必修四(三角函数,平面向量,三角恒等变换)
高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案
tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =
高中数学必修四三角函数PPT课件
01
02
03
04
第一象限
正弦、余弦、正切均为正。
第二象限
正弦为正、余弦为负、正切为 负。
第三象限
正弦、余弦均为负、正切为正。
第四象限
正弦为负、余弦为正、正切为 负。
02 三角函数诱导公 式与变换
诱导公式及其应用
诱导公式的基本形式
01
通过角度的加减、倍角、半角等变换,得到三角函数的等价表
达式。
诱导公式的推导
02
正切函数的周期为$pi$,即$tan(x + kpi) = tan x$,其中$k in Z$。
三角函数的奇偶性
正弦函数是奇函数, 即$sin(-x) = -sin x$。
正切函数是奇函数, 即$tan(-x) = -tan x$。
余弦函数是偶函数, 即$cos(-x) = cos x$。
三角函数在各象限的符号
三角恒等变换
和差化积、积化和差等公式及应用
三角函数的图像与性质
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
三角恒等变换的应用: 证明等式、化简表达式 等
余弦定理及其应用
余弦定理的公式表达 在任意三角形ABC中,有$a^2 = b^2 + c^2 - 2bccos A$,以及相应的其他两个式子。
余弦定理的推导 通过向量的数量积和投影进行推导。
余弦定理的应用 用于求解三角形的边和角,尤其在已知三边或两边及夹角 的情况下。同时,也可用于判断三角形的形状(锐角、直 角或钝角)。
三角函数三角恒等变换知识点总结
高中数学苏教版必修4 三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。
若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。
(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或 与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示:①象限角:第一象限角: ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ;(5)由α的终边所在的象限,通过 来判断2α所在的象限。
来判断3α所在的象限(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl=||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。
注意钟表指针所转过的角是负角。
(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αs in ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ; 如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。
注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(∈x ,x sin ,x tan ,x 的大小关系:。
高中数学必修四 第三章三角恒等变换 3.2.1三角恒等变换
<
0.
∴tan
������ 2
=
−
1-cos������ 1+cos������
=
−
1-
3 3
1+
3 3
=
−
2-
3
=−
1 2
8-4
3
=
−
1 2
( 6- 2)2 =
22
6.
解法二:
用
tan
������ 2
=
1-cos������ sin������
来处理
∵α 为第四象限角,∴sin α<0.
∴sin α=−
(2)y=sin
x(cos
x-sin
x)+
1 2
=sin
xcos
x-sin2x+
1 2
=
1 2
sin
2x−
1-cos2������ 2
+
1 2
=
1 2
sin
2x+
1 2
cos
2x−
1 2
+
1 2
22
2
= 2 2 sin2������ + 2 cos2������
2
π
= 2 sin 2������ + 4 .
������ 2
的值为
()
A.
6 3
B.
−
6 3
C.
±
6 3
D.
±
3 3
解析:∵α∈(0,π),∴
������ 2
∈
0,
π 2
,
∴cos
������ 2
数学必修四目录
数学必修四目录
第一章三角函数
第一节任意角与弧度制
任意角的概念与表示弧度制的引入与意义角度制与弧度制的换算终边相同的角的集合
第二节任意角三角函数
三角函数的定义三角函数在各象限的符号三角函数线及其性质三角函数的基本关系式
第三节诱导公式与图象
诱导公式的推导与应用三角函数的图象及其性质利用图象求解三角不等式
