相似图形经典
图形的相似经典测试题及答案解析
∵四边形 ABCD 是正方形
∴AE=BF,AD=AB,∠EAD=∠B= 90
∴△ADE≌△BAF
∴∠ADE=∠BAF,∠AED=∠BFA
∵∠DAO+∠FAB= 90 ,∠FAB+∠BFA= 90 ,
∴∠DAO=∠BFA,
∴∠DAO=∠AED
∴△AOD∽△EAD
∴ AO AE 1 DO AD 2
故选:D
A.1.5cm 【答案】B 【解析】 【分析】 【详解】
B.1.2cm
C.1.8cm
D.2cm
由图 2 知,点 P 在 AC、CB 上的运动时间时间分别是 3 秒和 4 秒,
∵点 P 的运动速度是每秒 1cm ,
∴AC=3,BC=4.
∵在 Rt△ABC 中,∠ACB=90°,
∴根据勾股定理得:AB=5.
AE / / AB,
DAE DAB ,
则
AD 2 AD
SADE SABD
,即
AD 2 AD 1
2
9 8
9 16
,
解得 AD 3 或 AD 3 (舍), 7
故选: B . 【点睛】 本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的 性质、相似三角形的判定与性质等知识点.
3.如图,将 ABC 沿 BC 边上的中线 AD 平移到 ABC 的位置.已知 ABC 的面积为 16,阴影部分三角形的面积 9.若 AA 1,则 AD 等于( )
A.2
【答案】B 【解析】
B.3
C.4
D. 3 2
【分析】
由 S△ABC=16、S△A′EF=9 且 AD 为 BC 边的中线知
SADE
解得:{
5.
图形的相似练习题
图形的相似练习题1、什么是图形的相似?答:图形的相似是指两个图形形状相同,大小可以不同。
2、什么是相似三角形?答:相似三角形是形状相同,大小不等的两个三角形。
二、基础应用1、下面的两个三角形是相似三角形吗?如果是,请说明理由。
答:是,因为它们的对应角相等,对应边成比例。
2、已知一个三角形的三边长分别为3、4、5,请找出与它相似的三角形的三边长。
答:与它相似的三角形的三边长可以为6、8、10或者9、12、15等等。
三、提升练习1、在一张纸上画一个正方形,然后在纸上画一个与它相似的正方形。
验证这两个正方形是相似的。
答:在纸上画出两个正方形,通过测量它们的边长和角度来验证它们是相似的。
2、如果一个三角形与一个正方形是相似的,那么这个三角形的三边长有什么特点?答:如果一个三角形与一个正方形是相似的,那么这个三角形的三边长必须满足勾股定理。
四、拓展探究1、如果两个多边形分别是n边形和m边形,且它们是相似的,那么它们的边数有什么关系?答:如果两个多边形分别是n边形和m边形,且它们是相似的,那么它们的边数必须满足n:m=m:n。
2、如果两个图形是相似的,那么它们的其他属性(如面积、周长等)有什么关系?答:如果两个图形是相似的,那么它们的面积的比等于边长的比的平方,周长的比等于边长的比。
一、引言图形的相似是几何学中的一个重要概念,对于理解几何形状的性质和解决几何问题有着至关重要的作用。
为了确保学生对这个概念有深入的理解,我们进行了一次图形的相似单元测试。
以下是对本次测试的详细介绍。
二、测试内容本次测试旨在评估学生对图形相似的定义、性质和判定方法的理解和应用能力。
测试问题涵盖了基本概念、性质理解、判定方法以及应用题等多个方面。
1、基本概念:测试首先要求学生识别和理解图形相似的定义,包括相似图形的定义和性质。
2、性质理解:测试问题涉及图形相似的性质,如相似三角形的对应角相等、对应边成比例等。
3、判定方法:测试包括一些判定图形相似的方法,如利用角度、利用比例等。
相似图形的知识点总结(16篇)
相似图形的知识点总结(16篇)篇1:相似图形的知识点总结相似图形的知识点总结知识点1.概念把形状相同的图形叫做相似图形。
(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.知识点2.比例线段对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.知识点3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.知识点4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.知识点5.相似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形相似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.知识点6.相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.(4)射影定理篇2:相似图形相似图形教学交流课教案:第四章相似图形教学目标:1、知道线段比的概念。
相似图形经典例题讲解
∴ ∠FEA=∠FDB=90°, ∠AFE =∠BFD (对顶角相等) F E
∴ △FEA ∽ △ FDB,
B
∴
DC
2.已知:如图,∠ABD=∠C,AD=2, AC=8,求AB.
解:∵ ∠ A= ∠ A,∠ABD=∠C,
∴ △ABD ∽ △ACB ,
∴ AB : AC=AD : AB,
B
∴ AB2 = AD ·AC.
∴ ∠ADC =∠CDB =90°.∵ AD CD,
CD BD A D
B
∴△ADC ∽△CDB,∴ ∠ACD =∠B,
∴ ∠ACB =∠ACD +∠BCD =∠B +∠BCD = 90°.
方法总结:解题时需注意隐含条件,如垂直关系,三角形的高等.
如图,已知在△ABC 中,∠C=90°,D、E 分别
BC 2
∴ 6 3 ,
l3
EF 2
解得EF=4.
∴DF=DE+EF=6+4=10.
利用平行线分线段成比例定理及推论求线段长度
例 如图,在△ABC中,DE∥BC,AC=4 ,AB=3,
EC=1.求AD和BD.
