高考数学考前基础练习(13)
(完整版)高考数学基础练习题
1. 若集合}12,52,2{2a a a A +-=,且A ∈-3,则=a .2. 设集合}3,1,1{-=A ,}4,2{2++=a a B ,}3{=B A I ,则实数=a .3. 设全集R U =,}0|{>=x x A ,}1|{>=x x B ,则=)(B C A U I . 4. 命题“若b a ,都是偶数,则b a +是偶数”的逆否命题是 .5. “2>x ”是“211<x ”的 条件. 6. 已知命题43:;33:>≥q p ,则q p ∧为 (真/假),q p ∨为 (真/假).7. 若命题012,:2>+∈∀x R x p ,则该命题的否定p ⌝为 .8. 已知集合}20|{},40|{≤≤=≤≤=y y Q x x P ,下列从P 到Q 的各种关系f 不是函数的是( ).A x y x f 21:=→ .B x y x f 31:=→ .C x y x f 32:=→ .D x y x f =→: 9. 下列各组函数中表示同一函数是( ).A x x f =)(与 2)()(x x g = .B x )(=x f 与 33)(x x g =.C ||)(x x x f =与 ⎪⎩⎪⎨⎧<->=)0()0()(22x x x x x g .D 11)(2--=x x x f 与 )1(1)(≠+=t t t g 10. 已知函数x x f 32)(-=,则:=)0(f ,=)32(f . =)(m f .=-)12(a f .11. 设函数⎪⎪⎩⎪⎪⎨⎧<≥-=)0(1)0(211)(x xx x x f ,若a a f =)(,则实数=a . 12. 函数)1lg()(-=x x f 的定义域是 .13. 函数211)(xx f +=)(R x ∈的值域是 . 14. 下列函数)(x f 中,满足“对任意),0(,21+∞∈x x ,当时21x x <,都有)()(21x f x f >”的是( ).A xx f 1)(= .B 2)1()(-=x x f .C x e x f =)( .D )1ln()(+=x x f 15. 若函数2)1(2)(2+-+=x a x x f 在区间(]4,∞-上是减函数,那么实数a 的取值范围是 .16. 函数11)(-=x x f 在[]32,上的最小值为 ,最大值为 . 17. 函数x x x f -+=33)(与x x x g --=33)(的定义域均为R ,则)(x f 为 (奇/偶)函数,)(x g 为 (奇/偶)函数.18. 已知bx ax x f +=2)(是定义在[]a a 21,-上的偶函数,那么=+b a . 19. 已知函数)(x f 是定义在R 上的偶函数,当0≥x 时,)1()(x x x f +=,则0<x 时,=)(x f .20. 为了得到函数x y )31(3⨯=的图象,可以把函数x y )31(=的图象向 平移 个单位长度.21. 函数x a a a y )33(2+-=是指数函数,则有=a .22. 化简)0,0(16448<<y x y x 的结果为 .23. 函数)1,0(20182018≠>+=+a a a y x 的图象恒过定点 .24. =⋅⋅9log 22log 25log 532 .25. =⋅+2lg 5log 2lg 22 .26. 若对数式)5(log )2(a a --有意义,则实数a 的取值范围是 .27. 已知点)33,33(在幂函数的图象上,则=)(x f . 28. 函数54)(2+-=mx x x f 在区间[)+∞-,2上是增函数,则)1(f 的取值范围是 .29. 若二次函数满足1)0(,2)()1(==-+f x x f x f ,则=)(x f ,)(x f 的最小值为 .30. 函数x x f x 32)(+=的零点所在的一个区间是( ).A )1,2(-- .B )0,1(- .C )1,0( .D )2,1(31. 函数xx x f 4)(-=的零点个数是 .32. 函数a ax x f 213)(-+=在区间)1,1(-上存在零点,则实数a 的取值范围是 .33. 函数)1()1()(2-+=x x x f 在1=x 处的导数等于 .34. 曲线123+-=x x y 在点)0,1(处的切线方程为 .35. 若x x x x f sin cos )(-=,则=)2('πf . 36. 若曲线4)(x x f =的一条切线l 与直线084=-+y x 垂直,则l 的方程为 .37. 函数x e x x f )3()(-=的单调递增区间是 .38. x x x x f 33)(23+-=的极值点个数是 .39. 函数2)(3-+=ax x x f 在区间),1(+∞上是增函数,则实数a 的取值范围是 .40. 已知函数812)(3+-=x x x f 在区间[]3,3-上的最大值与最小值分别为m M ,,则=-m M .41. 函数[]1)2(33)(23++++=x a ax x x f 既有极大值又有极小值,则的取值范围是 .42. 终边与坐标轴重合的角α的集合为 .43. 已知角α的终边过点)2,1(-,则=αcos .44. 弧长为π3,圆心角为ο135的扇形半径为 ,面积为 .45. =ο300cos . 46. 已知31)2sin(=+πα,)0,2(πα-∈,则=αtan . 47. 若2tan =α,则=+-ααααcos sin cos 3sin . 48. 在ABC ∆中,31cos =A ,则=+)sin(C B . 49. 函数x x x f cos sin 2)(=是最小正周期为 的 (奇/偶)函数.50. 函数)4tan(x y -=π的定义域是 .51. 函数⎥⎦⎤ ⎝⎛∈+=3,0),3cos(ππx x y 的值域是 . 52. 函数)62sin(2π-=x y 的最小正周期为 ,对称轴为 .。
新高考数学复习专题突破练习题附解析(共13专题)
突破1.1 空间几何体的结构【基础巩固】1.如图,最左边的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是()A.①②B.②③C.③④D.①⑤【答案】B【解析】当截面过旋转轴时,圆锥的轴截面为等腰三角形,此时①符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件.故截面图形可能是①⑤,选D.2.如图,一竖立在水平地面上的圆锥形物体的母线长为,一只小虫从圆锥的底面圆上的点出发,绕圆锥表面爬行一周后回到点处,若该小虫爬行的最短路程为,则圆锥底面圆的半径等于()A.B.C.D.【答案】C【方法点晴】本题主要考查了圆锥的有关计算及圆锥的侧面展开的应用,着重考查了求立体图形中两点之间的曲线段的最短线路长,解答此类问题一般应把几何体的侧面展开,展开在一个平面内,构造直角三角形,从而求解两点间的线段的长度,用到的知识为:圆锥的弧长等于底面周长,本题的解答中圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥的底面周长,扇形的半径等于圆锥的母线长,体现了“化曲面为平面”的思想方法.3.如图所示的几何体是由下列哪个平面图形绕虚线旋转一周得到的()A.B.C.D.【答案】A【解析】由题意知,该几何体是圆锥与圆台的组合体,所以该组合体是由直角三角形和直角梯形的组成的平面图形绕虚线旋转一周所得.故选A.4.下列关于棱柱的说法中,错误的是()A.三棱柱的底面为三角形B.一个棱柱至少有五个面C.若棱柱的底面边长相等,则它的各个侧面全等D.五棱柱有5条侧棱、5个侧面,侧面为平行四边形【答案】C【解析】n棱柱具体特征:底面为n边形,共3n条棱,(n+2)个面,其中n个侧面,2个底面,侧面为平行四边形,侧棱长相等.因为n棱柱底面为n边形,故A对;因为底面最少为三角形,故3个侧面,2个底面,共5个面,故B对;根据n棱柱特征,D对;而底面边长与侧棱长度不一定相等,故各个侧面不全等,故C错误.故选C.5.下列说法正确的是()A.棱柱的底面一定是平行四边形B.底面是矩形的平行六面体是长方体C.棱柱被平面分成的两部分可以都是棱柱D.棱锥的底面一定是三角形【答案】C【解析】对于选项A,棱柱的底面为任意的四边形即可,故错误.对于选项B,底面是矩形的直平行六面体才是长方体,故错误.对于选项D,三棱锥的底面一定是三角形,故错误.故选C.6.下列几何体不是简单旋转体()A.圆柱B.圆台C.球D.棱柱【答案】D【解析】在A中,圆柱是矩形绕着它的一条边旋转而成的,故圆柱是简单旋转体;在B中,圆台是直角梯形绕直角腰所在的直线旋转而成的,故圆台是简单旋转体;在C中,球是半圆绕着直径旋转而成的,故球是简单旋转体;在D中,棱柱不是旋转体.故选D.7.下列命题中,错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形【答案】B【解析】对于A,圆柱的轴截面是过母线的截面中面积最大的一个,为2r l,A正确;对于B,用一个平行于底面的平面截棱锥,底面与截面之间的部分组成的几何体叫棱台,∴B错误;对于C,圆台的所有平行于底面的截面都是圆,C正确;对于D,圆锥所有的轴截面都是全等的等腰三角形,D正确.故选B.8.如图所示的几何体是由下面哪一个平面图形旋转而形成的()A.B.C.D.【答案】A【解析】∵几何体是一个圆柱、两个圆台和一个圆锥的组合体,∴它是由A选项中的平面图形旋转而成的.故选A.9.下列叙述中正确的是()A.圆柱是将矩形旋转一周所得到的几何体B.棱柱中两个相互平行的平面一定是棱柱的底面C.过圆锥侧面上的一点有无数条母线D.球面上四个不同的点有可能在同一平面内【答案】D【解析】在A中,圆柱是将矩形以矩形的一条对角线为轴,旋转所得的就不是圆柱,故A错;在B中,棱柱的定义是,有两个面互相平行,其余各面都是四边形,相邻的公共边互相平行,有这些面围成的几何体是棱柱,棱柱中两个相互平行的平面不一定是棱柱的底面,故B错误;在C中,两点确定一条直线,圆锥过圆锥侧面上的一点只有一条母线,故C错误;在D中,球面上四个不同的点有可能在同一平面内,故D正确.故选D.10.如图所示,是由等腰梯形、矩形、半圆、圆、倒三角形对接形成的平面轴对称图形,若将它绕轴l旋转180°后形成一个组合体,下面说法不正确的是()A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点【答案】A【解题必备】考查简单组合体的构成,就必须要明白该组合体是由简单几何体拼接、截去还是挖去一部分而成的,因此,要仔细观察简单组合体的组成,并充分结合柱、锥、台、球的几何结构特征进行识别.【能力提升】11.正方形绕其一条对角线所在直线旋转一周,所得几何体是()A.圆柱B.圆锥C.圆台D.两个共底的圆锥【答案】D【思路点拨】本题考查旋转体的结构特征,熟练掌握旋转体的定义及旋转体的结构特征是解答本题的关键.12.有下列三组定义:①有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱;②用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台;③有一个面是多边形,其余各面都是三角形的几何体是棱锥.其中正确定义的个数为()A.0 B.1C.2 D.3【答案】B【思路点拨】从结构特征出发:棱台上、下两个底面平行且相似;棱锥侧面都是三角形且有一个公共顶点;棱柱上、下两个底面平行且侧面都是平行四边形,从而可快速得解.13.如图所示,在长方体中,则在长方体表面上连接两点的所有曲线长度的最小值为__________.14.一个几何体的三视图如图所示,则组成该几何体的简单几何体为().A.圆柱与圆台B.圆柱与四棱台C.四棱柱与四棱台D.四棱柱与圆台【解析】由三视图可得该几何体是一个组合体,由几何体上部的三视图均为矩形可知上部是四棱柱,由下部的三视图中有两个梯形可得下部是四棱台,故组成该几何体的简单几何体为四棱柱与四棱台,故选C . 15.将正方体(如图①)截去两个三棱锥,得到如图②所示的几何体,则该几何体的侧(左)视图为( ).【答案】B【解析】还原正方体后,将D 1,D ,A 三点分别向正方体右侧面作垂线.D 1A 的射影为C 1B ,且为实线,B 1C 被遮挡应为虚线.【高考真题】16.(2019全国II 文16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【解析】:该半正多面体共有888226+++=个面,设其棱长为x ,则221x x x ++=,解得21x =. 17.(2017年全国Ⅰ卷)某多面体的三视图如图所示,其中正(主)视图和侧(左)视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ).A.10B.12C.14D.16【解析】观察三视图可知该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边边长为2的等腰直角三角形,高为2,如图所示.因此该多面体的各个面中有两个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这些梯形的面积之和为2××(2+4)×2=12.故选B.【答案】B18.(2017年全国Ⅱ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为().A.90πB.63πC.42πD.36π【解析】由几何体的三视图可知,该几何体是一个圆柱被一个平面截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A处水平分成上下两部分.由图可知,该几何体的体积等于上部分圆柱体积的加上下部分圆柱的体积,所以该几何体的体积V=π×32×4+π×32×6×=63π.故选B.【答案】B20.(2015年全国Ⅰ卷)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正(主)视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=().A.1B.2C.4D.8【解析】如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=·4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,∴(5π+4)r2=16+20π,∴r2=4,r=2,故选B.【答案】B突破1.2 空间几何体的三视图与直观图【基础巩固】1.(2018河北衡水压轴卷一)如图,在长方体1111ABCD A B C D -中,点E 、F 分别为11B C 、11C D 的中点,则四棱锥11A B EFD -的正视图与侧视图分别为 ( )A.②,③B.④,②C.②,①D.②,④ 【答案】.D【解析】由三视图的投影规则知,几何体在侧面11DCC D 上的投影为一直角三角形(直角在左边),AF 的投影为一虚线,1AB 的投影为一实线,故正视图为②;几何体在侧面11BCC B 上的投影为一直角三角形(直角在右边),AE 的投影为虚线,1AD 的投影为实线,故侧视图为④.故选D.2.若某三棱柱截去一个三棱锥后所剩几何体的三视图如图所示,则所截去的三棱锥的外接球的表面积等于 ( )A .34πB .32πC .17πD .172π 【答案】A【解析】由三视图知几何体是底面为边长为3,4,5的三角形,高为5的三棱柱被平面截得的,如图所示:截去的三棱锥是长方体的一个角,AB ⊥AD ,AD ⊥AC ,AC ⊥AB ,所以将三棱锥补成长方体,其外接球相同,外接球的直径为长方体的体对角线,半径为:222113343422++=,外接球的表面积为:21434342ππ⎛⎫⨯= ⎪⎝⎭故选A .3.某几何体的正视图和侧视图如图1所示,它的俯视图的直观图是''''A B C D ,如图2所示.其中24A'B'A'D'==,则该几何体的表面积为( )A .1612+πB .168+πC .1610+πD .8π【答案】A【解析】由俯视图的直观图得俯视图为边长为4的正方形,所以几何体为底面为半圆(半径为2),高为4的半圆柱,其表面积为214π244+2π21612π2⨯⨯+⨯⨯⨯=+,选A. 4.(2020·四川省成都市树德中学高三二诊(理))2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )A .22B .32C .212+ D .312+ 【答案】D【解析】设四个支点所在球的小圆的圆心为O ',球心为O ,由题意,球的体积为43π,即24433R ππ=可得球O 的半径为1,又由边长为2的正方形硬纸,可得圆O '的半径为12,利用球的性质可得222131()22O O '=-=,又由O '到底面的距离即为侧面三角形的高,其中高为12,所以球心到底面的距离为3131222++=。
