数和乘以它们的差的公式进行因式分解的有( )A .1个B .2个C .3个D .4个13.下列各式中不能分解因式的是( )A .4x 2+2xy+41y 2 B .4x 2-2xy+41y 2 C .4x 2-41y 2 D .-4x 2-41y 2 14.下列能用两数和的平方公式进行因式分解的是( )A .m 2-9n 2B .p 2-2pq+4q 2C .-x 2-4xy+4y 2D .9(m+n )2-6(m+n )+115.若25x 2+kxy+4y 2可以解为(5x-2y )2,则k 的值为( )A .-10B .10C .-20D .2016.下列多项式中不能用提公因式进行因式分解的是( )A .-41x 2-xy+y 2 B .x-xy C .-m 3+mn 2 D .-3x 2+917.81-xk=(9+x 2)(3+x)(3-x),那么k 的值是( )A.k=2B.k=3C.k=4D.k=618.9x 2+mxy+16y 2是一个完全平方式,那么m 的值是( )A.12B.24C.±12.D.±24三、解答题(共54分)19.把下列各式分解因式(每题4分,共20分)(1)8a 2-2b 2(2)4xy 2-4x 2y-y 3(3)4x 2y 2-(x 2+y 2)2(4)9x 2+16(x+y)2-24x(x+y)(5)(a-b )3-2(b-a)2+a-b20. (8分已知xy=5,a-b=6,求证xya 2+xyb 2-2abxy 的值21.(8分)若x 2+2(m-3)x+16是一个整式的完全平方,求m 的值.22.(8分)求证32002-4×32001+10×32000能被7整除.23. .(10分)已知a 2+b 2+a 2b 2+1=4ab ,求a ,b 的值四、综合探索题(12分)24.已知a 、b 、c 为三角形三边,且满足0ac bc ab c b a 222=---++.试说明该三角形是等边三角形.参考答案:一、1.-3; 3 2 .(y 2+4y+9)(y 2-4y+9) 3 .(x 2-x+1)(x+2)(x-1); 3; -2 4. 45. (a-b)(b-c)(a-c)6.a(a+1)7. 7x n-1(x-1)2 (提示: 7x n+1-14x n +7x n-1=7·x n-1·x 2-14x n-1·x+7x n-1=7x n-1(x 2-2x+1)=7x n-1(x-1)2)8. 2 ( 提示:解这种题型比较简便而常用的方法是先对所给的代数式进行因式分解,使之出现ab ,a-b 的式子,代入求值.简解如下:∵a-b =1,ab =2 ∴a 3b-2a 2b 2+ab 3=ab (a 2-2ab+b 2)=ab (a-b )2=2×1=2)9.(2n+1)2-(2n-1)2=8n (提示:等式的左边是两个连续的奇数的平方差,右边是8×1,8×2,8×3,8×4,……,8×n .)10. 4 (提示:令x =1,则x-1=0,这时x 2-5x+c =0即1-5+c =0,c =4)新 课 标第 一网二、11.D ( 提示:①②④均不是因式分解).12.B 13.D 14.D15.C (提示:(5x-2y )2=25x 2-20xy+4y 2故k =-20)16.A (点拨:B 中有公因式x ,C 中有m ,D 中有3). 17.C (提示:将等式的右边按多项式乘法展开,建立恒等式后,令等式左右两边对应项项系数相等即可)18.D (提示:完全平方公式有两个,勿漏解)三、19.(1)2(2a+b)(2a-b) (2)-y(2x-y)2 (3) 4x 2y 2-(x 2+y 2)2=(2xy )2-(x 2+y 2)2=(2xy+x 2+y 2)(2xy-x 2-y 2)=-(x 2+2xy+y 2)(x 2-2xy+y 2)=-(x+y )2(x-y )2(4)9x 2+16(x+y )2-24x (x+y )=[4(x+y )]2-2×4(x+y )·3x+(3x )2=[4(x+y )-3x]2=(x+4y )2(5)(a-b )3-2(b-a )2+a-b=(a-b )3-2(a-b )2+a-b =(a-b )[(a-b )2-2(a-b )+1]=(a-b )[(a-b )2-2(a-b )+12]=(a-b )(a-b-1)220. 18021.解:∵x 2+2(m-3)x+16=x 2+2(m-3)x+42∴ 2(m-3)x =±2×4x ∴m =7或m =-122.证明:32002-4×32001+10×32000=32×32000-4×3×32000+10×3200=32000(32-12+10)=7×32000 ∴32002-4×32001+10×32000能被7整除.23.a=1,b=1或a=-1,b=-1.四、24.解:0ac bc ab c b a 222=---++,0)ac bc ab c b a (2222=---++,0ac 2c a bc 2c b ab 2b a 222222=-++-++-+,0)c a ()c b ()b a (222=-+-+-,∴a -b =0,b -c =0,a -c =0,∴a =b =c .∴此三角形为等边三角形.新课标第一网。

初中数学因式分解经典测试题附答案

初中数学因式分解经典测试题附答案
15.将下列多项式因式分解,结果中不含有因式 的是()
A. B. C. D.
【答案】D
【解析】
【分析】
先把各个多项式分解因式,即可得出结果.
【详解】
解: ,


结果中不含有因式 的是选项D;
故选:D.
【点睛】
本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.
16.把多项式分解因式,正确的结果是( )
3.把代数式 分解因式,结果正确的是()
A. B.
C. D.
【答案】D
【解析】
此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.
解答:解: ,
=3x(x2-2xy+y2),
=3x(x-y)2.
故选D.
4.设a,b,c是 的三条边,且 ,则这个三角形是
A.等腰三角形B.直角三角形
C、xy﹣x=x(y﹣1),故此选项正确;
D、2x+y无法因式分解,故此选项错误.
故选C.
【点睛】
本题考查因式分解.
2.若 ,则 的值为()
A.-2B.2C.8D.-8
【答案】B
【解析】
【分析】
利用十字相乘法化简 ,即可求出 的值.
【详解】


解得
故答案为:B.
【点睛】
本题考查了因式分解的问题,掌握十字相乘法是解题的关键.
【答案】B
【解析】
【分析】
因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.
【详解】

因式分解经典题(含答案)

因式分解经典题(含答案)

因式分解经典题分组分解练习1. =--+4222ab b a (a-b+2)(a-b-2) .2.=+--1222x y x (x-1+y)(x-1-y)3.4a 2-b 2+2a-b=(2a-b)(2a+b+1)4.1-a 2+2ab-b 2= (1+a-b)(1-a+b)5.1-a 2-b 2-2ab=(1+a+b)(1-a-b)6.x 2+2xy+y 2-1= (x+y-1)(x+y+1)7.x 2-2xy+y 2-1=(x-y-1)(x-y+1)8.x 2-2xy+y 2-z 2= (x-y-z)(x-y+z) 9. bc c b a 2222+-- =(a+b-c)(a-b+c)10. 9222-+-y xy x = (x-y+3)(x-y-3)11. 2296y x x -+- =(x-3+y)(x-3-y)12.x 2 - 4y 2 + x + 2y = (x+2y)(x-2y+1)13. =-+-y x y x 3322(x-y)(x+y+3)14. =-+-bc ac ab a 2(a+c)(a-b)15.ax-a+bx-b=(a+b)(x-1)16.a 2-b 2-a+b= (a-b)(a+b-1)二.十字相乘法:1.x 2+2x-15=(x+5)(x-3)2.x 2-6x+8=(x-2)(x-4)3.2x 2-7x-15=(x-5)(x+3)4.2x 2-5x-3=(x-3)(2x+1)5.5x 2-21x+18=(5x-6)(x-3)6. 6x 2-13x+6=(2x-3)(3x-2)7.x 4-3x 2-4=(x ²+1)(x+2)(x-2) 8. 3x 4+6x 2-9= (x ²-3)(3x ²+3)9. x 2-2xy-35y 2=(x-7)(x+5)10. a 2-5ab-24b 2= (a+3)(a-8)11.5x 2+4xy-28y 2=(5x+14y)(x-2y)三.综合训练 1. 2222211111(1)(1)(1)...(1)(1)23499100----- 2. 997 2– 9= 101/1x2x3x …x100 =9940003. 20062005222...221------20072= 14. 若22(4)25x a x +++是完全平方式,求a 的值。