第四节三角函数的性质
三角函数的周期性三角函数的奇偶性三角函数的单调性三角函数的最值与零点
第五节函数模型应用
三角函数在实际问题中的应用三角函数模型的建立与求解
第二章平面向量
第一节平面向量概念
向量的定义与表示向量的模与方向共线向量与共面向量
第二节向量的线性运算
向量的加法与减法向量的数乘向量共线的充要条件
第三节向量的基本定理
平面向量基本定理的表述平面向量基本定理的应用
第四节平面向量数量积
向量数量积的定义与性质向量数量积的运算律向量夹角与垂直的判定
第五节平面向量应用
向量在几何问题中的应用向量在物理问题中的应用
第三章三角恒等变换
第一节两角和差公式
两角和差公式的推导两角和差公式的应用
第二节恒等变换应用
利用恒等变换化简三角式利用恒等变换证明三角恒等式恒等变换在解决实际问题中的应用
本目录涵盖了数学必修四的主要内容,包括三角函数、平面向量以及三角恒等变换等知识点。
通过学习这些内容,同学们可以进一步加深对三角函数和平面向量的理解,提高解决实际问题的能力。
在学习过程中,应注重理解概念和性质,掌握运算技巧和方法,并通过大量的练习来巩固和提高学习效果。
必修4 数学 三角函数2——三角恒等变换
高中数学 必修4———三角恒等变换一、知识归纳1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式:(1)sin 22sin cos ααα=. (2)21sin 2(sin cos )ααα±=± (3)2222cos2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=).(4)万能公式:a 、()sin cos αααϕA +B =+,其中tan ϕB =A . b 、22tan sin 21tan ααα=+;221tan cos 21tan ααα-=+;22tan tan 21tan ααα=- 【类型题】2.若ABC △的内角A 满足322sin =A ,则=+A A cos sin ( ) A .315 B .315- C .35 D .35- 3.函数1)12(sin )12(cos )(22-++-=ππx x x f 是( )A .奇函数B .偶函数C .奇函数且偶函数D .既不是奇函数也不是偶函数4.若412sin =α,且)24(ππα,∈,则ααsin cos -的值是( ) A .23 B .43 C .23- D .43- 5.已知31tan =α,21tan =β,则)2tan(βα+等于( ) A .34 B .3 C .31 D .2- 9.函数x x x f cos 3sin )(-=([]π,0∈x )的单调递增区间是 。
高中数学知识章节分布
必修一 第二章基本初等函数
第三章函数的应用
第一章空间几何体
必修二 第二章点、直线、平面之间的位置关系
第三章直线与方程 第四章圆与方程
第一章算法初步
必修三 第二章统计
第三章概率 第一章三角函数
必修四第二章平面向量
第三章三角恒等变换 第一章解三角形
必修四第二章平面向量平面22向..23量平的面基向本量定的理线及性坐运标算表示
第三章三角恒等变换
2.4 平面向量的数量积
2.5 平面向量应用举例
第一章解三角形应用111举...123 例正实弦习定作理业和余弦定理
必修五 第二章数列等差22数..23列等的差前数项列和 n
第三章导数及其应用
3.1 不等关系与不等式
33..23
3.4
一元二次不等式及其解法 一元二次不等式(组)与简单的线性规划问题
基本不等式:ab
1.1 命题及其关系
111...234
a+b 2
充分条件与必要条件 简单的逻辑连接词 全称量词与存在量词
2.3 抛物线
第一章导数及其应用
( 理) 选修2-2第二章推理与证明
第三章数系的扩充与复数的引入
第一章计数原理
( 理) 选修2-3第二章随机变量及其分布
第三章统计案例
选修几4-1何证明选讲
选修坐4-4标系与参数方程
选修不4-5等式选讲
第一讲相似三角形的判定及有关性质 第二讲直线与圆的位置关系 第三讲圆锥曲线性质的探讨
第三章不等式
最新人教版高二数学必修4电子课本课件【全册】
小结
最新人教版高二数学必修4电子课 本课件【全册】
复习参考题
最新人教版高二数学必修4电子课 本课件【全册】
第二章 平面向量
最新人教版高二数学必修4电子课 本课件【全册】
阅读与思考 振幅、周期、频 率、相位
最新人教版高二数学必修4电子课 本课件【全册】
1.6 三角函数模型的简单应用
最新人教版高二数学必修4电子 课本课件【全册】目录
0002页 0042页 0088页 0125页 0179页 0771页 0846页 0977页 1009页 1029页 1094页 1136页 1179页 1234页 1305页 1330页
第一章 三角函数 1.2 任意角的三角函数 1.3 三角函数的诱导公式 探究与发现 函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ 信息技术应用 阅读与思考 振幅、周期、频率、相位 小结 第二章 平面向量 阅读与思考 向量及向量符号的由来 2.3 平面向量的基本定理及坐标表示 2.5 平面向量应用举例 小结 第三章 三角恒等变换 信息技术应用 利用信息技术制作三角函数表 小结 后记
