Separation and determination of phenolic compounds by capillary

合集下载

马齿苋中抗炎活性物质的提取、分离及结构鉴定

马齿苋中抗炎活性物质的提取、分离及结构鉴定

马齿苋中抗炎活性物质的提取、分离及结构鉴定张会敏1,邢岩2,仇润慷1,张丽梅2,倪贺3,赵雷1*(1.华南农业大学食品学院,广东广州 510642)(2.国珍健康科技(北京)有限公司,北京 100000)(3.华南师范大学生命科学学院,广东广州 510640)摘要:以活性物质示踪为导向,建立脂多糖诱导的RAW264.7巨噬细胞炎症模型对马齿苋中的抗炎物质进行跟踪,采用柱层析提取法、硅胶柱色谱分离法、制备液相色谱法及气相色谱-质谱联用技术对抗炎物质进行提取分离和结构鉴定。

结果表明,石油醚-乙醇、无水乙醇和纯水溶剂依次对马齿苋样品进行提取,三种粗提物将细胞中一氧化氮(Nitric Oxide,NO)的分泌量分别减少至33.13、25.83和20.53 μmol/L,其中石油醚相粗提物的抑制效果最强(P<0.05)。

对石油醚相进一步分离得到四个组分,Fr.1、Fr.2和Fr.3组分具有较强的抗炎效果,但Fr.1和Fr.2组分含有潜在的毒性成分,选择Fr.3组分继续分离。

Fr.3组分经硅胶柱分离得到三个组分,Fr.3.1组分表现出最强的抑制NO的分泌量效果(11.80 μmol/L)。

经制备液相色谱进一步纯化及气质分析,确定Fr.3.1组分的主要成分为硬脂酸(47.09%)、邻苯二甲酸二(2-乙基己)酯(13.21%)和其他成分。

该研究建立了一种从马齿苋中分离纯化出抗炎物质方法,为马齿苋的开发利用提供理论参考。

关键词:马齿苋;抗炎活性;提取分离;鉴定文章编号:1673-9078(2024)03-191-199 DOI: 10.13982/j.mfst.1673-9078.2024.3.0324Extraction, Separation and Structural Identification of Anti-inflammatory Active Substances from Purslane (Portulaca oleracea L.)ZHANG Huimin1, XING Y an2, QIU Runkang1, ZHAGN Limei2, NI He3, ZHAO Lei1*(1.College of Food Science, South China Agricultural University, Guangzhou 510642, China)(2.Guozhen Health Technology (Beijing) Co. Ltd., Beijing 100000, China)(3.College of Life Sciences, South China Normal University, Guangzhou 510640, China)Abstract: To track the anti-inflammatory substances in purslane, the lipopolysaccharide-induced RAW264.7 macrophage inflammation model was established, which was guided by the tracer of active substances. The extraction, separation and structural identification of anti-inflammatory substances in purslane were performed by column chromatography (for extraction), silica gel column chromatography (for separation), and preparative high performance liquid chromatography and gas chromatography-mass spectrometry (for analyses). The results showed that the three crude extracts obtained from purslane through sequential extractions with petroleum ether-ethanol, anhydrous ethanol and pure引文格式:张会敏,邢岩,仇润慷,等.马齿苋中抗炎活性物质的提取、分离及结构鉴定[J] .现代食品科技,2024,40(3):191-199.ZHANG Huimin, XING Yan, QIU Runkang, et al. Extraction, separation and structural identification of anti-inflammatory active substances from purslane (Portulaca oleracea L.) [J] . Modern Food Science and Technology, 2024, 40(3): 191-199.收稿日期:2023-03-16基金项目:国家自然科学基金资助项目(31771980);广东省自然科学基金(2023A1515012599)作者简介:张会敏(1996-),女,硕士研究生,研究方向:活性物质分离提取,E-mail:;共同第一作者:邢岩(1981-),女,博士,助理研究员,研究方向:抗氧化与抗衰老,E-mail:通讯作者:赵雷(1982-),男,博士,教授,研究方向:天然产物绿色修饰及热带水果加工,E-mail:191water solvents reduced the secretion of nitric oxide (NO) in the cells to 33.13, 25.83 and 20.53 μmol/L, respectively, with the crude petroleum ether extract exhibiting the strongest inhibitory effect (P<0.05). The petroleum ether phase was further separated into four fractions, with the Fr.1, Fr.2 and Fr.3 fractions had stronger anti-inflammatory effects, though the Fr.1 and Fr.2 fractions contained potential toxic components. Therefore, the Fr.3 fraction was selected for further separation. The Fr.3 fraction was separated through a silica gel column to obtain three fractions. The Fr.3.1 subfraction exhibited the strongest inhibitory effect against the NO secretion (11.80 μmol/L). The Fr.3.1 subfraction was further purified by the preparative liquid chromatography and GC-MS analysis, and the main components of the Fr.3.1 subfraction were identified as stearic acid (47.09%), di(2-ethylhexyl)phthalate (13.21%) and other components. This study established a method for separating and purifying anti-inflammatory substances from purslane, and provides a theoretical reference for the development and utilization of purslane.Key words: Portulaca oleracea L.; anti-inflammatory activity; extraction and isolation; identification炎症是机体受到外部刺激时做出的一种保护性生理反应,能够及时清除体内受损或死亡的细胞,帮助机体恢复内部平衡[1] 。

苯酚降解菌的筛选、鉴定及其降解特性的研究

苯酚降解菌的筛选、鉴定及其降解特性的研究

上海师范大学硕士学位论文苯酚降解菌的筛选、鉴定及其降解特性的研究姓名:何小丽申请学位级别:硕士专业:微生物学指导教师:肖明20090501上海师范大学硕士学位论文摘要论文题目:苯酚降解菌的筛选、鉴定及其降解特性的研究学校专业:微生物学学位申请人:何小丽指导教师:肖明摘要酚类化合物为细胞原浆毒物,属高毒性物质。

这类物质来源广泛,通常污染水源,毒死鱼虾,危害农作物,并严重威胁人类的健康。

含酚有机物的毒性还在于其只能被少数的微生物分解。

从自然界中筛选分离出能够降解特定污染物的高效菌种,有针对性的投加到已有的污水处理系统中的生物强化技术,能够快速提供大量具有特殊作用的微生物,在有毒有害污染物治理中显示出巨大的潜力。

1、本研究从胜利油田河口采油厂的飞雁滩油田土壤样品中分离得到10株能够利用并降解苯酚的菌株P1-P4、P7、P9-P13。

该10株苯酚降解菌能够在以苯酚为唯一碳源和能源的培养基上生长,经16S rDNA分子鉴定和生理生化检测,该10株降酚菌分别被鉴定到属或种。

其中降酚菌株P1、P3和P4这3株菌株分别属于劳尔氏菌属(Ralstonia)、贪噬菌属(Variovorax)和节杆菌属(Arthrobacter)里的种。

其它7株降酚菌株P2、P7、P9-P13都属于假单胞菌属(Pseudomonas)里的种。

这4个属里的细菌在国内外都已被报道有降解苯酚的特性,其中有关假单胞菌降解环境有机物的报道较多。

2、培养液中的苯酚含量通过4-氨基安替比啉分光光度法测定,通过苯酚降解效率的比较,菌株P2降解苯酚的能力较其它9株菌株要强。

于是将菌株P2作为本研究中进一步研究的对象,研究了不同的环境条件下该菌株降解苯酚和菌体生长的情况。

3、通过苯酚羟化酶特异性引物的设计,从菌株P2扩增出苯酚羟化酶大亚基基因,该基因片段编码对苯酚有催化活性的多肽,催化苯酚代谢的第一步反应;表明菌株P2能降解苯酚是由于细胞具有降解苯酚的遗传基础。

香菇中糖类物质离与测定

香菇中糖类物质离与测定

香菇中糖类物质离与测定————————————————————————————————作者:————————————————————————————————日期:香菇中糖类物质的分离与测定摘要:本实验采用热水浸提和乙醇醇沉的方法提取香菇多糖(Lentinan,LNT),利用正交法得出最佳提取粗多糖的方案,得到的粗多糖回收率为14.05﹪,再对得到的粗多糖进行定性、定量分析。

用苯酚—硫酸法测定已提取出的粗多糖中单寡糖与多糖的含量为35.9%;经过薄层层析和纸层析法分析单糖的组成,其中组成多糖的单糖多属于葡萄糖和阿拉伯糖;用Sepharsose CL—6B柱层析法测定多糖的相对分子量约为5597.58道尔顿。

气象色谱分析单糖含的结果是香菇多糖中的单糖种类有半乳糖、葡萄糖、阿拉伯糖、岩藻糖等,其中含量较多的半乳糖和葡萄糖。

关键字:香菇多糖回收率含量组成相对分子量Separation and Determination of carbohydrates in Lentinus edodesAbstract:This experiment extracts of lentinan (Lentinan LNT) by using hot water extraction and ethanol alcohol precipitation method. The orthogonal method to get the optimum extraction of polysaccharides is the best program, resulting polysaccharides recovery of 14.05%, and then to get crude polysaccharide qualitative and quantitative analysis. By using Phenol-sulfuric acid method, extracted polysaccharides single oligosaccharides and polysaccharides content was 35.9%; TLC and paper chromatography analysis monosaccharide composition, the monosaccharide composes mostly of glucose and arabinose; Relative molecular weight of polysaccharide determined by Sepharsose CL-6B column chromatography is about 5597.58 daltons. The results of gas chromatographic analysis of a monosaccharide is galactose, glucose, arabinose, fucose, sugar, and other types of monosaccharides in the lentinan. galactose and glucose are much more among them.Key words: Lentinan; Recoveries; Content; Composition; Relative molecular weight0 引言:糖类化合物是中药的重要成分,随着现代生物化学与分子生物学的不断发展与进步,人们对糖的了解越来越多。

高效液相色谱法测定朝鲜蓟中的天冬酰胺

高效液相色谱法测定朝鲜蓟中的天冬酰胺

高效液相色谱法测定朝鲜蓟中的天冬酰胺刘慧文(中国林科院森林生态环境与保护研究所 国家林业局森林生态环境重点实验室 北京 100091)摘 要 采用阳离子交换柱分离,荧光检测器检测,pH梯度洗脱,邻苯二甲醛-2巯基乙醇柱后衍生,成功分离、检测了朝鲜鲜蓟中的天冬酰胺。

若以天冬酰胺的峰高Y(μV)对进样质量X(μg)进行线性回归,则线性方程为Y=4566X+1396,r=0.9998;平均回收率(n=3)为97.3%,方法稳定、灵敏、准确。

关键词 高效液相色谱;天冬酰胺;朝鲜蓟;柱后衍生中图分类号 O657Determination of Asparagine in Artichoke by High Performance Liquid ChromatographyLiu Huiwen(The research Insitute of Forestry Ecological, Environment and protection, Chinese Academy of Forestry, Key Laboratory of Ministry ofForestry, Beiging 100091, China)Abstract A method for the separation and determination of the asparagine in artichoke by high performance liquidchromatography (HPLC) with post-column derivatization and fluorescence detection is described. The operation condi-tions were cation exchange resin column(30 cmx0.4cm i.d.)with gradientelution of buffer solution A[19.6g sodium citratedihydrate and 1.0 g phenol dissolved in 1 Lwater, PH 3.15] and B[21.0g sodium nitrate and 1.5g boric acid dissolved in 1Lwater,PH 9.70] as mobile phase at a flow rate of 0.5mL/min, and a column temperature of 62℃, with detection wavelengthλex=338nm,λem=425nm. The retention time of Asparagine was 10.830 minutes. The average recovery was 97.3% and thecoefficient of variation was1.35%. This method is simple, rapid and sensitive.Key words High performance liquid chromatography; post-column derivatization; asparagine; artichoke1 引 言朝鲜蓟(artichoke),是菊科(compositae)菜蓟属中以花蕾供食的多年生草本植物,该植物营养成份丰富,除含有蛋白质、维生素、胡萝卜素、多种微量元素外,还含丰富的黄酮化合物及天冬酰胺等药用成分,本文采用阳离子交换柱分离,荧光检测器检测,pH梯度洗脱,邻苯二甲醛-2巯基乙醇柱后衍生,成功分离、检测了朝鲜鲜蓟中的天冬酰胺。