初中数学-《因式分解》测试题(有答案)

初中数学-《因式分解》测试题(有答案)

初中数学-《因式分解》测试题一、选择题1.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x﹣y)2D.(a﹣b)3=(b﹣a)32.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+23.把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5a B.(x+y)2C.5(x+y)2D.5a(x+y)24.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是()A.(b﹣2)(a+a2)B.(b﹣2)(a﹣a2)C.a(b﹣2)(a+1)D.a(b﹣2)(a﹣1)5.下列因式分解正确的是()A.mn(m﹣n)﹣m(n﹣m)=﹣m(n﹣m)(n+1)B.6(p+q)2﹣2(p+q)=2(p+q)(3p+q ﹣1)C.3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x+2)D.3x(x+y)﹣(x+y)2=(x+y)(2x+y)二、填空题6.把多项式(x﹣2)2﹣4x+8因式分解开始出现错误的一步是解:原式=(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2+4)…C=(x﹣2)(x+2)…D.7.﹣xy2(x+y)3+x(x+y)2的公因式是;(2)4x(m﹣n)+8y(n﹣m)2的公因式是.8.分解因式:(x+3)2﹣(x+3)=.9.因式分解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=.10.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=.三、解答题11.将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.12.若x,y满足,求7y(x﹣3y)2﹣2(3y﹣x)3的值.13.先阅读下面的材料,再因式分解:要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.请用上面材料中提供的方法因式分解:(1)ab﹣ac+bc﹣b2:(2)m2﹣mn+mx﹣nx;(3)xy2﹣2xy+2y﹣4.14.求使不等式成立的x的取值范围:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.15.阅读题:因式分解:1+x+x(x+1)+x(x+1)2解:原式=(1+x)+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)[(1+x)+x(1+x)]=(1+x)2(1+x)=(1+x)3.(1)本题提取公因式几次?(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y的值.《第4章因式分解》参考答案与试题解析一、选择题1.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x﹣y)2D.(a﹣b)3=(b﹣a)3【考点】完全平方公式;去括号与添括号.【分析】A、B都是利用添括号法则进行变形,C、利用完全平方公式计算即可;D、利用立方差公式计算即可.【解答】解:A、∵﹣x﹣y=﹣(x+y),故此选项错误;B、∵﹣a+b=﹣(a﹣b),故此选项错误;C、∵(y﹣x)2=y2﹣2xy+x2=(x﹣y)2,故此选项正确;D、∵(a﹣b)3=a3﹣3a2b+3ab2﹣b3,(b﹣a)3=b3﹣3ab2+3a2b﹣a3,∴(a﹣b)3≠(b﹣a)3,故此选项错误.故选C.【点评】本题主要考查完全平方公式、添括号法则,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.括号前是“﹣”号,括到括号里各项都变号,括号前是“+”号,括到括号里各项不变号.2.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+2【考点】因式分解﹣提公因式法.【专题】压轴题.【分析】先提取公因式(m﹣1)后,得出余下的部分.【解答】解:(m+1)(m﹣1)+(m﹣1),=(m﹣1)(m+1+1),=(m﹣1)(m+2).故选D.【点评】先提取公因式,进行因式分解,要注意m﹣1提取公因式后还剩1.3.把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5a B.(x+y)2C.5(x+y)2D.5a(x+y)2【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式.【解答】解:10a2(x+y)2﹣5a(x+y)3因式分解时,公因式是5a(x+y)2故选D【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.4.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是()A.(b﹣2)(a+a2)B.(b﹣2)(a﹣a2)C.a(b﹣2)(a+1)D.a(b﹣2)(a﹣1)【考点】因式分解﹣提公因式法.【分析】找出公因式直接提取a(b﹣2)进而得出即可.【解答】解:a(b﹣2)﹣a2(2﹣b)=a(b﹣2)(1+a).故选:C.【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.5.下列因式分解正确的是()A.mn(m﹣n)﹣m(n﹣m)=﹣m(n﹣m)(n+1)B.6(p+q)2﹣2(p+q)=2(p+q)(3p+q ﹣1)C.3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x+2)D.3x(x+y)﹣(x+y)2=(x+y)(2x+y)【考点】因式分解﹣提公因式法.【分析】把每一个整式都因式分解,比较结果得出答案即可.【解答】解:A、mn(m﹣n)﹣m(n﹣m)=m(m﹣n)(n+1)=﹣m(n﹣m)(n+1),故原选项正确;B、6(p+q)2﹣2(p+q)=2(p+q)(3p+3q﹣1),故原选项错误;C、3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x﹣2),故原选项错误;D、3x(x+y)﹣(x+y)2=(x+y)(2x﹣y),故原选项错误.故选:A.【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.二、填空题6.把多项式(x﹣2)2﹣4x+8因式分解开始出现错误的一步是C解:原式=(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2+4)…C=(x﹣2)(x+2)…D.【考点】因式分解﹣提公因式法.【分析】利用提取公因式法一步步因式分解,逐一对比进行判定,得出答案即可.【解答】解:原式═(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2﹣4)…C=(x﹣2)(x﹣6)…D.通过对比可以发现因式分解开始出现错误的一步是C.故答案为:C.【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.7.﹣xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;(2)4x(m﹣n)+8y(n﹣m)2的公因式是4(m﹣n).【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式.【解答】解:(1)﹣xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;(2)4x(m﹣n)+8y(n﹣m)2的公因式是4(m﹣n).故答案为:4(m﹣n)x(x+y)2.【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.8.分解因式:(x+3)2﹣(x+3)=(x+2)(x+3).【考点】因式分解﹣提公因式法.【分析】本题考查提公因式法分解因式.将原式的公因式(x﹣3)提出即可得出答案.【解答】解:(x+3)2﹣(x+3),=(x+3)(x+3﹣1),=(x+2)(x+3).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.9.因式分解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=2n(m﹣n)(p﹣q).【考点】因式分解﹣提公因式法.【分析】首先得出公因式为n(m﹣n)(p﹣q),进而提取公因式得出即可.【解答】解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=n(m﹣n)(p﹣q)+n(m﹣n)(p﹣q)=2n(m﹣n)(p﹣q).故答案为:2n(m﹣n)(p﹣q).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.10.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=﹣31.【考点】因式分解﹣提公因式法.【专题】压轴题.【分析】首先提取公因式3x﹣7,再合并同类项即可得到a、b的值,进而可算出a+3b的值.【解答】解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13),=(3x﹣7)(2x﹣21﹣x+13),=(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7﹣24=﹣31,故答案为:﹣31.【点评】此题主要考查了提公因式法分解因式,关键是找准公因式.三、解答题11.将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.【考点】因式分解﹣提公因式法.【分析】均直接提取公因式即可因式分解.【解答】解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2=5a3b(a﹣b)2(a﹣b﹣2ab2)(2)(b﹣a)2+a(a﹣b)+b(b﹣a)=(a﹣b)(a﹣b+a﹣b)=2(a﹣b)2;(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a)=(7a﹣8b)(3a﹣4b﹣11a+12b)=8(7a﹣8b)(b﹣a)(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d=(b+c﹣d)(x+y﹣1).【点评】考查了因式分解的知识,解题的关键是仔细观察题目,并确定公因式.12.若x,y满足,求7y(x﹣3y)2﹣2(3y﹣x)3的值.【考点】因式分解的应用;解二元一次方程组.【分析】应把所给式子进行因式分解,整理为与所给等式相关的式子,代入求值即可.【解答】解:7y(x﹣3y)2﹣2(3y﹣x)3,=7y(x﹣3y)2+2(x﹣3y)3,=(x﹣3y)2[7y+2(x﹣3y)],=(x﹣3y)2(2x+y),当时,原式=12×6=6.【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.13.先阅读下面的材料,再因式分解:要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.请用上面材料中提供的方法因式分解:(1)ab﹣ac+bc﹣b2:(2)m2﹣mn+mx﹣nx;(3)xy2﹣2xy+2y﹣4.【考点】因式分解﹣分组分解法.【专题】阅读型.【分析】(1)首先将前两项与后两项分组,进而提取公因式,分解因式即可;(2)首先将前两项与后两项分组,进而提取公因式,分解因式即可;(3)首先将前两项与后两项分组,进而提取公因式,分解因式即可.【解答】解:(1)ab﹣ac+bc﹣b2=a(b﹣c)+b(c﹣b)=(a﹣b)(b﹣c);(2)m2﹣mn+mx﹣nx=m(m﹣n)+x(m﹣n)=(m﹣n)(m﹣x);(3)xy2﹣2xy+2y﹣4=xy(y﹣2)+2(y﹣2)=(y﹣2)(xy+2).【点评】此题主要考查了分组分解法分解因式,正确分组进而提取公因式是解题关键.14.求使不等式成立的x的取值范围:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.【考点】因式分解﹣提公因式法;解一元一次不等式.【分析】首先把x2﹣2x+3因式分解为(x﹣1)(x﹣2),进一步利用提取公因式法以及非负数的性质,探讨得出答案即可.【解答】解:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)=(x﹣1)3﹣(x﹣1)2(x﹣2)=(x﹣1)2(x+1);因(x﹣1)2是非负数,要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,只要x+1≥0即可,即x≥﹣1.【点评】此题考查提取公因式法因式分解,结合非负数的性质来探讨不等式的解法.15.阅读题:因式分解:1+x+x(x+1)+x(x+1)2解:原式=(1+x)+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)[(1+x)+x(1+x)]=(1+x)2(1+x)=(1+x)3.(1)本题提取公因式几次?(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?【考点】因式分解﹣提公因式法.【专题】阅读型.【分析】(1)根据题目提供的解答过程,数出提取的公因式的次数即可;(2)根据总结的规律写出来即可.【解答】解:(1)共提取了两次公因式;(2)将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式n次,结果是(x+1)n+1.【点评】本题考查了因式分解的应用,解题的关键是从题目提供的材料确定提取的公因式的次数.16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y的值.【考点】因式分解﹣提公因式法.【分析】首先把等号右边的整式因式分解,得出关于x、y的整式的乘法算式,对应12的分解,得出答案即可.【解答】解:x(x﹣y)﹣y(y﹣x)=(x﹣y)(x+y);因为x,y都是自然数,又12=1×12=2×6=3×4;经验证(4﹣2)×(4+2)=2×6符合条件;所以x=4,y=2.【点评】此题考查提取公因式因式分解,进一步利用题目中的条件限制分析探讨得出答案.。