第一章 三角函数
最新人教版高二数学必修4电子课 本课件【全册】
1 .1 任意角和弧度制
最新人教版高二数学必修4电子课 本课件【全册】
1.2 任意角的三角函数
最新人教版高二数学必修4电子课 本课件【全册】
阅读与思考 三角学与天文学
最新人教版高二数学必修4电子课 本课件【全册】
探究与发现 利用单位圆中的 三角函数线研究正弦函数、余
弦函数的性质
最新人教版高二数学必修4电子课 本课件【全册】
信息技术应用
高中数学必修四部分重要公式汇总(三角,向量)
高中数学必修四部分重要公式汇总(三角,向量)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中数学必修四部分重要公式汇总(三角,向量)一、三角函数诱导公式1.sin(A+2kπ)=sinA cos(A+2kπ)=cosA tan(A+2kπ)=tanA2.sin(π+A)=-sinA cos(π+A)=-cosA tan(π+A)=tanA3.sin(-A)=-sinA cos(-A)=cosA tan(-A)=-tanA4.sin(π-A)=sinA cos(π-A)=-cosA tan(π-A)=-tanA5.sin(π/2-A)=cosA cos(π/2-A)=sinA6.sin(π/2+A)=cosA cos(π/2+A)=-sinA7.sin(3π/2-A)-cosA cos(3π/2-A)=-sinA8.sin(3π/2+A)=-cosA cos(3π/2+A)=sinA二、平面向量公式1、线性运算①a+b=b+a②(a+b)+c=a+(b+c) ③λ(μa)=(λμ)a. ④(λ+μ)a=λa+μa.⑤λ(a±b)=λa±λb⑥a,b共线→b=λa2、坐标运算,其中a(x1,y1), b(x2,y2)①a+b=( x1+x2,y1+y2) ②a-b=( x1-x2,y1-y2) ③λa=(λx1,λy1)④点A(a,b),点B(c,d),则向量AB=(c-a,b-d)⑤点A(a,b),点B(c,d),则向量BA=(a-c,b-d)3、数量积运算①a*b=∣a∣*∣b∣*cosθ②a*b=b*a (交换律)③(λ*a)*b=λ*(a*b) =a* (λ*b)(结合律,注意向量间无结合律)④(a±b)*c=a*c±b*c(分配律)⑤若a*(b-c)=0,则b=c或a垂直于(b-c)⑥(a±b)2=a2±2a*b+b2 ⑦(a+b)*(a-b)=a2-b2⑧a(x1,y1), b(x2,y2),则a*b=x1x2+y1y2,∣a∣2 =x2+y2,∣a∣=√x2+y2 a垂直于b→x1x2+y1y2=0;一般地,a与b夹角θ满足如下条件:cosθ=a*b/∣a∣*∣b∣=(x1x2+y1y2)/(√x12+y12)*(√x22+y22)三、三角恒等变换公式1.cos(A-B)=cosA*cosB+sinA*sinBcos(A+B)=cosA*cosB-sinA*sinB导出:cos((A+B)/2)=cos(A-B/2)*cos(A/2-B)+sin(A-B/2)*sin(A/2-B) 2.sin(A-B)=sinA*cosB-cosA*sinBsin(A+B)=sinA*cosB+cosA*sinB3.tan(A-B)=tanA-tanB/1+tanA*tanBtan(A+B)=tanA+tanB/1-tanA*tanB4.sin(2A)=2*sinA*cosA5.cos(2A)=cos2A-sin2A=1-2*sin2A=2*cos2A-16.tan(2A)=2*tanA/1-tan2A 其中456公式可由123公式推导出。
北师大版高中数学必修4第三章《三角恒等变形》三角函数的积化和差与和差化积
22
第三课时 习题课
三角函数是中学数学的一个很重要的学习内容,这二章(第 三章与第四章)从介绍三角函数的定义、性质、图象开始逐 步深入,学习的进程高潮迭起,特别是从和、差、倍、半角
的三角函数直到三角函数的和差化积与积化和差,既充分揭
示了三角函数的内在关系,且每组公式又都有它自身的使用
范围,另外三角函数这块内容又是学习其他数学分支的重要
完整版课件ppt
6
以上这四个公式的特征是把三角函数的积的形式转化为三角函数的和、 差的形式,我们把上述公式称为三角函数的积化和差公式. 积化和差公式的功能可以把三角函数的一种形式(积的形式)转化为另一 种形式(和差的形式),这种转化可以使得一些我们无法解决的问题变成 可能解决的问题,它们在三角式的变换中有很重要的作用.现在请同学 们先翻开课本P.227,先看看这段课文,特别是注意公式的函数,函 数名、角的形式等特征,记好这四个公式(五分钟阅读,让学生记忆).
完整版课件ppt
24
(当然也可以把它们视为二个三角函数的积做积化和差.) 作了如下处理后,即成为三角函数一次式的和差了,自然 做和差化积.