高三数学基础测试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 已知函数$f(x) = 2x^2 - 3x + 1$,则该函数的对称轴为:A. $x = \frac{3}{4}$B. $x = 1$C. $x = \frac{1}{2}$D. $x = -\frac{3}{4}$2. 在直角坐标系中,点A(2, 3)关于直线$y = x$的对称点为:A. (2, 3)B. (3, 2)C. (3, -2)D. (-2, 3)3. 若$a > 0$,则下列不等式中正确的是:A. $a^2 > a$B. $a^3 > a$C. $a^4 > a$D. $a^5 > a$4. 已知向量$\vec{a} = (2, 3)$,向量$\vec{b} = (4, 6)$,则$\vec{a}$与$\vec{b}$的夹角余弦值为:A. $\frac{1}{2}$B. $\frac{1}{3}$C. $\frac{2}{3}$D.$\frac{3}{2}$5. 下列函数中,是奇函数的是:A. $f(x) = x^2 + 1$B. $f(x) = x^3 - x$C. $f(x) = \sqrt{x^2 +1}$ D. $f(x) = \frac{1}{x}$6. 已知数列$\{a_n\}$的前$n$项和为$S_n$,且$S_n = 3^n - 1$,则$a_1$的值为:A. 2B. 3C. 4D. 57. 若等差数列$\{a_n\}$的首项为$a_1$,公差为$d$,则$a_1 + a_2 + a_3 +\ldots + a_{10}$的值为:A. $10a_1 + 45d$B. $10a_1 + 50d$C. $10a_1 + 55d$D. $10a_1 +60d$8. 若复数$z$满足$|z - 1| = |z + 1|$,则$z$的取值范围是:A. $x \leq 0$B. $x \geq 0$C. $y \leq 0$D. $y \geq 0$9. 已知函数$f(x) = x^3 - 3x^2 + 4x - 1$,则$f(x)$的极小值为:A. -1B. 0C. 1D. 210. 若等比数列$\{a_n\}$的首项为$a_1$,公比为$q$,则$a_1 + a_2 + a_3 + \ldots + a_{10}$的值为:A. $a_1 \frac{1 - q^{10}}{1 - q}$B. $a_1 \frac{1 - q^{10}}{q - 1}$C. $a_1 \frac{q^{10} - 1}{q - 1}$D. $a_1 \frac{q^{10} - 1}{1 - q}$二、填空题(每题5分,共50分)1. 若函数$f(x) = ax^2 + bx + c$的图像开口向上,且顶点坐标为$(1, 2)$,则$a$,$b$,$c$的关系为______。
压轴题13 数学文化与新情景问题(解析版)-2023年高考数学压轴题专项训练(江苏专用)
压轴题13数学文化与新情景问题数学文化与新情景问题是高考重点考查的内容之一,命题形式多种多样,主要以选择题、填空题为主,难度较难.考向一:融合传统文化和数学史的数学阅读题考向二:融合其他学科知识的数学阅读题考向三:融合社会热点和建设成就的数学阅读题考向四:融合生活实际的数学阅读题数学文化与新情景问题试题一般从中外优秀传统文化和生产生活实际中挖掘素材,将数学文化、生活情境与高中数学知识有机结合.其解答过程大致需要实现两个转化:先是将实际问题转化为数学问题,然后再将数学问题转化为问题结果.具体地说,就是先通过阅读情境、审读题目,在明确对象、分析过程(或状态)的基础上过滤情境,并构造出符合题意的数学模型,从而使“实际问题”转化为“数学问题”;接着选用恰当的数学方法求解作答,得出“问题结果”,并将其纳入原问题的情境中,予以“检验讨论”,对解题过程作出评价.其中过滤情境、构建模型的环节至关重要,它既是使复杂的实际问题转化为相应的数学问题的前提,也是正确选用数学方法、求解数学问题的依据,起着承上启下的关键作用.一、单选题1.(2023·北京·高三专题练习)众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”.整个图形是一个圆形224x y +=.其中黑色阴影区域在y 轴右侧部分的边界为一个半圆,给出以下命题:①在太极图中随机取一点,此点取自黑色阴影部分的概率是12;②当32a =-时,直线2y ax a =+与白色部分有公共点;③黑色阴影部分(包括黑白交界处)中一点(),x y ,则x y +1;④若点()0,1P ,MN 为圆224x y +=过点P 的直径,线段AB 是圆224x y +=所有过点P 的弦中最短的弦,则()AM BN AB -⋅ 的值为12.其中所有正确结论的序号是()A .①③B .③④C .①③④D .①②④【答案】C【解析】对于①,设黑色部分区域的面积为1S ,整个圆的面积为S ,由对称性可知,112S S =,所以,在太极图中随机取一点,此点取自黑色阴影部分的概率为112S P S ==,故①正确;对于②,当32a =-时,直线的方程为332y x =--,即3260x y ++=,圆心()0,0到直线3260x y ++=613213=<,下方白色小圆的方程为()2211x y ++=,圆心为()0,1-,半径为1,圆心()0,1-到直线3260x y ++=的距离为1d =,如下图所示:由图可知,直线332y x =--与与白色部分无公共点,故②错误;对于③,黑色阴影部分小圆的方程为()2211x y +-=,设z x y =+,如下图所示:当直线z x y =+与圆()2211x y +-=相切时,z 取得最大值,且圆()2211x y +-=的圆心坐标为()0,1,半径为11=,解得1z =由图可知,0z >,故max 1z =,故③正确;对于④,由于MN 是圆224x y +=中过点()0,1P 的直径,则M 、N 为圆224x y +=与y 轴的两个交点,可设()0,2M 、()0,2N -,当AB y ⊥轴时,AB 取最小值,则直线AB 的方程为1y =,可设点()3,1A -、)3,1B,所以,)3,1AM = ,()3,3BN =-,()3,0AB = ,()3,4AM BN -= ,所以,()12AM BN AB -⋅=,故④正确.故选:C.2.(2023·全国·高三专题练习)箕舌线因意大利著名的女数学家玛丽亚·阿涅西的深入研究而闻名于世.如图所示,过原点的动直线交定圆()2200x y ay a +-=>于点P ,交直线y a =于点Q ,过P 和Q 分别作x 轴和y 轴的平行线交于点M ,则点M 的轨迹叫做箕舌线.记箕舌线函数为()f x ,设AOQ θ∠=,下列说法正确的是()A .()f x 是奇函数B .点M 的横坐标为tan M a x θ=C .点M 的纵坐标为2cos M y a θ=D .()f x 的值域是(],1-∞【答案】C【解析】连接AP ,则AP OP ⊥,圆()2200x y ay a +-=>的标准方程为22224a a x y ⎛⎫+-= ⎪⎝⎭,该圆的直径为a,设点()0,Q x a ,当点Q 不与点A 重合时,直线OQ 的方程为0ay x x =,联立02200a y x x x y ay y ⎧=⎪⎪⎪+-=⎨⎪≠⎪⎪⎩,解得3220a y x a =+,当点Q 与点A 重合时,点A 的坐标也满足方程322a y x a =+,所以,()322a f x x a=+,对任意的x ∈R ,220x a +>,即函数()f x 的定义域为R ,()()()332222a a f x f x x a x a -===+-+ ,故函数()f x 为偶函数,A 错;当点Q 在第一象限时,Q M x x =,因为tan Q x aθ=,此时tan Q M x x a θ==,B 错;当点Q 不与点A 重合时,0M P y y =>,因为cos OP a θ=,则2cos cos M P y y OP a θθ===,当点Q 与点A 重合时,点P 也与点A 重合,此时0θ=,点P 的纵坐标也满足2cos P y a θ=,综上所述,点M 的纵坐标为2cos M y a θ=,C 对;对于D 选项,222x a a +≥ ,所以,()(]3220,a f x a x a =∈+,D 错.故选:C.3.(2023·全国·高三专题练习)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,为了纪念数学家高斯,人们把函数[],y x x =∈R 称为高斯函数,其中[]x 表示不超过x 的最大整数.设{}[]x x x =-,则函数(){}21f x x x x =--的所有零点之和为()A .1-B .0C .1D .2【答案】A【解析】由题意知,当0x =时,()1f x =-,所以0不是函数()f x 的零点,当0x ≠时,(){}21f x x x x =--0=可得,{}121x x=+,令{}[]121222,1y x x x y x==-=+,作出函数{}[]121222,1y x x x y x==-=+的图象如图所示:由图象可知,除点()1,0-外,函数{}[]121222,1y x x x y x==-=+图象其余交点关于(0,1)中心对称,∴横坐标互为相反数,即1230x x x +++⋅⋅⋅=,由函数零点的定义知,函数(){}21f x x x x =--的所有零点之和为1231101x x x -++++⋅⋅⋅=-+=-.故选:A4.(2023·全国·高三专题练习)目前,我国的水环境问题已经到了刻不容缓的地步,河道水质在线监测COD 传感器针对水源污染等无组织污染源的在线监控系统,进行24小时在线数据采集和上传通讯,并具有实时报警功能及统计分析报告,对保护环境有很大帮助.该传感器在水中逆流行进时,所消耗的能量为2E kv t =,其中v 为传感器在静水中行进的速度(单位:km /h ),t 为行进的时间(单位:h ),k 为常数,如果待测量的河道的水流速度为3km /h ,则该传感器在水中逆流行进10km 消耗的能量的最小值为()A .60kB .120kC .180kD .240k【答案】B【解析】由题意,该传感器在水中逆流行进10km 所用的时间10(3)3t v v =>-,则所消耗的能量210(3)3E kv v v =⋅>-.方法一:2222210[(3)3][(3)2(3)33]910101010[(3)6]33333v v v v E kv k k k k v v v v v v -+-+⋅-⋅+=⋅=⋅=⋅=⋅=⋅-++≥----106]1012120k k k ⋅=⋅=,当且仅当933v v -=-,即6v =时等号成立,此时2103E kv v =⋅-取得最小值120k .方法二:221010(3)33v E kv k v v v =⋅=⋅>--,求导得22610(3)v v E k v -'=⋅-,令226100(3)v v E k v -'=⋅=-,得6v =,当36v <<时,0E '<,2103E kv v =⋅-单调递减;当6v >时,0E '>,2103E kv v =⋅-单调递增,所以当6v =时,2103E kv v =⋅-取得最小值,为210612063k k ⨯⨯=-.故选:B.5.(2023·江西·校联考二模)2023年是农历癸卯兔年,在中国传统文化中,兔被视为一种祥瑞之物,是活力和幸福的象征,寓意福寿安康.故宫博物院就收藏着这样一副蕴含“吉祥团圆”美好愿景的名画——《梧桐双兔图》,该绢本设色画纵约176cm ,横约95cm ,其挂在墙壁上的最低点B 离地面194cm.小南身高160cm (头顶距眼睛的距离为10cm ),为使观赏视角θ最大,小南离墙距离S 应为()A .2cmB .76cmC .94cmD .445cm【答案】D【解析】由题意可得θ为锐角,故要使θ最大,只需tan θ最大,设小南眼睛所在的位置点为点D ,过点D 做直线AB 的垂线,垂足为O ,如图,则依题意可得()1941601044=--=BC (cm ),=CD S (cm ),0S >,设,αβ∠=∠=ADC BDC ,则θαβ=-,且17644220tan α++===AB BC CD S S,44tan β==BC CD S,故()222044tan tan 176176tan tan 2204496801tan tan 96801αβθαβαβ--=-===++++S S S S S S S S1762596802≤SS9680=S S即445=S 时等号成立,故使观赏视角θ最大,小南离墙距离S 应为445故选:D.6.(2023·全国·高三专题练习)古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线的共性,并给出了圆锥曲线的统一定义,只可惜对这一定义欧几里得没有给出证明.经过了500年,到了3世纪,希腊数学家帕普斯在他的著作《数学汇篇》中,完善了欧几里得关于圆锥曲线的统一定义,并对这一定义进行了证明,他指出,到定点的距离与到定直线的距离的比是常数e 的点的轨迹叫做圆锥曲线:当01e <<时,轨迹为椭圆;当1e =时,轨迹为抛物线;当1e >时,轨迹为双曲线.现有方程()()2224431m x y y x y +-+=-+表示的曲线是双曲线,则m 的取值范围为()A .()10,+∞B .()0,10C .()0,5D .()5,+∞【答案】B【解析】由()()2224431m x y y x y +-+=-+,0m >,得222[(2)](31)m x y x y +-=-+,22(2)31m x y x y +-=-+,222222(2)13103113x y x y m m +-+==-++,可得动点(,)P x y 到这点(0,2)和定直线310x y -+=10m101m>,解得010m <<,故选:B7.(2023·全国·高三专题练习)《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用.直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“勾2+股2=弦2”,设直线l 交抛物线214y x =于A ,B 两点,若OA ,OB 恰好是Rt OAB V 的“勾”“股”(O 为坐标原点),则此直线l 恒过定点()A .1,04⎛⎫ ⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .()0,2D .()0,4【答案】D【解析】设直线AB 的方程为y kx b =+,()11,A x y ,()22,B x y ,由24y kx b x y=+⎧⎨=⎩得2440x kx b --=,由根与系数的关系可得:124x x k +=,124x x b =-,若OA ,OB 恰好是Rt OAB V 的“勾”“股”(O 为坐标原点),可得222OA OB AB +=,所以OA OB ⊥,即OA OB ⊥ ,所以12120OA OB x x y y ⋅=+= ,()2221212*********y y x x x x =⨯=,所以()()2212121212114401616OA OB x x y y x x x x b b ⋅=+=+=-+⨯-=,即240b b -=,解得4b =或0b =(舍)所以直线AB 的方程为4y kx =+,恒过点()0,4,故选:D8.(2023·河南郑州·统考二模)世界数学三大猜想:“费马猜想”、“四色猜想”、“哥德巴赫猜想”,其中“四色猜想”和“费马猜想”已经分别在1976年和1994年荣升为“四色定理”和“费马大定理”.281年过去了,哥德巴赫猜想仍未解决,目前最好的成果“1+2”由我国数学家陈景润在1966年取得.哥德巴赫猜想描述为:任何不小于4的偶数,都可以写成两个质数之和.在不超过17的质数中,随机选取两个不同的数,其和为奇数的概率为()A .14B .27C .13D .25【答案】B【解析】不超过17的质数有:2,3,5,7,11,13,17,共7个,随机选取两个不同的数,基本事件总数27C 21n ==,其和为奇数包含的基本事件有:(2,3),(2,5),(2,7),(2,11),(2,13),(2,17),共6个,所以62217P ==.故选:B9.(2023·江西·金溪一中校联考模拟预测)宋神宗熙宁九年文学家苏轼在《水调歌头·明月几时有》中有一名句“月有阴晴圆缺”表达了他超脱的胸怀。
2021届新高考数学二轮专题练习:热点(十三) 数学文化 (含解析)