因式分解300题及答案

因式分解300题及答案

1.因式分解300题(一)判断下列各式从左到右的变形是否是分解因式,并说明理由.⑴22()()x y x y x y +-=-; ⑵322()x x x x x x +-=+ ⑶232(3)2x x x x +-=+-; ⑷1(1)(1)xy x y x y +++=++2. 观察下列从左到右的变形:⑴()()3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=-其中是因式分解的有 (填括号)3.分解因式:ad bd d -+;4.分解因式:4325286x y z x y -5.分解因式:322618m m m -+-6. 分解因式:23229632x y x y xy ++7. 分解因式:2222224x y x z y z z --+8.分解因式:232232a b abc d ab cd c d -+-9.分解因式:22(1)1a b b b b -+-+-10.分解因式:2244a a b -+-11.分解因式:23361412abc a b a b --+12.分解因式:32461512a a a -+-13.分解因式:22224()x a x a x +--14.分解因式:3222524261352xy z xy z x y z -++15.不解方程组2631x y x y +=⎧⎨-=⎩,求代数式()()237323y x y y x ---的值.16.分解因式:2121()()m m p q q p +--+-17.分解因式:212312n n x y xy z +-(n 为大于1的自然数).18.把下列各式进行因式分解:3223224612x y x y x y -+-19.分解因式:()()23262x a b xy a b +-+20.分解因式23423232545224()20()8()x y z a b x y z a b x y z a b ---+-21.分解因式:346()12()m n n m -+-22.分解因式:55()()m m n n n m -+-23.分解因式:()()()2a a b a b a a b +--+24.分解因式:2316()56()m m n n m -+-25.分解因式:(23)(2)(32)(2)a b a b a b b a +--+-26.化简下列多项式:()()()()23200611111x x x x x x x x x ++++++++++27.分解因式:()()2121510n n a a b ab b a +---(n 为正整数)28.分解因式:212146n m n m a b a b ++--(m 、n 为大于1的自然数)29.分解因式: 2122()()()2()()n n n x y x z x y y x y z +----+--,n 为正整数.30.先化简再求值,()()()2y x y x y x y x +++--,其中2x =-,12y =.31.求代数式的值:22(32)(21)(32)(21)(21)(23)x x x x x x x -+--+++-,其中23x =-.32.已知:2b c a +-=-,求22221()()(222)33333a a b c b c a b c b c a --+-+++-的值.33.分解因式:322()()()()()x x y z y z a x z z x y x y z x y x z a +-+-+--+----.34. 若a 、b 、c 为ABC ∆的三边长,且()()()()a b b a b a a c a b a c -+-=-+-,则ABC ∆按边分类,应是什么三角形?35. 因式分解:a ab ab +-22,结果正确的是( )A .)2(-b aB .2)1(-b aC .2)1(+b aD .)2(-b ab36.分解因式:44a b -37.分解因式:2249()16()m n m n +--38.分解因式:22()()a b c d a b c d +++--+-39.分解因式:()()22114m n mn --+40.分解因式:()()4(1)x y x y y +-+-41.分解因式:34xy xy -;42.分解因式:22()()a x y b y x -+-43.因式分解:22()a b c +-44.因式分解:224(2)y z x --45.分解因式:481y -46.分解因式:229()4()m n m n --+47. 分解因式:22122x y -+48.分解因式:22(32)16x y y --49.分解因式:44()()a x a x +--50.分解因式:4232y -51. 分解因式:81644x -52.分解因式:75()()a b b a -+-53.分解因式:2243()27()x x y y x ---54.利用分解因式证明:712255-能被120整除.55.证明:两个连续奇数的平方差能被8整除56.分解因式:2242x x -+= ;57.分解因式:244ax ax a -+= ;58.分解因式:2844a a --= ;59.分解因式:2292416x xy y -+=60.分解因式:3269x x x -+61.分解因式:2363x x -+62.已知 3.43 3.14x y ==,,求221222x xy y ---值63.分解因式:22224946a b c d ac bd -+-++64.分解因式2222_________________a ab b c -+-=.65.分解因式:22222()4x y x y +-66.分解因式:222224()a b a b -+67.分解因式:2222()4()4()m n m n m n +--+-;68.分解因式:22(5)2(5)(3)(3)m n n m n m n m +-+-+-;69.分解因式:44222()4p q p q +-70.分解因式:222()4()4x x x x +-++;71.分解因式:24()520(1)x y x y ++-+-72.分解因式:()()222248416x x x x ++++73.已知2244241a ab b a b ++--+=2m ,试用含a 、b 的代数式表示m .74.化简:22()()()()()()a b b c a c a b a b a b c a b c ++-+-+-+++-75.在实数范围内分解因式:224x -;76.在实数范围内分解因式:264m m -+77. 26a -+78.在实数范围内分解因式:42514a a --79.分解因式:66a b -80.分解因式:523972x x y -81.分解因式:66a b +82. 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值( ). A.大于零 B.小于零 C 大于或等于零 D .小于或等于零 83.分解因式:()()()3232332125x y x y x y -+---84.分解因式:22(23)9(1)x x +--85.分解因式:22222223(2)273(2)(3)a a b a b a a b b ⎡⎤+-=+-⎣⎦86.分解因式:222222(35)(53)a b a b --+-87.分解因式:2222x y z yz ---88.分解因式:2222(3)2(3)(3)(3)x x x x -+--+-;89.分解因式:22229()6()()a b a b a b ++-+-.90.已知()222410a b a b +--+=,求()20062a b +的值.91.分解因式:22222(91)36a b a b +--92.若a ,b ,c 为正数,且满足444222222a b c a b b c c a ++=++,那么,,a b c 之间有什么关系?93.a ,b ,c 是三角形ABC 的三条边,且2220,a b c ab bc ac ++---=则三角形ABC 是怎样的三角形?94. 分解因式: 33b -a95. 分解因式: 1xy x y --+96. 分解因式: ax by bx ay --+97. 分解因式: 27321x y xy x -+-98. 分解因式: 4321x x x ++-99. 分解因式: 22abx bxy axy y +--100. 分解因式: ()()x x z y y z +-+因式分解100道疯狂训练(上)答案解析1.【答案】⑴不是,此变形是整式乘法运算;⑵不是,此等式不成立;⑶不是,等式右边不是整式乘积的形式;⑷是.2.【答案】根据定义可知:把一个多项式化为几个整式的乘积的形式叫做因式分解。

因式分解经典测试题及答案解析

因式分解经典测试题及答案解析