化学专业英语词汇

化学专业英语词汇

前沿讲座 Seminar专业英语 Professional English现代分析化学 Modern analytical chemistry 生物分析技术 Bioanalytical techniques高分子进展 Advances in polymers功能高分子进展 Advances in functional polym ers有机硅高分子研究进展 Progresses in organosi licon polymers高分子科学实验方法 Scientific experimental methods of polymers高分子设计与合成 The design and synthesis o f polymers反应性高分子专论 Instructions to reactive p olymers网络化学与化工信息检索 Internet Searching f or Chemistry & Chemical Engineering information有序分子组合体概论 Introduction to Organize d Molecular Assembilies两亲分子聚集体化学 Chemistry of amphiphilic aggregates表面活性剂体系研究新方法 New Method for stu dying Surfactant System微纳米材料化学 Chemistry of Micro-NanoMater ials 分散体系研究新方法 New Method for studying dispersion分散体系相行为 The Phase Behavior of Aqueou s Dispersions溶液-凝胶材料 Sol-Gel Materials高等量子化学 Advanced Quantum Chemistry 分子反应动力学 Molecular Reaction Dynamic 计算量子化学 Computational Quantum Chemistr y群论 Group Theory分子模拟理论及软件应用 Theory and Software of Molecular Modelling & Application价键理论方法 Valence Bond Theory量子化学软件及其应用 Software of Quantum Ch emistry & its Application分子光谱学 Molecular Spectrum算法语言 Computational Languange高分子化学 Polymer Chemistry高分子物理 Polymer Physics药物化学 Medicinal Chemistry统计热力学 Statistic Thermodynamics液-液体系专论 Discussion on Liquid-Liquid S ystem配位化学进展 Progress in Coordination Chemi stry无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry 相平衡 Phase Equilibrium现代无机化学 Today's Inorganic Chemistry 无机化学前沿领域导论 Introduction to Forwar d Field in Inorganic Chemistry量子化学 Quantum Chemistry分子材料 Molecular Material固体酸碱理论 Solid Acid-Base Theory萃取过程物理化学 Physical Chemistry in Extr action表面电化学 Surface Electrochemistry电化学进展 Advances on Electrochemistry 现代电化学实验技术 Modern Experimental Tech niques of Electrochemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications叶立德化学:理论和应用 Ylides Chemistry: The ory and Application立体化学与手性合成 Stereochemistry and Chir al Synthesis杂环化学 Heterocyclic Chemistry有机硅化学 Organosilicon Chemistry药物设计及合成 Pharmaceutical Design and Sy nthesis超分子化学 Supramolecular Chemistry 分子设计与组合化学 Molecular Design and Com binatorial Chemistry纳米材料化学前沿领域导论 Introduction to Na no-materials Chemistry纳米材料控制合成与自组装 Controlled-synthes is and Self-assembly of Nano-materials前沿讲座 Leading Front Forum专业英语 Professional English超分子化学基础 Basics of Supramolecular Che mistry液晶材料基础 Basics of Liquid Crystal Mater ials现代实验技术 Modern analytical testing tech niques色谱及联用技术 Chromatography and Technolog y of tandem发光分析及其研究法 Luminescence analysis an d Research methods胶束酶学 Micellar Enzymology分析化学中的配位化合物 Complex in Analytica l Chemistry电分析化学 Electroanalytical chemistry生物分析化学 Bioanalytical chemistry分析化学 Analytical chemistry仪器分析 Instrument analysis高分子合成化学 Polymers synthetic chemistry高聚物结构与性能 Structures and properties of polymers有机硅化学 Organosilicon chemistry功能高分子 Functional polymers有机硅高分子 Organosilicon polymers高分子现代实验技术 Advanced experimental te chnology of polymers高分子合成新方法 New synthetic methods of p olymers液晶与液晶高分子 Liquid crystals and liquid crystal polymers大分子反应 Macromolecules reaction水溶性高分子 Water-soluble polymers聚合物加工基础 The basic process of polymer s聚合物复合材料 Composite materials高等化工与热力学 Advanced Chemical Engineer ing and Thermodynamics高等反应工程学 Advanced Reaction Engineerin g高等有机化学 Advanced Organic Chemistry 高等有机合成 Advanced Organic synthesis 有机化学中光谱分析 Spectrum Analysis in Org anic Chemistry催化作用原理 Principle of Catalysis染料化学 Dye Chemistry 中间体化学与工艺学 Intermediate Chemistry a nd Technology化学动力学 Chemical Kinetics表面活性剂合成与工艺 Synthesis and Technolo gy of Surfactants环境化学 Environmental Chemistry化工企业清洁生产 Chemical Enterprise Clean Production化工污染及防治 Chemical Pollution and Contr ol动量热量质量传递 Momentum, Heat and Mass Tr ansmission化工分离工程专题 Separation Engineering 耐蚀材料 Corrosion Resisting Material网络化学与化工信息检索 Internet Searching f or Chemistry & Chemical Engineering informa tion新型功能材料的模板组装 Templated Assembly o f Novel Advanced Materials胶体与界面 Colloid and Interface纳米材料的胶体化学制备方法 Colloid Chemical Methods for Preparing Nano-materials脂质体化学 Chemistry of liposome表面活性剂物理化学 Physico-chemistry of sur factants高分子溶液与微乳液 Polymer Solutions and Mi croemulsions两亲分子的溶液化学 Chemistry of Amphiphilic Molecules in solution介孔材料化学 Mesoporous Chemistry超细颗粒化学 Chemistry of ultrafine powder 分散体系流变学 The Rheolgy of Aqueous Dispe rsions量子化学 Quantum Chemistry统计热力学 Statistic Thermodynamics群论 Group Theory分子模拟 Molecular Modelling高等量子化学 Advanced Quantum Chemistry价键理论方法 Valence Bond Theory量子化学软件及其应用 Software of Quantum Ch emistry & its Application计算量子化学 Computational Quantum Chemistr y分子模拟软件及其应用 Software of Molecular Modelling & its Application分子反应动力学 Molecular Reaction Dynamic 分子光谱学 Molecular Spectrum算法语言 Computational Languange高分子化学 Polymer Chemistry高分子物理 Polymer Physics腐蚀电化学 Corrosion Electrochemistry物理化学 Physical Chemistry结构化学 structural Chemistry 现代分析与测试技术(试验为主) Modern Analysi s and Testing Technology(experimetally)高等无机化学 Advanced Inorganic Chemistry 近代无机物研究方法 Modern Research Methods for Inorganic Compounds萃取化学研究方法 Research Methods for Extra ction Chemistry单晶培养 Crystal Culture固态化学 Chemistry of Solid Substance液-液体系专论 Discussion on Liquid-Liquid S ystem配位化学进展 Progress in Coordination Chemi stry卟啉酞箐化学 Chemistry of Porphyrine and Ph thalocyanine无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry 相平衡 Phase Equilibrium生物化学的应用 Application of Biologic Chem istry生物无机化学 Bio-Inorganic Chemistry绿色化学 Green Chemistry金属有机化合物在均相催化中的应用 Applied Ho mogeneous Catalysis with Organometallic Compounds功能性食品化学 Functionalized Food Chemistr y无机药物化学 Inorganic Pharmaceutical Chemi stry电极过程动力学 Kinetics on Electrode Proces s电化学研究方法 Electrochemical Research Met hods生物物理化学 Biological Physical Chemistry 波谱与现代检测技术 Spectroscopy and Modern Testing Technology理论有机化学 theoretical Organic Chemistry 合成化学 Synthesis Chemistry有机合成新方法 New Methods for Organic Synt hesis生物有机化学 Bio-organic Chemistry药物化学 Pharmaceutical Chemistry金属有机化学 Organometallic Chemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications分子构效与模拟 Molecular Structure-Activity and Simulation过程装置数值计算 Data Calculation of Proces s Devices石油化工典型设备 Common Equipment of Petroc hemical Industry 化工流态化工程 Fluidization in Chemical Ind ustry化工装置模拟与优化 Analogue and Optimizatio n of Chemical Devices化工分离工程 Separation Engineering化工系统与优化 Chemical System and Optimiza tion高等化工热力学 Advanced Chemical Engineerin g and Thermodynamics超临界流体技术及应用 Super Cratical Liguid Technegues and Applications膜分离技术 Membrane Separation Technegues溶剂萃取原理和应用 Theory and Application o f Solvent Extraction树脂吸附理论 Theory of Resin Adsorption 中药材化学 Chemistry of Chinese Medicine 生物资源有效成分分析与鉴定 Analysis and Det ection of Bio-materials相平衡理论与应用 Theory and Application o f Phase Equilibrium计算机在化学工程中的应用 Application of Com puter in Chemical Engineering微乳液和高分子溶液 Micro-emulsion and High Molecular Solution传递过程 Transmision Process反应工程分析 Reaction Engineering Analysis腐蚀电化学原理与应用 Principle and Applicat ion of Corrosion Electrochemistry腐蚀电化学测试方法与应用 Measurement Method and Application of Corrosion Elect rochemistry耐蚀表面工程 Surface Techniques of Anti-cor rosion缓蚀剂技术 Inhabitor Techniques腐蚀失效分析 Analysis of Corrosion Destroy 材料表面研究方法 Method of Studying Materia l Surfacc分离与纯化技术 Separation and Purification Technology现代精细有机合成 Modern Fine Organic Synthe sis化学工艺与设备 Chemical Technology and Appa ratuas功能材料概论 Functional Materials Conspectu s油田化学 Oilfield Chemistry精细化学品研究 Study of Fine Chemicals催化剂合成与应用 Synthesis and Application of Catalyzer低维材料制备 Preparation of Low-Dimension M aterials手性药物化学 Symmetrical Pharmaceutical Che mistry 光敏高分子材料化学 Photosensitive Polymer M aterials Chemistry纳米材料制备与表征 Preparation and Characte rization of Nanostructured materials溶胶凝胶化学 Sol-gel Chemistry纳米材料化学进展 Proceeding of Nano-materia ls Chemistry●化学常用词汇汉英对照表1●氨 ammonia氨基酸 amino acid铵盐 ammonium salt饱和链烃saturated aliphatic hydrocarbon苯 benzene变性 denaturation不饱和烃unsaturated hydrocarbon超导材料superconductive material臭氧 ozone醇 alcohol次氯酸钾potassium hypochlorite醋酸钠sodium acetate蛋白质 protein氮族元素nitrogen group element碘化钾potassium iodide碘化钠sodium iodide电化学腐蚀 electrochemical corrosion电解质 electrolyte电离平衡ionization equilibrium电子云electron cloud淀粉 starch淀粉碘化钾试纸starch potassium iodide paper二氧化氮nitrogen dioxide二氧化硅silicon dioxide二氧化硫sulphur dioxide二氧化锰manganese dioxide芳香烃 arene放热反应exothermic reaction非极性分子non-polar molecule非极性键non-polar bond肥皂 soap分馏fractional distillation酚 phenol复合材料 composite干电池 dry cell干馏dry distillation甘油 glycerol高分子化合物 polymer共价键covalent bond官能团functional group光化学烟雾photochemical fog过氧化氢hydrogen peroxide合成材料synthetic material合成纤维synthetic fiber合成橡胶synthetic rubber核电荷数nuclear charge number核素 nuclide化学电源chemical power source化学反应速率chemical reaction rate化学键chemical bond化学平衡chemical equilibrium还原剂reducing agent磺化反应sulfonation reaction霍尔槽 Hull Cell极性分子polar molecule极性键 polar bond加成反应addition reaction加聚反应addition polymerization甲烷 methane碱金属alkali metal碱石灰 soda lime结构式structural formula聚合反应 po1ymerization可逆反应reversible reaction空气污染指数 air pollution index勒夏特列原理Le Chatelier's principle离子反应ionic reaction离子方程式ionic equation离子键 ionic bond锂电池lithium cell两性氢氧化物amphoteric hydroxide两性氧化物amphoteric oxide裂化 cracking裂解 pyrolysis硫氰化钾potassium thiocyanate硫酸钠sodium sulphide氯化铵ammonium chloride氯化钡barium chloride氯化钾potassium chloride氯化铝aluminium chloride氯化镁magnesium chloride氯化氢hydrogen chloride氯化铁iron (III) chloride氯水chlorine water麦芽糖 maltose煤 coal酶 enzyme摩尔 mole摩尔质量molar mass品红magenta或fuchsine葡萄糖 glucose气体摩尔体积 molar volume of gas铅蓄电池lead storage battery强电解质strong electrolyte氢氟酸hydrogen chloride氢氧化铝aluminium hydroxide取代反应substitution reaction醛 aldehyde炔烃 alkyne燃料电池 fuel cell弱电解质weak electrolyte石油 Petroleum水解反应hydrolysis reaction四氯化碳carbon tetrachloride塑料 plastic塑料的降解plastic degradation塑料的老化plastic ageing酸碱中和滴定acid-base neutralization titration酸雨 acid rain羧酸carboxylic acid碳酸钠 sodium carbonate碳酸氢铵 ammonium bicarbonate碳酸氢钠 sodium bicarbonate糖类 carbohydrate烃 hydrocarbon烃的衍生物derivative of hydrocarbon烃基 hydrocarbonyl同分异构体 isomer同素异形体 allotrope同位素 isotope同系物 homo1og涂料 coating烷烃 alkane物质的量 amount of substance物质的量浓度 amount-of-substance concentration of B烯烃 alkene洗涤剂 detergent纤维素 cellulose相对分子质量relative molecular mass相对原子质量 relative atomic mass消去反应 elimination reaction硝化反应 nitratlon reaction硝酸钡 barium nitrate硝酸银 silver nitrate溴的四氯化碳溶液solution of bromine in carbon tetrachloride溴化钠 sodium bromide溴水 bromine water溴水 bromine water盐类的水解 hydrolysis of salts盐析 salting-out焰色反应 flame test氧化剂 oxidizing agent氧化铝 aluminium oxide氧化铁 iron (III) oxide乙醇 ethanol乙醛 ethana1乙炔 ethyne乙酸 ethanoic acid乙酸乙酯 ethyl acetate乙烯 ethene银镜反应silver mirror reaction硬脂酸 stearic acid油脂 oils and fats有机化合物 organic compound元素周期表periodic table of elements元素周期律 periodic law of elements原电池 primary battery原子序数 atomic number皂化反应 saponification粘合剂 adhesive蔗糖 sucrose指示剂 Indicator酯 ester酯化反应 esterification周期 period族 group(主族:main group)Bunsen burner 本生灯product 化学反应产物flask 烧瓶apparatus 设备PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂matrass 卵形瓶litmus 石蕊litmus paper 石蕊试纸graduate, graduated flask 量筒,量杯reagent 试剂 test tube 试管burette 滴定管retort 曲颈甑still 蒸馏釜cupel 烤钵crucible pot, melting pot 坩埚 pipette 吸液管filter 滤管stirring rod 搅拌棒element 元素body 物体compound 化合物atom 原子gram atom 克原子atomic weight 原子量atomic number 原子数atomic mass 原子质量molecule 分子electrolyte 电解质ion 离子anion 阴离子cation 阳离子electron 电子isotope 同位素isomer 同分异物现象polymer 聚合物symbol 复合radical 基structural formula 分子式valence, valency 价monovalent 单价bivalent 二价halogen 成盐元素bond 原子的聚合mixture 混合combination 合成作用compound 合成物alloy 合金organic chemistry 有机化学inorganic chemistry 无机化学derivative 衍生物series 系列acid 酸hydrochloric acid 盐酸sulphuric acid 硫酸nitric acid 硝酸aqua fortis 王水fatty acid 脂肪酸organic acid 有机酸 hydrosulphuric acid 氢硫酸hydrogen sulfide 氢化硫alkali 碱,强碱ammonia 氨base 碱 hydrate 水合物hydroxide 氢氧化物,羟化物hydracid 氢酸hydrocarbon 碳氢化合物,羟anhydride 酐alkaloid 生物碱aldehyde 醛oxide 氧化物phosphate 磷酸盐acetate 醋酸盐methane 甲烷,沼气butane 丁烷salt 盐potassium carbonate 碳酸钾soda 苏打sodium carbonate 碳酸钠caustic potash 苛性钾caustic soda 苛性钠ester 酯gel 凝胶体analysis 分解fractionation 分馏endothermic reaction 吸热反应 exothermic reaction 放热反应 precipitation 沉淀to precipitate 沉淀to distil, to distill 蒸馏distillation 蒸馏to calcine 煅烧to oxidize 氧化alkalinization 碱化to oxygenate, to oxidize 脱氧,氧化 to neutralize 中和to hydrogenate 氢化to hydrate 水合,水化to dehydrate 脱水fermentation 发酵solution 溶解combustion 燃烧fusion, melting 熔解alkalinity 碱性isomerism, isomery 同分异物现象hydrolysis 水解electrolysis 电解electrode 电极anode 阳极,正极cathode 阴极,负极catalyst 催化剂catalysis 催化作用oxidization, oxidation 氧化reducer 还原剂dissolution 分解synthesis 合成reversible 可逆的1. The Ideal-Gas Equation 理想气体状态方程2. Partial Pressures 分压3. Real Gases: Deviation from Ideal Behavior 真实气体:对理想气体行为的偏离4. The van der Waals Equation 范德华方程5. System and Surroundings 系统与环境6. State and State Functions 状态与状态函数7. Process 过程8. Phase 相9. The First Law of Thermodynamics 热力学第一定律10. Heat and Work 热与功11. Endothermic and Exothermic Processes 吸热与发热过程12. Enthalpies of Reactions 反应热13. Hess’s Law 盖斯定律14. Enthalpies of Formation 生成焓15. Reaction Rates 反应速率16. Reaction Order 反应级数17. Rate Constants 速率常数18. Activation Energy 活化能19. The Arrhenius Equation 阿累尼乌斯方程20. Reaction Mechanisms 反应机理21. Homogeneous Catalysis 均相催化剂22. Heterogeneous Catalysis 非均相催化剂23. Enzymes 酶24. The Equilibrium Constant 平衡常数25. the Direction of Reaction 反应方向26. Le Chatelier’s Principle 列·沙特列原理27. Effects of Volume, Pressure, Temperature Changes and Catalystsi. 