解:∵AC=4,EC=1, ∴AE=3.
∵ DE∥BC,
∴ AD AE .
AB AC
∴AD=2.25,
A F C
如图所示,如果D,E,F分别在OA,OB,OC上,且
DF∥AC,EF∥BC.
求证:OD∶OA=OE∶OB
证明: ∵ DF∥AC,
OD OA
OF . OC
∵ EF∥BC,
OF OE , OC OB
OD OE . OA OB
如图,已知菱形 ABCD 内接于△AEF,AE=5cm,
图形的相似经典测试题
图形的相似经典测试题一、选择题1.如图,点A,B是双曲线18yx=图象上的两点,连接AB,线段AB经过点O,点C 为双曲线kyx=在第二象限的分支上一点,当ABCV满足AC BC=且:13:24AC AB=时,k的值为().A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF =∠OAE ,∴△CFO ∽△OEA , ∴2()COF AOE S OCS OA∆∆=, ∵CA :AB =13:24,AO =OB ,∴CA :OA =13:12,∴CO :OA =5:12,∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0,∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.2.如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且∠CDE =30°.设AD =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】C【解析】【分析】 根据题意可得出4,23,AB BC ==4,23,BD x CE y =-=-然后判断△CDE ∽△CBD ,继而利用相似三角形的性质可得出y 与x 的关系式,结合选项即可得出答案.【详解】解:∵∠A =60°,AC =2, ∴4,23,AB BC ==4,23,BD x CE y =-=-在△ACD 中,利用余弦定理可得CD 2=AC 2+AD 2﹣2AC •AD cos ∠A =4+x 2﹣2x ,故可得242CD x x =-+,又∵∠CDE =∠CBD =30°,∠ECD =∠DCB (同一个角),∴△CDE ∽△CBD ,即可得,CE CD CD CB= 即222342,2342yx x x x --+=-+ 故可得: 23343.633y x x =-++ 即呈二次函数关系,且开口朝下. 故选C .【点睛】考查解直角三角形,相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.3.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,则下列结论正确的是( )A .AD DE DB BC= B .BF EF BC AB = C .AE EC FC DE = D .EF BF AB BC= 【答案】C【解析】【分析】 根据相似三角形的判定与性质逐项分析即可.由△ADE ∽△ABC ,可判断A 的正误;由△CEF∽△CAB ,可判定B 错误;由△ADE ~△EFC ,可判定C 正确;由△CEF ∽△CAB ,可判定D 错误.【详解】解:如图所示:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∴△ADE ∽△ABC , ∴DE AD AD BC AB DB=≠, ∴答案A 错舍去;∵EF ∥AB ,∴△CEF ∽△CAB , CF EF BC A B B BF C=≠ ∴答案B 舍去∵∠ADE =∠B ,∠CFE =∠B ,∴∠ADE =∠CFE ,又∵∠AED =∠C ,∴△ADE ~△EFC , ∴AE DE EC FC=,C 正确; 又∵EF ∥AB , ∴∠CEF =∠A ,∠CFE =∠B ,∴△CEF ∽△CAB , ∴EF CE FC BF AB AC BC BC==≠, ∴答案D 错舍去;故选C .【点睛】 本题主要考查相似三角形的判定与性质,熟练掌握两平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似是解题的关键.4.如图,矩形ABCD 中,AB =8,AD =4,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连接CF ,则△CEF 面积的最小值是( )A .16B .15C .12D .11【答案】B【解析】【分析】 过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE== G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+=故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.5.如图,已知在平面直角坐标系中,点O 是坐标原点,AOB V 是直角三角形,90AOB ∠=︒,2OB OA =,点B 在反比例函数2y x =上,若点A 在反比例函数k y x=上,则k 的值为( )A .12B .12-C .14D .14- 【答案】B【解析】【分析】通过添加辅助线构造出相似三角形,再根据相似三角形的性质可求得1,2x A x ⎛⎫-⎪⎝⎭,然后由点的坐标即可求得答案.【详解】解:过点B 作BE x ⊥于点E ,过点A 作AF x ⊥于点F ,如图:∵点B 在反比例函数2y x =上 ∴设2,B x x ⎛⎫ ⎪⎝⎭∴OE x =,2BE x=∵90AOB ∠=︒ ∴90AOD BOD ∠+∠=︒∴90BOE AOF ∠+∠=︒∵BE x ⊥,AF x ⊥∴90BEO OFA ∠=∠=︒∴90OAF AOF ∠+∠=︒∴BOE OAF ∠=∠∴BOE OAF V V ∽∵2OB OA = ∴12OF AF OA BE OE BO === ∴121122OF BE x x =⋅=⋅=,11222x AF OE x =⋅=⋅= ∴1,2x A x ⎛⎫- ⎪⎝⎭ ∵点A 在反比例函数k y x=上 ∴12x k x=- ∴12k =-. 故选:B【点睛】本题考查了反比例函数与相似三角形的综合应用,点在函数图象上则点的坐标就满足函数解析式,结合已知条件能根据相似三角形的性质求得点A 的坐标是解决问题的关键.6.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ∆与ADM ∆关于AM 所在直线对称,将ADM ∆按顺时针方向绕点A 旋转90°得到ABF ∆,连接EF ,则cos EFC ∠的值是 ( )A 171365B 61365C 71525D .617【答案】A【解析】【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明AEH EMG V :V ,则有13EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF∠=即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则90AHG MGE ∠=∠=︒,∵四边形ABCD 是正方形,∴3,90AD AB ABC C D ==∠=∠=∠=︒ ,∴四边形AHGD,BHEN,ENCG 都是矩形.由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=︒====,90AEH MEG EMG MEG ∴∠+∠=∠+∠=︒ ,AEH EMG ∴∠=∠,AEH EMG ∴V :V ,13EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+在Rt AEH V 中,222AH EH AE +=Q ,222(1)(3)3x x ∴++= , 解得45x =或1x =-(舍去), 125EH BN ∴==,65CG CD DG EN =-== . 1BF DM ==Q 175FN BF BN ∴=+=. 