热点(十三) 数学文化1.[2020·石家庄模拟](古典概率中的数学文化)古希腊数学家毕达哥拉斯在公元前六世纪发现了“完全数”6和28,后人进一步研究发现后续3个“完全数”分别为496,8 128,33 550 336,现将这5个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为( )A. 15B. 25C.35D. 110 2.[2020·山东六地市部分学校线上考试]《九章算术》是我国古代数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步,问为田几何?”意思说:现有扇形田,弧长三十步,直径十六步,问面积多少?书中给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4.在此问题中,扇形的圆心角的弧度数是( )A.415B. 158C.154 D .120 3.(函数图象中的数学文化)我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.如函数f (x )=x 4|4x -1|的图象大致是( )4.(概率中的数学文化)我国古代有着辉煌的数学研究成果.《周髀算经》《九章算术》《海岛算经》《孙子算经》……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为( )A.1415B.115C.29D.79 5.(数列中的数学文化)《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( )A .23岁B .32岁C .35岁D .38岁6.[2020·新高考Ⅰ卷](立体几何中的数学文化)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°7.(解析几何中的数学文化)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”.诗中隐含着一个有趣的数学问题——“将军饮马”的问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x2+y2≤1,若将军从点A(2,0)出发,河岸线所在直线方程x+y-4=0,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为()A.10 B.25-1C.2 5 D.10-18.(圆中的数学文化)阿波罗尼斯(约公元前262~190年)证明过这样一个命题:平面内到两定点距离之比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点A、B间的距离为2,动点P满足|P A||PB|=2,则|P A|2+|PB|2的最小值为() A.36-24 2 B.48-24 2C.36 2 D.24 29.如图所示,在著名的汉诺塔问题中,有三根高度相同的柱子和一些大小及颜色各不相同的圆盘,三根柱子分别为起始柱、辅助柱及目标柱.已知起始柱上套有n个圆盘,较大的圆盘都在较小的圆盘下面,现把圆盘从起始柱全部移到目标柱上,规则如下:每次只能移动一个圆盘,且每次移动后,每根柱上较大的圆盘不能放在较小的圆盘上面,规定一个圆盘从任一根柱上移动到另一根柱上为一次移动.若将n个圆盘从起始柱移动到目标柱上最少需要移动的次数记为p(n),则p(4)=()A.33 B.31C.17 D.1510.(解三角形中的文化)《数书九章》中对已知三角形三边长求三角形面积的求法填补了我国数学史中的一个空白,虽与著名的海伦公式形式上有所不同,但实质完全等价,由此可以看出我国古代已经具有很高的数学水平.其求法是:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.”把以上这段文字用数学公式表示,即S=14⎣⎡⎦⎤c2a2-⎝⎛⎭⎫c2+a2-b222(S,a,b,c分别表示三角形的面积、大斜、中斜、小斜).现有周长为42+25的△ABC满足sin A︰sin B︰sin C=(2+1)︰5︰(2-1),试用以上给出的数学公式计算△ABC的面积为()A. 3 B.2 3C. 5 D.2 511.(立体几何中的数学文化)我国古代《九章算术》里记载了一个求“羡除”体积的例子,羡除,隧道也,其所穿地,上平下邪.小明仿制羡除裁剪出如图所示的纸片,在等腰梯形ABCD 中,AB=10,BC=CD=DA=8,在等腰梯形ABEF中,EF=6,AF=BE=6.将等腰梯形ABCD 沿AB折起,使DF=CE=26,则五面体ABCDFE中异面直线AC与DE所成角的余弦值为()A.0 B.2 4C.-24 D.2212.(多选题)(生活中的数学文化)《九章算术·衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中正确的是()A.甲付的税钱最多B.乙、丙两人付的税钱超过甲C.乙应出的税钱约为32D.丙付的税钱最少13.(三角函数中的文化)公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可表示为m=2sin 18°.若m2+n=4,则1-2cos2 27°3m n=________.14.(数列中的数学文化)“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系数数字常被人们称之为神奇数.具体数列为1,1,2,3,5,8…,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{a n}为“斐波那契”数列,S n为数列{a n}的前n项和,若a2 020=M,则S2 018=________.(用M表示)15.[2020·山东烟台、菏泽联考](二项式定理中的数学文化)杨辉三角,又称贾宪三角、帕斯卡三角,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中用三角形解释二项和的乘方规律,称之为“杨辉三角”,由杨辉三角可以得到(a+b)n展开式的二项式系数.根据相关知识可求得(1-2x)5展开式中的x3的系数为________.16.[2020·山东肥城一中模拟](立体几何中的数学文化)在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱ABC -A1B1C1是一个“堑堵”,其中AB=BC=BB1=2,点M是A1C1的中点,则四棱锥M-B1C1CB的外接球的表面积为________.热点(十三) 数学文化1.答案:B解析:记5个“完全数”中随机抽出2个为第一组,剩下3个为第二组,则基本事件总数为C 25=10.又6和28恰好在第一组有1种情况,6,28和其他3个数中的1个在第二组有3种情况,所以所求概率为1+310=25,故选B.2.答案:C解析:由题意,根据给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4,再由扇形的弧长公式,可得扇形的圆心角α=l r =308=154(弧度),故选C.3.答案:D解析:因为f (x )=⎩⎪⎨⎪⎧x 44x -1,x >0,x41-4x,x <0,f (-x )=x 4|4-x -1|=x 4·4x|4x -1|≠f (x ),且f (-x )≠-f (x ),所以f (x )没有奇偶性,而A ,B 选项中的图象关于y 轴对称,排除A ,B ;当x →-∞时,f (x )=x 41-4x→+∞,排除C ,选D. 4.答案:A解析:设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,所以P (A )=C 23C 210=115,因此P (A )=1-P (A )=1-115=1415,故选A.5.答案:C解析:设这位公公的第n 个儿子的年龄为a n , 由题可知{a n }是等差数列,设公差为d ,则d =-3, 又由S 9=207,即S 9=9a 1+9+82×(-3)=207,解得a 1=35,即这位公公的长儿的年龄为35岁.故选C. 6.答案:B解析:过球心O 、点A 以及晷针的轴截面如图所示,其中CD 为晷面,GF 为晷针所在直线,EF 为点A 处的水平面,GF ⊥CD ,CD ∥OB ,∠AOB =40°,∠OAE = ∠OAF =90°,所以∠GF A =∠CAO =∠AOB =40°.故选B.7.答案:B解析:设点A 关于直线x +y =4的对称点A ′(a ,b ),k AA ′=ba -2, AA ′的中点为⎝⎛⎭⎪⎫a +22,b 2,故⎩⎪⎨⎪⎧ba -2=1a +22+b 2=4解得a =4,b =2,要使从点A 到军营总路程最短,即为点A ′到军营最短的距离,即为点A ′和圆上的点连线的最小值,即为点A ′和圆心的距离减半径, “将军饮马”的最短总路程为 4+16-1=25-1,故选B.8.答案:A解析:以经过A 、B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系,则A (-1,0)、B (1,0),设P (x ,y ),∵|P A ||PB |=2,∴(x +1)2+y 2(x -1)2+y2=2,两边平方并整理得x 2+y 2-6x +1=0⇒(x -3)2+y 2=8,所以P 点的轨迹是以(3,0)为圆心,22为半径的圆,则有|P A |2+|PB |2=2(x 2+y 2)+2=2|OP |2+2,如图所示:当点P 为圆与x 轴的交点(靠近原点)时,此时, OP 取最小值,且OP =3-22,因此,|P A |2+|PB |2≥2×(3-22)2+2=36-242,故选A. 9.答案:D解析:由题意,把圆盘从起始柱全部移到目标柱上最少需要移动的次数记为p (n ),则把起始柱上的(除最底下的)圆盘从起始柱移动到辅助柱最少需要移动的次数为p (n -1),则有p (n )=2p (n -1)+1,所以p (n )+1=2[p (n -1)+1],又p (1)=1,即{p (n )+1}是以p (1)+1=2为首项,2为公比的等比数列,由等比数列通项公式可得,p (n )+1=2n ,所以p (n )=2n -1,故p (4)=24-1=15,故选D.10.答案:A解析:因为sin A ︰sin B ︰sin C =(2+1)︰5︰(2-1), 则由正弦定理得a ︰b ︰c =(2+1)︰5︰(2-1). 设a =(2+1)x ,b =5x ,c =(2-1)x , 又周长为42+25,所以42+25=(2+1)x +5x +(2-1)x ,解得x =2. 所以S =14×⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫42×(2-1)2×(2+1)2-⎣⎢⎡⎦⎥⎤22×(2+1)2+22×(2-1)2-2022 = 3.故选A.11.答案:B解析:如图,过点C 作AB 的垂线,H 为垂足,易知BH =1,CH =37,AC =12.同理,在等腰梯形CDFE 中,对角线DE =6 2.过点C 作CG ∥DE 交FE 的延长线于点G ,易知四边形CDEG 是平行四边形,DE 綉CG ,连接AG ,则异面直线AC 与DE 所成的角即直线AC 与CG 所成的角.过点A 作AT ⊥EF ,交EF 的延长线于点T ,则易知AT =42,TG =16,所以AG =12 2. 在△ACG 中,AG =122,AC =12,CG =DE =62,由余弦定理得cos ∠ACG =144+72-2882×12×62=-24.因为异面直线所成的角在⎝⎛⎦⎤0,π2范围内,所以异面直线AC 与DE 所成角的余弦值为24,故选B.12.答案:ACD 解析:甲付的税钱最多、丙付的税钱最少,可知A 、D 正确;乙、丙两人付的税钱占总税钱的53109<12不超过甲。
高考数学基础知识专项练习(含答案)
高考数学基础知识专项练习(含答案)以下是高考数学基础知识专项练,共有20道题目,每题均有详细解答。
1.已知函数$f(x)=3x+5$,求$f(-2)$的值。
解:直接将$x=-2$代入原函数,得$f(-2)=3*(-2)+5=-1$。
答案:$-1$2.解不等式$x-8\leq12$。
解:将不等式两边加上8,得$x\leq20$。
答案:$x\leq20$3.化简$\dfrac{6x^3}{9x^4}$。
解:将分子和分母同时除以$3x$,得$\dfrac{2}{3x}$。
答案:$\dfrac{2}{3x}$4.若$3x^2-6x=a$,求$x$的值。
解:将方程移项,得$3x^2-6x-a=0$,再利用求根公式,得$x=\dfrac{2\pm\sqrt{4+3a}}{3}$。
答案:$x=\dfrac{2\pm\sqrt{4+3a}}{3}$5.已知等差数列的公差$d=3$,首项$a_1=2$,求第10项的值。
解:利用等差数列的通项公式$a_n=a_1+(n-1)d$,得$a_{10}=2+9*3=29$。
答案:$29$6.已知直角三角形两直角边分别为3和4,求斜边长。
解:使用勾股定理,得斜边长$c=\sqrt{3^2+4^2}=5$。
答案:$5$7.若$f(x)=x^2-2x+5$,求$f(3)$的值。
解:直接将$x=3$代入原函数,得$f(3)=3^2-2*3+5=7$。
答案:$7$8.已知函数$f(x)=\dfrac{1}{x+1}$,求$f(2)$的值。
解:直接将$x=2$代入原函数,得$f(2)=\dfrac{1}{2+1}=\dfrac{1}{3}$。
答案:$\dfrac{1}{3}$9.化简$2y-4y^2-3y+1$。
解:将同类项相加,得$-4y^2-y+1$。
答案:$-4y^2-y+1$10.已知函数$f(x)=\sqrt{x+3}$,求$f(1)$的值。
解:直接将$x=1$代入原函数,得$f(1)=\sqrt{1+3}=2$。
2019年高考数学二轮复习解题思维提升专题13概率小题部分训练手册(附答案)
专题13 概率小题部分【训练目标】1、理解概率的定义,能正确区分概率与频率;2、理解互斥事件和相互独立事件的定义及运算公式;3、掌握古典概型的概念及计算;4、掌握几何概型的概念及计算;5、掌握两个计数原理及简单的排列组合,及列举法求概率。
6、理解随机变量的概念,掌握随机变量分布列的性质;7、掌握随机变量分布列的求法,及期望计算公式。
8、掌握条件概率的计算公式,掌握正态分布,二项分布的期望和方差公式。
【温馨小提示】概率在高考中有一道小题一道大题,17分左右,对于理科生来讲,只要掌握了基本的概念及公式,这是属于送分题,因此在练习时要注意总结方法。
【名校试题荟萃】1、袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( )A.①B.②C.③D.④【答案】B【解析】至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件.2、张卡片上分别写有数字,从这张卡片中随机抽取2张,则取出张卡片上数字之和为偶数的概率为( )A. B. C. D.【答案】B【解析】由题知基本事件总数为,如果2张卡片上数字之和为奇数,需1奇1偶,共有种,∴取出2张卡片上数字之和为奇数的概率为,因此取出2张卡片上数字之和为偶数的概率为.3、从5张100元,3张200元,2张300元的奥运会决赛门票中任取3张,则所取3张中于至少有2张价格相同的概率为()A. B. C. D.【答案】B【解析】先求三张价格均不相同的概率所求概率为。
4、国庆期间,甲去某地的概率为,乙和丙二人去此地的概率为、,假定他们三人的行动相互不受影响,这段时间至少有人去此地旅游的概率为()A. B. C. D.【答案】B5、已知3件次品和2件正品混在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则在第一次取出次品的条件下,第二次取出的也是次品的概率是()A. B. C. D.【答案】C【解析】记“第一次取出次品”为事件,“第二次取出次品”为事件,则,,所以.6、设随机变量服从正态分布,若,则函数没有极值点的概率是()A. B. C. D.【答案】C【解析】由无相异实根得,因此函数没有极值点的概率是,选C.7、将本不同的书全发给名同学,每名同学至少有一本书的概率是( )A. B. C. D.【答案】A8、已知是球面上的五个点,其中在同一圆周上,若不在所在的圆周上,则从这五个点的任意两点的连线中取出条,这两条直线是异面直线的概率是()A. B. C. D.【答案】D【解析】由题意,得是四棱锥的五个顶点,任取两点,共有条直线,从条直线中任取两条直线,共有对,其中异面直线对是一条侧棱与地面上三条相等(如侧棱与)共有对异面直线,由古典概型的概率公式,得这两条直线是异面直线的概率是.9、某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中,任取2人,则至少有1名优秀工人的概率为()A. B. C. D.【答案】C10、一个射箭运动员在练习时只记射中环和环的成绩,未击中环或环就以环记.该运动员在练习时击中环的概率为,击中环的概率为,既未击中环也未击中环的概率为(,,),如果已知该运动员一次射箭击中环数的期望为环,则当取最小值时,的值为()A. B. C. D.【答案】A【解析】由运动员一次射箭击中环数的期望为环,可知,即,则,当,即时取等号,此时,则.11、在区间内随机取两个实数,,则满足的概率是( )A. B. C. D.【答案】D【解析】由题意知表示的区域为边长为2的正方形,面积为4,满足的区域即为图中阴影部分,面积为,所以所求概率为,.12、若是从区间中任取的一个实数,是从区间中任取的一个实数,则的概率是( )A. B. C. D.【答案】A【解析】试验的全部结果构成的区域(如图)为边长分别为2和3的矩形,面积为.其中满足的结果构成的区域为图中阴影部分,其面积为.则所求概率为.13、如图,将半径为的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为( )A. B. C. D.【答案】A14、在如图所示的正方形中随机投掷个点,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为()附:若,则,A. B. C. D.【答案】C【解析】根据题意得,设落入阴影部分点的个数为,则,则.15、有一批产品,其中有件正品和件次品,有放回地任取件,若表示取到次品的件数,则_________.【答案】【解析】由题意知取到次品的概率为,∴,∴.16、已知随机变量,若,则_________.【答案】【解析】,所以,所以,解得,所以.17、设随机变量的分布列为,其中为常数,则_________.【答案】18、设随机变量的概率分布律如下表所示:其中成等差数列,若随机变量的的均值为,则的方差为________.【答案】【解析】由题意有,,,解得,则其方差为.19、有一种游戏规则如下:口袋里共装有个红球和个黄球,一次摸出个,若颜色都相同,则得分;若有个球颜色相同,另一个不同,则得分,其他情况不得分. 小张摸一次得分的期望是________.【答案】20、设随机变量,且,则实数的值为_________.【答案】3【解析】∵随机变量,∴正态曲线关于对称,∵,∴与关于对称,所以∴.21、某校高三一模理科参加数学考试学生共有1016人,分数服从,则估计分数高于105分的人数为________.【答案】508【解析】因为分数服从,所以由正态分布的性质可知,估计分数高于105分的人数为故,答案为508.22、如图,是以为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用表示事件“豆子落在正方形内”,表示事件“豆子落在扇形(阴影部分)内”,则______.【答案】【解析】故答案为.23、袋中有大小质地完全相同的2个红球和3个黑球,不放回地摸出黑球,设“第一次摸得红球”为事件,“摸得的两球同色”为事件,则概率_________.【答案】【解析】由, ,根据条件概率可知.24、设集合,,分别从集合和中随机取一个数和,确定平面上一个点,设“点落在直线上”为事件,若事件的概率最大,则的值为________.【答案】2【解析】由题意知,点的坐标的所有情况为,,,,,,,,,共种.当时,落在直线上的点的坐标为,共种;当时,落在直线上的点的坐标为和,共种;当时,落在直线上的点的坐标为,,,共种;当时,落在直线上的点的坐标为,,共种;当时,落在直线上的点的坐标为,共种.因此,当的概率最大时,.25、个男生,个女生排成一排,其中有且只有两个女生相邻排在一起的排法总数有________.【答案】288026、将名新的同学分配到、、三个班级中,每个班级至少安排名学生,其中甲同学不能分配到班,那么不同的分配方案数为_________.(请用数字作答)【答案】24【解析】将甲同学分配到班或班,有种;剩下的名同学分配方案为种,所以不同的分配方案为种.27、某班组织文艺晚会,准备从等个节目中选出个节目演出,要求:两个节目至少有一个选中,且同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为_________.【答案】1140【解析】分两类:第一类,只有一个选中,则不同演出顺序有种;第二类,同时选中,则不同演出顺序有种,共有.故答案应填:.28、甲、乙两位高一学生进行新高考“七选三”选科(即在物、化、生、政、史、地、技术等七门科中任选择三门学科),已知学生甲必选政治,学生乙必不选物理,则甲、乙两位学生恰好有两门选课相同的选法有________种.(用数字作答)【答案】110【解析】(1)甲选物理:;(2)甲不选物理:;共有种.29、为了调查观众对央视某节目的关注度,现从某社区随机抽取名青年人进行调查,再从中挑选名做进一步调查,则这名青年人中的小张、小李至少有人被选中,而小汤没有被选中做进一步调查的不同选法有________种. 【答案】149630、有个大学报送名额,计划分别到个班级,每班至少一个名额,则不同的分法种数为种.【答案】6【解析】一共有个保送名额,分到个班级,每个班级至少一个保送名额,即将名额分成份,每份至少个(定行数).将个名额排成一列产生个空,中间有个空(定空位).即只需在中间个空中插入个隔板,隔板不同的方法共有种.(插隔板)专题13 概率(小题部分)(文)【训练目标】1、理解概率的定义,能正确区分概率与频率;2、理解互斥事件和相互独立事件的定义及运算公式;3、掌握古典概型的概念及计算;4、掌握几何概型的概念及计算;5、掌握两个计数原理,及列举法求概率。