体积,压力,温度变化以及催化剂的影响28. Spontaneous Processes 自发过程29. Entropy (Standard Entropy) 熵(标准熵)30. The Second Law of Thermodynamics 热力学第二定律31. Entropy Changes 熵变32. Standard Free-Energy Changes 标准自由能变33. Acid-Bases 酸碱34. The Dissociation of Water 水离解35. The Proton in Water 水合质子36. The pH Scales pH值37. Bronsted-Lowry Acids and Bases Bronsted-Lowry 酸和碱38. Proton-Transfer Reactions 质子转移反应39. Conjugate Acid-Base Pairs 共轭酸碱对40. Relative Strength of Acids and Bases 酸碱的相对强度41. Lewis Acids and Bases 路易斯酸碱42. Hydrolysis of Metal Ions 金属离子的水解43. Buffer Solutions 缓冲溶液44. The Common-Ion Effects 同离子效应45. Buffer Capacity 缓冲容量46. Formation of Complex Ions 配离子的形成47. Solubility 溶解度48. The Solubility-Product Constant Ksp 溶度积常数49. Precipitation and separation of Ions 离子的沉淀与分离50. Selective Precipitation of Ions 离子的选择沉淀51. Oxidation-Reduction Reactions 氧化还原反应52. Oxidation Number 氧化数53. Balancing Oxidation-Reduction Equations 氧化还原反应方程的配平54. Half-Reaction 半反应55. Galvani Cell 原电池56. Voltaic Cell 伏特电池57. Cell EMF 电池电动势58. Standard Electrode Potentials 标准电极电势59. Oxidizing and Reducing Agents 氧化剂和还原剂60. The Nernst Equation 能斯特方程61. Electrolysis 电解62. The Wave Behavior of Electrons 电子的波动性63. Bohr’s Model of The Hydrogen Atom 氢原子的波尔模型64. Line Spectra 线光谱65. Quantum Numbers 量子数66. Electron Spin 电子自旋67. Atomic Orbital 原子轨道68. The s (p, d, f) Orbital s(p,d,f)轨道69. Many-Electron Atoms 多电子原子70. Energies of Orbital 轨道能量71. The Pauli Exclusion Principle 泡林不相容原理72. Electron Configurations 电子构型73. The Periodic Table 周期表74. Row 行75. Group 族76. Isotopes, Atomic Numbers, and Mass Numbers 同位素,原子数,质量数77. Periodic Properties of the Elements 元素的周期律78. Radius of Atoms 原子半径79. Ionization Energy 电离能80. Electronegativity 电负性81. Effective Nuclear Charge 有效核电荷82. Electron Affinities 亲电性83. Metals 金属84. Nonmetals 非金属85. Valence Bond Theory 价键理论86. Covalence Bond 共价键87. Orbital Overlap 轨道重叠88. Multiple Bonds 重键89. Hybrid Orbital 杂化轨道90. The VSEPR Model 价层电子对互斥理论91. Molecular Geometries 分子空间构型92. Molecular Orbital 分子轨道93. Diatomic Molecules 双原子分子94. Bond Length 键长95. Bond Order 键级96. Bond Angles 键角97. Bond Enthalpies 键能98. Bond Polarity 键矩99. Dipole Moments 偶极矩100. Polarity Molecules 极性分子101. Polyatomic Molecules 多原子分子102. Crystal Structure 晶体结构103. Non-Crystal 非晶体104. Close Packing of Spheres 球密堆积105. Metallic Solids 金属晶体106. Metallic Bond 金属键107. Alloys 合金108. Ionic Solids 离子晶体109. Ion-Dipole Forces 离子偶极力110. Molecular Forces 分子间力111. Intermolecular Forces 分子间作用力112. Hydrogen Bonding 氢键113. Covalent-Network Solids 原子晶体114. Compounds 化合物115. The Nomenclature, Composition and Structure of Complexes 配合物的命名,组成和结构116. Charges, Coordination Numbers, and Geometries 电荷数、配位数、及几何构型117. Chelates 螯合物118. Isomerism 异构现象119. Structural Isomerism 结构异构120. Stereoisomerism 立体异构121. Magnetism 磁性122. Electron Configurations in Octahedral Complexes 八面体构型配合物的电子分布123. Tetrahedral and Square-planar Complexes 四面体和平面四边形配合物124. General Characteristics 共性125. s-Block Elements s区元素126. Alkali Metals 碱金属127. Alkaline Earth Metals 碱土金属128. Hydrides 氢化物129. Oxides 氧化物130. Peroxides and Superoxides 过氧化物和超氧化物131. Hydroxides 氢氧化物132. Salts 盐133. p-Block Elements p区元素134. Boron Group (Boron, Aluminium, Gallium, Indium, Thallium) 硼族(硼,铝,镓,铟,铊)135. Borane 硼烷136. Carbon Group (Carbon, Silicon, Germanium, Tin, Lead) 碳族(碳,硅,锗,锡,铅)137. Graphite, Carbon Monoxide, Carbon Dioxide 石墨,一氧化碳,二氧化碳138. Carbonic Acid, Carbonates and Carbides 碳酸,碳酸盐,碳化物139. Occurrence and Preparation of Silicon 硅的存在和制备140. Silicic Acid,Silicates 硅酸,硅酸盐141. Nitrogen Group (Phosphorus, Arsenic, Antimony, and Bismuth) 氮族(磷,砷,锑,铋)142. Ammonia, Nitric Acid, Phosphoric Acid 氨,硝酸,磷酸143. Phosphorates, phosphorus Halides 磷酸盐,卤化磷144. Oxygen Group (Oxygen, Sulfur, Selenium, and Tellurium) 氧族元素(氧,硫,硒,碲)145. Ozone, Hydrogen Peroxide 臭氧,过氧化氢146. Sulfides 硫化物147. Halogens (Fluorine, Chlorine, Bromine, Iodine) 卤素(氟,氯,溴,碘)148. Halides, Chloride 卤化物,氯化物149. The Noble Gases 稀有气体150. Noble-Gas Compounds 稀有气体化合物151. d-Block elements d区元素152. Transition Metals 过渡金属153. Potassium Dichromate 重铬酸钾154. Potassium Permanganate 高锰酸钾155. Iron Copper Zinc Mercury 铁,铜,锌,汞156. f-Block Elements f区元素157. Lanthanides 镧系元素158. Radioactivity 放射性159. Nuclear Chemistry 核化学160. Nuclear Fission 核裂变161. Nuclear Fusion 核聚变162. analytical chemistry 分析化学163. qualitative analysis 定性分析164. quantitative analysis 定量分析165. chemical analysis 化学分析166. instrumental analysis 仪器分析167. titrimetry 滴定分析168. gravimetric analysis 重量分析法169. regent 试剂170. chromatographic analysis 色谱分析171. product 产物172. electrochemical analysis 电化学分析173. on-line analysis 在线分析174. macro analysis 常量分析175. characteristic 表征176. micro analysis 微量分析177. deformation analysis 形态分析178. semimicro analysis 半微量分析179. systematical error 系统误差180. routine analysis 常规分析181. random error 偶然误差182. arbitration analysis 仲裁分析183. gross error 过失误差184. normal distribution 正态分布185. accuracy 准确度186. deviation 偏差187. precision 精密度188. relative standard deviation 相对标准偏差(RSD)189. coefficient variation 变异系数(CV)190. confidence level 置信水平191. confidence interval置信区间192. significant test显著性检验193. significant figure 有效数字194. standard solution 标准溶液195. titration 滴定196. stoichiometric point 化学计量点197. end point 滴定终点198. titration error滴定误差199. primary standard 基准物质200. amount of substance 物质的量201. standardization 标定202. chemical reaction 化学反应203. concentration 浓度204. chemical equilibrium 化学平衡205. titer 滴定度206. general equation for a chemical reaction 化学反应的通式207. proton theory of acid-base酸碱质子理论208. acid-base titration酸碱滴定法209. dissociation constant解离常数210. conjugate acid-base pair共轭酸碱对211. acetic acid 乙酸212. hydronium ion 水合氢离子213. electrolyte 电解质214. ion-product constant of water水的离子积215. ionization电离216. proton condition 质子平衡217. zero level 零水准218. buffer solution缓冲溶液219. methyl orange甲基橙220. acid-base indicator酸碱指示剂221. phenolphthalein 酚酞222. coordination compound配位化合物223. center ion中心离子224. cumulative stability constant累积稳定常数225. alpha coefficient酸效应系数226. overall stability constant总稳定常数227. ligand 配位体228. ethylenediamine tetraacetic acid乙二胺四乙酸229. side reaction coefficient副反应系数230. coordination atom配位原子231. coordination number 配位数232. lone pair electron孤对电子233. chelate compound 螯合物234. metal indicator 金属指示剂235. chelating agent 螯合剂236. masking 掩蔽237. demasking 解蔽238. electron 电子239. catalysis催化240. oxidation 氧化241. catalyst 催化剂242. reduction还原243. catalytic reaction催化反应244. reaction rate反应速率245. electrode potential电极电势246. activation energy 反应的活化能247. redox couple 氧化还原电对248. potassium permanganate 高锰酸钾249. iodimetry 碘量法250. potassium dichromate 重铬酸钾251. cerimetry 铈量法252. redox indicator 氧化还原指示253. oxygen consuming 耗氧量(OC)254. chemical oxygen demanded 化学需氧量(COD) 255. dissolved oxygen 溶解氧(DO) 256. precipitation 沉淀反应257. argentimetry 银量法258. heterogeneous equilibrium of ions 多相离子平衡259. aging 陈化260. postprecipitation 继沉淀261. coprecipitation 共沉淀262. ignition 灼烧263. fitration 过滤264. decantation 倾泻法265. chemical factor 化学因数266. spectrophotometry 分光光度法267. colorimetry 比色分析268. transmittance 透光率269. absorptivity 吸光率270. calibration curve 校正曲线271. standard curve 标准曲线272. monochromator 单色器273. source 光源274. wavelength dispersion 色散275. absorption cell 吸收池276. detector 检测系统277. bathochromic shift 红移278. Molar absorptivity 摩尔吸光系数279. hypochromic shift 紫移280. acetylene 乙炔281. ethylene 乙烯282. acetylating agent 乙酰化剂283. acetic acid 乙酸284. adiethyl ether 乙醚285. ethyl alcohol 乙醇286. acetaldehtde 乙醛287. β-dicarbontl compound β–二羰基化合物288. bimolecular elimination 双分子消除反应289. bimolecular nucleophilic substitution 双分子亲核取代反应290. open chain compound 开链族化合物291. molecular orbital theory 分子轨道理论292. chiral molecule 手性分子293. tautomerism 互变异构现象294. reaction mechanism 反应历程295. chemical shift 化学位移296. Walden inversio 瓦尔登反转n297. Enantiomorph 对映体298. addition rea ction 加成反应299. dextro- 右旋300. levo- 左旋301. stereochemistry 立体化学302. stereo isomer 立体异构体303. Lucas reagent 卢卡斯试剂304. covalent bond 共价键305. conjugated diene 共轭二烯烃306. conjugated double bond 共轭双键307. conjugated system 共轭体系308. conjugated effect 共轭效应309. isomer 同分异构体310. isomerism 同分异构现象311. organic chemistry 有机化学312. hybridization 杂化313. hybrid orbital 杂化轨道314. heterocyclic compound 杂环化合物315. peroxide effect 过氧化物效应t 316. valence bond theory 价键理论317. sequence rule 次序规则318. electron-attracting grou p 吸电子基319. Huckel rule 休克尔规则320. Hinsberg test 兴斯堡试验321. infrared spectrum 红外光谱322. Michael reacton 麦克尔反应323. halogenated hydrocarbon 卤代烃324. haloform reaction 卤仿反应325. systematic nomenclatur 系统命名法e 326. Newman projection 纽曼投影式327. aromatic compound 芳香族化合物328. aromatic character 芳香性r329. Claisen condensation reaction克莱森酯缩合反应330. Claisen rearrangement 克莱森重排331. Diels-Alder reation 狄尔斯-阿尔得反应332. Clemmensen reduction 克莱门森还原333. Cannizzaro reaction 坎尼扎罗反应334. positional isomers 位置异构体335. unimolecular elimination reaction 单分子消除反应336. unimolecular nucleophilic substitution 单分子亲核取代反应337. benzene 苯338. functional grou 官能团p339. configuration 构型340. conformation 构象341. confomational isome 构象异构体342. electrophilic addition 亲电加成343. electrophilic reagent 亲电试剂344. nucleophilic addition 亲核加成345. nucleophilic reagent 亲核试剂346. nucleophilic substitution reaction亲核取代反应347. active intermediate 活性中间体348. Saytzeff rule 查依采夫规则349. cis-trans isomerism 顺反异构350. inductive effect 诱导效应 t351. Fehling’s reagent 费林试剂352. phase transfer catalysis 相转移催化作用353. aliphatic compound 脂肪族化合物354. elimination reaction 消除反应355. Grignard reagent 格利雅试剂356. nuclear magnetic resonance 核磁共振357. alkene 烯烃358. allyl cation 烯丙基正离子359. leaving group 离去基团360. optical activity 旋光性361. boat confomation 船型构象362. silver mirror reaction 银镜反应363. Fischer projection 菲舍尔投影式364. Kekule structure 凯库勒结构式365. Friedel-Crafts reaction 傅列德尔-克拉夫茨反应366. Ketone 酮367. carboxylic acid 羧酸368. carboxylic acid derivative 羧酸衍生物369. hydroboration 硼氢化反应370. bond oength 键长371. bond energy 键能372. bond angle 键角373. carbohydrate 碳水化合物374. carbocation 碳正离子375. carbanion 碳负离子376. alcohol 醇377. Gofmann rule 霍夫曼规则378. Aldehyde 醛379. Ether 醚380. Polymer 聚合物。