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=,17cos 1365FN EFC EF ∴∠==. 故选:A .【点睛】本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.7.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)【答案】D【解析】【分析】【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.8.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C 【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSSVV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°3∴13 BCOAODSSVV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S△AOD=2是解题关键.9.如果两个相似正五边形的边长比为1:10,则它们的面积比为()A.1:2 B.1:5 C.1:100 D.1:10【答案】C【解析】根据相似多边形的面积比等于相似比的平方,由两个相似正五边形的相似比是1:10,可知它们的面积为1:100.故选:C.点睛:此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.10.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)【答案】D【解析】试题分析:根据位似的性质,缩小后的点在原点的同侧,为(-2,1),然后求在另一侧为(2,-1).故选D考点:位似变换11.把Rt ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.扩大为原来的3倍B.缩小为原来的13C.扩大为原来的9倍D.不变【答案】D【解析】【分析】根据相似三角形的性质解答.【详解】三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的余弦值不变,故选:D.【点睛】此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.12.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则较大多边形的周长为 )A.48 cm B.54 cm C.56 cm D.64 cm【答案】A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:3.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=48.大多边形的周长为48cm.故选A.考点:相似多边形的性质.13.要做甲、乙两个形状相同(相似)的三角形框架,已知甲三角形框架三边的长分别为50 cm、60 cm、80 cm,乙三角形框架的一边长为20 cm,则符合条件的乙三角形框架共有().A.1种B.2种C.3种D.4种【答案】C【解析】试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm的边可以当最短边,最长边和中间大小的边.故选:C.点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.14.如图,四边形ABCD和四边形AEFG均为正方形,连接CF,DG,则DGCF=()A.23B.2C.33D.32【答案】B 【解析】【分析】连接AC和AF,证明△DAG∽△CAF可得DGCF的值.【详解】连接AC和AF,则2 AD AGAC AF==∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴2 DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.15.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.16.已知线段MN=4cm,P是线段MN的黄金分割点,MP>NP,那么线段MP的长度等于()A.(25+2)cm B.(25﹣2)cm C.(5+1)cm D.(5﹣1)cm 【答案】B【解析】【分析】根据黄金分割的定义进行作答.【详解】由黄金分割的定义知,51MPMN-=,又MN=4,所以,MP=25- 2. 所以答案选B.【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义是本题解题关键.17.如图,某河的同侧有A,B两个工厂,它们垂直于河边的小路的长度分别为2AC km=,3BD km=,这两条小路相距5km.现要在河边建立一个抽水站,把水送到A,B两个工厂去,若使供水管最短,抽水站应建立的位置为()A.距C点1km处B.距C点2km处C.距C点3km处D.CD的中点处【答案】B【解析】【分析】作出点A关于江边的对称点E,连接EB交CD于P,则PA PB PE PB EB+=+=,根据两点之间线段最短,可知当供水站在点P处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得 PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.18.如图,已知△ABC ,D 、E 分别在边AB 、AC 上,下列条件中,不能确定△ADE ∽△ACB 的是( )A .∠AED =∠BB .∠BDE +∠C =180° C .AD •BC =AC •DED .AD •AB =AE •AC【答案】C【解析】【分析】 A 、根据有两组角对应相等的两个三角形相似,进行判断即可;B :根据题意可得到∠ADE=∠C ,根据有两组角对应相等的两个三角形相似,进行判断即可;C 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可;D 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可.【详解】解:A 、由∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ;B 、由∠BDE+∠C=180°,∠ADE+∠BDE=180°,得∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ;C 、由AD•BC=AC•DE ,得不能判断△ADE ∽△ACB,必须两组对应边的比相等且夹角对应相等的两个三角形相似.D 、由AD•AB=AE•AC 得,∠A=∠A ,故能确定△ADE ∽△ACB ,故选:C .【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似(注意,一定是夹角); 有两组角对应相等的两个三角形相似.19.如图,已知AOB ∆和11A OB ∆是以点O 为位似中心的位似图形,且AOB ∆和11A OB ∆的周长之比为1:2,点B 的坐标为()1,2-,则点1B 的坐标为( ).A .()2,4-B .()1,4-C .()1,4-D .()4,2-【答案】A【解析】【分析】 设位似比例为k ,先根据周长之比求出k 的值,再根据点B 的坐标即可得出答案.【详解】设位似图形的位似比例为k则1111,,OA kOA OB kOB A B kAB ===△AOB Q 和11A OB △的周长之比为1:2111112OA OB AB OA OB A B ++∴=++,即12OA OB AB kOA kOB kAB ++=++ 解得2k =又Q 点B 的坐标为(1,2)-∴点1B 的横坐标的绝对值为122-⨯=,纵坐标的绝对值为224⨯=Q 点1B 位于第四象限∴点1B 的坐标为(2,4)-故选:A .【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.20.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为()A.9 B.12 C.14 D.18【答案】A【解析】【分析】如图,BC=2m,CE=12m,AB=1.5m,利用题意得∠ACB=∠DCE,则可判断△ACB∽△DCE,然后利用相似比计算出DE的长.【详解】解:如图,BC=2m,CE=12m,AB=1.5m,由题意得∠ACB=∠DCE,∵∠ABC=∠DEC,∴△ACB∽△DCE,∴AB BCDE CE=,即1.5212DE=,∴DE=9.即旗杆的高度为9m.故选A.【点睛】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.。