若又注意到本题的结构,以下解法也是可以考虑的. 原式=(sin20°+sin40°)2-sin20°·cos50° =[2sin30°cos10°]2-sin20°·cos50°
工具,在函数研究、立体几何、代数及解析几何中都有广泛
的应用,学好三角函数是学好其他数学分支的重要基础.由
于三角公式相当多,所以记忆和应用就显得十分重要,安排
两节习题课的目的,就是希望通过练习及比较,使学生能熟
练掌握进行三角恒等变换的一般方法.
(一)复习和差化积与积化和差公式 (二)作业评讲 1.求cos20°+cos100°+cos140°.
必修四-第三章-三角恒等变换
必修四 第三章 三角恒等变换 3.1.1 两角差的余弦公式 一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础. 二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等. 三、教学设想:(一)导入:问题1:我们在初中时就知道2cos 452=,3cos 302=,由此我们能否得到()cos15cos 4530?=-=大家可以猜想,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-=(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示。
思考1:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)思考2:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的? (2)怎样利用向量的数量积的概念的计算公式得到探索结果?两角差的余弦公式:βαβαβαsin sin cos cos )cos(⋅+⋅=- (三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值. 解:分析:把75、15构造成两个特殊角的和、差.()231cos 75cos 4530cos 45cos30sin 45sin 302222=+=-=⨯-⨯=()231cos15cos 4530cos 45cos30sin 45sin 30222=-=+=⨯=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活运用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值. 解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===- 又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===- 所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 点评:注意角α、β的象限,也就是符号问题.思考:本题中没有),2ππα⎝⎛∈,呢?(四)练习:1.不查表计算下列各式的值:︒︒+︒︒20sin 80sin 20cos 80cos 1)(︒+︒15sin 2315cos 212)(解:︒︒+︒︒20sin 80sin 20cos 80cos 1)( 2160cos )2080cos(=︒=︒-︒=2.教材P127面1、2、3、4题(五)小结α、β的象限,也就是符号问题,学会灵活运用. (1)牢记公式.S S C C C ⋅+⋅=-)(βα(2)在“给值求值”题型中,要能灵活处理已、未知关系. (六)作业:《习案》作业二十九3.1.2 两角和与差的正弦、余弦、正切公式(一) 一、教学目标理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用. 二、教学重、难点1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用. 三、教学设想: (一)复习式导入:(1)大家首先回顾一下两角差的余弦公式:()cos cos cos sin sin αβαβαβ-=+.(2)cos sin =α?(二)新课讲授问题:由两角差的余弦公式,怎样得到两角差的正弦公式呢? 探究1、让学生动手完成两角和与差正弦公式.()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-+=-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦sin cos cos sin αβαβ=+.()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦探究2、让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ+++==+-.探究3、我们能否推倒出两角差的正切公式呢?()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-==⎡⎤⎣⎦--+探究4、通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢?(分式分子、分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ++=-.注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈5、将)(βα+S 、)(βα+C 、)(βα+T 称为和角公式,)(βα-S 、)(βα-C 、)(βα-T 称为差角公式。
高中数学必修四三角恒等变换题型归纳及训练题