酚与氯化胆碱形成低共熔溶剂

酚与氯化胆碱形成低共熔溶剂

Separation and Purification Technology 63(2008)710–715Contents lists available at ScienceDirectSeparation and PurificationTechnologyj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /s e p p urShort communicationHighly efficient extraction of phenols and aromatic amines into novel ionic liquids incorporating quaternary ammonium cationVladimir M.Egorov,Svetlana V.Smirnova,Igor V.Pletnev ∗Department of Chemistry,M.V.Lomonosov Moscow State University,1/3Leninskiye gory,119992Moscow,Russiaa r t i c l e i n f o Article history:Received 13May 2008Received in revised form 26June 2008Accepted 28June 2008Keywords:Ionic liquidsLiquid–liquid extraction PhenolsAromatic aminesa b s t r a c tTwo novel hydrophobic room temperature ionic liquids (RTIL)incorporating quaternary ammonium cations:tetrahexylammonium dihexylsulfosuccinate (THADHSS)and trioctylmethylammonium salicylate (TOMAS)have been obtained.The mutual solubility of the both RTILs with water and their Reichardt’s polarity index have been measured.The extraction of aromatic amines and phenols into novel RTILs and two 1-alkyl-3-methylimidazolium bis (trifluoromethanesulfonyl)amides has been studied.The depen-dences of RTIL–water distribution ratio for the studied liquids on the phase volume ratio,the time of phase contact,pH value of aqueous solutions and the solute concentration have been obtained.In some cases,the solute distribution ratios for ammonium-based RTILs are as high as n ×104that is much greater than for imidazolium ones.Notably,unlike the case of imidazolium-based RTILs,the quantitative extraction into ammonium RTILs is achieved even at the phase volume ratio V RTIL :V w =1:20.©2008Elsevier B.V.All rights reserved.1.IntroductionRoom temperature ionic liquids (RTIL),which are organic or organoelement salts liquid at room temperature,have nowadays a growing diversity of applications in chemistry and technology [1,2].The advantages of room temperature ionic liquids include wide liq-uid range,high heat capacity,high thermal and chemical stability [3,4].As opposed to conventional organic solvents,most RTILs are non-flammable,have low vapor pressure and good electrochemical properties (electric conductivity,wide electrochemical window)[2–5].It is important that modification of cationic or anionic parts of RTIL may enable a fine-tuning of physical and chemical properties [6,7].Room temperature ionic liquids is an attractive alternative to conventional organic solvents in organic synthesis [1],catalysis [8],biopolymers processing [9–11],electrochemistry and electro-analysis [5,12–14],biochemistry [15],analytical chemistry [16].Furthermore,RTILs have a considerable potential as extraction sol-vents and may serve as a key to the design of more environmentally benign separation processes.However,the most abundant 1,3-dialkylimidazolium ionic liq-uids have some limitations on use,the most important being their high cost.That is why the search for new cheaper ionic liquids with improved characteristics is of current interest.As was indicated∗Corresponding author.Tel.:+74959395464;fax:+74959394675.E-mail address:pletnev@analyt.chem.msu.ru (I.V.Pletnev).elsewhere [17,18],some quaternary ammonium or phosphonium-based RTILs look the promising alternative:they are relatively cheap and easy to synthesize;some of them are water-immiscible and suitable for solvent extraction.A large number of publications devoted to liquid–liquid sep-arations with the use of RTILs have appeared within last years.The applications include extraction of simple substituted arenes [19,20],alcohols [21],carboxylic acids [22,23],and metal ions [24,25];aromatics/aliphatics separations [26,27]and fuel desul-furization [28,29].Extraction of various biological substances is another popular subject [30–32].It is worthy of mention that the majority of papers employ only imidazolium-based RTILs as extrac-tion solvents.Gathering a large array of experimental data on the extraction of representative solutes into different RTILs may give a useful information about the influence of solute/solvent structure on the partitioning of organic compounds.Phenols and aromatic amines may well serve as such representative solutes,since a wide vari-ety of substituted compounds are readily available to examine the role of structural details.Additionally,the data on the extraction of phenols have been previously reported for dialkylimidazolium hexafluorophosphate RTILs (our work [33]),and the extraction of phenols and amines has been reported for tetrafluoroborate ones [34].We report herein on the synthesis and properties of two novel hydrophobic RTILs incorporating quaternary ammo-nium cations,tetrahexylammonium dihexylsulfosuccinate (THADHSS)and trioctylmethylammonium salicylate (TOMAS).1383-5866/$–see front matter ©2008Elsevier B.V.All rights reserved.doi:10.1016/j.seppur.2008.06.024V.M.Egorov et al./Separation and Purification Technology63(2008)710–715711These two RTILs along with two imidazolium-based RTILs,1-hexyl-3-methylimidazolium and1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amides(HMImTf2N and DMImTf2N, respectively),have been tested as extraction solvents for recovery of aromatic amines and phenols from aqueous solution.2.Experimental2.1.ReagentsTetrahexylammonium bromide(Aldrich,99%),Aliquat®336 (trioctylmethylammonium chloride,Aldrich),sodium dihexylsul-fosuccinate(Technolog Ltd.,Russia),sodium salicylate(Panreac, RFE,USP,BP,Ph.Eur.),and2,6-diphenyl-4-(2,4,6-triphenylpyridin-1-yl)-phenolate monohydrate(Reichardt’s dye,Sigma–Aldrich, 70%)were used as received.1-Hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide(99%)was purchased at Sol-vent Innovation GmbH,Germany.1-Decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide was synthesized in the Dr.A.V.Yatsenko’s group at the Department of Chemistry of the MSU.The studied solutes,phenol,4-nitrophenol,2,4-dinitrophenol,2,6-dinitrophenol,picric acid,1-naphthol,2-naphthol,aniline hydrochloride,p-toluidine,3-nitroaniline,and tryptamine hydrochloride were of reagent grade purity.Potas-sium ferrocyanide,4-aminoantipyrine,amidopyrine(analytical reagent grade),and iron(III)sulfate(reagent grade)were used for spectrophotometrical measurements.Nitric and sulfuric acids (0.1and3M),potassium hydroxide(0.1and3M),phosphate(pH 6.86)and borate(pH9.18)buffer solutions were used for pH anic solvents,acetone(reagent grade),acetoni-trile(HPLC grade),chloroform(reagent grade)were used without additional purification.Water was freshly distilled before use.2.2.Preparation of quaternary ammonium RTIL2.2.1.Tetrahexylammonium dihexylsulfosuccinate19.42g(0.05mol)of sodium dihexylsulfosuccinate(NaDHSS) was dissolved in80ml of water at50◦C upon shaking.After complete dissolution of NaDHSS,equimolar amount(21.73g)of tetrahexylammonium bromide was added to the solution.The mixture was stirred for20min forming two phases where upper phase is RTIL.Aqueous phase was separated and RTIL phase was repeatedly rinsed with triple volume of fresh water10times upon vigorous shaking.The presence of NaBr in wash water was mon-itored by reaction with silver nitrate.After that the upper phase was collected and centrifuged for several hours to settle the emul-sion of water.A clear,colorless,viscous liquid was obtained.1H NMR(500MHz,CDCl3,␦/ppm relative to TMS):0.88(t;18H),1.33 (m;36H),1.55(m;12H),3.2(m;12H),4.1(m;3H).13C NMR (126MHz,DMSO-d6,␦/ppm relative to TMS):13.64,13.69,13.71 (CH3);20.91,21.76(C*H2CH3);21.87,24.82,24.85,25.34,27.95, 27.99,30.47,30.75,30.82(various CH2CH2);34.01(OOCC*H2CH);57.63(CHSO3);61.30(CH2N);63.89(CH2O);168.31,170.97(COOR).2.2.2.Trioctylmethylammonium salicylate40.42g(0.1mol)of trioctylmethylammonium chloride (Aliquat®336)was dissolved in200ml of acetone,and equal molar amount of sodium salicylate(16.01g)was added to the solution.The mixture was shaken for5h and left overnight.After that the precipitate wasfiltered off and acetone was evaporated fromfiltrate using rotary evaporator.The obtained RTIL was then rinsed with distilled water10times,and the upper RTIL phase was then centrifuged for several hours to settle the emulsion of water.Elemental analysis of the product yielded zero inorganic ash content.A clear,slightly yellowish,viscous liquid was obtained.1H NMR(500MHz,CDCl3,␦/ppm relative to TMS):0.88(t;9H),1.22(m;30H),1.53(m;6H),2.98(s;3H),3.13(m;6H),6.86(t;1H),6.92(d;1H),7.38(t;1H),7.88(d;1H),15.6(s;1H).13C NMR (126MHz,DMSO-d6,␦/ppm relative to TMS):13.80(C*H3C);21.93 (C*H2CH3);21.25,25.68,28.27,28.32,31.04(various CH2CH2);47.41(CH3N);60.50(CH2N);115.35,115.62,120.73,129.73,130.88 (aromatic C);163.17(COH);171.00(COO).1H and13C NMR data were recorded with NMR spectrometer DRX500(Bruker,Germany).2.3.Polarity measurementsFor solvatochromic polarity measurements a pinch of Reichardt’s dye on the tip of a spatula was added to3ml of studied solvent in a glass test-tube.If necessary,the mixture was ultrasonicated to completely dissolve the dye.After that the UV–vis spectrum of the solution was measured relative to distilled water(SF103spectrophotometer,Akvilon,Russia).The Dimroth–Reichardt polarity parameter E T(30)was calculated using the following equation:E T(30),kcal mol−1=28591max(1) where max is a maximum absorbance wavelength[35].2.4.Solubility measurementsThe solubility of THADHSS in water was measured conductimet-rically.A solution of THADHSS was prepared by dissolving a known amount of THADHSS in0.5L of deionized water.Then a series of cal-ibration solutions was made by dilution of the above solution,and their conductivity and the conductivity of the saturated THADHSS solution were measured.The solubility of TOMAS in water was determined spectrofluo-rometrically by salicylate( ex=305nm, em=405nm).The measurement of water content in water-saturated quater-nary ammonium RTILs was made using coulometric Karl Fischer titrator“Expert-007”(Econiks-Expert,Russia).2.5.Extraction procedureThe extraction was carried out in10ml polypropylene cen-trifuge test-tubes at ambient temperature(20±3◦C).The proper volumes of RTIL and pH-adjusted aqueous solution of studied com-pound were placed in a test-tube and shaken for the time necessary for extraction equilibrium to be achieved.Unless otherwise men-tioned,the phase volume ratio V IL:V w was1:3for imidazolium