因式分解经典测试题及答案解析一、选择题1.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A选项,从左到右变形错误,不符合题意,B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法. 2.设a,b,c是ABC的三条边,且332222a b a b ab ac bc-=-+-,则这个三角形是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a3-b3=a2b-ab2+ac2-bc2,∴a3-b3-a2b+ab2-ac2+bc2=0,(a3-a2b)+(ab2-b3)-(ac2-bc2)=0,a2(a-b)+b2(a-b)-c2(a-b)=0,(a-b)(a2+b2-c2)=0,所以a-b=0或a2+b2-c2=0.所以a=b或a2+b2=c2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.3.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a +1=(a ﹣1)2B .a (a +1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .mx ﹣my +1=m (x ﹣y )+1【答案】A【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】解:A 、a 2﹣2a+1=(a ﹣1)2,从左到右的变形属于因式分解,符合题意;B 、a (a+1)(a ﹣1)=a 3﹣a ,从左到右的变形是整式乘法,不合题意;C 、6x 2y 3=2x 2•3y 3,不符合因式分解的定义,不合题意;D 、mx ﹣my+1=m (x ﹣y )+1不符合因式分解的定义,不合题意;故选:A .【点睛】本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.4.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.5.将3a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;6.多项式225a -与25a a -的公因式是( )A .5a +B .5a -C .25a +D .25a -【答案】B【解析】【分析】直接将原式分别分解因式,进而得出公因式即可.【详解】解:∵a 2-25=(a+5)(a-5),a 2-5a=a (a-5),∴多项式a 2-25与a 2-5a 的公因式是a-5.故选:B .【点睛】此题主要考查了公因式,正确将原式分解因式是解题的关键.7.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.8.将2x 2a -6xab +2x 分解因式,下面是四位同学分解的结果:①2x (xa -3ab ), ②2xa (x -3b +1), ③2x (xa -3ab +1), ④2x (-xa +3ab -1). 其中,正确的是( )A .①B .②C .③D .④【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x 2a-6xab+2x=2x (xa-3ab+1).故选:C .【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为( )A .21x x --B .21x x ++C .21x x --D .21x x +-【答案】B【解析】【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.【详解】 2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.10.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-,()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.11.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( ) A .1B .-1C .-8D .18- 【答案】A【解析】【分析】多项式3212x mx nx ++-的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为()x a +,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.【详解】解:多项式3212x mx nx ++-的最高次数是3,2(3)(2)6x x x x -+=--的最高次数是2,∵多项式3212x mx nx ++-含有因式()3x -和()2x +,∴多项式的最后一个因式的最高次数应为1,可设为()x a +,即3212(3)(2)()++-=--+x mx nx x x x a ,整理得:323212(1)(6)6++-=+--+-x mx nx x a x a x a , 比较系数得:1(6)612m a n a a =-⎧⎪=-+⎨⎪=⎩,解得:182m n a =⎧⎪=-⎨⎪=⎩,∴811-==n m ,故选:A .【点睛】此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.12.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)【答案】D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.13.已知三个实数a,b,c满足a﹣2b+c<0,a+2b+c=0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【答案】C【解析】【分析】根据a﹣2b+c<0,a+2b+c=0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况.【详解】∵a﹣2b+c<0,a+2b+c=0,∴a+c=﹣2b,∴a﹣2b+c=(a+c)﹣2b=﹣4b<0,∴b>0,∴b2﹣ac=222222a c a ac cac+++⎛⎫-=⎪⎝⎭=222242a ac c a c-+-⎛⎫= ⎪⎝⎭,即b>0,b2﹣ac≥0,故选:C.【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b和b2-ac 的正负情况.14.已知x﹣y=﹣2,xy=3,则x2y﹣xy2的值为()A .2B .﹣6C .5D .﹣3【答案】B【解析】【分析】 先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.15.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.16.下列从左到右的变形属于因式分解的是( )A .(x +1)(x -1)=x 2-1B .m 2-2m -3=m(m -2)-3C .2x 2+1=x(2x +1x) D .x 2-5x +6=(x -2)(x -3) 【答案】D【解析】【分析】根据因式分解的定义,因式分解是把多项式写出几个整式积的形式,对各选项分析判断后利用排除法求解.【详解】解:A 、(x+1)(x-1)=x 2-1不是因式分解,是多项式的乘法,故本选项错误; B 、右边不全是整式积的形式,还有减法,故本选项错误;C 、右边不是整式积的形式,分母中含有字母,故本选项错误;D 、x 2-5x +6=(x -2)(x -3)符合因式分解的定义,故本选项正确.故选:D .【点睛】本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分.17.已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( )A .﹣2B .﹣1C .1D .2【答案】C【解析】【分析】先将前两项提公因式,然后把a ﹣b =1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a 3﹣a 2b +b 2﹣2ab =a 2(a ﹣b )+b 2﹣2ab =a 2+b 2﹣2ab =(a ﹣b )2=1.故选C .【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.18.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【答案】A【解析】【分析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式. 故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.19.下列因式分解正确的是( )A .()222x xy x x y -=-B .()()2933x x x +=+- C .()()()2x x y y x y x y ---=-D .()22121x x x x -+=-+ 【答案】C【解析】【分析】根据提公因式法和公式法进行判断求解即可.【详解】A. 公因式是x ,应为()222x xy x x y -=-,故此选项错误; B. 29x +不能分解因式,故此选项错误;C. ()()()()()2x x y y x y x y x y x y ---=--=-,正确;D. ()2221=1x x x x -+=-,故此选项错误.故选:C【点睛】此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.20.三角形的三边a 、b 、c 满足a (b ﹣c )+2(b ﹣c )=0,则这个三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 【答案】A【解析】【分析】首先利用提取公因式法因式分解,再进一步分析探讨得出答案即可【详解】解:∵a (b-c )+2(b-c )=0,∴(a+2)(b-c )=0,∵a 、b 、c 为三角形的三边,∴b-c=0,则b=c ,∴这个三角形的形状是等腰三角形.故选:A .【点睛】本题考查了用提取公因式法进行因式分解,熟练掌握并准确分析是解题的关键.。