高考理科数学小题专题练习 (13)
第22页
答案 A
解析 当 0<m<3 时,焦点在 x 轴上,要使 C 上存在点 M
满足∠AMB=120°,则ba≥tan60°=
3,即
3≥ m
3,解得
0<
m≤1;当 m>3 时,焦点在 y 轴上,要使 C 上存在点 M 满足∠AMB
第31页
15.(2019·安徽滁州模拟)已知椭圆 E:xa22+yb22=1(a>b>0)的右 焦点为 F,短轴的一个端点为 M,直线 l:3x-4y=0 交椭圆 E 于 A,B 两点.若|AF|+|BF|=4,点 M 到直线 l 的距离不小于45, 则椭圆 E 的离心率的取值范围是________.
第25页
12.(2019·长春模拟)设椭圆 C:y2+mx22=1(0<m<1)的两焦点分
别为 F1,F2,若在椭圆 C 上存在点 P 使得 PF1⊥PF2,则 m 的取 值范围是( )
A. 22,1 C.12,1
B.0,
2 2
D.0,12
第29页
14.已知椭圆 E:xa22+yb22=1(a>b>0),直线 y=b2与 E 的一个
交点为 P,以 P 为圆心的圆与 y 轴相切,且被 x 轴截得的弦长等
于 E 的焦距,则 E 的离心率为( )
2 A. 3
3 B. 3
5 C. 3
6 D. 3
第30页
答案 D 解析 将 y=b2代入椭圆方程,得 x=± 23a,不妨设点 P 的坐 标为 23a,b2.因为圆 P 与 y 轴相切,所以圆的半径为 23a.又点 P 到 x 轴的距离为b2,圆 P 被 x 轴截得的弦长为 2c,所以b22+c2 = 23a2,且 b2=a2-c2,所以 e=ca= 36.故选 D.
高考数学复习典型题型专题讲解与练习13 幂函数
高考数学复习典型题型专题讲解与练习专题13 幂函数题型一 幂函数的定义域和值域1.函数()()123421x x y +=-的定义域为__________.【答案】[)2,1-【解析】函数解析式为()()123421y x x ==-+,则2010x x +≥⎧⎨->⎩,解得21x .因此,函数()()123421x x y +=-的定义域为[)2,1-.故答案为:[)2,1-.2.讨论函数23y x =的定义域、奇偶性,并作出它的简图,根据图象说明它的单调性. 【答案】定义域R ;偶函数;图象见解析;在区间(-∞,0]上是减函数,[0,+∞)上是增函数.【解析】函数23y x ==R=,所以函数为偶函数,作出函数图象可知,在(],0-∞单减,在[0,+∞)上单增.3.已知幂函数()()21*m mfx xx N +=∈.(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.【答案】(1)详见解析;(2)详见解析.【解析】(1)先判断幂函数的指数的奇偶,由m 与m +1中必定有一个为偶数,可知m 2+m 为偶数,可得函数开偶次方,即函数定义域为[0,+∞),且在定义域内单调递增;(2)由过点(2)和m∈N *求出m 的值,进而得出函数的定义域和单调性,列出不等式解出a 的范围即可. 试题解析:(1)m 为正整数,则:m 2+m =m (m +1)为偶数,令m 2+m =2k ,则:()f x =[0,+∞),函数在定义域内单调递增.(2)由题意可得:()122m m -+=求解关于正整数m 的方程组可得:m =1(m =﹣2舍去),则:()f x f (2﹣a )>f (a ﹣1)脱去f 符号可得: 2﹣a >a ﹣1≥0,求解不等式可得实数a 的取值范围是:312a ≤<.4.已知幂函数f (x )=(m -1)22-42m m x +在区间(0,+∞)上单调递增,函数g (x )=2x -k .(1)求实数m 的值;(2)当x ∈(1,2]时,记ƒ(x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,求实数k 的取值范围.【答案】(1)m =0;(2)[0,1].【解析】(1)依题意得(m -1)2=1.∴m =0或m =2.当m =2时,f (x )=x -2在区间(0,+∞)上单调递减,与题设矛盾,舍去.∴m =0.(2)由(1)可知f (x )=x 2,当x ∈(1,2]时,函数f (x )和g (x )均单调递增. ∴集合A =(1,4],B =(2-k ,4-k ]. ∵A ∪B =A ,∴B ⊆A .∴2-14- 4.k k ≥⎧⎨≤⎩,∴0≤k ≤1.∴实数k 的取值范围是[0,1].5.已知幂函数()()22421m m f x m x -+=-在()0,∞+上单调递增.(1)求m 的值;(2)当[]1,2x ∈时,记()f x 的值域为集合A ,若集合[]2,4B k k =--,且A B A ⋃=,求实数k 的取值范围.【答案】(1)0;(2)[]0,1【解析】(1)∵()f x 为幂函数,∴()211m -=,∴0m =或2.当0m =时,()2f x x =在()0,∞+上单调递增,满足题意.当2m =时,()2f x x -=在()0,∞+上单调递减,不满足题意,舍去.∴0m =.(2)由(1)知,()2f x x =.∵()f x 在[]1,2上单调递增,∴[]1,4A =.∵[]2,4B k k =--,A B A ⋃=,∴B A ⊆,∴21,44,k k -≥⎧⎨-≤⎩解得01k ≤≤.故实数k 的取值范围为[]0,1. 题型二 幂函数的图像问题1.函数()12f x x -=的大致图象是( )A .B .C .D .【答案】A【解析】由题意得,()12f x x-==,所以函数的定义域为{}0x x >,因为102-<,根据幂函数的性质,可知函数()12f x x -=在第一象限为单调递减函数, 故选:A .2.下列结论正确的是( ) A .幂函数图象一定过原点B .当0α<时,幂函数y x α=是减函数C .当1α>时,幂函数y x α=是增函数D .函数2y x 既是二次函数,也是幂函数 【答案】D【解析】由题意,函数1y x -=的图象不过原点,故A 不正确; 函数1y x -=在(,0)-∞及(0,)+∞上是减函数,故B 不正确;函数2y x 在(,0)-∞上是减函数,在(0,)+∞上是增函数,故C 不正确; 根据幂函数的定义,可得函数2y x 是二次函数,也是幂函数,所以D 正确. 故选:D.3.若幂函数mn y x =(*,m n ∈N 且,m n 互素)的图象如下图所示,则下列说法中正确的是( )A .0<1mn<B .m 是偶数,n 是奇数 C .m 是偶数,n 是奇数,且1m n <D .m 、n 是偶数,且1mn> 【答案】ABC【解析】图象在(1,1)右侧上升但上升幅度比y x =小,01mn<<,A 正确; 图象关于y 轴对称,函数为偶函数,m 是偶数,n 是奇数,B 正确; 则C 也正确,D 错误. 故选:ABC .4.函数()()110y x αα=-+<恒过定点______. 【答案】()2,2【解析】当11x -=,即2x =时,2y =,∴函数恒过定点()2,2. 故答案为:()2,2.5.在同一平面直角坐标系中画出函数()f x ()1g x x =-的图象,并利用图象求不等1x >-的解集.【答案】作图见解析;0⎡⎢⎣⎭.【解析】由题意,函数()f x ()1g x x =-,画出图象,如图所示:1x =-,解得x =1x >-的解集0⎡⎢⎣⎭.6.已知幂函数()21*()()f x x m m m N ∈-=+,经过点(2,试确定m 的值,并求满足条件(2)(1)f a f a >--的实数a 的取值范围. 【答案】31,2⎡⎫⎪⎢⎣⎭【解析】∵()f x 的图象过点21()2m m -+=,∴22m m +=,又*m N ∈,∴1m =.即12()f x x =,其定义域为0x ≥,且在定义域上函数为增函数, ∴由(2)(1)f a f a ->-得012a a ≤-<-,解得312a ≤<. 题型三 幂函数的单调性及应用1.幂函数y =f (x )的图象经过点(4,2),若0<a <b <1,则下列各式正确的是A .f (a )<f (b )<f (1b )1f a ⎛⎫< ⎪⎝⎭B .11f f a b ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭<f (b )<f (a ) C .f (a )<f (b )11f f a b ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()()11f f a f f b a b ⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭【答案】A【解析】设幂函数y =f (x )=x α,∵该幂函数的图象经过点(4,2),∴4α=2,解得12α=,∴f (x )=12x ,∵0<a <b <1,∴1110b a a b>>>>>,∴f (a )<f (b )<f (1b )1f a ⎛⎫< ⎪⎝⎭.故选A .2.幂函数()()2231m m f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,则a m +=____.【答案】3【解析】∵幂函数()()2231m m f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,∴2230m m --<,且223m m --为偶数,m N ∈,且1=1a -. 解得13m -<<,0m =,1,2, 且=2a ,只有1m =时满足223=4m m ---为偶数. ∴1m =.3a m +=故答案为:3.3.若幂函数()2222m y m m x -+=--在()0∞,+上为减函数,求实数m 的值;【答案】3m =【解析】因为函数为幂函数, 则2221m m --=,得1m =-或3m =, 当3m =时,1y x -=;当1m =-时,3y x =. 又函数在()0∞,+上为减函数, 所以3m =.4.已知2()f x x =(0x ≠),2()g x x -=,若定义(),()(),()(),()(),f x f xg xh x g x f x g x ⎧=⎨>⎩求函数()h x 的最大值及单调区间.【答案】1,单调递增区间为(,1]-∞-,(0,1],单调递减区间为[1,0)-,[1,)+∞.【解析】由题意,得22,11,(),1001,x x x h x x x x -⎧-=⎨-<<<⎩或或根据题中图象可知函数()h x 的最大值为1,单调递增区间为(,1]-∞-,(0,1],单调递减区间为[1,0)-,[1,)+∞.5.已知幂函数223()(22,)m m f x x m m z --+=-<<∈满足: (1)在区间()0,∞+上为增函数(2)对任意的x ∈R ,都有()()0f x f x --=,求同时满足(1)(2)的幂函数()f x 的解析式,并求当[]0,4x ∈时,()f x 的值域.【答案】()4f x x =;值域是[]0,256.【解析】因为函数在()0,∞+上递增, 所以2230m m --+>,解得31m -<<,因为22m -<<,m Z ∈,所以,1m =-,或0m =. 又因为()()f x f x -=,所以()f x 是偶函数, 所以223m m --+为偶数.当1m =-时,2234m m --+=满足题意; 当0m =时,2233m m --+=不满足题意,所以()4f x x =,又因为()4f x x =在[]0,4上递增.所以()()min 00f x f ==,()()max 4256f x f ==, 故函数的值域是[]0,256 . 题型四 幂函数的奇偶性及应用1.设11,2,3,,12a ⎧⎫∈-⎨⎬⎩⎭,则使函数a y x =的定义域为R 且函数a y x =为奇函数的所有a 的值为( ) A .1,3-B .1,1- C .1,3D .1,1,3- 【答案】C【解析】1a =时,函数解析式为y x =满足题意;2a =时,函数解析式为2y x ,偶函数,不符合题意;3a =时,函数解析式为3y x =满足题意;12a =时,函数解析式为12y x =,定义域为[)0,+∞,不符合题意;1a =-时,函数解析式为1y x -=,定义域为(,0)(0,)-∞+∞,不符合题意. 故选:C.2.已知幂函数()y f x =的图象过(2,2,则下列结论正确的是( )A .()y f x =的定义域为[0,)+∞B .()y f x =在其定义域内为减函数C .()y f x =是偶函数D .()y f x =是奇函数 【答案】B【解析】设幂函数f (x )=x α,因为幂函数y =f (x )的图象过点⎛ ⎝⎭,所以1222a-==, 解得12a =-, 所以()12f x x -=,所以y =f (x )的定义域为(0,+∞),且在其定义域上是减函数,故A 错误;B 正确, 因为函数定义域为(0,+∞),不关于原点对称,所以不具有奇偶性,故选项C ,D 错误, 故选:B .3.已知幂函数()()2151m h x m m x +=-+为奇函数.(1)求实数m 的值;(2)求函数()()102g x h x x ⎫⎡⎫=∈⎪⎪⎢⎣⎭⎭,的值域.【答案】(1)0m =;(2)112⎛⎤ ⎥⎝⎦,. 【解析】(1)∵函数()()2151m h x m m x +=-+为幂函数,2511m m ∴-+=,解得0m =或5,当0m =时,()h x x =,()h x 为奇函数, 当5m =时,()6h x x =,()h x 为偶函数,函数()h x 为奇函数,0m ∴=;(2)由(1)可知,()h x x =,则()g x x =102x ⎡⎫∈⎪⎢⎣⎭,,t =,则21122x t =-+,(]01t ∈,, 则()22111(1)1222f t t t t =-++=--+,(]01t ∈,, 函数()f t 为开口向下,对称轴为1t =的抛物线,∴当0t =时,函数()102f =, 当1t =,函数()f t 取得最大值为1,∴()f t 的值域为112⎛⎤ ⎥⎝⎦,,故函数()g x 的值域为112⎛⎤ ⎥⎝⎦,.4.已知幂函数21322()()p p f x x p -++=∈N 在(0,)+∞上是增函数,且在定义域上是偶函数.(1)求p 的值,并写出相应的函数()f x 的解析式.(2)对于(1)中求得的函数()f x ,设函数()[()](21)()1g x qf f x q f x =-+-+,问是否存在实数(0)q q <,使得()g x 在区间(,4]-∞-上是减函数,且在区间(4,0)-上是增函数?若存在,请求出q ;若不存在,请说明理由.【答案】(1)当0p =或2p =时,32()f x x =;当1p =时,2()f x x =;(2)存在,130-. 【解析】(1)由于已知()f x 在(0,)+∞上是增函数,因而213022p p -++>,解得13p -<<.又p ∈N ,因而0p =或1或2.当0p =或2p =时,32()f x x =,不是偶函数;当1p =时,2()f x x =,符合题意.(2)存在.理由如下:由(1)知2()[()](21)()1()(21)()1g x qf f x q f x qf x q f x =-+-+=-+-+.由于2()0f x x =,因而当(,4]x ∈-∞-时,2()[16,)f x x =∈+∞, 此时,函数()g x 单调递减,而函数()t f x =在(,4]-∞-上单调递减,则外层函数2(21)1y qt q t =-+-+在[16,)+∞上单调递增; 当(4,0)∈-x 时,2()(0,16)f x x =∈,此时,函数()g x 单调递增,而函数()t f x =在(4,0)-上单调递减, 则外层函数2(21)1y qt q t =-+-+在(0,16)上单调递减. 所以211620q q q -⎧-=⎪-⎨⎪->⎩,即130q =-. 所以存在130q =-满足题设条件.。