and 1:20for quaternary ammonium RTILs.After the necessary shaking time had elapsed,the systems with quaternary ammonium RTIL were centrifuged for2min(the centrifugation is not imperative but desirable as quaternary ammonium RTILs tend to adhere onto walls of test-tube after shaking).After that the necessary volume of aqueous phase was taken,and pH value was measured(pH-meter pH-410;combined glass microelectrode ESLK-13.7,Akvilon,Rus-sia).Finally,the determination of the solute in the aqueous phase was performed.The recovery(R,%)and the distribution ratio(D)of a solute were calculated using the following equations:R(%)=1−C wC0w100(2) D=C oC w=R100−RV wV o(3) where C0w and C w are the initial and equilibrium concentrations of the studied solute in aqueous phase,respectively(mol L−1),V w and712V.M.Egorov et al./Separation and Purification Technology63(2008)710–715V o denote the volumes of aqueous and RTIL phases,respectively (ml).The studied solutes were monitored spectrophotometrically or spectrofluorometrically[36,37].Spectroscopic measurements were performed using spectrophotometer UV-2201or spectrofluorime-ter RF-5301PC(Shimadzu,Japan),quartz cells.Concentrations of nitrocompounds were determined by their own absorbance after adding3M KOH to pH11–12.The absorbance was measured at400nm(4-nitrophenol),359nm(2,4-dinitrophenol),360nm (2,6-dinitrophenol),356nm(picric acid),365nm(3-nitroaniline). For spectrophotometrical determination of phenol and naphthols, 1.0ml of borate buffer solution(pH9.18),0.1ml of2%wt aque-ous K3Fe(CN)6,and0.1ml of2wt%aqueous4-aminoantipyrine were added to2.5ml of the studied solution.After5min,the absorbance was measured at510nm.For determination of aromatic amines,1ml of phosphate buffer solution,0.3ml of0.1M aqueous amidopyrine and1ml of2wt%K3Fe(CN)6were added to2.5ml of amine solution.After20min,the absorbance was measured at535nm.Tryptamine was determined spectrofluorimetrically at ex=279nm( em=359nm).Spectrophotometrical determination of salicylate in aqueous solutions after contact with TOMAS was car-ried out using freshly prepared5×10−3mol L−1(Fe3+)solution of iron(III)sulfate;2ml of5×10−3mol L−1Fe3+solution were added to2ml of salicylate solution(pH2–3);the absorbance was mea-sured at525nm[36].3.Results and discussion3.1.Properties of the quaternary ammonium RTILsTOMAS and THADHSS are clear liquids with densities slightly less than1g cm−3(0.945and0.975,respectively).Freezing points of the both RTILs are below−10◦C.The liquids are immiscible with water.1H and13C NMR spectra confirmed the identity of the obtained RTILs,and the molar cation–anion ratio calculated from1H NMR data was exactly1:1for the both RTILs.Solubility of THADHSS in water was found to be (8.6±0.2)×10−5mol L−1.Solubility of TOMAS is(2.0±0.2)×10−4mol L−1.These values are up to two orders of magnitude lower than that of common hydrophobic imidazolium-based RTILs[38].This significantly decreases a possible RTIL loss during extraction.The obtained RTILs are hydrolytically stable at pH2–13.Solubility of water in THADHSS and TOMAS is ca.5and7wt%, respectively(Karl Fischer titration).After shaking the RTILs with water,no emulsification was observed in both aqueous and RTIL phases.3.2.Polarity of THADHSS and TOMASPolarity is an important property of a solvent,which affects dif-ferent types of interactions between solvent and solute molecules. There exist several experimental methods for quantitative eval-uation of polarity:inverse gas chromatography,kinetic method, refractive index measurement[39].One of the most popular approaches refers to solvatochromism measured for a specific probe molecule,in particular,Reichardt’s betaine dye.The maxi-mum absorbance wavelength of this dye lies in visible spectrum and strongly depends on the nature of a solvent.In the present study we have measured the Dimroth–Reichardt’s polarity E T(30)of the novel RTILs,and three commonly used organic solvents(acetone,acetonitrile,and chloroform).The results along with literature data are shown in Table1.Table1max and E T(30)values for several solventsSolvent max(nm)E T(30)(kcal mol−1)Acetone67842.2Acetonitrile63045.4Chloroform69841.0 Dichloromethane[40]70040.8HMImTf2N[41]55251.8BMImPF6[40]a54552.5THABzO[35]b65143.9Ethanol[40]54652.4THADHSS(satd.with H2O)61546.5TOMAS(satd.with H2O)59348.2a1-Butyl-3-methylimidazolium hexafluorophosphate.b Tetrahexylammonium benzoate.The E T(30)values for THADHSS and TOMAS are close to each other and comparable with those for the other known ammonium-based RTILs[35].As compared to imidazolium-based RTILs(typical E T(30)values are in between49and60[35]),the novel ionic liquids are less polar.All the measurements and literature data are given for room temperature.It is important to mention that the E T(30)values were measured for water-saturated THADHSS and TOMAS,as they are directly related to the polarity of solvents in extraction conditions.On the basis of polarity measurements one may conclude that the novel RTILs would have solvation/extraction proper-ties different from both conventional extraction solvents and imidazolium-based ionic liquids.As is shown below(see extrac-tion data in Section3.4),there exists no quantitative relationship between E T(30)and extraction efficiency for corresponding RTIL. However,one may note that the lower E T(30)value the more effi-cient is extraction,in general.3.3.Extraction studies3.3.1.Optimization of extraction conditionsThe influence of phase contact time,phase volume ratio and concentration of an inorganic electrolyte(NaCl)on the distribution ratio has been studied on the example of2,4-dinitrophenol.The appropriate values of thefirst two parameters are shown in Table2.As can be seen from Table2,the time of phase contact,which is necessary to achieve extraction equilibrium,is less for the qua-ternary ammonium RTILs.Previously our group has shown that the optimal phase contact time for extraction into imidazolium-based ionic liquids weakly depends on the structure of extracted polar aromatic compound[33].That is why,and also for conditions uni-fication,in all the further experiments the phase contact time for all systems was15min.Like for the other previously studied imidazolium-based RTILs[33],the distribution ratio of2,4-dinitrophenol into both HMImTf2N and DMImTf2N dramatically decreases with increasing phase volume ratio.The3:1phase volume ratio has been chosen as optimal in order to maintain an acceptable distribution coefficientTable2Phase contact time and phase volume ratio for extraction of2,4-dinitrophenol (5×10−4mol L−1;pH2)RTIL Phase contacttime(min)Phase volumeratio(V w:V RTIL) THADHSS520:1TOMAS1020:1HMImTf2N153:1DMImTf2N153:1V.M.Egorov et al./Separation and Purification Technology 63(2008)710–715713and at the same time to minimize the quantity of RTIL,which is necessary for an extraction run.On the contrary,in the case of quaternary ammonium RTILs,the distribution ratio of 2,4-dinitrophenol weakly depends on the phase volume ratio up to 50:1.The value 20:1has been chosen for further experiments with the both quaternary ammonium RTILs in order to decrease the consumption of RTIL while sustaining a good recovery.The concentration of introduced inorganic electrolyte (NaCl)from 5×10−4to 0.5mol L −1has practically no effect on the dis-tribution ratio of 2,4-dinitrophenol.3.3.2.The effect of pH on the recovery of aromatic compoundsAll the studied solutes can be divided into two types based on their acid-base behaviour:phenols and aromatic amines.3.3.2.1.Extraction of phenols.The pH dependence of the distribu-tion ratio of unsubstituted phenol for all studied RTILs is shown in Fig.1.As can be seen,the maximal distribution ratio is observed at acidic pH,where the molecular form of phenol is predomi-nant.Upon the increase in pH the recovery of phenol into the imidazolium-based RTILs dramatically decreases,and at pH >12becomes negligible (R <10%).This is a typical behaviour for parti-tioning of phenol into imidazolium RTILs [33,34].The extraction ability of HMImTf 2N is close to that of DMImTf 2N (though less hydrophobic HMImTf 2N has a small advantage).The distribution ratios of phenol for the ammonium-based RTILs are approximately 0.5and 1order of magnitude (TOMAS and THADHSS,respectively)higher than for the imidazolium-based RTILs.The observed pH dependence of extraction clearly shows that phenol is preferably partitioned into all RTILs in undissociated (molecular)form.However,even at pH 12the recovery of phenol into the ammonium RTILs remains rather significant (R ∼40–50%,see Fig.1).In the case of nitrophenols pH value has small effect on the recovery into quaternary ammonium RTILs,whereas pH depen-dences of distribution ratio of nitrophenols into imdazolium-based RTILs have a trend similar to that for phenol.The aforementioned results clearly point to the possibility of phenolates extraction (anion-exchange)into the quaternary ammonium RTILs,in addi-tion to extraction of a neutral solute.Naturally,the contribution of ion-exchange recovery of ionized phenols should be higher at pH >pK a of solute.Expectedly,the efficiency of anion-exchange extraction into the quaternary ammonium RTILs is higher for more hydrophobic nitrophenols than for phenol.The similarbehaviourFig.1.The effect of pH on distribution ratio of phenol (1×10−4mol L −1)into differ-entRTILs.Fig.2.The increase of salicylate concentrations in aqueous phase after extraction at various pH (solid line)in comparison to calculated initial concentration of 2,4-dinitrophenolate (C total =5×10−4mol L −1;dashed line)in aqueous phase.has been previously observed for the partitioning of picric acid between water and BMImPF 6[33].In order to confirm a contribution of anion exchange to extraction,the concentration of salicylate in aqueous phase after extraction of 2,4-dinitrophenol (5×10−4mol L −1)into TOMAS was monitored.Evidently,anion-exchange extraction of dinitrophe-nolate should be accompanied by a release of stoichiometric quantity of RTIL anion,salicylate,to an aqueous phase.The measured concentration of salicylate after extraction at differ-ent pH was compared with the concentration of salicylate in solutions,which had also been in contact with TOMAS but did not contain 2,4-dinitrophenol (pH values of these solu-tion pairs were approximately