因式分解50题(答案版)

因式分解50题(答案版)

因式分解50题1.43269a b a b a b -+分解因式的正确结果是()A .()2269a b a a -+B .()()233a b a a +-C .()223b a -D .()223a b a -【答案】D2.下列各式从左到右的变形中,是因式分解的是()A .()()24416x x x -+=-B .()()2222x y x y x y -+=+-+C .()222ab ac a b c +=+D .()()()()1221x x x x --=--【答案】C3.下列等式的变形是因式分解的是()A .21234a b a ab=-B .()()2224x x x +-=-C .()2481421x x x x --=--D .()111222ax ay a x y -=-【答案】D4.下面的多项式中,能因式分解的是()A .2m n +B .21m m -+C .2m n-D .221m m -+【答案】D5.观察下列各式:①2a b +和a b +;②()5m a b -和a b -+;③()3a b +和a b --;④22x y -和22x y +,其中有公因式的是()A .①②B .②③C .③④D .①④【答案】B6.因式分解:224x x -=__________.【答案】()212x x -7.因式分解()()3a x y x y ---【答案】()()31x y a --8.分解因式:22226482x y x y xy xy -++【答案】()23241xy xy x y -++9.分解因式()()()222m x y n y x x y ---=-(______).【答案】m n+10.在分解因式()()22353223x a b b a --+-时,提出公因式()232a b --后,另一个因式是()A .35x B .351x +C .351x -D .35x -【答案】C11.⑴23423232545224()20()8()x y z a b x y z a b x y z a b ---+-⑵346()12()m n n m -+-【答案】⑴原式22323224()(652)x y z a b yz x x y z =--+⑵原式[]34336()12()6()12()6()(122)m n m n m n m n m n m n =-+-=-+-=-+-12.分解因式:⑴2316()56()m m n n m -+-⑵(23)(2)(32)(2)a b a b a b b a +--+-【答案】⑴原式[]232216()56()8()27()8()(75)m n m n m n m m n m n m n m =-+-=-+-=--⑵原式(23)(2)(32)(2)(2)(55)5(2)()a b a b a b a b a b a b a b a b =+-++-=-+=-+13.分解因式:⑴()()2121510n na ab ab b a +---(n 为正整数)⑵212146n m n m a b a b ++--(m 、n 为大于1的自然数)【答案】(1)原式=()()()()()()212221510532535n nn na ab ab a b a a b a b b a a b a b +---=---=--⎡⎤⎣⎦⑵(21)(2)10n n n +-+=->,(21)(2)n n +>+,2121211462(23)n m n m n m n a b a b a b a b ++-+---=-14.因式分解()219x --的结果是()A .()()24x x +-B .()()81x x ++C .()()24x x -+D .()()108x x -+【答案】A15.马小虎同学做了一道因式分解的习题,做完之后,不小心让墨水把等式:()()()4242a a a a -++-■=▲中的两个数字盖住了,那么式子中的■、▲处对应的两个数字分别是()A .64,8B .24,3C .16,2D .8,1【答案】C16.因式分解:()222224x y x y +-.【答案】()()()22222224x y x y x y x y +-=+-17.分解因式()2222224c a b a b ---【答案】()()()()c a b c a b c a b c a b +--+++--18.求证:无论m 为何整数时,多项式()2459m +-能被8整除【答案】原式=()()8221m m ++19.已知x 是有理数,则多项式2114x x --的值是()A.一定为负数B.不可能为正数C.一定为正数D.可能是正数、负数、0【答案】B20.因式分解222(6)25x x +-【答案】原式22(65)(65)x x x x =+++-(2)(3)(2)(3)x x x x =++--21.()222416xx +-【答案】22(2)(2)x x +-22.分解因式:2()6()9x y x y ++++=【答案】2(3)x y ++23.分解因式()()2269x y z x y z +-++【答案】2(3)x y z +-24.(1)316x x-(2)3244y y y-+【答案】(1)()()3164141x x x x x -=+-(2)()232442y y y y y -+=-25.因式分解:22363x xy y -+-=.【答案】()23x y --26.分解因式:322x y x y xy -+-=.【答案】2(1)xy x --27.因式分解:2221a b b ---=【答案】(1)(1)a b a b ++--28.分解因式:()22323m x y mn --【答案】()()322m x y n x y n -+--29.分解因式:222328712x y y xy xy+++【答案】()()437y x x y ++30.因式分解:2m mn mx nx -+-=【答案】()()m n m x -+31.分解因式:22x x y y +--=【答案】()()1x y x y -++32.分解因式:222694a ab b x -+-【答案】()()3232a b x a b x -+--33.分解因式22x y ax ay -++=【答案】()()x y x y a +-+34.若248123x x +-可因式分解成()()13x a bx c ++,其中a 、b 、c 均为整数,则下列叙述正确的是()A .1a =B .468b =C .3c =D .29a b c ++=【答案】C35.已知2y x -=,31x y -=,则2243x xy y -+的值为()A .1-B .2-C .3-D .4-【答案】B36.如果多项式212x kx ++能够分解成两个系数为整数的一次因式的积,那么整数k 可取的值有()A .2个B .4个C .6个D 8个【答案】C37.分解因式:231212b b -+=.【答案】23(2)b -38.分解因式:2412x x --=__________________【答案】(6)(2)x x -+39.若多项式26x mx +-有一个因式是()3x +,则m =.【答案】1m =40.分解因式:257(1)6(1)a a ++-+【答案】[][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+41.分解因式:222()14()24x x x x +-++【答案】(2)(1)(3)(4)x x x x +--+42.分解因式:222332x xy y x y +-+++43.分解因式:22344883x xy y x y +-+--22344883(32)(2)8()3x xy y x y x y x y x y +-+--=-++--(321)(23)x y x y =--++44.分解因式:2265622320x xy y x y --++-【答案】2265622320(234)(325)x xy y x y x y x y --++-=-++-45.分解因式:22276212x xy y x y -++--【答案】22276212(23)(234)x xy y x y x y x y -++---+--=46.分解因式:22121021152x xy y x y -++-+【答案】22121021152(32)(421)x xy y x y x y x y -++-+-+-+=47.分解因式:222695156x xy y xz yz z-+-++【答案】222695156(32)(33)x xy y xz yz z x y z x y z -+-++=----48.已知:a 、b 、c 为三角形的三条边,且满足232433720a ac c ab bc b ++--+=,求证2b =a +c23243372(3)(2)a ac c ab bc b a b c a b c ++--+=-+-+(3)(2)0a b c a b c -+-+=;两边之和大于第三边30a b c -+>,所以20a b c -+=,即2b a c=+49.设a 、b 、c 是三角形的三边长,且满足322322a ab bc b a b ac ++=++,三角形的形状为______由322322a ab bc b a b ac ++=++得3223220a ab bc b a b ac ++---=322322()()()0a a b ab b bc ac -+-+-=222()()()0a a b b a b c a b -+---=222()()0a b a b c -+-=∴22200a b a b c -=+-=或∴形状为等腰或直角50.设a 、b 、c 是三角形的三边长,且满足2222b ab c ac +=+,三角形的形状为_____【答案】由2222b ab c ac +=+得222222b ab a c ac a ++=++22()()a b a c +=+则有a b a c+=+所以b =c ∴是等腰三角形。