高考数学必考点专项第13练 平面向量的概念及其线性运算(练习及答案)(全国通用)(新高考专用)
高考数学必考点专项第13练 平面向量的概念及其线性运算小题精选一、单选题1. 设D 是ABC ∆所以平面内一点,3BC CD =,则AD =( ) A.4133AB AC + B. 4133AB AC - C. 1433AB AC - D. 1433AB AC -+ 2. 两个非零向量a ,b 满足||||2||a b a b a +=-=,则向量a b +与a 的夹角为 ( ) A.6π B.3π C.23π D.56π 3. 已知等边三角形ABC 的边长为6,点P 满足20PA PB PC +-=,则||PA = ( )A. B. C. D. 4. 设非零向量a ,b 满足|+|=||a b a b -,则( ) A. a b ⊥B. ||=||a bC. //a bD. ||||a b >5. 已知向量3AB a b =+,53BC a b =+,33CD a b =-+,则( ) A. A ,B ,C 三点共线 B. A ,B ,D 三点共线 C. A ,C ,D 三点共线D. B ,C ,D 三点共线6. 在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,其中a ,b不共线,则四边形ABCD 为( )A. 平行四边形B. 矩形C. 梯形D. 菱形7. O 为ABC 内一点,且20OA OB OC ++=,AD t AC =,若B ,O ,D 三点共线,则t 的值为( )A.14B.13C.12D.238. 设a ,b 是非零向量,则“存在实数λ,使得a b λ=”是“||||||a b a b +=+”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件9. 如图所示,O 为线段0201A A 外一点,若0A ,1A ,2A ,3A ,…,201A 中任意相邻两点间的距离相等,0OA a =,201OA b =,则用a ,b 表示012OA OA OA +++…201OA +,其结果为( )A. 100()a b +B. 101()a b +C. 201()a b +D. 202()a b +10. 在ABC 中,下列命题正确的个数是( )①AB AC BC -=; ②0AB BC CA ++=;③点O 为ABC 的内心,且()(2)0OB OC OB OC OA -⋅+-=,则ABC 为等腰三角形;④0AC AB ⋅>,则ABC 为锐角三角形.A. 1B. 2C. 3D. 411. 在ABC 中,点M 是AB 的中点,23AN AC =,线段CM 与BN 交于点O ,动点P 在BOC 内部活动(不含边界),且AP AB AN λμ=+,其中λ、R μ∈,则λμ+的取值范围是( )A.B. C. 11(1,)8 D. 3(1,)2二、多选题12. 已知O 是平行四边形ABCD 对角线的交点,则( ) A. AB DC = B. DA DC DB +=C. AB AD BD -=D. 1()2OB DA BA =+13. 在ABC 中,D ,E ,F 分别是边BC ,AC ,AB 中点,下列说法正确的是( )A. 0AB AC AD +-=B. 0DA EB FC ++=C.是的平分线所在直线的方向向量D. 若点P 是线段AD 上的动点,且满足BP BA BC λμ=+,则λμ的最大值为18三、填空题14. 设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=__________. 15. 设a ,b 为单位向量,且|a b +|1=,则|a b -|=__________.16. 已知向量a ,b 满足||1a =,||2b =,则||||a b a b ++-的最小值是__________,最大值是__________.17. 给出下列命题:①若||||a b →→=,则a b →→=;②若A ,B ,C ,D 是不共线四点,则AB DC =是四边形ABCD 为平行四边形的充要条件;③若a b →→=,b c →→=,则a c →→=; ④若//a b →→,//b c →→,则//.a c →→其中正确命题的序号是__________.18. 已知非零向量a ,b 满足||||||a b a b ==-,则||||a b a b +=-__________.19. 若三点(2,2)A ,(,0)B a ,(0,)(0)C b ab ≠共线,则11a b+的值等于__________;若满足0a >,0b >,则a b +的最小值等于__________.20. 如图ABC 是直角边等于4的等腰直角三角形,D 是斜边BC 的中点,14AM AB m AC =+⋅,向量AM 的终点M 在ACD 的内部(不含边界),则实数m 的取值范围是__________.答案和解析1.【答案】D解:因为3BC CD =,所以33AC AB AD AC -=-, 所以14.33AD AB AC =-+ 故选.D2.【答案】B解:设||1a =,则||||2a b a b +=-=,故以a 、b 为邻边的平行四边形是矩形, 且||3b =,设向量a b +与a 的夹角为θ,则||1cos 2||a a b θ==+,3πθ∴=,故选.B3.【答案】C解:因为20PA PB PC +-=,所以2()()0PA PA AB PA AC ++-+=, 整理得,12PA AC AB =-, 由等边三角形ABC 的边长为6, 得166182AB AC =⨯⨯=, 两边平方得,222113636182744PA AC AB AC AB =+-=⨯+-=,则||3 3.PA = 故选:.C4.【答案】A解:非零向量a ,b 满足||||a b a b +=-,22()()a b a b ∴+=-,即222222a b a b a b a b ++⋅=+-⋅,整理得40a b ⋅=, 解得0a b ⋅=,.a b ∴⊥故本题选.A5.【答案】B解:262(3)2BD BC CD a b a b AB =+=+=+=,BD ∴,AB 共线,且有公共点B ,A ∴,B ,D 三点共线.故选.B6.【答案】C解:2,4,AB a b BC a b =+=--53CD a b =--, AD AB BC CD ∴=++ 822a b BC =--=,2AD BC ∴=,//AD BC ∴,且AD BC ≠,∴四边形ABCD 为梯形.故选.C7.【答案】B解:以OB ,OC 为邻边作平行四边形OBFC ,连接OF 与BC 相交于点E ,E 为BC 的中点.20OA OB OC ++=,22OB OC OA OF OE ∴+=-==,∴点O 是线段AE 的中点.B ,O ,D 三点共线,AD t AC =,∴点D 是BO 与AC 的交点.过点O 作//OM BC 交AC 于点M ,则点M 为AC 的中点. 则1124OM EC BC ==, 14DM DC ∴=, 13DM MC ∴=,2133AD AM AC ∴==,AD t AC =, 1.3t ∴=故选.B8.【答案】B解:若“||||||a b a b +=+”,则平方得22||2||a a b b +⋅+22||||2||||a b a b =++⋅,即||||a b a b ⋅=⋅,即||||cos a b a b a ⋅=<,||||b a b >=⋅, 则cos a <,1b >=,即a <,0b >=,即a ,b 同向共线,则存在实数λ,使得a b λ=, 反之当a <,b π>=时,满足a b λ=,但a <,0b >=不成立,即“存在实数λ,使得a b λ=”是“||||||a b a b +=+”的必要不充分条件, 故选:.B9.【答案】B解:设0201A A 的中点为A ,则A 也是1200A A ,…,100101A A 的中点, 可得02012OA OA OA a b +==+,同理可得,12002199OA OA OA OA +=+=…100101OA OA a b =+=+, 故012OA OA OA +++…2011012101().OA OA a b +=⨯=+ 故选.B10.【答案】B解:由ABC ,得:在①中,AB AC CB -=,故①错误; 在②中,0AB BC CA ++=,故②正确;在③中,点 O 为ABC 的内心, 且()(2)0OB OC OB OC OA -⋅+-=, 即,即()0CB AB AC ⋅+=,因为AB AC +表示A ∠的平分线,设AB AC AF +=, 故0CB AF ⋅=,故CB AF ⊥,则AB AC =,ABC 为等腰三角形,故③正确;在④中,0AC AB ⋅>,则BAC ∠是锐角,但是不能保证另外两个角均为锐角,即ABC 不一定为锐角三角形,故④错误. 共计2个正确, 故选:.B11.【答案】D解:若点P 为交点O 时,易知13.44AP AB AN =+ ①若点P 在线段BO 上运动时,1λμ+=; ②若点P 在线段BC 上运动时,23AP AB AC μλ=+,213μλ+=, 33(1),[0,1]222λλμλλλ+=+-=-∈,3[1,]2λμ+∈;③若点P 在线段OC 上运动时,223AP AM AC μλ=+,2213μλ+=,331(12)2,[0,]224λμλλλλ+=+-=-∈,3[1,]2λμ+∈;综上,由于不含边界,3(1,).2λμ∴+∈另解:按照三点共线定理可知,当点P 在直线BN 上时,1λμ+=, 当点P 在直线BN 的下方且平行于直线BN 的直线上时, 随着直线向下平行移动,λμ+的值越来越大, 因为点P 在BOC 内部活动(不含边界)上运动, 所以到达临界点C 时λμ+的值为上限值32, 3(1,).2λμ∴+∈故选:.D12.【答案】AB解:因为O 是平行四边形ABCD 对角线的交点,对于选项A ,结合相等向量的概念可得, AB DC =,即A 正确; 对于选项B ,由平行四边形法则可得DA DC DB +=,即B 正确; 对于选项C ,由向量的减法可得AB AD DB -=,即C 错误; 对于选项D ,由向量的加法运算可得1()2CO DA BA OB =+≠,即D 错误, 综上可得A ,B 正确, 故选:.AB13.【答案】BCD解:如图所示:对选项A ,20AB AC AD AD AD AD +-=-=≠,故A 错误.对选项B ,,故B 正确.对选项C ,,分别表示与,同向的单位向量,由平面向量加法可知C 正确;对选项D ,如图所示:因为在上,即三点共线, 设,0 1.t又因为,所以.因为,则,0 1.t令,当时,取得最大值为.故选项D 正确.故选:.BCD14.【答案】12解:向量a ,b 不平行,向量a b λ+与2a b +平行,(2)2a b t a b ta tb λ∴+=+=+, ,解得实数1.2λ= 故答案为1.215.解:222||2221a b a b a b a b +=++⋅=+⋅=,12a b ⋅=-, 222||2223a b a b a b a b -=+-⋅=-⋅=,|| 3.a b ∴-=16.【答案】4【解析】解:设a OA =,b OB =,记AOB α∠=,则0απ,如图,由余弦定理可得:||54cos a b α+=+,||54cos a b α-=-,令54cos x α=-,54cos y α=+,则2210(x y x +=、1)y ,其图象为一段圆弧MN ,如图,令z x y =+,则y x z =-+,则直线y x z =-+过M 、N 时,z 最小,min 13314z =+=+=,当直线y x z =-+与圆弧MN 相切时,z 最大,由平面几何知识易知max z 即为原点到切线的距离的2倍,也就是圆弧MN 所在圆的半径的2倍,所以max 2102 5.z =⨯=综上所述,||||a b a b ++-的最小值是4,最大值是2 5.故答案为:4;17.【答案】②③解:①不正确.两个向量的长度相等,但它们的方向不一定相同;②正确.AB DC =,||||AB DC ∴=且//AB DC ,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则//AB DC 且||||AB DC =,AB DC ∴=;③正确.a b →→=,a →∴,b →的长度相等且方向相同, 又b c →→=,b →∴,c →的长度相等且方向相同,a →∴,c →的长度相等且方向相同,故a c →→=;④不正确.当0b =时,满足////a b c ,但是推不出//a c ,综上所述,正确命题的序号是②③.故答案为②③.18.解:如图,设OA a =,OB b =,则OC OA OB a b =+=+,.BA OA OB a b =-=-||||||a b a b ==-,.BA OA OB ∴==OAB ∴为正三角形,设其边长为1,则||||1a b BA -==,3||22a b +=⨯= ||31||a b a b +∴==-19.【答案】128解:(2,2)AB a =--,(2,2)AC b =--,依题意知//AB AC ,有(2)(2)40a b -⋅--= 即220ab a b --=,变形为2()ab a b =+, 所以1112a b a b ab ++== 又0a >,0b >,当且仅当4a b ==时等号成立. 故答案为1,8.220.【答案】13(,)44解:如图所示,设14AE AB =,过点E 作//EP AC ,分别交AD ,BC 于点Q ,P , 分别过Q ,P 作//QR AE ,//PF AE 交AC 于点R ,.F则13,44AR AC AF AC ==, 14AM AB m AC =+⋅,M 在ACD 的内部(不含边界), ∴点M 在线段QP 上(不含点Q ,)P ,当点M 位于点Q 时,1144AM AQ AB AC ==+,可得14m =, 当点M 位于点P 时,1344AM AP AB AC ==+,可得34m =, 故m 的取值范围为13(,)44. 故答案为13(,)44 .。
高三数学基础训练题集1-10套
高三数学基础训练一一.选择题:1.复数,则在复平面内的对应点位于A.第一象限B.第二象限C.第三象限D.第四象限2.在等比数列{an}中,已知,则A.16 B.16或-16 C.32 D.32或-32 3.已知向量a =(x,1),b =(3,6),ab ,则实数的值为( )A. B. C.D.4.经过圆的圆心且斜率为1的直线方程为( )A. B.C.D.5.已知函数是定义在R上的奇函数,当时,,则( )A.B.C. D.6.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图,则甲.乙两人这几场比赛得分的中位数之和是A.62 B.63 C.64 D.65 7.下列函数中最小正周期不为π的是A.B.g(x)=tan()C. D.8.命题“”的否命题是A. B.若,则C. D.9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的侧面积为A.6 B.24 C.12 D.3210.已知抛物线的方程为,过点和点的直线与抛物线没有公共点,则实数的取值范围是A.B.C.D.二.填空题:11.函数的定义域为.12.如图所示的算法流程图中,输出S的值为.13.已知实数满足则的最大值为_______.14.已知,若时,恒成立,则实数的取值范围______ 三.解答题:已知R.(1)求函数的最小正周期;(2)求函数的最大值,并指出此时的值.高三数学基础训练二一.选择题:1.在等差数列中, ,则其前9项的和S9等于 ( )A.18 B.27 C.36 D.92.函数的最小正周期为 ( )A. B. C. D.3.已知命题p: ,命题q :,且p是q的充分条件,则实数的取值范围是:( )A.(-1,6) B.[-1,6] C. D.4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,。
,153~160号)。
专题13 客观题之数列与数学归纳法 《2021年高考冲刺数学每日一练》【解析版】