几何图形的相似
几何图形的相似几何图形的相似性是几何学中的一个重要概念。
当两个图形的形状相似,但大小不同的时候,我们可以说它们是相似的。
在这篇文章中,我们将探讨几何图形的相似性及其在实际生活中的应用。
一、相似三角形相似三角形是几何学中最常见的一种相似图形。
当两个三角形的对应角度相等,对应边的比例也相等的时候,我们可以说它们是相似的。
相似三角形的比例关系可以用以下公式表示:AB/DE = AC/DF = BC/EF = k其中,k为两个相似三角形的比例因子。
相似三角形的应用非常广泛。
例如在地图制图中,由于地球是一个近似于球体的物体,所以地图上的距离和角度会出现变形。
为了保持地理位置的准确性,我们需要用到相似三角形的原理来进行地图的缩放和校正。
二、相似多边形除了三角形,其他多边形也可以是相似的。
当两个多边形的对应角度相等,对应边的比例也相等的时候,我们可以说它们是相似的。
相似多边形的比例关系同样可以用上述相似三角形的公式表示。
相似多边形的相似性可以应用在很多实际问题中。
例如在建筑设计中,我们需要按照比例缩放建筑的模型以便于展示和评估。
相似多边形的原理可以帮助我们准确地进行缩放,并保持建筑的整体比例和形状。
三、相似图形的比例在相似图形中,对应边的比例是一个非常重要的概念。
对于相似三角形或多边形,我们可以通过对应边的比例来求解未知边的长度。
例如,在一个相似三角形中,如果我们知道两个对应边的比例和其中一个对应边的长度,我们就可以通过比例关系来计算其他对应边的长度。
这个原理在测量和定位中有很多应用,例如测量不可达区域的长度、计算山脉的高度等等。
四、相似图形的面积比除了边长的比例,相似图形的面积比也是一个重要的概念。
当两个图形相似的时候,它们的面积比等于边长比的平方。
例如,在一个相似三角形中,如果两个三角形的边长比为k,那么它们的面积比就为k²。
这个原理可以应用在计算面积缩放、制作模型等方面。
总结几何图形的相似性是几何学中的重要概念,它可以帮助我们理解和解决各种实际问题。
相似图形的比较与判断
相似图形的比较与判断一、相似图形的定义与性质1.1 相似图形的定义:在平面几何中,如果两个图形的形状相同,但大小不一定相同,那么这两个图形叫做相似图形。
1.2 相似图形的性质:(1)对应角相等:相似图形的对应角分别相等。
(2)对应边成比例:相似图形的对应边长成比例。
(3)面积比等于边长比的平方:相似图形的面积比等于它们对应边长比的平方。
二、相似图形的判定2.1 利用AA相似定理:如果两个三角形的两个对应角分别相等,那么这两个三角形相似。
2.2 利用AAA相似定理:如果两个三角形的所有对应角都相等,那么这两个三角形相似。
2.3 利用两角法:如果两个角分别相等,那么这两个三角形相似。
2.4 利用比例关系:如果两个三角形的对应边长成比例,那么这两个三角形相似。
三、相似图形的应用3.1 求解几何图形的面积:通过已知图形的面积和相似比,可以求解未知图形的面积。
3.2 求解几何图形的周长:通过已知图形的周长和相似比,可以求解未知图形的周长。
3.3 求解角度:利用相似三角形的对应角相等,可以求解未知角度。
3.4 求解边长:利用相似三角形的对应边成比例,可以求解未知边长。
四、特殊相似图形4.1 等边三角形的相似性:所有等边三角形都相似。
4.2 等腰三角形的相似性:等腰三角形的底角相等,所以等腰三角形相似。
4.3 矩形的相似性:矩形的对角线相等,所以矩形相似。
4.4 圆的相似性:所有圆都相似。
五、实际问题与案例分析5.1 物体放大与缩小:在实际生活中,物体的放大与缩小可以利用相似图形来解释。
5.2 地图绘制:地图绘制中,地理要素的表示可以通过相似图形来简化。
5.3 建筑设计:建筑设计中,可以通过相似图形来推算建筑物的尺寸和比例。
通过本章的学习,我们了解了相似图形的定义、性质和判定方法,以及相似图形在实际问题中的应用。
掌握相似图形的相关知识,可以帮助我们更好地解决生活中的几何问题,提高我们的空间想象能力和逻辑思维能力。
相似图形专题
相似图形基础知识回顾1.成比例线段:1、线段的比:如果选用同一长度单位量得两条线段AB,CD的长度分别为m 、n ,那么就说这两条线段的比nm CD AB =,其中线段AB ,CD 分别叫做这个线段比的前项和后项。
2、四条线段a 、b 、c 、d ,如果dc b a =,那么这四条线段叫做成比例线段,简称比例线。
3、比例的基本性质:dc b a = ,那么bc ad =;反过来,如果bc ad =(a,b,c,d 都不等于0),那么d c b a =。
4、如果dc b a =,那么d d c b b a ±=±。
5、如果)0(b a ≠+++===n d b n m d c ,那么ba n db mc =++++++ a 6、点C 把线段AB 分成两条线段AC 和BC (AC>BC )如果ACBC AB AC =,点C 叫做线段AB 的 黄金分割点,AC 与AB 的比叫做黄金比,即AC AB =21-5≈0.618 2.相似多边形:1、定义:各角对应相等,各边对应成比例的两个多边形叫做相似多边形2、性质:⑴相似多边形对应角相等,对应边成比例⑵相似多边形周长的比等于相似比,面积的比等于相似比的平方3.相似三角形:1、定义:如果两个三角形的三角对应相等,三边对应成比例,那么这两个三角形相似2、性质:⑴相似三角形的对应角相等,对应边成比例⑵相似三角形对应点的比、对应角平分线的比、对应边的中线都等于相似比 ⑶相似三角形周长的比等于相似比,面积的比等于相似比的平方判定:⑴基本定理:平行于三角形一边的直线和其它两边或两线相交,三角形与原三角形相似⑵两边对应成比例,且夹角相等的两个三角形相似⑶两角相等的两个三角形相似⑷三组对应边成比例的两个三角形相似4.位似:1、定义:如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时相似比又称为位似比。
相似三角形-基本知识点+经典例题
相似三角形-基本知识点+经典例题(完美打印版)知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)假如两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念(1)假如选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)在四条线段d c b a ,,,中,假如b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,假如说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =.②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,假如b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 现在有2b ad =。