三角恒等变换一、知识概括:1.两角和与差的三角函数公式2.二倍角公式: sin 2α=2sin αcos α; tan 2α=2tan α1-tan 2α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;3.公式的变形与应用(1)两角和与差的正切公式的变形tan α+tan β=tan(α+β)(1-tan αtan β); tan α-tan β=tan(α-β)(1+tan αtan β).(2)降幂公式:sin 2α=1-cos 2α2;cos 2α=1+cos 2α2.二、方法归纳总结:1.三角函数式的化简遵循的三个原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”.(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.三、典例剖析:题型一、【公式顺用、逆用、变用】例1、sin 75= ; cos15= ; 2、sin 20°cos 10°-cos 160°sin 10°=( )A .-32 B.32 C .-12 D.123.设sin 2sin ,(,)2παααπ=-∈,则tan 2α的值是________.4、若3tan 4α=,则2cos 2sin 2αα+= ( ) (A)6425 (B) 4825 (C) 1 (D)1625专题二:【凑角应用】例3、已知0<β<π4<α<34π,135)43sin(,53)4cos(=+=-βπαπ,求)sin(βα+的值.注:常见的配角技巧:α=2·α2;α=(α+β)-β;α=β-(β-α);α=12[(α+β)+(α-β)];β=12[(α+β)-(α-β)];π4+α=π2-()4πα-变式1、若0<α<π2,π2<β<3π2,14cos(),cos(),43425ππβα+=-=则cos()2βα+=________.变式2、已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______.题型三、【三角恒等变换的综合运用】1.已知函数()22sin sin 6f x x x π⎛⎫=--⎪⎝⎭,R x ∈ (I)求()f x 最小正周期;(II)求()f x 在区间[,]34ππ-上的最大值和最小值.2.已知函数()sin(),4f x A x x R π=+∈,且53()122f π=. ①求A 的值; ②若f (θ)+f (-θ)=32,(0,)2πθ∈,求3()4f πθ-3.已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值.三角恒等变形课后训练题1.cos 24cos36cos66cos54︒︒︒︒-的值为 ( )A. 0B. 12C.D. 12-2. =+-)12sin 12(cos )12sin12(cosππππ( )A. 23-B. 21-C. 21D.23 3.设1tan 2,1tan xx +=-则sin 2x 的值是 ( )A. 35B. 34-C. 34D. 1-4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( )A. 47-B. 47C. 18D. 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是 ( )A. 3365B.1665C. 5665D. 63656.)4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是 ( )A. 725-B. 2425-C. 2425D. 7257.cos 23x x a +=-中,a 的取值域范围是 ( )A. 2521≤≤aB. 21≤aC. 25>aD. 2125-≤≤-a 8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( )A.1010 B. 1010- C. 10103 D. 10103-9. 函数sin22x xy =的图像的一条对称轴方程是 ( ) A. x =113π B. x =53π C. 53x π=- D. 3x π=-10.在ABC ∆中,tan tan tan A B A B +=,则C 等于 ( )A.3π B. 23π C. 6π D. 4π11.若βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于 . 12. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = . 13. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为 .14. 关于函数()cos2cos f x x x x =-,下列命题:①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像; ④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 .(注:把你认为正确的序号都填上)三、解答题:15.在ABC ∆中,已知的值求sinC ,135B c ,53cosA ==os .16.已知αβαβαπαβπsin2,53)(sin ,1312)(cos ,432求-=+=-<<<.17. 已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.18已知tan α=2,tan β=-13,其中0<α<π2,π2<β<π.(1)求tan(α-β)的值;(2)求α+β的值.19.已知函数)0)(6sin(2)(>-=ωπωx x f 的最小正周期为π6(1)求)0(f (2)设56)23(,1310)23(0,2,2,0=+=+⎥⎦⎤⎢⎣⎡-∈⎥⎦⎤⎢⎣⎡∈πβπαπβπαf f ,求)cos(βα+的值.20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。
高中数学必修四第三章三角恒等变换
必修四 第三章:三角恒等变换【知识点梳理】:考点一:两角和、差的正、余弦、正切公式两角差的余弦:cos()cos cos sin sin αβαβαβ-=+ 两角和的余弦:()cos cos cos sin sin αβαβαβ+=- 两角和的正弦:()sin αβ+sin cos cos sin αβαβ=+ 两角差的正弦:()sin sin cos cos sin αβαβαβ-=- 两角和的正切:()tan tan tan 1tan tan αβαβαβ++=-两角差的正切:()tan tan tan 1tan tan αβαβαβ--=+注意:对于正切,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.【典型例题讲解】:例题1.已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.例题2.利用和、差角余弦公式求cos 75、cos15的值。