专题13 客观题之数列与数学归纳法【真题感悟】一、单选题1.(2019·全国高考真题(理))已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .2【答案】C 【解析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值. 【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .2.(2019·全国高考真题(理))记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =- C .228n S n n =- D .2122n S n n =- 【答案】A 【解析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .3.(2020·全国高考真题(理))数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( ) A .2 B .3C .4D .5【答案】C 【解析】取1m =,可得出数列{}n a 是等比数列,求得数列{}n a 的通项公式,利用等比数列求和公式可得出关于k 的等式,由k *∈N 可求得k 的值. 【详解】在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=, 所以,数列{}n a 是以2为首项,以2为公比的等比数列,则1222n n n a -=⨯=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++⋅-⋅-∴+++===-=---,1522k +∴=,则15k +=,解得4k =.故选:C.4.(2020·全国高考真题(文))记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =( ) A .2n –1 B .2–21–n C .2–2n –1 D .21–n –1【答案】B 【解析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可. 【详解】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)122,21112n nn n n n n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-. 故选:B.5.(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块【答案】C 【解析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S . 【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=, 设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分 别为232,,n n n n n S S S S S --,因为下层比中层多729块, 所以322729n n n n S S S S -=-+, 即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+即29729n =,解得9n =, 所以32727(9927)34022n S S +⨯===.故选:C6.(2020·全国高考真题(文))设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( )A .12B .24C .30D .32【答案】D 【解析】根据已知条件求得q 的值,再由()5678123a a a q a a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.7.(2020·浙江高考真题)已知等差数列{a n }的前n 项和S n ,公差d ≠0,11ad≤.记b 1=S 2,b n+1=S 2n+2–S 2n ,n *∈N ,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6C .2428a a a =D .2428b b b =【答案】D 【解析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立. 【详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+, ∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+.∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-,当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++,()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.8.(2020·北京高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项 D .无最大项,无最小项【答案】B 【解析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项. 【详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<<,且由50T <可知()06,i T i i N <≥∈,由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=, 故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B. 二、填空题9.(2019·全国高考真题(理))记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.【答案】1213. 【解析】本题根据已知条件,列出关于等比数列公比q 的方程,应用等比数列的求和公式,计算得到5S .题目的难度不大,注重了基础知识、基本计算能力的考查. 【详解】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠, 所以3,q =所以55151(13)(1)12131133a q S q --===--. 10.(2020·浙江高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是________. 【答案】10 【解析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【详解】 因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=.故答案为:10.11.(2020·全国高考真题(文))记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________.【答案】25 【解析】因为{}n a 是等差数列,根据已知条件262a a +=,求出公差,根据等差数列前n 项和,即可求得答案. 【详解】{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-= 可得1152a d a d +++= 即:()2252d d -++-+= 整理可得:66d = 解得:1d =根据等差数列前n 项和公式:*1(1),2n n n S na d n N -=+∈ 可得:()1010(101)1022045252S ⨯-=-+=-+=∴1025S =.故答案为:25.12.(2019·江苏高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____. 【答案】16. 【解析】由题意首先求得首项和公差,然后求解前8项和即可. 【详解】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 13.(2020·江苏高考真题)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______. 【答案】4 【解析】结合等差数列和等比数列前n 项和公式的特点,分别求得{}{},n n a b 的公差和公比,由此求得d q +. 【详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据题意1q ≠. 等差数列{}n a 的前n 项和公式为()2111222n n n d d P na d n a n -⎛⎫=+=+- ⎪⎝⎭, 等比数列{}n b 的前n 项和公式为()1111111n n n b q b bQ q qq q-==-+---, 依题意n n n S P Q =+,即22111212211nn b b d d n n n a n q q q ⎛⎫-+-=+--+ ⎪--⎝⎭, 通过对比系数可知111212211dd a q b q⎧=⎪⎪⎪-=-⎪⎨⎪=⎪⎪=-⎪-⎩⇒112021d a q b =⎧⎪=⎪⎨=⎪⎪=⎩,故4d q +=.故答案为:414.(2020·海南高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________. 【答案】232n n - 【解析】首先判断出数列{}21n -与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果. 【详解】因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列, 所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=-, 故答案为:232n n -.15.(2020·全国高考真题(文))数列{}n a 满足2(1)31n n n a a n ++-=-,前16项和为540,则1a =______________. 【答案】7 【解析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论. 【详解】2(1)31n n n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++13515241416()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=, 17a ∴=.故答案为:7.【高考预测】一、单选题1.(2021·河南省实验中学高二期中(理))记n S 为等差数列{}n a 的前n 项和,若218a =,580S =.则数列{}n a 的通项公式n a =( ) A .222n + B .222n -C .202n -D .(21)n n -【答案】B 【解析】根据等差数列的通项和求和公式,由218a =,580S =,列式可求得首项和公差,即可得解. 【详解】设公差为d ,则21511851080a a d S a d =+=⎧⎨=+=⎩, 解得1202a d =⎧⎨=-⎩,所以()()2012222n a n n =+-⨯-=-. 故选:B.2.(2020·全国高二课时练习)已知等比数列{a n }的前n 项和为S n ,且a 1=12,a 2a 6=8(a 4-2),则S 2 020=( )A .22 019-12B .1-1()2 2 019C .22 020-12D .1-1()22 020【答案】A 【解析】根据已知可求出数列的公比,即可求出. 【详解】设{a n }的公比为q ,()2264482a a a a ==-,2448160a a ∴-+=,解得44a =,3418aq a ∴==,可得2q,()202020192020112122122S ⨯-∴==--. 故选:A.3.(2020·全国高二课时练习)数列{a n }的通项2n n a n =⨯,数列{a n }的前n 项和S n 为( ) A .12n n +⨯ B .122n n +⨯-C .()1122n n +-⨯+D .122n n +⨯+【答案】C 【解析】利用错位相减法可求解. 【详解】23222322n n S n =+⨯+⨯+⋯+⨯,① 23412222322n n S n +=+⨯+⨯+⋯+⨯,②①-②得23122222nn n S n +-=+++⋯+-⨯()1212212n n n +⨯-=-⨯-11222n n n ++=--⨯,12(1)2n n S n +∴=+-⨯.故选:C.4.(2021·四川绵阳市·高三三模(理))已知数列{} n a 的前n 项和为n S ,11a =,22a =,()12343n n n a a a n --=+≥,则10S =( )A .10415-B .11415-C .1041-D .1141-【答案】A 【解析】由已知得出数列1{}n n a a ++是等比数列,然后可利用数列1{}n n a a ++的奇数项仍然为等比数列,求得和10S . 【详解】因为()12343n n n a a a n --=+≥,所以1124()n n n n a a a a ---+=+,又1230a a +=≠,所以1124(3)n n n n a a n a a ---+=≥+,所以1{}n n a a ++是等比数列,公比为4,首项为3,则数列212{}n n a a -+也是等比数列,公比为2416=,首项为3.所以510103(116)411165S ⨯--==-. 故选:A .5.(2021·山东高三二模)已知数列{}n a ,1()n a f n =,其中()f n的整数,若{}n a 的前m 项和为20,则m =( ) A .15 B .30C .60D .110【答案】D 【解析】由题意知,函数()f n的整数,得到()f n 中有2个1,4个2,6个3,8个4,,进而得到12345678122,2,2,a a a a a a a a a +=+++=+++= ,结合等差数列的求和公式,即可求解.【详解】由题意知,函数()f n的整数, 又由()()11,21f f ==,()()()()32,42,52,62f f f f ====,()()()()()()73,83,93,103,113,123f f f f f f ======,,由此可得()f n的整数中,有2个1,4个2,6个3,8个4,,又由数列{}n a 满足1()n a f n =, 可得1234567812111,,,23a a a a a a a a a ==========,则12345678122,2,2,a a a a a a a a a +=+++=+++= ,因为{}n a 的前m 项和为20,即10220m S =⨯=,可得数列{}m 构成首项为2,公差为2的对称数列的前10项和, 所以10910221102m ⨯=⨯+⨯=. 故选:D.6.(2021·武威第六中学高三其他模拟(理))已知等差数列{}n a 的前n 项和为n S ,且918S =,71a =,则1a =( )A .4B .2C .12-D .1-【答案】A 【解析】先由918S =,求出5a ,结合75,a a 的关系可得. 【详解】 因为199599182a a S a +=⨯==,所以52a =; 又因为752a a d =+,所以12122d -==-. 所以51142a a d a =+=-,解得14a =. 故选:A7.(2021·江西高三其他模拟(文))已知等比数列{}n a 中,1510a a +=,1516a a =且15a a <,则7a =( )A .16±B .16C .4±D .4【答案】B 【解析】 结合1510a a +=,1516a a =且15a a <,求出1a ,5a ,从而得出数列的通项公式,即可求出7a .【详解】解:已知15151016a a a a +=⎧⎨=⎩,且15a a <解得1528a a =⎧⎨=⎩,又因为{}n a 是等比数列,所以4518a a q ==, 所以4842q==,可得22q =, 所以5728216a q a =⨯==. 故选:B8.(2021·全国高二单元测试)将全体正整数排成一个三角形数阵:按照以上排列的规律,则第20行从左向右的第3个数为( )A .193B .192C .174D .173【答案】A 【解析】根据题意,分析可得第n 行的第一个数字为()112n n -+,进而可得第20行的第一个数字,据此分析可得答案. 【详解】由排列的规律可得,第1n -行结束的时候共排了()()()()1111123122n n n n n -+--++++-==个数,则第n 行的第一个数字为()112n n -+, 则第20行的第一个数字为191,故第20行从左向右的第3个数为193; 故选:A.9.(2020·湖北高三期中)已知数列{}n a 满足()*1111,(1)(2)n n n n a a a a a n N n n ++=-=∈++,则n na 的最小值是( ) A .25B .34C .1D .2【答案】C本题首先可以根据()11(1)2n n n n a a a a n n ++-=++得出1111112n n a a n n +-=-++,然后通过累加法求出2231n n a n +=+,再然判断数列{}n na 的单调性即可求出. 【详解】 因为()*11(1)n n n n a a a a n N n n ++-=∈+, 所以()11(1)212111n n n n a a a a n n n n ++-==-++++,即1111112n n a a n n +-=-++,则11221111111111n n n n n a a a a a a a a ---⎛⎫⎛⎫⎛⎫=-+-+⋯+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 112311111111n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+- 11311(2)2122n n n n +=-+=≥++, 当1n =时,上式成立,故2231n n a n +=+,22231n n n n n a ++=,设22231n n nn b ++=,则()()()()()222121212261040311313431n n n n n n n n n n n n b b +++++++=>++-++=+-, 故数列{}n b 是单调递增数列, 则当1n =时,n b 即n na 的最小值为1. 故选:C. 二、多选题10.(2021·全国高二课时练习)等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则( ) A .d <0 B .a 16<0C .S n ≤S 15D .