(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即12AC BC AB AC ==简记为:长短=全长注:黄金三角形:顶角是360的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 差不多性质:注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b a d b c a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =⇔=. (4)合、分比性质:a c a b c d b d b d ±±=⇔=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a c c d a a b d c b a 等等. (5)等比性质:假如)0(≠++++====n f d b n m f e d c b a ,那么ba n f db m ec a =++++++++ . 注:①此性质的证明运用了“设k 法”(即引入新的参数k )如此能够减少未知数的个数,这种方法是有关比例运算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:b a f d b e c a f e d c b a f e d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b .知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAE AB AD EA EC AD BD EC AE DB AD ===或或 注: ①重要结论:平行于三角形的一边,同时和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.②三角形中平行线分线段成比例定理的逆定理:假如一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.B此定理给出了一种证明两直线平行方法,即:利用比例式证平行线. ③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD ∥BE ∥CF, 可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等. 注:平行线分线段成比例定理的推论: 平行线等分线段定理:两条直线被三条平行线所截,假如在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。
图形的相似经典测试题及答案
A.4B.8C.16D.24
【答案】C
【解析】
【分析】
延长根据相似三角形得到 ,再过点 作垂线,利用相似三角形的性质求出 、 ,进而确定点 的坐标,确定 的值.
【详解】
解:过点 作 ,垂足为 ,
是正方形,
5.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P与点B之间的距离为( )
A.1B. C.1或3D. 或5
【答案】D
【解析】
【分析】
分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得 ,可求BE,DE的长,由勾股定理可求PB的长.
【答案】C
【解析】
试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm的边可以当最短边,最长边和中间大小的边.
故选:C.
点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.
13.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则 =()
【详解】
解:在平行四边形ABCD中,
AB=CD,∠BAE=∠DCF,BC=DA,
∵E,F分别是边AD,BC的中点,
∴AE=CF,
∴△ABE≌△CDF,故①正确;
∵AD∥BC,
∴△AGE∽△CGB,△CHF∽△AHD,
∴AG∶CG=EG∶BG=AE∶CB,CH∶AH=CF∶AD,
∵E,F分别是边AD,BC的中点,
相似图形
点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形.国旗中的大星和小星;圆形,正方形.正三角形要点诠释:(1)相似图形就是指形状相同,但大小不一定相同的图形;(2)“全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等;2.相似三角形和相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.3. 比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.注意:两条线段的比就是它们的长度的比;比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致;两条线段的比值总是正数;)比例线段的判定:将所给的四条线段长度按大小顺序排列,若最长和最短两条线段之积与另两条线段之积相等,则说明四条线段成比例.下列四条线段不成比例的是()① a=2,b=,c=,d=;② a=,b=3, c=2,d=;③ a=4,b=6, c=5,d=10;④a=12,b=8, c=15,d=10.4.比例的基本性质:如果,那么.要点诠释:(1)叫做这个比例的项,叫做比例外项,叫做比例内项;(2)若a:b=b:c,则=ac(b称为a、c的比例中项).(1)合分比性质:如果,那么;在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这称为比例中的合比定理,这种性质称为合比性质。
用字母表达为:若a/b=c/d,则(a+b)/b=(c+d)/d(b≠0、d≠0)(2)等比性质:如果那么.1.已知四条线段a 、b 、c 、d 的长度,试判断它们是否成比例?①a =16 cm b =8 cm c =5 cm d =10 cm;②a =8 cm b =5 cm c =6 cm d =10 cm.2、已知a 、b 、c 、d 是成比例线段,且a =3㎝,b =2㎝,c =6㎝,求线段d 的长.3、已知d c b a ==3,b b a -=dd c -成立吗?4.下列各组中的四条线段成比例的是( ) A.a=2,b=3,c=2,d=3B.a=4,b=6,c=5,d=10C.a=2,b=5,c=23,d=15D.a=2,b=3,c=4,d=15.若ac=bd ,则下列各式一定成立的是( ) A.d c b a = B.c c b d d a +=+ C.c d ba =22 D.d a cd ab = 6.若2x -5y =0,则y ∶x =_____,x y x +=______. 7.若53=-b b a ,则ba =________. 8.现有三个数1,2,2,请你再添上一个数写出一个比例式 .9.在比例尺为1︰2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为 ___ m .10. 某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7.若由外校转入1人加入 乙队,则后来乙与丙的人数比为多少( ) A. 3:4 B. 4:5 C. 5:6 D. 6:711.已知a ∶b ∶c =4∶3∶2,且a+3b -3c=14. ①求a,b,c ; ②求4a -3b+c 的值.12.在△ABC 中,D 是BC 上一点,若AB=15 cm ,AC=10 cm ,且BD ∶DC=AB ∶AC ,BD -DC=2 cm ,求BC.13.已知a b b c c akc a b+++===,求k是的值.14已知: a:b:c=3:5:7且2a+3b-c=28, 求3a-2b+c的值. 15.已知:,求、的值16. 已知:,求的值17.已知,求的值。
图形的相似经典测试题含答案
【详解】
解: BCE BDA, CEB DEA
ADE∽B查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的
圆周角相等.