因式分解练习题加答案 200道分解因解题目

因式分解练习题加答案 200道分解因解题目

因式分解3a3b2c—6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6—2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y—x)=(x+y)(x-y)^25。

因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x—1得因式,试分解x3+3x2-4=(x—1)(x+2)^28、因式分解ab(x2-y2)+xy(a2—b2)=(ay+bx)(ax—by)9、因式分解(x+y)(a-b-c)+(x-y)(b+c—a)=2y(a—b-c)10、因式分解a2-a-b2-b=(a+b)(a—b—1)11。

因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a—7b)^212、因式分解(a+3)2-6(a+3)=(a+3)(a-3)13、因式分解(x+1)2(x+2)—(x+1)(x+2)2=-(x+1)(x+2)abc+ab—4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2—30x+25=(3x-5)^2(4)x2-7x—30=(x—10)(x+3)35。

因式分解x2-25=(x+5)(x-5)36。

因式分解x2-20x+100=(x-10)^237。

因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x—1)(2x—5)39、因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)—x=x(x+1)(3)x2-4x—ax+4a=(x—4)(x—a)(4)25x2—49=(5x-9)(5x+9)(5)36x2—60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x—3)(x-6)(8)2x2-5x—3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x—4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41。

因式分解100题及答案解析

因式分解100题及答案解析

因式分解100题1.分解因式:ad bd d -+;【答案】(1)d a b ⋅-+2.分解因式:4325286x y z x y -【答案】4222(43)x y yz x -3.分解因式:322618m m m -+-【答案】22(39)m m m --+4.分解因式:23229632x y x y xy ++ 【答案】23(423)2xy x x y y ++5.分解因式:2222224x y x z y z z --+【答案】()()()()y z y z x z x z -+-+6.分解因式:232232a b abc d ab cd c d -+-【答案】22()()ab cd ab c d +-7.分解因式:22(1)1a b b b b -+-+-【答案】2(1)(1)a b b --+8.分解因式:22x x y y y x--+-()()()【答案】2-+()()x y x y9.分解因式:22-+-a a b44【答案】(2)(2)a b a b+---10.分解因式:233--+61412abc a b a b【答案】22-+-2(376)ab c ab a11.分解因式:44-a b【答案】22a b a b a b-++()()()12.分解因式:22+--49()16()m n m n【答案】(113)(311)m n m n++13.分解因式:22+++--+-()()a b c d a b c d 【答案】4()()++a cb d14. 分解因式:()()4(1)+-+-x y x y y【答案】(2)(2)x y x y-++-15.分解因式:32-+69x x x【答案】2x x-(3)16.分解因式:22222x y x y+-()4【答案】22x y x y+-()()17.分解因式:22222-+4()a b a b【答案】22()()a b a b --+18.分解因式:2222()4()4()m n m n m n +--+-;【答案】2(3)n m -19.分解因式:22(5)2(5)(3)(3)m n n m n m n m +-+-+-;【答案】216()m n +20.分解因式:44222()4p q p q +-【答案】22222()()()p q p q p q +-+21.分解因式:221x ax x ax a +++--【答案】2(1)(1)a x x ++-22.分解因式:1xy x y --+【答案】(1)(1)x y --23.分解因式:ax by bx ay --+【答案】()()x y a b +-24.分解因式:2222ac bd ad bc +--【答案】()()()a b c d c d -+-25.分解因式:27321x y xy x -+-【答案】(3)(7)x x y -+26.分解因式:222332154810ac cx ax c +--【答案】22--c x a c(23)(165)27.分解因式:4321++-x x x【答案】3++-x x x(1)(1)28.分解因式:22+--abx bxy axy y【答案】()()bx y ax y-+29.分解因式:()()+-+x x z y y z【答案】()()-++x y x y z30.分解因式:2222++-++-x x x x x x(1)(2)(1)【答案】2x x x x--++(1)(21)(1)31.分解因式:42-+;x x31【答案】22---+x x x x(1)(1)32.分解因式:42-+;x x231【答案】22+++-x x x x(15)(15)33.分解因式:4224++a ab b【答案】2222a ab b a ab b++-+()()34.分解因式:126x x-+31【答案】6363-+--(1)(1)x x x x35.分解因式:841++x x【答案】6363x x x x-+--(1)(1) 36.分解因式:343-+a a【答案】2-+-(1)(3)a a a37.分解因式:32+--x x x265【答案】2-+-a a a(1)(3) 38.分解因式:32+-x x34【答案】2-+x x(1)(2)39.分解因式:267x x+-【答案】(7)(1)+-x x40.分解因式:398-+x x【答案】2-+-x x x(1)(8) 41.分解因式:276++x x【答案】(1)(6)++x x42.分解因式:276-+x x【答案】(1)(6)x x--43.分解因式:268++x x【答案】(2)(4)++x x44.分解因式:278+-x x【答案】(8)(1)+-x x45.分解因式:2+-x x12【答案】()()-+-x x34 46.分解因式:2--376a a【答案】(32)(3)+-a a47.分解因式:2--x x383【答案】(31)(3)x x+-48.分解因式:2x x+-5129【答案】(3)(53)+-x x49.分解因式:2x x--121115【答案】()()+-x x4335 50.分解因式:42+-730x x【答案】22-+(3)(10)x x51.分解因式:()()()2442111x x x ++-+- 【答案】22(31)(3)x x ++52.分解因式:26x x --【答案】(2)(3)x x +-53.