例题3.已知()sin αβ+=32,)sin(βα-=51,求βαtan tan 的值。
例题4.cos13计算sin43cos 43-sin13的值等于( )A .12B .33C .22D .32例题5.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.例题6.已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____例题7.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 225(1) 求tan()αβ+的值; (2) 求2αβ+的值。
例题8.设ABC ∆中,tan A tan B Atan B +=,sin Acos A =,则此三角形是____三角形【巩固练习】练习1. 求值(1)sin 72cos 42cos72sin 42-; (2)cos 20cos70sin 20sin 70-;练习2.0sin 45cos15cos 225sin15⋅+⋅的值为(A ) -2 1(B ) -2 1(C )2 (D )2练习3.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.13练习4. 已知α,β为锐角,1tan 7α=,sin 10β=,求2αβ+.考点二:二倍角公式及其推论:在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形 式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.【典型例题讲解】例题l. ) A .2sin15cos15 B .22cos 15sin 15- C .22sin 151-D .22sin 15cos 15+例题2..已知1sin cos 5θθ+=,且432πθπ≤≤,则cos 2θ的值是 .例题3.化简0000cos10cos 20cos30cos 40••• 例题4.23sin 702cos 10-=-( )A .12B .2C .2D例题5.已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.例题6.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。
必修四三角函数和三角恒等变换知识点及题型分类总结
必修四三角函数和三角恒等变换知识点及题型分类总结三角函数知识点总结1、任意角: 正角:;负角:;零角:; 2、角得顶点与重合,角得始边与重合,终边落在第几象限,则称为第几象限角、第一象限角得集合为第二象限角得集合为第三象限角得集合为第四象限角得集合为终边在轴上得角得集合为终边在轴上得角得集合为终边在坐标轴上得角得集合为3、与角终边相同得角得集合为4 4 、已知就就是第几象限角,确定所在象限得方法: : 先把各象限均分等份, , 再从轴得正半轴得上方起, , 依次将各区域标上一、二、三、四, , 则原来就就是第几象限对应得标号即为终边所落在得区域、5、叫做弧度、6、半径为得圆得圆心角所对弧得长为,则角得弧度数得绝对值就就是、7、弧度制与角度制得换算公式:8 、若扇形得圆心角为, 半径为,弧长为, 周长为,面积为, 则l=、S=9、设就就是一个任意大小得角,得终边上任意一点得坐标就就是,它与原点得距离就就是,则,,、10、三角函数在各象限得符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正、11、三角函数线:、12 、同角三角函数得基本关系:(1);(2); ; (3) )13、三角函数得诱导公式: ,,、,,、,,、,,、,、,、口诀: : 奇变偶不变, , 符号瞧象限、重要公式⑴;⑵;⑶;⑷; ⑸(); ⑹()、二倍角得正弦、余弦与正切公式: ⑴、(2)(,)、⑶、公式得变形: :, 辅助角公式,其中、14、函数得图象平移变换变成函数得图象、15、函数得性质:① 振幅:; ② 周期:; ③ 频率:; ④ 相位:; ⑤ 初相:、16、图像正弦函数、余弦函数与正切函数得图象与性质:三角函数题型分类总结一.求值1、===2、(1)7 (07 全国Ⅰ) ) 就就是第四象限角,,则(2)(09 北京文)若,则、(3)(09 全国卷Ⅱ文)已知△ABC 中,,则、(4) 就就是第三象限角,,则==3 3 、(1))((7 07 陕西) ) 已知则=、(2)(04全国文)设,若,则=、(3)(06 福建)已知则=4 4 (0 0 7重庆) )下列各式中,值为得就就是()(A) (B)(C)(D) 5、(1 )(0 7福建) ) =(2)(06陕西)=。
高中数学必修四 第三章三角恒等变换 3.2.2三角恒等变换的应用
π 4
= 1 求得a,再将函数 f(x)的解析式化为
f(x)=Asin(ωx+φ)的形式后求出最小值;(2)先利用(1)求出函数 f(x)在
R 上的单调递增区间,再与
0,
π 2
取交集.
题型一 题型二 题型三
解:(1)∵������
π 4
= 1,
∴sin2
π 4
+
������sin
π 4
cos
π 4
即sin 2α= 12,
∵α 是锐角,∴2α=30°或 150°,即 α=15°或 75°.
故所求角为 15°或 75°.
题型一 题型二 题型三
题型三
易错辨析
易错点 记错特殊角的三角函数值致错
【例 3】 当函数 y=sin x+ 3cos ������, ������∈R 取最大值时,求自变量
x 的取值集合 S.
A.sin 2x
B.
2sin
������
+
π 4
C.
2sin
������-
π 4
D. sin
������-
π 4
解析:原式 =
2
2 2
sin������-
2 2
cos������
=
2sin
������-
π 4
.
答案:C
【做一做 2】 函数 y=sin 2xcos 2x 的最小值等于
.
解析:y=
1 2
,
sin
π 6
=
23.