当且仅当S n <0时n ≥32【答案】ABC根据题意,可得2a 1+29d =0,根据a 1>0,可判断A 的正误;根据d <0,可得a 15>a 16,可判断B 、C 的正误;分别求得3031,S S ,即可判断D 的正误,即可得答案. 【详解】解:设等差数列{a n }的公差为d ,∵S 10=S 20, ∴10a 1+45d =20a 1+190d , ∴2a 1+29d =0,∵a 1>0,∴d <0,故A 正确; ∴a 1+14d +a 1+15d =0,即a 15+a 16=0, ∵d <0,∴a 15>a 16,∴a 15>0,a 16<0,故B 正确; ∴S n ≤S 15,故C 正确; 又131311631()3102a a S a +==<,130********()15()02a a S a a +==+=, ∴当且仅当S n <0时,n ≥31,故D 错误. 故选:ABC .11.(2021·全国高二单元测试)在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若1432a a ⋅=,2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】ABC 【解析】本题首先可根据1432a a ⋅=得出2332a a ⋅=,与2312a a +=联立即可求出2a 、3a 以及q ,A 正确,然后通过122n n S ++=即可判断出B 正确,再然后通过等比数列求和公式即可判断出C 正确,最后根据lg lg 2na n 即可判断出D 错误.【详解】因为数列{}n a 是等比数列,所以142332a a a a ,联立23233212a a a a ⋅=⎧⎨+=⎩,解得2384a a =⎧⎨=⎩或2348a a =⎧⎨=⎩,因为公比q 为整数,所以24a =、38a =、322a q a ==,12a =,2n n a =,A 正确, ()121222212n n n S +-+=+=-,故数列{}2n S +是等比数列,B 正确;()8982122251012S -==-=-,C 正确;lg lg2lg2n n a n ==,易知数列{}lg n a 不是公差为2的等差数列,D 错误,故选:ABC. 三、填空题12.(2020·全国高二课时练习)设等比数列{}n a 的前n 项和为n S .若3S ,9S ,6S 成等差数列,且83a =,则5a 的值为________. 【答案】6- 【解析】根据等差数列列式,代入等比数列前n 项和公式,计算得312q =-,从而求解5a . 【详解】∵3S ,9S ,6S 成等差数列,∴9362S S S =+,由题意1q ≠,∴9361112(1)(1)(1)111a q a q a q q q q---=+---,可得96320q q q --=,所以312q =-∴8533(2)6a a q ==⨯-=-. 故答案为:6-.13.(2021·全国高二课时练习)定义函数()f x ={x {x }},其中{x }表示不小于x 的最小整数,如{1.4}=2,{﹣2.3}=﹣2,当*(0,],()x n n N ∈∈时,函数()f x 的值域为A n ,记集合A n 中元素的个数为a n ,则a n =__. 【答案】(1)2n n + 【解析】由题意得,当(1,]x n n ∈-时,{x }=n ,{x {x }}取到的整数为n 2﹣n +1,n 2﹣n +2,……,n 2﹣n +n =n 2,共n 个,分别求出(1,2]x ∈、(2,3]、……(1,]n n -时{x {x }}中元素的个数,即可得到(0,]x n ∈时,{x {x }}中元素个数,结合等差数列求和公式,即可得答案. 【详解】解:由题意得:当(1,]x n n ∈-时,{x }=n ,所以x {x }所在的区间为2((1),]n n n -,区间长度为n , {x {x }}取到的整数为n 2﹣n +1,n 2﹣n +2,……,n 2﹣n +n =n 2,共n 个, 所以,当(0,1]x ∈时,{x {x }}有1个; 当(1,2]x ∈时,{x {x }}有2个; 当(2,3]x ∈时,{x {x }}有3个; ……当(1,]x n n ∈-时,{x {x }}有n 个.所以(0,]x n ∈时,{x {x }}共有1+2+3+……+n (1)2n n +=个数. 故(1)2n n n a +=. 故答案为:(1)2n n +.14.(2021·江西高三其他模拟(文))已知公差不为0的等差数列{}n a 的部分项1k a ,2k a ,3k a ,……构成等比数列{}n a ,且11k =,22k =,35k =,则n k =___________.【答案】1312n -+ 【解析】设等差数列{}n a 的公差为d ,则0d ≠,由等比数列的性质列式求得12a d = .然后再由等差数列与等比数列的通项公式列式求得n k . 【详解】解:设等差数列{}n a 的公差为d ,则0d ≠, 由已知21321522,k k k a a a a a a =⋅∴=⋅, 即()()21114a d a a d +=⋅+,得12a d =,于是,在等比数列123,,,,n k k k k a a a a 中,公比21111211123k k a d a a a a q a a a a ++=====. 由n k a 为数列{}k a 的第n 项,知111133n n k n k a a a --=⨯⋅=;由n k a 为数列{}n a 的第n k 项,知()()11121n k n n a a k d a k =-=-+,()111321n n a a k -∴⨯=-,故13122n n k -=+.故答案为1312n -+.。
2021-2022年高考数学二轮复习 第一部分 微专题强化练 专题13 立体几何综合练习 文(含解析
2021年高考数学二轮复习第一部分微专题强化练专题13 立体几何综合练习文(含解析)一、选择题1.(xx·东北三校二模)设l,m是两条不同的直线,α是一个平面,则下列说法正确的是( )A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m[答案] B[解析] 当l、m是平面α内的两条互相垂直的直线时,满足A的条件,故A错误;对于C,过l作平面与平面α相交于直线l1,则l∥l1,在α内作直线m与l1相交,满足C的条件,但l与m不平行,故C错误;对于D,设平面α∥β,在β内取两条相交的直线l、m,满足D的条件,故D错误;对于B,由线面垂直的性质定理知B正确.2.已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有( )A.0个B.1个C.2个D.3个[答案] C[解析] 若α、β换成直线a、b,则命题化为“a∥b,且a⊥γ⇒b⊥γ”,此命题为真命题;若α、γ换为直线a 、b ,则命题化为“a ∥β,且a ⊥b ⇒b ⊥β”,此命题为假命题;若β、γ换为直线a 、b ,则命题化为“a ∥α,且b ⊥α⇒a ⊥b ”,此命题为真命题,故选C.3.(xx·重庆文,5)某几何体的三视图如图所示,则该几何体的体积为( ) A.13+2π B.13π6 C.7π3D.5π2[答案] B[解析] 由三视图可知该几何体是由一个圆柱和一个半圆锥组成,圆柱的底面半径为1,高为2;半圆锥的底面半径为1,高也为1,故其体积为π×12×2+16×π×12×1=13π6;故选B.4.如图,在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下列四个结论不成立的是( )A .BC ∥平面PDFB .DF ⊥平面PAEC .平面PDF ⊥平面PAED .平面PDE ⊥平面ABC [答案] D[解析] ∵D 、F 分别为AB 、AC 的中点,∴BC ∥DF ,∵BC ⊄平面PDF ,∴BC ∥平面PDF ,故A 正确;在正四面体中,∵E 为BC 中点,易知BC ⊥PE ,BC ⊥AE ,∴BC ⊥平面PAE ,∵DF ∥BC ,∴DF ⊥平面PAE ,故B 正确;∵DF ⊥平面PAE ,DF ⊂平面PDF ,∴平面PDF ⊥平面PAE ,∴C 正确,故选D.5.若某棱锥的三视图(单位:cm)如图所示,则该棱锥的体积等于( )A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 3[答案] B[解析] 由三视图知该几何体是四棱锥,可视作直三棱柱ABC -A 1B 1C 1沿平面AB 1C 1截去一个三棱锥A -A 1B 1C 1余下的部分.∴VA -BCC 1B 1=VABC -A 1B 1C 1-VA -A 1B 1C 1=12×4×3×5-13×(12×4×3)×5=20cm 3.6.如图,在棱长为5的正方体ABCD -A 1B 1C 1D 1中,EF 是棱AB 上的一条线段,且EF =2,Q 是A 1D 1的中点,点P 是棱C 1D 1上的动点,则四面体P -QEF 的体积( )A .是变量且有最大值B .是变量且有最小值C .是变量且有最大值和最小值D .是常量[答案] D[解析] 因为EF =2,点Q 到AB 的距离为定值,所以△QEF 的面积为定值,设为S ,又因为D 1C 1∥AB ,所以D 1C 1∥平面QEF ;点P 到平面QEF 的距离也为定值,设为d ,从而四面体P -QEF 的体积为定值13Sd .7.(xx·湖北文,5)l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线,q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 [答案] A[解析] 若p :l 1,l 2是异面直线,由异面直线的定义知,l 1,l 2不相交,所以命题q :l 1,l 2不相交成立,即p 是q 的充分条件;反过来,若q :l 1,l 2不相交,则l 1,l 2可能平行,也可能异面,所以不能推出l 1,l 2是异面直线,即p 不是q 的必要条件,故应选A.8.已知正方形ABCD 的边长为22,将△ABC 沿对角线AC 折起,使平面ABC ⊥平面ACD ,得到如右图所示的三棱锥B -ACD .若O 为AC 边的中点,M 、N 分别为线段DC 、BO上的动点(不包括端点),且BN =CM .设BN =x ,则三棱锥N -AMC 的体积y =f (x )的函数图象大致是( )[答案] B[解析] 由条件知,AC =4,BO =2,S △AMC =12CM ·AD =2x ,NO =2-x ,∴V N -AMC =13S△AMC·NO =23x (2-x ),即f (x )=23x (2-x ),故选B. 二、填空题9.(xx·天津文,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.[答案]8π3[解析] 考查1.三视图;2.几何体的体积.该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,圆柱与圆锥的底面半径都是1,所以该几何体的体积为2×13×π×1+π×2=8π3(m 3).三、解答题10.如图,已知AD ⊥平面ABC ,CE ⊥平面ABC ,F 为BC 的中点,若AB =AC =AD =12CE .(1)求证:AF ∥平面BDE ; (2)求证:平面BDE ⊥平面BCE .[证明] (1)取BE 的中点G ,连接GF 、GD . 因为F 是BC 的中点,则GF 为△BCE 的中位线. 所以GF ∥EC ,GF =12CE .因为AD ⊥平面ABC ,CE ⊥平面ABC , 所以GF ∥EC ∥AD .又因为AD =12CE ,所以GF =AD .所以四边形GFAD 为平行四边形.所以AF ∥DG . 因为DG ⊂平面BDE ,AF ⊄平面BDE , 所以AF ∥平面BDE .(2)因为AB=AC,F为BC的中点,所以AF⊥BC.因为EC∥GF,EC⊥平面ABC,所以GF⊥平面ABC.又AF⊂平面ABC,所以GF⊥AF.因为GF∩BC=F,所以AF⊥平面BCE.因为AF∥DG,所以DG⊥平面BCE.又DG⊂平面BDE,所以平面BDE⊥平面BCE.11.底面为正多边形的直棱柱称为正棱柱.如图,在正三棱柱ABC-A1B1C1中,AA1=AB=a,F、F1分别是AC、A1C1的中点.(1)求证:平面AB1F1∥平面C1BF;(2)求证:平面AB1F1⊥平面ACC1A1.[分析] (1)在正三棱柱中,由F、F1分别为AC、A1C1的中点,不难想到四边形AFC1F1与四边形BFF1B1都为平行四边形,于是要证平面AB1F1∥平面C1BF,可证明平面AB1F1与平面C1BF中有两条相交直线分别平行,即BF∥B1F1,FC1∥AF1.(2)要证两平面垂直,只要在一个平面内能够找到一条直线与另一个平面垂直,考虑到侧面ACC1A1与底面垂直,F1为A1C1的中点,则不难想到B1F1⊥平面ACC1A1,而平面AB1F1经过B1F1,因此可知结论成立.[解析] (1)在正三棱柱ABC-A1B1C1中,连FF1,∵F、F1分别是AC、A1C1的中点,∴B1B綊A1A綊FF1,∴B1BFF1为平行四边形.∴B1F1∥BF,又AF綊C1F1,∴AF1C1F为平行四边形,∴AF1∥C1F,又∵B1F1与AF1是两相交直线,∴平面AB1F1∥平面C1BF.(2)在正三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1,又B1F1⊥A1C1,A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而平面AB1F1经过B1F1,∴平面AB1F1⊥平面ACC1A1.12.在正方体ABCD-A1B1C1D1中,点F、H分别为A1D、A1C的中点.(1)证明:A1B∥平面AFC;(2)证明:B1H⊥平面AFC.[分析] 分别利用线面平行的判定定理和线面垂直的判定定理证明.[解析] (1)连BD交AC于点E,则E为BD的中点,连EF,又F为A1D的中点,所以EF∥A1B.又EF⊂平面AFC,A1B⊄平面AFC,∴A1B∥平面AFC.(2)连接B1C,在正方体中四边形A1B1CD为长方形,∵H为A1C的中点,∴H也是B1D的中点,∴只要证B1D⊥平面ACF即可.由正方体性质得AC⊥BD,AC⊥B1B,∴AC⊥平面B1BD,∴AC⊥B1D.又F为A1D的中点,∴AF⊥A1D,又AF⊥A1B1,∴AF⊥平面A1B1D.∴AF⊥B1D,又AF、AC为平面ACF内的相交直线.∴B1D⊥平面ACF.即B1H⊥平面ACF.13.如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)若G为AD边的中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.[解析] (1)证明:∵在菱形ABCD中,∠DAB=60°,G为AD的中点,得BG⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴BG⊥平面PAD.(2)证明:连接PG,因为△PAD为正三角形,G为AD的中点,得PG⊥AD.由(1)知BG⊥AD,∵PG∩BG=G,PG⊂平面PGB,BG⊂平面PGB,∴AD⊥平面PGB.∵PB⊂平面PGB,∴AD⊥PB.(3)解:当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF,则在△PBC中,FE∥PB,在菱形ABCD 中,GB∥DE,∴AD⊥EF,AD⊥DE.∴AD⊥平面DEF,又AD⊂平面ABCD,∴平面DEF⊥平面ABCD.14.(xx·河北名校名师俱乐部模拟)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC⊥BC,E在线段B 1C1上,B1E=3EC1,AC=BC=CC1=4.(1)求证:BC⊥AC1;(2)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.[分析] (1)执果索因:要证BC⊥AC1,已知BC⊥AC,故只需证BC⊥平面ACC1A1,从而BC⊥AA1,这由已知三棱柱中AA1⊥平面ABC可证.(2)假定存在,执果索因找思路:假定AC 上存在点F ,使EF ∥平面A 1ABB 1,考虑矩形C 1CBB 1中,E 在B 1C 1上,且B 1E =3EC 1,因此取BC 上点G ,使BG =3GC ,则EG =B 1B ,从而EG ∥平面A 1ABB 1,因此平面EFG ∥平面A 1ABB 1,由面面平行的性质定理知FG ∥AB ,从而AF FC =BGGC=3,则只需过G 作AB的平行线交AC 于F ,F 即所探求的点.[解析] (1) ∵AA 1⊥平面ABC, BC ⊂平面ABC , ∴BC ⊥AA 1.又∵BC ⊥AC ,AA 1,AC ⊂平面AA 1C 1C ,AA 1∩AC =A , ∴BC ⊥平面AA 1C 1C ,又AC 1⊂平面AA 1C 1C ,∴BC ⊥AC 1.(2)解法一:当AF =3FC 时,FE ∥平面A 1ABB 1.理由如下:在平面A 1B 1C 1内过E 作EG ∥A 1C 1交A 1B 1于G ,连接AG .∵B 1E =3EC 1,∴EG =34A 1C 1,又AF ∥A 1C 1且AF =34A 1C 1,∴AF ∥EG 且AF =EG ,∴四边形AFEG 为平行四边形,∴EF ∥AG , 又EF ⊄平面A 1ABB 1,AG ⊂平面A 1ABB 1, ∴EF ∥平面A 1ABB 1.解法二:当AF =3FC 时,FE ∥平面A 1ABB 1.理由如下:在平面BCC1B1内过E作EG∥BB1交BC于G,连接FG.∵EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,∴EG∥平面A1ABB1.∵B1E=3EC1,∴BG=3GC,∴FG∥AB,又AB⊂平面A1ABB1,FG⊄平面A1ABB1,∴FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面A1ABB1.∵EF⊂平面EFG,∴EF∥平面A1ABB1.15.已知四棱锥P-ABCD的直观图和三视图如图所示,E是PB的中点.(1)求三棱锥C-PBD的体积;(2)若F是BC上任一点,求证:AE⊥PF;(3)边PC上是否存在一点M,使DM∥平面EAC,并说明理由.[解析] (1)由该四棱锥的三视图可知,四棱锥P-ABCD的底面是边长为2和1的矩形,侧棱PA ⊥平面ABCD ,且PA =2,∴V C -PBD =V P -BCD =13×12×1×2×2=23.(2)证明:∵BC ⊥AB ,BC ⊥PA ,AB ∩PA =A .∴BC ⊥平面PAB ,∴BC ⊥AE ,又在△PAB 中,∵PA =AB ,E 是PB 的中点, ∴AE ⊥PB .又∵BC ∩PB =B ,∴AE ⊥平面PBC ,且PF ⊂平面PBC ,∴AE ⊥PF . (3)存在点M ,可以使DM ∥平面EAC . 连接BD ,设AC ∩BD =O ,连接EO . 在△PBD 中,EO 是中位线. ∴PD ∥EO ,又∵EO ⊂平面EAC ,PD ⊄平面EAC , ∴PD ∥平面EAC ,∴当点M 与点P 重合时,可以使DM ∥平面EAC .。