2.如果两个相似正五边形的边长比为 1:10,则它们的面积比为( )
A.1:2
B.1:5
C.1:100
D.1:10
【答案】C
∴∠DFG=∠A=90°,
在 Rt△ADG 和 Rt△FDG 中,
AD=DF DG=DG
,
∴Rt△ADG≌Rt△FDG(HL),故①正确;
设正方形 ABCD 的边长为 a,AG=FG=x,BG=a−x,
∵BE=EC,
∴EF=CE=BE= 1 a 2
∴GE= 1 a+x 2
由勾股定理得:EG2=BE2+BG2,
即:( 1 a+x)2=( 1 a)2+(a-x)2 解得:x= 1
2
2
3
∴BG=2AG,
故②正确; ∵BE=EF,
∴△BEF 是等腰三角形,易知△GED 不是等腰三角形,
∴△EBF 与△DEG 不相似,
故③错误; 连接 CF, ∵BE=CE,
∴BE= 1 BC, 2
∴S△BFC=2S△BEF. 故④错误, 综上可知正确的结论的是 2 个. 故选:B.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质.
9.如图,在 Rt△ABC 中,∠ACB=90°,CD⊥AB 于点 D,如果 AC=3,AB=6,那么 AD 的值为 ()
A. 3 2
B. 9 2
C. 3 3 2
【答案】A
【解析】
【分析】
【详解】
专题27.1 图形的相似(解析版)
专题27.1 图形的相似1.相似图形定义:形状相同的图形叫做相似图形。
2.相似多边形定义:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比。
3.性质相似多边形的对应角相等,对应边成比例。
【例题1】在如图所示的相似四边形中,求未知边x、y的长度和角α的大小.【答案】x=31.5,y=27,α=83°.【解析】∵两个四边形相似,它们的对应边成比例,对应角相等. ∴67418y x ==, ∴27,5.31==y x .︒=︒+︒+︒-︒=83)1178377(360α.【点拨】利用图形相似,对应边成比例,对应角相等的性质来进行解题。
【例题2】要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( )A .3cmB .4cmC .4.5cmD .5cm【答案】C .【解析】设另一个三角形的最长边长为xcm ,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm ,故选:C .【点拨】根据相似三角形的对应边成比例求解可得.【例题3】所有的正方形都相似吗?为什么?所有的矩形都相似吗?为什么?【答案】见解析。
【解析】所有的正方形都相似,因为正方形的每个角都是90°,因此对应角都相等,而每一个正方形的边长都相等,因此对应边成比例.所有的矩形不一定相似,虽然所有的矩形的角都相等,但对应的边不一定成比例,因此,矩形不一定相似.1. 图中的两个多边形相似吗?说说你的理由.【答案】见解析。
【解析】不相似.︒=︒-︒-︒-︒=∠587295135360D ,而︒=︒-︒-︒-︒=∠715995135360E ,不可能有“对应角相等”.2.已知图中的两个梯形相似,求出未知边x 、y 、z 的长度和βα∠∠、的度数.【答案】见解析。
31相似的图形
图3-2
图3-3
说一说
图3-4中的图形是相似图形吗?
(1)
(2) 图3-4
不是相似图形.因为它们 之间不是通过放大与缩小得 到的,即它们的形状不同.
(3)
动脑筋
如何画一个四边形,使它与图3-4的(1)中的 矩形相似?
图3-4(1)
图3-5
由于相似的图形是把原来的图形放大(或缩 小)得到的;因此可以把图3-4的(1)中的矩形的 长和宽都放大为原来的1.5倍;画出的矩形 ABCD就与原矩形相似,如图3-5.
解 旋转角为 356=0 72°,108°≠ 72°×n (n为正整数,且小于5),故选 B .
中考 试题
例2 如图6.2-2,在艺术字中,有些字母是中心对称图形.下面的5 个字母中,是中心对称图形的有( B ).