正解:y=sin x+
3cos x=2
1 2
sin������
+
必修四 三角恒等变换
思考一下,已知 cos ,怎么求
方法1:用
cos sin 1
2 2
sin
恒等式,
代入 cos( ) 的公式后发现及其复杂, 思考一下 其他方法? cos 和 sin 之间还有什么转化法?
sin( ) 1 cos 2 ( )
方法二: sin cos 2
经典例题:1、y=asinx+bcosx的性质探究
2、角、二倍角、半角之间的转换问题
• • • •
两角差的余弦公式 两角和与两角差的余弦、正弦、正切公式 二倍角的余弦、正弦、正切公式 简单的三角恒等变换
• 回顾一下在单位圆中的三角函数的定义
锐角是这么定义正弦、余弦、正切,那么钝角和直角 以及任意角呢? 在单位圆上定义
sin AOB y
( x, y )
cos AOB x
2 2
2 cos 1 1 2 sin
2
2
变形: cos2 1 cos2
2
sin 1 cos2 2
2
tan tan 2 tan tan 2 tan 1 tan tan 1 tan 2
简单的三角恒等变换 看word
tan( )
sin( ) cos( )
sin cos cos sin cos cos sin sin
tan tan 1 tan tan
tan( )
sin( ) cos( )
sin( ) cos 2 cos ( ) 2 cos cos( ) sin sin( ) 2 2 cos sin sin cos
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必 修 四 第一章 三角函数★★ 课本内容解读一、任意角和弧度制: (一)任意角:1. 任意角的定义(旋转定义法):正角 零角 负角2. 象限角与轴线角:3. 终边相同角的集合:终边落在射线上(过原点)的角的集合: 终边落在直线上(过原点)的角的集合: 终边落在坐标轴上的角的集合: 4. 基本题型:判断给定角的终边的位置:如角219500'-的终边位置。
在给定范围内找与已知角终边相同的角: 如在00360~720-内找出终边与角0225-相同的所有角。
(二)弧度制:1. 弧度制定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角。
2. 弧度数公式:rl =α3. 弧度与角度之间的互化:rad rad 1801,18010ππ=⎪⎭⎫ ⎝⎛= 4. 0180~0之间特殊角的弧度数与角度数:0000000000360,270,180,150,135,120,90,60,45,305. 扇形的面积公式:lR S 21=,与rl =α结合后有三种形式6. 基本题型:角度数与弧度数的互化弧度数公式及扇形面积公式的应用二、任意角的三角函数: (一) 任意角的三角函数:1. 任意角的三角函数的定义:坐标定义法:sin cos tan y x y rrxα=α=α=2. 三个三角函数的符号(从定义出发):一全(正),二正弦(正),三正切(正),四余弦(正)3. 公式一:sin(2)sin ,cos(2)cos ,tan(2)tan ,()k k k k Z α+π=αα+π=αα+π=α∈ 4.三个三角函数线:正弦线、余弦线、正切线 5. 同角三角函数的基本关系:22sin sin cos 1,tan cos αα+α==αα(变形)6.基本题型:利用定义求一些特殊角的三个三角函数值:如:求35π的正弦、余弦与正切值给出角终边上的点或其他信息求三个三角函数值: 三角函数符号的应用: 作出已知角的三角函数线:利用三角函数线比较三角函数值的大小与解简单的三角不等式: 利用同角三角函数的基本关系进行简单的计算、化简与证明: (二)三角函数的诱导公式: 1. 基本公式:公式一:πα2⋅+k 与α的三个三角函数值的关系:sin(2)sin cos(2)cos tan(2)tan ,()k k k k Z α+π=αα+π=αα+π=α∈公式二:απ+与α的三个三角函数值的关系: sin()sin cos()cos tan()tan π+α=-απ+α=-απ+α=α公式三:α-与α的三个三角函数值的关系:sin()sin cos()cos tan()tan -α=-α-α=α-α=-α公式四:απ-与α的三个三角函数值的关系: sin()sin cos()cos tan()tan π-α=απ-α=-απ-α=-α以上公式特点:函数名不变,符号看象限 公式五:απ-2与α的正余弦的关系:sin()cos cos()sin 22ππ-α=α-α=α公式六:απ+2与α的正余弦的关系:sin()cos cos()sin 22ππ+α=α+α=-α以上公式特点:函数名改变,符号看象限对上述公式要求理解证明方法,牢记公式 2. 基本题型:利用基本公式进行计算与化简 三、三角函数的图像与性质1.正弦曲线、余弦曲线,五点作图法及换元五点法R ,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭3. 函数()()()()sin 0,0sin 0,0y A x A y A x A =+≠>=+≠>及ωϕωωϕω的图象与性质:(1)图象:可用换元五点法或图像变换作图;(2)性质:用整体代换思想结合相应基本三角函数求解,主要包括以下几个方面:周期,最值(相应自变量的值),单调区间,对称轴方程及对称轴点坐标等。