分解因式:2922x x --【答案】(2)(11)x x +-54.分解因式:21220x x ++【答案】(2)(10)x x ++55.分解因式:2672x x -+【答案】(21)(32)x x --56.分解因式:2121115x x --【答案】(43)(35)x x +-57.分解因式:256x x -++【解析】256(7)(8)x x x x -++=+-【答案】(7)(8)x x +-58.分解因式:26136x x -+【答案】(32)(23)x x --59.分解因式:2++x x273【答案】(3)(21)++x x60.分解因式:22-++xy y x2064【答案】(16)(4)--x y x y61.分解因式:1a b c ab ac bc abc+++++++【答案】(1)(1)(1)+++a b c62.分解因式:(6114)(31)2a ab b b+++--【答案】(232)(31)+++-a b a b63.分解因式:22--++22a b ab bc ac【答案】(2)()+-+a b a b c64.分解因式:222222-+--++a b ab a c ac abc b c bc3【答案】()()--+-a b c ab ac bc65.分解因式:22+++++(1)(1)(221)y y x x y y【答案】(1)()++++yx y yx x y66.分解因式:222222---+-++()()(1)()()ab x y a b xy a b x y 【答案】()()----++bx b ay a by b ax a67.分解因式:32222--++-x x z x y xyz xy y z2422【答案】()()2--2x z y x68.分解因式:22+-+--x xy y x y344883【答案】(321)(23)--++x y x y69.分解因式:22--++-x xy y x y65622320【答案】(234)(325)-++-x y x y70.分解因式:22-++--x xy y x y276212【答案】(23)(234)-+--x y x y71.分解因式:22-++-+x xy y x y121021152【答案】(32)(421)-+-+x y x y72.分解因式:22243----x y x y【答案】(3)(1)--++x y x y73.分解因式:22534-+++x y x y【答案】(1)(4)++-+x y x y74.分解因式:222++-+-x a b x a ab b2()3103【答案】(3)(3)-++-x a b x a b75.分解因式:22265622320x xy y xz yz z -----【答案】(234)(325)x y z x y z --++76.分解因式:2262288x xy y x y +-+--【答案】(22)(324)x y x y --++77.分解因式:223224x xy y x y ++++【答案】(2)(2)x y x y +++78.分解因式:222695156x xy y xz yz z -+-++【答案】(32)(33)x y z x y z ----79.分解因式:2222(48)3(48)2x x x x x x ++++++【答案】2(2)(4)(58)x x x x ++++80.分解因式:22(52)(53)12x x x x ++++-【答案】2(2)(3)(51)x x x x +++-81.分解因式:(1)(3)(5)(7)15x x x x +++++【答案】2(2)(6)(810)x x x x ++++82.分解因式:(1)(2)(3)(4)24a a a a -----【答案】2(5)(510)a a a a --+83.分解因式:22(1)(2)12x x x x ++++-【答案】2(1)(2)(5)x x x x -+++84.分解因式:()()()()26121311x x x x x ----+=【答案】()22661x x -+85.分解因式:()()()()461413119x x x x x ----+=【答案】()22971x x -+86.分解因式2(25)(9)(27)91a a a +---【答案】2(4)(27)(28)a a a a -+--87.分解因式:22(68)(1448)12x x x x +++++【答案】22(1018)(1022)x x x x ++++88.分解因式:22222()4()x xy y xy x y ++-+【答案】222()x y xy +-89.分解因式22(32)(384)90x x x x ++++-【答案】2(2512)(27)(1)x x x x +++-90.分解因式:2222x x x x x x--+--+-4(31)(23)(44)【答案】22--+(232)x x91.分解因式:32---x x x252【答案】(2)(21)(1)x x x-++92.分解因式:65432++++++234321x x x x x x【答案】222++x x(1)(1)93.分解因式:432++--x x x x65332【答案】2+-++x x x x(21)(32)(1)94.分解因式:3223x x y xy y-+-92624【答案】(2)(3)(4)---x y x y x y95.分解因式:32x a b c x ab bc ca x abc-+++++-()()【答案】()()().---x a x b x c96.用待定系数法分解因式:51x x++【答案】5232x x x x x x++=++-+1(1)(1)97.用待定系数法分解:541++x x【答案】5423++=++-+1(1)(1)x x x x x x98.分解因式:333()()()-+-+-a b c b c a c a b【答案】333-+-+-()()()()()()()a b c b c a c a b=-++---a b c a b b c c a99.分解因式:222-+-+-x y z y z x z x y()()()【答案】()()()----x y y z z x100.分解因式:222222-+-+-xy x y yz y z zx z x()()()【答案】()()()()-++---x y z x y y z z x。

因式分解练习题(含答案)

因式分解练习题(含答案)

因式分解练习题(含答案)1.下列变形中,是因式分解的是()A。

x(x-1) = x^2 - xB。

x^2 - x + 1 = x(x-1) + 1C。

x^2 - x = x(x-1)D。

2a(b+c) = 2ab + 2ac2.多项式12ab3c + 8a3b中各项的公因式是() A。

4ab2B。

4abcC。

2ab2D。

4ab3.把多项式m2 - 9m分解因式,结果正确的是() A。

m(m-9)B。

(m+3)(m-3)C。

m(m+3)(m-3)D。

(m-3)^24.分解因式:1) 5a - 10ab = 5a(1-2b)2) x^4 + x^3 + x^2 = x^2(x^2 + x + 1)3) m(a-3) + 2(3-a) = -m(a-3) + 2(a-3) = (a-3)(2-m)5.计算: - 2018×2017 = - xxxxxxx = xxxxxxxx6.分解因式:1) 2mx - 6my = 2m(x-3y)2) 3x(x+y) - (x+y)^2 = (x+y)(2x-y)7.先分解因式,再求值:a2b + ab2,其中a+b=3,ab=2. a^2b + ab^2 = ab(a+b) = 2(3) = 614.3.2 公式法第1课时运用平方差公式分解因式1.多项式x^2 - 4分解因式的结果是()A。