A.2个
B.3个
C.4个
D.5个
解 由中心对称图形的定义可知中间3个字母H、I、N 是中心对称图形,即中心对称的图形有3个.故选B.
练习
1. 举出生活中相似的图形的例子.
答:两张照片(如图)
2. 画一个菱形,使它与图3-4的(3)中的菱形相 似.(提示:先画菱形的两条对角线.)
图3-4(3)
中考 试题
例1 如图,该图形围绕自己的旋转中心,按下列角度旋转后,不
能与其自身重合的是(B ).
A.72°B.108°来自C.144°D.216°
本课节内容 3.1
相似的图形
探究
观察下列三组图,你可以从中得出什么信息?
图3-1
图3-2 图3-3
上述三组图,分别是将一幅图案经放大或 缩小得到的.
直观上,把一个图形放大(或缩小)得到的 图形与原图形是相似的.
图形的相似 知识归纳+真题解析
(4)平行于三角形一边的直线和其他两边(或延长线)相交,所构成的三角形与原三角形相 似. 3.相似三角形的性质 (1)相似三角形周长的比等于相似比. (2)相似三角形面积的比等于相似比的平方. (3)相似三角形对应高、对应角平分线、对应中线的比等于相似比. 4.相似多边形的性质 (1)相似多边形周长的比等于相似比. (2)相似多边形面积的比等于相似比的平方. 5.位似图形 (1)定义 两个多边形不仅相似,而且每组对应顶点所在直线相交于一点,这个点叫做位似中 心,对应边的比叫做位似比.位似是一种特殊的相似. (2)性质 (1)位似图形上的任意一对对应点到位似中心的距离的比等于位似比; (2)位似图形对应点的连线或延长线相交于 (3)位似图形对应边成比例; (4)位似图形对应角相等. 一 点;
a c b d
AC AB
4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 (二)1.相似图形定义:形状相同的图形称为相似图形.相似图形的性质:对应角相等, 对应边的比成比例. 2.相似三角形的判定 (1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似; (2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,且夹角夹角相等,那么 这两个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相 似;
AC AB
4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 ( 二 ) 1. 相 似 图 形 定 义 : 形 状 相 同 的 图 形 称 为 相 似 图 形 . 相 似 图 形 的 性 质 : 对 应 角 ,对应边的比 .
2.相似三角形的判定 (1)如果一个三角形的两角分别与另一个三角形的两角对应 似; (2)如果一个三角形的两条边与另一个三角形的两条边对应 个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应 似; (4)平行于三角形一边的直线和其他两边 (或延长线 )相交,所构成的三角形与原三角 形 . ,那么这两个三角形相 ,且夹角 ,那么这两 ,那么这两个三角形相
经典:生活中的相似图形
1
相似图形:
形状相同的图形叫做相似图形。
2
下面的图形相似吗?
(1)放大镜下看到的图形和原来的图形。 (2) 电影胶片上的图象和它放映到屏幕上的图象。 (3) 实际的建筑物和它的模型。 (4) 用复印机把一个图形放大或缩小后所得到的
图形和原来的图形。 (5) 图象:
3
研究相似多边形的主要特征.
10
判断,谁最快?
_1、所有的矩形都相似
–2、所有的菱形都相似 –3、有一个角是60度的菱形都相似 –4、所有的正三角形都相似 –5、所有的正六边形都相似 –6、边数相同的正多边形都相似
11
相似三角形
定义:
对应角相等、对应边成比例的三角形 叫做形状相同的图形,即相似三角形。
表示法:∽,读作“相似于”
A1B1 A1C1 B1C1
这说明:正三角形都是相似的,它们的对应角相等,对应边的比相等.
4
对于图中两个相似的正六边形, 你是否也能得到的结论?
对于四条线段a、b、c、
d,如果其中两条线段
的比(即它们长度的
比)与另两条线段的
比相等,如
a c
bd (即ad=bc)我们就说
这四条是成比例线段,
简称比例线段.
E AH CE AF B,即2x11284
解得 x=28(cm) 7
练
习
1. 在比例尺为1:10 000 000的地图上,量得甲、乙两地的距离是 30cm,求两地的实际距离
解: 设两地的实际距离为x
1 30 10000000 x
x = 300000000
x = 3000千米
答: 甲,乙两地的实际距离为30000千米
21cm
生活中的相似三角形例子
生活中的相似三角形例子
以下是一些生活中的相似三角形的例子:
1. 匹萨饼切片:当我们将一块匹萨饼切成三角形的块时,这些三角形是相似的,因为它们具有相同的形状但是大小不同。
2. 大卫雕像:大卫雕像是米开朗基罗创作的一座雕像,它展示了男性的裸体。
大卫雕像中,人体各部分的比例关系是相似三角形。
例如,他的头比例相对较小,而腿比例较长。
3. 林荫大道:在一条林荫大道上,我们可以看到树木以相似的间距和高度种植。
这些树木的排列和高度比例形成了相似的三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似图形经典 比例
【知识归纳】 一、比例线段
(1)比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段. (2)第四比例项:若d
c b a =,则
d 叫a 、b 、c 的第四比例项.
(3)比例中项:若
c b b a =,即ac b =2,则b 叫a 、c 的比例中项.