the same).Corresponding plot is presented in Fig.2(concentration of 2,4-dinitrophenolate in aqueous phase is calculated with the use of literature pK a ,see Table 3).As can be seen,the increase in aqueous salicylate concentra-tion is higher at higher pH;at pH >7it is nearly equal to the total concentration of 2,4-dinitrophenol.Note that at pH >72,4-dinitrophenol exists mostly as anion,and its recovery into TOMAS is ca.100%.In other words,the increase of aqueous salicylate concen-tration exactly matches the concentration of extracted solute.This proves that the anion exchange mechanism is operative at pH >pK a (solute).3.3.2.2.Extraction of aromatic amines.The extraction of four aro-matic amines into RTILs has been investigated.Fig.3presents theTable 3Extraction of the studied phenols and aromatic amines into quaternary ammonium RTILs (V w :V RTIL =20:1)SolutepK a [42]log D log P OW [43,44]THADHSSTOMAS Phenol10.0 2.5 2.1 1.464-Nitrophenol 7.14 3.6 3.4 1.912,4-Dinitrophenol 4.08 4.1 3.5 1.672,6-Dinitrophenol 4.15 4.0 3.6 1.372,4,6-Trinitrophenol 0.69 3.9 3.8 1.331-Naphthol 9.85 3.8 3.4 2.852-Naphthol 9.63 3.7 3.2 2.70Aniline4.63 1.9 1.80.903-Nitroaniline 2.47 2.3 2.3 1.37p-Toluidine5.07 2.0 2.0 1.39Tryptamine10.23.52.61.55714V.M.Egorov et al./Separation and Purification Technology 63(2008)710–715Fig.3.The effect of pH on distribution ratio of aniline (1×10−4mol L −1)into differ-ent RTILs.pH dependence of the distribution ratio of aniline for all studied RTILs.Three of the studied amines incorporate NH 2group bonded to an aromatic ring,and one (tryptamine)has an aliphatic NH 2group and indole aromatic ring.The pH dependence of extraction of aniline into imidazolium-based RTILs is typical for amines [33,34].Noteworthy,a less hydrophobic HMImTf 2N is a better extraction solvent for aniline than DMImTf 2N.The extraction of aniline into THADHSS and TOMAS is much better than into imidazolium-based RTILs.The characteristic trend of pH dependence for the extraction of aniline,p-toluidine,and m-nitroaniline into the novel RTILs is observed.Tryptamine is efficiently extracted into both THADHSS and TOMAS,but at the optimal pH the distribution ratio of tryptamine for THADHSS is approximately one order of magnitude higher than for TOMAS.For all the ionic liquids studied,the pH profile of aniline extrac-tion is similar to that common for molecular solvents (i.e.efficient extraction takes place at pH >pK a of amine),which is indicative of neutral solute recovery.Unlike phenols,aromatic amines are poorly extracted in ionizedform.parison of distribution data for RTIL/water and 1-octanol/water systems (the trendline is shown for HMImTf 2N).parison of distribution ratios of several compounds for THADHSS and TOMAS (see also Table 3).parative analysis of the extraction resultsThe results obtained in the present work show that the newly obtained quaternary ammonium-based RTILs are much more effi-cient extraction solvents towards the studied aromatic compounds than common imidazolium-based RTILs.The extraction data for non-nitrated phenols and aromatic amines show that the maximal recovery is achieved for molecular forms of these compounds,the decrease in recovery closely corresponding to the respective pK a values.The data on partitioning of the studied phenols and aro-matic amines into quaternary ammonium RTILs are summarized in Table 3.The partitioning of neutral substituted aromatic molecules into imidazolium-based RTILs is often attributed to specific ␲–␲inter-actions between imidazolium ring and aromatic ring of extracted compound [19,45]or to the ability of imidazolic proton at C2to form hydrogen bonds [46].However,in the case of THADHSS and TOMAS such interactions are unlikely.We suggest that dispersive interactions of solute molecules with cation of RTIL may be a driv-ing force for the preferential partitioning of phenols and aromatic amines into quaternary ammonium RTILs.It is interesting to correlate distribution ratio of organic com-pounds with 1-octanol/water partition coefficients,log P OW .Fig.4shows plot of logarithm of the maximal distribution ratio for the studied compounds (log D )into different RTILs vs.log P OW [43,44].As is clearly seen,the extraction ability of the imidazolium-based RTILs is inferior to the extraction ability of the novel quaternary ammonium RTILs and,in some cases,to that of 1-octanol.Noteworthy,there is a correlation between log P OW and log D for imidazolium-based RTILs (see a trendline in Fig.4).This corresponds well to the literature data [19,33].However,for the novel RTILs a log D –log P OW correlation is poor.This may be because of difference in extraction mechanisms between imidazolium and quaternary ammonium RTILs.At the same time,there exists a good correlation between log D obtained for the same solutes with use of THADHSS and TOMAS (Fig.5).This suggests that solvation/extraction patterns for the two ammonium RTILs be similar (note that,in general,THADHSS is more efficient extraction solvent than TOMAS).4.ConclusionsTwo novel quaternary ammonium based room temperature ionic liquids (THADHSS and TOMAS)have been synthesized andV.M.Egorov et al./Separation and Purification Technology63(2008)710–715715characterized.The Dimroth–Reichardt’s polarities of the novel RTILs,E T(30),are higher than those for the studied molecular sol-vents,but less than for imidazolium ionic liquids.Extraction of11aromatic compounds(phenols and aro-matic amines)into two imidazolium-based RTILs(HMImTf2N and DMImTf2N)and into the novel RTILs has been studied.The best recovery into the novel RTILs has been observed for nitrophenols and naphthols.The recovery of the aforementioned compounds is high(>50%at V IL:V w=1:20)in the whole studied pH range. For phenols at pH>pK a(solute)the contribution of ion-exchange mechanism to partitioning has been observed.In the case of imidazolium-based RTILs the best recovery is achieved for molec-ular form of solutes,the recovery of ionic forms being poor.It has been demonstrated that the extraction abilities of THADHSS and TOMAS well correlate with each other.Generally, THADHSS is more efficient extraction solvent towards the studied compounds than TOMAS.At the same time,it has been shown that the novel RTILs are more efficient extraction solvents than common imidazolium-based RTILs.AcknowledgementsWe are grateful to Dr.A.V.Yatsenko for providing a sample of DMImTf2N.Thanks are also due to Prof.S.I.Petrov for performing Karl Fischer titration,and to M.Khrenova for THADHSS solubil-ity measurements.This work was partially funded by the Russian Foundation for Basic Research(project N05-03-32976)and INTAS (project N05-1000008-8020).References[1]P.Wasserscheid,T.Welton(Eds.),Ionic Liquids in Synthesis,Wiley-VCHVerlagGmbH&CoKgaA,2002.[2]I.V.Pletnev,S.V.Smirnova,K.S.Khachatryan,V.V.Zernov,Russ.Chem.J.58(2004)51–57.[3]T.Welton,Chem.Rev.99(1999)2071–2083.[4]H.L.Ngo,K.Le Compte,L.Hargens,A.B.McEwen,Thermochim.Acta357(2000)97–102.[5]M.C.Buzzeo,R.G.Evans,pton,ChemPhysChem.5(2004)1106–1120.[6]J.G.Huddleston,A.E.Visser,W.M.Reichert,H.D.Willauer,G.A.Broker,R.D.Rogers,Green Chem.3(2001)156–164.[7]J.D.Holbrey,K.R.Seddon,J.Chem.Soc.,Dalton Trans.(1999)2133–2134.[8]T.Welton,Coord.Chem.Rev.248(2004)2459–2477.[9]R.P.Swatloski,S.K.Spear,J.D.Holbrey,R.D.Rogers,J.Am.Chem.Soc.124(2002)4974–4975.[10]V.M.Egorov,S.V.Smirnova,A.A.Formanovsky,I.V.Pletnev,Yu.A.Zolotov,Anal.Bioanal.Chem.387(2007)2263–2269.[11]H.Xie,S.Zhang,S.Li,Green Chem.8(2006)630–633.[12]J.D.Wadhawan,U.Schroder,A.Neudeck,et al.,J.Electroanal.Chem.493(2000)75–83.[13]C.Villagrán,L.Aldous,pton,et al.,J.Electroanal.Chem.588(2006)27–31.[14]N.V.Shvedene,D.V.Chernyshov,M.G.Khrenova,A.A.Formanovsky,V.E.Baulin,I.V.Pletnev,Electroanalysis18(2006)1416–1421.[15]S.Park,R.J.Kazlauskas,Curr.Opin.Biotechnol.14(2003)432–437.[16]M.Koel,Crit.Rev.Anal.Chem.35(2005)177–192.[17]N.Nishi,T.Kawakami,F.Shigematsu,M.Yamamoto,T.Kakiuchi,Green Chem.8(2006)349–355.[18]J.-P.Mikkola,P.Virtanena,R.Sjöholm,Green Chem.8(2006)250–255.[19]J.G.Huddleston,H.D.Willauer,R.P.Swatloski,A.E.Visser,R.D.Rogers,Chem.Commun.(1998)1765–1766.[20]E.Bekou,D.D.Dionysiou,R.-Y.Qian,G.D.Botsaris,ACS Symp.Ser.856(2003)544–560.[21]A.Fadeev,M.Meagher,mun.(2001)295–296.[22]J.Marták,ˇS.Schlosser,Chem.Pap.60(2006)395–398.[23]S.Carda-Broch,A.Berthod,D.W.Armstrong,Anal.Bioanal.Chem.375(2003)191–199.[24]S.Dai,Y.H.Ju,C.E.Barnes,J.Chem.Soc.,Dalton Trans.(1999)1201–1202.[25]A.E.Visser,R.P.Swatloski,W.M.Reichert,et al.,mun.(2001)135–136.[26]M.L.Dietz,J.A.Dzielawa,szak,B.A.Young,M.P.Jensen,Green Chem.5(2003)682–685.[27]A.Arce,M.J.Earle,H.Rodríguez,K.R.Seddon,Green Chem.9(2007)70–74.[28]W.-H.Lo,H.-Y.Yang,G.-T.Wei,Green Chem.5(2003)639–642.[29]C.Huang,B.Chen,J.Zhang,Z.Liu,Y.Li,Energy Fuels18(2004)1862–1864.[30]S.V.Smirnova,I.I.Torocheshnikova, A.A.Formanovsky,I.V.Pletnev,Anal.Bioanal.Chem.378(2004)1369–1375.[31]C.He,S.Li,H.Liu,K.Li,F.Liu,J.Chromatogr.A.1082(2005)143–149.[32]J.-H.Wang,D.-H.Cheng,X.-W.Chen,Z.Du,Z.-L.Fang,Anal.Chem.79(2007)620–625.[33]K.S.Khachatryan,S.V.Smirnova,I.I.Torocheshnikova,N.V.Shvedene,A.A.For-manovsky,I.V.Pletnev,Anal.Bioanal.Chem.381(2005)464–470.[34]B.Y.Pei,J.Wang,K.Wu,Y.Zhao,J.Fan,Z.Phys.Chem.221(2007)825–835.[35]C.Reichardt,Green Chem.7(2005)339–351.[36]I.M.Korenman,Photometricheskiy analiz.Metody opredeleniya organich-eskikh soedineniy(Photometric Analysis.Methods for Determination of Organic Compounds),Khimiya,Moscow,1970(in Russian).[37]R.E.Galian,A.V.Veglia,R.H.de Rossi,Analyst123(1998)1587–1591.[38]N.V.Shvedene,S.V.Borovskaya,V.V.Sviridov,E.R.Ismailova,I.V.Pletnev,Anal.Bioanal.Chem.381(2005)427–430.[39]C.Reichardt,Solvents and Solvent Effects in Organic Chemistry,Wiley-VCH,Weinheim,2003.[40]K.A.Fletcher,I.A.Storey,A.E.Hendricks,Sh.Pandey,S.Pandey,Green Chem.3(2001)210–215.[41]B.R.Mellein,S.N.V.K.Aki,dewski,J.F.Brennecke,J.Phys.Chem.B111(2007)131–138.[42]E.P.Serjeant,B.Dempsey,Ionization Constants of Organic Acids in AqueousSolution,Pergamon,Oxford,1979.[43]NCI database:http://129.43.27.140/ncidb2/.[44]Ya.I.Korenman,Koeffitsienty raspredeleniya organicheskikh soedineniy(Dis-tribution Coefficients of Organic Compounds),Voronezh University Press, Voronezh,Russia,1992(in Russian).[45]J.Liu,Y.Chi,J.Peng,et al.,J.Chem.Eng.Data49(2004)1422–1424.[46]J.F.Huang,P.Y.Chen,I.W.Sun,S.P.Wang,Inorg.Chim.Acta320(2001)7–11.。