(x+2)(x-2)B。

(x-2)^2C。

(x+4)(x-4)D。

x(x-4)2.下列多项式中能用平方差公式分解因式的是()A。

a^2 + b^2B。

5m^2 - 20mnC。

x^2 + y^2D。

x^2 - 93.分解因式3x^3 - 12x,结果正确的是()A。

3x(x-2)^2B。

3x(x+2)^2C。

3x(x^2 - 4)D。

3x(x-2)(x+2)4.因式分解:1) 9-b^2 = (3-b)(3+b)2) m^2 - 4n^2 = (m-2n)(m+2n)5.利用因式分解计算:752 - 252 = (7+5)(7-5)(2-5) = -1506.若a+b=1,a-b=2007,则a^2 - b^2 = (a+b)(a-b) = -20067.因式分解:1) 4x^2 - 9y^2 = (2x-3y)(2x+3y)2) -16 + 9a^2 = (3a-4)(3a+4)3) 9x^2 - (x+2y)^2 = (3x-x-2y)(3x+x+2y) = (2x-2y)(4x+2y)4) 5m^2a^4 - 5m^2b^4 = 5m^2(a^4-b^4) = 5m^2(a^2-b^2)(a^2+b^2) = 5m^2(a-b)(a+b)(a^2+b^2)3.若代数式x2+kx+49能分解成(x-7)2的形式,则实数k的值为多少?4.若x2+kx+9是完全平方式,则实数k=多少?5.因式分解:1) x2-6x+9=什么?2) -2a2+4a-2=什么?6.因式分解:1) 4m2-2m+1=什么?2) 2a3-4a2b+2ab2=什么?3) (x+y)2-4(x+y)+4=什么?7.先分解因式,再求值:x3y+2x2y2+xy3,其中x=1,y=2. 因式分解14.3.1 提公因式法1.C2.D3.A4.(1) 5(1-2b)(3+b)(3-b)2) (m+2n)(m-2n)5.50006.(1) 2m(x-3y)2) (x+y)(2x-y)7.(1) (2x+3y)(2x-3y)2) (3a-4)(3a+4)3) 4(2x+y)(x-y)4) 5m2(a-b)(a+b)(a2+b2)14.3.2 公式法第1课时运用平方差公式分解因式1.A2.D3.D4.(1) (3+b)(3-b)2) (m+2n)(m-2n)5.-144.±67.(1) (2x+3y)(2x-3y)2) (3a-4)(3a+4)3) (x+y-2)26.(1) 原式=2m/(2)2) 原式=2a(a-b)2 7.原式=18。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册因式分解测试题(满分:120分,时间:60分钟)
题号一、填
空题
二、计
算题
三、简
答题
四、选
择题


得分
一、填空题
(每空2分,共24分)
1、已知xy>0,且x2-2xy-3y2=0,则=.
2、分解因式= ,。

3、分解因式:a3-a=.
4、阅读下列文字与例题
将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法。

例如:(1),
(2)。

试用上述方法分解因式。

5、分解因式=_______________.
6、计算;分解因式:= ;
7、计算;分解因式:= ;
8、分解因式: = .
9、分解因式:16x2﹣4y2= .
10、因式分解:2m2n﹣8mn+8n= .
11、设有n个数x1,x2,…x n,其中每个数都可能取0,1,-2这三个数中的一个,且满足下列等式:x1+x2+…+x n
=0,x12+x22+…+x n2=12,则x13+x23+…+x n3的值是.
二、计算题
(12、13、14题各3分,15题5分,共14分)
12、因式分解
13、因式分解
14、分解因式:
评卷人得分
评卷人得分
15、因式分解
三、简答题16题10分,17、18、19、20题各15分,共70分)
16、先因式分解在求值
17、在学习因式分解时,我们学习了“提公因式法”和“公式法”,事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解时,显然既无法用提公因式法,也无法用公式法,怎么办呢这时,我们可以采用下面的办法:
--
--
--

--
--
--



=;
=.
解决下列问题:
(1)填空:在上述材料中,运用了(选填一项:“分类、转化、数形结合、方程”)的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法;
(2)显然所给材料中因式分解并未结束,请在横线上继续完成因式分解过程;
(3)请用上述方法因式分解.
18、阅读下列材料解决问题:
将下图一个正方形和三个长方形拼成一个大长方形,观察这四个图形的面积与拼成的大长方形的面积之间的关系.
∵用间接法表示大长方形
的面积为:x2+px+qx+pq,
用直接法表示面积为:
(x+p)(x+q)
∴x2+px+qx+pq=(x+p)(x+q)
∴我们得到了可以进行因式分解的公式:x2+(p+q )x+pq=(x+p)(x+q)
评卷人得分
(1)运用公式将下列多项式分解因式:
①x2+6x+8 ②y2+7y-18
(2)如果二次三项式“a2+□ab+□b2”中的“□”只能填入有理数2、3、4(两个“□”内数字可以相同),并且填入后的二次三项式能进行因式分解,请你写出所有的二次三项式及因式分解的结果.
19、若x+y=3,且(x+2)(y+2)=12.
(1)求xy的值; (2)求x2+3xy+y2的值.
20、我们对多项式进行因式分解时,可以用待定系数法求解.例如,我们可以先设
,显然这是一个恒等式.
根据多项式乘法将等式右边展开有:
所以,根据等式两边对应项的系数相等,可得:,解得或者.所以
.当然这也说明多项式含有因式:和.
像上面这种通过利用恒等式的性质来求未知数的方法叫做待定系数法.
利用上述材料及示例解决以下问题.
(1)已知关于的多项式有一个因式为,求的值;
(2)已知关于的多项式有一个因式为,求的值.
四、选择题
(每空分,共分)
21、因式分解x2-9y2的正确结果是()
A.(x+9y)(x-9y) B.(x+3y)(x-3y) C.(x-3y)2 D.(x-9y)2
22、下列等式由左边到右边的变形中,属于因式分解的是()A.(a+1)(a-1)=a2-1 B.a2-6a+9=(a-3) 2
C.x2+2x+1=x(x+2)+1 D.-18x4y3=-6x2y2•3x2y
23、下列各式从左到右的变形,是因式分解的是:( )
A. B.
C. D.
24、下列从左边到右边的变形,是因式分解的是
A.(a-1)(a-2)=a2-3a+2 B.a2-3a+2=(a-1)(a-2)
C.(a-1)2+(a-1)=a2-a D.a2-3a+2=(a-1)2-(a-1)
参考答案
评卷人得分
一、填空题
1、3;
2、3ab(2a-b) a(a+b)(a-b)
3、a(a+1)(a-1)
4、。

【考点】分组分解法因式分解。

【分析】。

5、a(b-1)2.
【解析】原式=a(b2-2b+1)=a(b-1)2.
6、.
【解析】有公因式的先提取公因式,然后进行分解因式,.7、.
【解析】有公因式的先提取公因式,然后进行分解因式,.8、.
【解析】.9、4(2x+y)(2x﹣y).
考点:提公因式法与公式法的综合运用.
专题:计算题.
分析:原式提取4后,利用平方差公式分解即可.
解答:解:原式=4(2x+y)(2x﹣y).
故答案为:4(2x+y)(2x﹣y)
10、2n(m﹣2)2.
考点:提公因式法与公式法的综合运用.
分析:先提取公因式2n,再利用完全平方公式进行二次分解因式.解答:解:2m2n﹣8mn+8n
=2n(m2﹣4m+4)
=2n(m﹣2)2.
故答案为:2n(m﹣2)2.
11、-12
二、计算题
12、解:原式=
=
13、解:原式=
=
14、
15、(x+y)(x-y)……………………4分
三、简答题
16、
17、(1)转化(2分);(2)==(2分);
(6分).
18、(1) (x+2)(x+4) (y-2)(y+9) …………………6分
(2) a2+3ab+2b2=(a+b)(a+2b)
a2+4ab+3b2 =(a+b)(a+3b)
a2+4ab+4b2= (a+2b)2…………………12分
19、(1)2; (2)11.
20、
----
----
----
----
----
----
----
----
-
-
--
---1
分;
----
----
----
---------------------------2分;---------------------------------------3分;---------------------------------------5分;
---------6分;
---------7分;---------8
分;
----
----
10
分.
四、选择题
21、B
22、B
23、C
24、B。

相关文档
最新文档