4. 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为m in y ;当2x x =时,取得最大值为max y ,则()m a x m i n 12y y A =-,()m ax m in 12y y B =+,()21122x x x x T =-<.5.图像变换:平移变换(水平方向与竖直方向),周期变换,振幅变换①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 6.三角函数模型的简单应用:第二章 平面向量★ 湖北高考要求★ 课本内容解读一、平面向量的基本概念1.平面向量的定义:既有大小,又有方向的量叫做向量2.平面向量的表示:几何表示——带方向的线段;字母表示:a或AB 3.向量的模:向量的长度()a AB或、零向量(0 )、单位向量(e )4.相等向量:长度相等且方向相同的向量 5.共线向量:即平行向量 二、平面向量的线性运算 1.向量加法运算及其几何意义:向量加法的代数表示(a b +),向量加法的三角形法则与平行四边形法则(合成与分解)2.向量减法运算及其几何意义:向量减法的代数表示(a b - ),向量减法的三角形法则(合成与分解)3.向量不等式:a b a b +≤+(注意取“=”条件)4.向量数乘运算及其几何意义:向量数乘定义:实数λ与向量a 的积,记作a λ向量数乘规定:(1)a a λλ=;(2)当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相相反;当0λ=时,0a λ=向量数乘运算律:()();();()a a a a a a b a b λμλμλμλμλλλ=+=++=+5.向量共线定理:向量(0)a a ≠与b 共线⇔存在实数λ,使b a λ= (用于判断向量共线与多点共线等)三、平面向量的基本定理及坐标表示1.平面向量基本定理:如果12e e、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数12λλ、,使1122a e e λλ=+。
不共线向量12e e 、叫做一组基底 2.向量夹角(定义及范围)、向量垂直(夹角090,记作a b ⊥3.平面向量的正交分解及坐标表示:(,)a x y =4.平面向量的坐标运算:设1122(,),(,),a x y b x y R λ==∈加法:1212(,)a b x x y y +=++ ;减法:1212(,)a b x x y y -=-- ;数乘:(,)a x y λλλ=; 向量坐标与两个端点坐标的关系:若1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--5.平面向量共线的坐标表示:已知1122(,),(,),a x y b x y ==则a 与b ⇔1221x y x y =四、平面向量的数量积1.两个向量的数量积(内积):cos a b a b θ=(其中θ是两个向量的夹角) 2.向量的投影:向量a 在向量b 方向上的投影为cos a θ3.数量积的性质:220;==-==a b a b a b a b a b a b a b a b a a a a a ⊥⇔=当与同向时,;当与反向时,特别:或4.数量积的运算律:已知向量a b c 、、和实数λ,则()()()()a b b aa b a b a b a b c a c b cλλλ===+=+5.平面向量数量积的坐标表示:设1122(,),(,)a x y b x y ==,则121222211121200co s a b x x y y a a x y a b a b x x y y a ba b θ=+==+⊥⇔=⇔+===五、平面向量应用举例 1.平面几何中的向量方法 2.向量在物理中的应用举例第三章 三角恒等变换★ 湖北高考要求★ 课本内容解读一、两角和与差的正弦、余弦、正切公式 1.基本公式:()sin()sin cos cos sin ()S α+βα+β=αβ+αβ ()sin()sin cos cos sin()S α-βα-β=αβ-αβ ()cos()cos cos sin sin ()C α+βα+β=αβ-αβ()cos()cos cossin sin ()C α-βα-β=αβ+αβ()tan tan tan()()1tan tan T α+βα+βα+β=-αβ()tan tan tan()()1tan tan T α-βα-βα-β=+αβ2.重要结论: sin cos )sin cos )44x x x x x x ππ+=+-=-sin 2sin()sin 2sin()33x x x x x x ππ+=+-=-sin cos )tan b a x b x x a+=+φφ=1tan 1tan tan()tan()1tan 41tan 4+θπ-θπ=+θ=-θ-θ+θ3.重要方法:对公式会顺用、逆用、变形用、构造用(辅助角公式);整体变角思想(角的拆分与拼凑) 二、二倍角的正弦、余弦、正切公式22222222sin 22sin cos cos 2cos sin 2cos 112sin 2tan tan 21tan S C T αααα=ααα=α-α=α-=-ααα=-α三、简单的三角变换 将次扩角公式:2221cos 21cos 21cos 2sin ,cos,tan222221cos 2α-αα+αα-α===+α半角公式: 和差化积公式:。