高三数学基础训练试卷
一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √252. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴是()A. x = 2B. x = 1C. x = 3D. x = 03. 若log2(3x - 1) = 3,则x的值为()A. 2B. 3C. 4D. 54. 下列函数中,单调递增的函数是()A. y = 2x - 1B. y = -x^2 + 1C. y = x^3D. y = 1/x5. 在三角形ABC中,若a=3,b=4,c=5,则sinA的值为()A. 3/5B. 4/5C. 5/3D. 5/46. 已知复数z = 1 + i,则|z|^2的值为()A. 2B. 3C. 4D. 57. 下列方程中,无解的是()A. x + 2 = 0B. x^2 - 4 = 0C. x^2 + 4 = 0D. x^2 - 1 = 08. 若等差数列{an}的前n项和为Sn,且a1=1,S5=15,则公差d的值为()A. 2B. 3C. 4D. 59. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (-2,-3)D. (-3,-2)10. 已知等比数列{an}的前n项和为Sn,且a1=1,S4=15,则公比q的值为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 已知函数f(x) = 2x - 3,则f(-1)的值为______。
12. 在等差数列{an}中,若a1=2,公差d=3,则第10项an的值为______。
13. 已知复数z = 3 - 4i,则|z|^2的值为______。
14. 在三角形ABC中,若∠A=60°,a=5,b=8,则c的值为______。
15. 若等比数列{an}的前n项和为Sn,且a1=1,S5=31,则公比q的值为______。
2021年高三数学考前练习13
2021年高三数学考前练习13参考公式:列联表随机变量,其中为样本容量一、选择题:本大题共12个小题,每小题5分,共60分。
1.若复数,则在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.复数z =-3+i2+i的共轭复数是 ( )A.2+iB.2-iC.-1+iD.-1-i 3.用演绎法证明函数是增函数时的小前提是 ( ) A .增函数的定义B .函数满足增函数的定义C .若,则D.若,则4.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第个“金鱼”图需要火柴棒的根数为 ( )A .B .C .D .5.若复数z 满足为虚数单位),则为A.3+5iB.3-5iC.-3+5i D.-3-5i 6.数列1,2,2,3,3,3,4,4,4,4,…中第100项的值是 ( )A.10B.13C.14D.1007.若是关于的实系数方程的一个复数根,则( )…①②③A. B. C. D.8.用反证法证明:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①,这与三角形内角和为相矛盾,不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角、、中有两个直角,不妨设,正确顺序的序号为()A.①②③B.③①②C.①③②D.②③①。
9.在独立性检验中,统计量有两个临界值:3.841和6.635;当>3.841时,有95%的把握说明两个事件有关,当>6.635时,有99%的把握说明两个事件有关,当3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了xx人,经计算的=20.87,根据这一数据分析,认为打鼾与患心脏病之间()A.有95%的把握认为两者有关B.约有95%的打鼾者患心脏病C.有99%的把握认为两者有关D.约有99%的打鼾者患心脏病10.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出空间下列结论:①垂直于同一条直线的两条直线互相平行②垂直于同一个平面的两条直线互相平行③垂直于同一条直线的两个平面互相平行④垂直于同一个平面的两个平面互相平行则正确的结论是()A.①②B.②③C.③④D.①④11.若定义运算:,例如,则下列等式不能成立....的是()A.B.C.D.()12.已知数列的前项和为,且,,可归纳猜想出的表达式为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.设为虚数单位,则复数。
高中数学专题练习13 结构不良题(三角函数与解三角形)(新高考地区专用)解析版
结构不良题(三角函数与解三角形)结构不良题型是新课改地区新增加的题型,所谓结构不良题型就是给出一些条件,另外的条件题目中给出三个,学生可以从中选择1个或者2个作为条件,进行解题。
一、题型选讲题型一、研究三角形是否存在的问题例1、【2020年新高考全国Ⅰ卷】在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分.例2、在①cos cos 2c B b C +=,②πcos()cos 2b Cc B -=,③sin cos B B +=充在下面问题中,若问题中的三角形存在,求ABC △的面积;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角A ,B ,C 的对边分别为a ,b ,c ,且π6A =,______________,4b =?注:如果选择多个条件分别解答,按第一个解答计分.题型二、运用正余弦定理研究边、角及面积例3、【2020年高考北京】在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.例4、在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC .如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .例5、在①,②,③这三个条件中任选一个,补充在下面的横线上,并加以解答.已知的内角,,所对的边分别是,,,若______.(1)求角;(2)若,求周长的最小值,并求出此时的面积.b a =2sin tan b A a B =()()sin sin sin ac A c A B b B -++=ABC A B C a b c B 4a c +=ABC ABC例6、现给出两个条件:①2c -3b =2a cos B ,②(2b -3c )cos A =3a cos C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,________. (1)求A ;(2)若a =3-1,求△ABC 周长的最大值.例7、在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满()(sin sin )sin )b a B A c B C -+=-. (1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC 的面积.题型三、考查三角函数的图像与性质 例8、在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x 图象关于原点对称;②向量()3sin ,cos 2m x x ωω=,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π.(1)若02πθ<<,且sin 2θ=,求()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间.二、达标训练1、已知有条件①(2)cos cos b c A a C -=,条件②45cos 2cos 2=+⎪⎭⎫⎝⎛+A A π;请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的题目.在锐角△ABC 中,内角A , B , C 所对的边分别为a , b,c , a =7, b +c =5, 且满足.(1) 求角A 的大小; (2) 求△ABC 的面积.(注:如果选择多个条件分别解答,按第一个解答计分.)2、在①a=√2,②S=C 2cosB , ③C=π3这三个条件中任选-一个,补充在下面问题中,并对其进行求解.问题:在∆A BC 中,内角A, B,C 的对边分别为a,b,c,面积为S , √3bcosA=acosC+ccosA ,b=1,____________,求 c 的值. 注:如果选择多个条件分别解答,按第一个解答计分。
2023高考数学13题
2023高考数学13题2023高考数学13题一、选择题题目一:已知函数f(x)在闭区间[0,2]上连续,则函数f(x)在该区间上必定__【填入一个选项】__。
A. 可导B. 可微C. 有极值D. 无极值题目二:若抛物线y = ax^2 + bx + c的图像过点(1,4),则a、b和c的关系是__【填入一个选项】__。
A. a = 4, b = -8, c = 5B. a = 4, b = -2, c = 1C. a = -4, b = 8, c = -5D. a = -4, b = -2, c = -1题目三:函数f(x) = |cosx|与函数g(x) = sin^2x的图像在区间[-π/2,π/2]上的相交点个数为__【填入一个选项】__。
A. 0B. 1C. 2D. 3题目四:若等差数列{an}满足a_n = 3^n + 2^n,则a_3 + a_4 = __【填入一个选项】__。
A. 26B. 30C. 32D. 36二、填空题题目五:已知等差数列{an}的前5项和为15,前15项和为75,则a_1 = __【填入一个数字】__。
【提示:前n项和公式S_n = (a_1 + a_n) * n / 2】题目六:已知函数f(x)在区间(-∞,3)上递减,在区间(3, +∞)上递增,则f(x)的单调性变化点为__。
【提示:单调性变化的点即函数图像的拐点】题目七:已知变量x > 0,方程2^log2x = log8x + 1的解为__【填入一个数字】__。
题目八:已知函数f(x) = (x^2 - 1)(x - a)在区间(-∞,0)上单调递增,在区间(0,+∞)上单调递减,则实数a的取值范围是__【填入一个区间】__。
三、解答题题目九:已知等差数列{an}的前5项和为20,前10项和为60,求a_1和d,并写出数列的通项公式。
题目十:已知函数f(x) = x^3 + ax^2 + bx + 9在区间[-1,1]上严格单调递增,求实数a和b的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学考前基础练习(13)
一、填空题:本大题共14小题,每小题5分,共70分。
1.设⎭
⎬⎫⎩⎨⎧
-∈3,21,
1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为 . 2.倡导绿色重庆,崇尚健康生活。
为打造绿色重庆,某林业部门引进一批小叶榕、松柏、梧桐三种树苗,其数量之比为2:3:5 ,现用分层抽样方法抽出一个容量为n 的样本,如果抽出的样本中小叶榕树苗有80棵。
那么此样本的容量n = 。
3.若复数()
()2563i z m m m =-++-是纯虚数,则实数m = .
4.已知集合{
}
2
2log (2)A y y x ==-,{
}
2
20B x x x =--≤, 则A B I = .
5.若)12
7cos(,31)12sin(π
απ
α+=+
则的值为 . 6.椭圆2
2
1x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为 。
7.已知||1a =r ,||2b =r ,且()a a b ⊥-r r r ,则向量a r 与向量b r
的夹角是 。
8.在区间(0,1)中随机地取出两个数,则两数之和小于6
5
的概率是_________ 9.2m =-是直线(2)30m x my -++=与直线30x my --=垂直的 条件. 10.设,m n 是两条不同的直线,βα,是两个不重合的平面,给定下列四个命题,其中为真
命题的是
①m n m n αα⊥⎫⇒⊥⎬⊂⎭;②a a ααββ⊥⎫⇒⊥⎬⊂⎭;③//m m n n αα⊥⎫⇒⎬
⊥⎭
;④////m n m n αβαβ⊂⎫
⎪
⊂⇒⎬⎪⎭ 11.已知抛物线)0(22
>=p px y 焦点F 恰好是双曲线22
221x y a b
-=的右焦点,且两条曲线
交点的连线过点F ,则该双曲线的离心率为 。
12.若关于x 的方程22240(0)x x
m x -⋅+=<有解,则实数m 的取值范围
是 。
13.为了得到函数()2cos (3sin cos )1f x x x x =-+的图象,需将函数2sin 2y x =的图象向右平移
ϕ(0ϕ>)个单位,则ϕ的最小值为 .
14.若直线1y kx =+与圆2
2
40x y kx my +++-=交于M 、N 两点,且M 、N 关于直
线0x y +=对称,则不等式组1000kx y kx my y -+≥⎧⎪
-≤⎨⎪≥⎩
表示的平面区域的面积
是 。
1、6;
2、400;
3、21n -;
4、16;
5、1.6;
6、2ln n +;
7、]5,1[;
8.1-;9、充分不必要条件;10、①④;11、]6,1[-;12、()5,+∞;13、12
π
;14.226-
二、解答题:本大题共2小题,共计30分,
15.如图,已知三棱柱111ABC A B C -的侧棱与底面垂直,90BAC ∠=o
,M ,N 分别是
11A B ,BC 的
中点.
(1)证明:1AB AC ⊥;
(2)判断直线MN 和平面11ACC A 的位置关系,并加以证明.
证明:(Ⅰ)因为1CC ⊥平面ABC ,又AB ⊂平面ABC ,所以1CC ⊥AB .(2分) 由条件90BAC ∠=o
,即AC ⊥AB , 且1AC CC C =Ç,(3分)
所以AB ⊥平面11ACC A .(5分)
又1AC ⊂平面11ACC A ,
所以1AB AC ⊥. (7分)
(Ⅱ)MN ∥平面11ACC A .证明如下:
设AC 的中点为D , 连接DN ,1A D .(9分)
因为D ,N 分别是AC ,BC 的中点, 所以DN //=12
AB .(10分)
又1A M =
12
11A B ,11A B //=AB , 所以1A M //=
DN . 所以四边形1A DNM 是平行四边形.
A
B
B 1
C
C 1
A 1
M
N
D A
B
B 1
C C 1 A 1
M N
所以1A D ∥MN . (13分) 因为1A D ⊂平面11ACC A ,MN ⊄平面11ACC A , 所以MN ∥平面11ACC A . (14分)
16.数列}{
n a 是首项14a =的等比数列,且3S ,2S ,4S 成等差数列, (1)求数列}{
n a 的通项公式; (2)若2log n n b a =,设n T 为数列⎭
⎬⎫⎩⎨⎧+11n n b b 的前n 项和,若n T ≤1n b λ+对一切*
n N
∈恒成立,求实数 λ的最小值。
解:(1)当1q =时,32412816S S S ===,,,不成等差数列。
(2分)
当1q ≠时,234111(1)(1)(1)
2111a q a q a q q q q
---=+--- ,
∴2342q q q =+ , ∴2
20q q +-=,∴2q =- (5分)
∴11
4(2)(2)n n n a -+=-=- (6分)
(2)122log log (2)1n n n b a n +==-=+
11111
(1)(2)12
n n b b n n n n +==-++++ 11111111233412222(2)
n n T n n n n =
-+-+⋅⋅⋅⋅⋅⋅+-=-=++++ (10分) n T ≤1n b λ+ ,∴
2(2)
n
n +≤(2)n λ+ (11分)
∴λ≥
2
2(2)n
n +
又
2
1
42(2)2(4)n n n n =+++≤112(44)16=+ , ∴λ的最小值为1
16
(14分)。