针对练习:1、下列说法中正确的是( ) A.两条线段的比总是整数 B.两条线段的比总是正数 C.两条线段的比可能为0
D.两条线段的比与所采用的长度单位有关
2、下列各组中的四条线段成比例的是( )
A.a =2,b =3,c =2,d =3
B.a =4,b =6,c =5,d =10
C.a =2,b =5,c =23,d =15
D.a =2,b =3,c =4,d =1
二、比例的性质
(1)基本性质:ac b
c b
b a
bc ad d c b a =⇔=
=⇔=2
;(a 、b 、c 、d 都不为零)
(2)合比性质:d
d c b b a d c b a ±=
±⇒
=
(3)等比性质:
b
a n
d b m c a n d b n m d
c b
a =++++++⇒≠+++===
)0(
例1:已知07
5
3
≠=
=
z y x ,求下列各式的值:(1)
y
z
y x +- (2)
z
y x z y x +-++35432
变式练习1:
(1)已知x ∶y ∶z =3∶4∶5,①求z
y x +的值;②若x +y +z =6,求x 、y 、z .
(2)若6
543
2+==+c b a ,且2a -b +3c =21.试求a ,b ,c .
三、黄金分割
点C 把线段AB 分成两条线段AC 和BC, 如果
AC
B C AB
AC =,那么称
线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点, AC 与AB 的比叫做黄金比.
例2:一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人
好看。
如图,是一个参加空姐选拔活动的选手情况,那么她应该穿多高的鞋子好看?(精确到1cm )(参考数据:黄金分割数:236
.25,
2
15≈-)
变式练习2:据有关实验测定,当气温处于人体正常体温(37°C )的“黄金分割点”时,人感到最舒适.这个气温约为_______°C.
A C B
黄金比
=
618.02
15≈-
例3:以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,
(1)求AM 、DM 的长. (2)求证:AM 2
=AD ·DM .
(3)根据(2)的结论你能找出图中的黄金分割点吗?
变式练习3:如果一个矩形ABCD (AB <BC )中,
2
15-=
BC
AB ≈0.618,那么这个矩形称为黄
金矩形,黄金矩形给人以美感.在黄金矩形ABCD 内作正方形CDEF ,得到一个小矩形ABFE (如图),请问矩形ABFE 是否是黄金矩形?请说明你的结论的正确性.
四. 相似多边形
1. 一般地,形状相同的图形称为相似图形.
2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.
3、相似多边形的性质
(1)相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比
(2)相似多边形的周长比等于相似比,面积比等于相似比的平方
例4:如图,将矩形ABCD沿两条较长边的中点的连线对折,得到的矩形ADFE与矩形ABCD 相似,确定矩形ABCD长与宽的比。
变式练习4:在长8cm,宽4cm 的矩形中截去一个矩形,使留下的矩形(图中阴影部分)与矩形相似,那么留下的矩形的面积为()cm2。
A 32
B 8
C 24 D12
【巩固练习】
1.已知线段a、b、c、d满足ab=cd,把它改写成比例式,错误的是( )
A.a∶d=c∶b
B.a∶b=c∶d
C.d∶a=b∶c
D.a∶c=d∶b
2.下列说法中正确的是:所有的()都相似。
A、菱形
B、矩形
C、正方形
D、梯形
3.一条线段的黄金分割点有().
A. 1个
B. 2个
C. 3个
D. 无数个
4.已知点M将线段AB黄金分割(AM>BM),则下列各式中不正确的是( )
A.AM∶BM=AB∶AM
B.AM=
21
5-
AB C.BM=
21
5-
AB D.AM≈0.618AB 5.下列各组图形中相似的是()
A 、①②③
B 、②③④
C 、①③④
D 、①②④
6. 如图,正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是( )
A .2DE=3MN ,
B .3DE=2MN , C. 3∠A=2∠F D .2∠A=3∠F 7. 如果
5
3=-b
b a ,那么
b
a =________.
8. 若5:2=(3-x ):x ,则x=___________
9. 在1∶500000的地图上,A 、B 两地的距离是64 cm ,则这两地间的实际距离是________. 10. 已知线段AB=10cm ,C 、D 是AB 上的两个黄金分割点,求线段CD 的长.
1.相似多边形
(1)相似多边形的定义:
①从图形上讲:一般而言,形状 的图形称为相似图形.
②从边、角上讲:对应角 ,对应边 的两个多边形叫做相似图形.相似多边形 叫做相似比. ③相似多边形的记法.
(2)相似多边形的性质:相似多边形的对应角 ,对应边 .
针对练习:
已
知
,ABCDE
∽
五
边
形
FGHIJ,
且
AB=2cm,CD=3cm,DE=2.2cm,GH=6cm,HI =5cm,FJ=4cm, ∠A=120°,∠H=90° 求:(1)相似比等于多少?
(2)求FG ,IJ ,BC ,AE, ∠F, ∠C
A B
C D
E
F
G
H
I
J
典型例题
例1:如图,梯形ABCD中,AD∥BC,E是AB上的一点,EF∥BC,并且EF将梯形ABCD 分成的两个梯形AEFD、EBCF相似,若AD=4,BC=9,求AE∶EB.
2.相似三角形
(1)相似三角形的定义:对应角,对应边的两个三角形叫做相似三角形.
相似三角形叫做相似比.
(2)相似三角形的性质:相似三角形的对应角,对应边 .
(3)相似三角形的,与都等于相似比.
针对练习:
典型例题
例2:已知△ABC中,AB=15 cm,BC=20 cm,AC=30 cm,另一个与它相似的△A′B′C′的最长边为40 cm,求△A′B′C′的其余两边长.。