环境水质中苯酚的含量分析方法

环境水质中苯酚的含量分析方法

2021年第7期广东化工第48卷总第441期ꞏ161ꞏ环境水质中苯酚的含量分析方法李志刚*(广东智环创新环境科技有限公司,广东广州510000)[摘要]InertCap WAX为分离柱,建立了气相色谱法测定环境水质中苯酚含量的分析方法。

通过优化色谱条件,确定初始温度120℃,样品经乙酸乙酯提取,浓缩后测定,外标法定量。

结果表明,苯酚的加标回收率在91.7%~99.0%之间,精密度为0.3%~1.3%,检出限为1.5mg/L。

该方法使用毛细管柱,适用性广,结果重现性好,时间成本低,分离度好,回收率符合要求,能够有效检测水质中的苯酚。

[关键词]气相色谱法;苯酚;外标法定量;加标;毛细管柱[中图分类号]O661.1[文献标识码]A[文章编号]1007-1865(2021)07-0161-01Analysis Method of Phenol Content in Environmental WaterLi Zhigang*(Guangdong Zhihuan Innovation Environment Technology Co.,Ltd.,Guangzhou510000,China) Abstract:A method for the determination of phenol in environmental water by gas chromatography with inertcap wax column was established.By optimizing the chromatographic conditions,the initial temperature was determined to be120℃,the sample was extracted by ethyl acetate,concentrated and determined,and quantified by external standard method.The results showed that the recovery of phenol was91.7%~99.0%,the precision was0.3%~1.3%,and the detection limit was1.5mg/L.The method uses capillary column,has wide applicability,good reproducibility,low time cost,good separation and recovery,and can effectively detect phenol in water.Keywords:gas chromatography;phenol;external standard method;the recovery;capillary column苯酚一般通过阻断或清除导致氧化的自由基,常被添加到化妆品中[1]。

链霉菌挥发性化合物提高植物抗病能力的研究进展

链霉菌挥发性化合物提高植物抗病能力的研究进展

不合理使用化学农药会破坏生态环境,威胁人类健康。

植物根际促生菌(plant growth promoting rhi-zobacteria ,PGPR )为一种生防剂,具有安全、环保、高效的特点,逐渐成为农业绿色高质量发展关注的热点。

链霉菌是PGPR 的一类,广泛分布于土壤、水体等生态系统中,大多具有抗菌活性和能产生天然次级代谢产物的能力。

链霉菌不但可以通过溶磷、固氮、产铁和调节植物激素等方式[1,2]促进植物生长,而且其产生的挥发性化合物(volatile organic compounds ,VOCs )也具有较高的抗菌活性,对细菌和真菌引起的各种植物病害具有防治作用。

对链霉菌VOCs 的分类、VOCs 常用分离鉴定技术、VOCs 对常见植物病原菌的抑制作用以及作用机制研究进展等进行总结,旨为链霉菌VOCs 的深入研究和产品定向开发提供参考。

1微生物的VOCsVOCs 是一类小分子、易挥发的化合物,主要包括烯烃、烷烃、醇、酮、萜类、苯类、醛、吡嗪、酸、酯和含硫化合物[3]。

VOCs 检测在生物学、环境科学、医学、食品工业等领域应用广泛。

微生物产生的VOCs 具有调节植物生长、刺激植物产生激素、诱导植物系统免疫抗性等功能。

VOCs 通过与细胞之间的相互作用[4],参与调节植物生长发育、抑制病原菌侵染的过程。

合理利用微生物产生的VOCs ,在未来具有很大的应用潜力。

不同细菌的代谢途径不完全一摘要:研究微生物代谢相关新技术的迅猛发展,使研究者们从微生物次生代谢产物中发现了更多新的挥发性物质,这些挥发性物质在植物生长发育过程中起到多种重要作用。

在众多微生物中,链霉菌产生的次生代谢产物种类最多、功能最复杂。

以链霉菌为例,综述了其产生的挥发性化合物(VOCs )的类型、VOCs 常用分离鉴定方法、VOCs 对几种常见植物病原菌的抑制作用以及作用机制,旨为链霉菌VOCs 的深入研究和产品开发提供参考。

关键词:链霉菌;挥发性化合物;植物病害;ISR 中图分类号:Q939文献标识码:A 文章编号:1008-1631(2022)03-0053-06收稿日期:2022-03-04基金项目:国家重点研发计划项目(2021YFD1901004-4);河北省农林科学院创新工程专项(2022KJCXZX-ZHS-3);河北省重点研发计划项目(19222902D )作者简介:郭纹余(1996-),女,壮族,广西桂林人,硕士研究生在读,研究方向为资源利用与植物保护。

紫外光谱法测定苯酚与苯胺和对苯二酚

紫外光谱法测定苯酚与苯胺和对苯二酚

250
第 34 卷
T= I/ I0 吸收曲线表示化合物的紫外吸收情况。曲线最大 吸收峰的横坐标为该吸收峰的位置,纵坐标为它的吸 收强度。 数据表示法: 以谱带的最大吸收波长 λmax 和 εmax (logεmax)值表示。 如:CH3I λmax:258 nm(ε:387) 1.2 紫外光谱的常用术语 生色基:在某一段光波内产生吸收的基团,称为
(5)定量分析的应用———反应速度的测定。 (6)医药研究:抗癌药物对 DNA 变性影响的研 究及人血清与癌细胞关系的研究。 因多种酚混合物的紫外吸收光谱严重重叠, 难以 直接测定, 计算光度法已经广泛应用在环境污染物的 分析上。建立多元校正- 紫外吸收光度法不经分离,同 时测定光谱重叠的苯酚、苯胺和对苯二酚,并应用于实 际水样中三种酚类含量的测定,结果令人满意。
1.1 紫外光谱的表示方法 紫外光谱图是由横坐标、纵坐标和吸收曲线组成
的。 横坐标表示吸收光的波长,用 nm (纳米) 为单
位。 纵坐标表示吸收光的吸收强度,可以用 A(吸光 度)、T(透射比或透光率或透过率)、1-T(吸收率)、k(吸 收系数) 中的任何一个来表示。
《环境科学与技术》编辑部:(网址)http://fjks.chinajournal.net.cn(电话)027-87643502(电子信箱)hjkxyjs@ 126.com 收稿日期:2010-08-17 作者简介:牟建(1971-),女,从事环境监测研究,(电子信箱)1261650605@。
这一段波长的生色团或生色基。(C C、C C、C O、 COOH、COOR、COR、CONH2、NO2、—N N—)。
助色基:当具有非键电子的原子或基团连在双键 或共轭体系上时,会形成非键电子与 π 电子的共轭 (p-π 共轭),从而使电子的活动范围增大,吸收向长波 方向位移,颜色加深,这种效应称为助色效应。能产生助 色效应的原子或原子团称为助色基。(—OH、—Cl)。

苯酚与水共沸温度[5篇]

苯酚与水共沸温度[5篇]

苯酚与水共沸温度[5篇]以下是网友分享的关于苯酚与水共沸温度的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。

苯酚与水共沸温度第一篇研究与开发齐鲁石油化工, 2005, 33(4) :271~272Q ILU P ET ROCHEM I CAL T ECHNOL OGY苯酚-水混合物的共沸精馏分离刘金海(天津双孚精细化工有限公司, 天津, 300385)摘要脱除混合物中的水和回收苯酚供缩合反应循环使用, 是双酚 A 生产工艺中非常重要的单元操作。

由于苯酚和水能形成共沸物, 因此不能用普通精馏方法将它们分离。

为此, 在苯酚-水物系中加入了一种共沸剂甲苯, 用共沸精馏法实现了苯酚-水混合物的分离。

分离后的水可以直接送到生化装置进行处理, 苯酚回收供反应系统循环使用。

关键词双酚A 共沸物共沸剂共沸精馏中图分类号:TQ028 文献标识码:B 文章编号:1009-9859(2005) 04-0271-02精馏是化工生产中常用的分离方法。

由于被分离的物系性质不同, 所采用的手段也有所差异。

在双酚A 生产中[1], 缩合反应产生的水和过量的苯酚形成大量苯酚-水混合物。

由于苯酚和水能形成共沸物, 如果采用普通的精馏方法, 无法将苯酚和水彻底分离, 脱水塔塔顶或塔釜还是苯酚与水的混合物。

为此, 在苯酚-水物系中加入了一种共沸剂甲苯, 甲苯和水形成更易分离的甲苯-水共沸物。

该共沸物从脱水塔塔顶蒸出, 冷凝后进入分相器, 分相器上层富甲苯相返回脱水塔循环使用; 分相器下层富水相直接送往生化处理装置继续处理水中的极微量苯酚和甲苯塔塔釜为甲苯和苯酚的混合物。

脱水塔塔釜物料经过一个普通精馏塔可以很容易地将甲苯和苯酚分离, 分离后的甲苯返回脱水塔循环使用, 而苯酚回收后供反应系统循环使用。

1 实验部分1. 1 原料(1) 苯酚和水的混合物的质量比为85 15; (2) 甲苯为工业甲苯。

1. 2 主要设备(1) 脱水塔:填料塔, 塔高22. 8m, 内径1m, 填料为BX 型整装填料; (2) 苯酚塔:填料塔, 塔高[2]1. 3 实验方法将混合物(苯酚-水) 和甲苯以 2 1进料比(质量比) 混合进入脱水塔, 给塔釜加热, 塔内上升蒸气逐渐升至塔顶。

气相色谱-质谱法测定化妆品中苯酚和氢醌

气相色谱-质谱法测定化妆品中苯酚和氢醌

第23卷第3期2017年9月分析测试技术与仪器ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTSVolume 23Number 3㊀㊀㊀㊀Sep.2017ʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏ分析测试新方法(176~179)收稿日期:2017-06-16;㊀修订日期:2017-08-15.基金项目:江苏检验检疫局科技计划项目(项目编号:2017KJ48)资助作者简介:陈少波(1985-),男,工程师,研究方向:化妆品和食品检测技术研究,E -mail:shaobo_chen@.气相色谱-质谱法测定化妆品中苯酚和氢醌陈少波1,2,3,蒲云月1,3,余雯静1,徐振东1(1.苏州出入境检验检疫局检验检疫综合技术中心,江苏苏州㊀215104;2.苏州世标检测技术有限公司,江苏苏州㊀215104;3.苏州华博日化品检测服务有限公司,江苏苏州㊀215104)摘要:建立了气相色谱-质谱联用测定化妆品中苯酚和氢醌的检测方法.用甲醇作为提取试样,经HP -INNOWAX 毛细管色谱柱分离,选择特征离子监测扫描模式(SIM)测定.结果表明:苯酚的方法线性范围为0.01~50μg /mL (r =0.99996),检出限为0.05μg /g,加标回收率为91.3%~99.6%,相对标准偏差为1.5%~6.0%.氢醌的方法线性范围为0.02~50μg /mL(r =0.99987),检出限为0.10μg /g,加标回收率为91.5%~99.7%,相对标准偏差为3.2%~5.5%.方法简单㊁快速㊁灵敏,可有效消除化妆品基质的干扰,适用于化妆品中苯酚和氢醌的定性㊁定量测定.关键词:气质联用;氢醌;苯酚;化妆品中图分类号:O657.3文献标志码:B文章编号:1006-3757(2017)03-0176-04DOI :10.16495/j.1006-3757.2017.03.006Determination of Phenol and Hydroquinone in Cosmeticsby Gas Chromatography -Mass SpectrometryCHEN Shao -bo 1,2,3,PU Yun -yue 1,3,YU Wen -jing 1,XU Zhen -dong 1(1.Inspection and Quarantine Technical Center ,Suzhou Entry -Exit Inspection and Quarantine Bureau ,Suzhou 215104,Jiangsu China ;2.Suzhou World Standard Testing Technology Co.Ltd.,Suzhou 215104,Jiangsu China ;3.Suzhou Huabo Daily Chemicals Testing &Service Co.Ltd.,Suzhou 215104,Jiangsu China )Abstract :A new method was proposed for the determination of phenol and hydroquinone in cosmetics by gas chromatography -mass spectrometry.The samples were extracted by methanol,the purified extracts were separated by HP -INNOWAX capillary column and detected in the selected ion monitoring (SIM)scanning mode.The results showed that the linear range of phenol was 0.01~50μg /mL(r =0.99996)and the detection limit was 0.05μg /g,the recovery rate of sample was 91.3%~99.6%and the relative standard deviation was 1.5%~6.0%.The linear range of hydroquinone was 0.02~50μg /mL (r =0.99987)and the detection limit was 0.10μg /g,the recovery rate of sample was 91.5%~99.7%and the relative standard deviation was 3.2%~5.4%.The method is simple,rapid and sensitive,and caneffectively eliminate the interference of cosmetic matrix.It is suitable for the qualitative and quantitative determination of phenol and hydroquinone in cosmetics.Key words :gas chromatography -mass spectrometry;hydroquinone;phenol;cosmetics㊀㊀氢醌和苯酚具有一定美白㊁祛斑的功效[1],但由于其具有很大的毒性和刺激性[2],长时间使用会引起皮肤病变和全身性副作用[3].我国‘化妆品安全技术规范“中规定美白祛斑类化妆品中禁用氢醌第3期陈少波,等:气相色谱-质谱法测定化妆品中苯酚和氢醌和苯酚[4].目前氢醌和苯酚的检测方法主要有液相色谱法[5]㊁气相色谱法[6]㊁紫外-可见分光光度法[7-8]㊁毛细管电泳法[9]和试剂盒快速检测法[10-11]等.这些方法中紫外-可见分光光度法操作简便,但其受样品基质影响较大.液相色谱法和气相色谱法高效㊁快速㊁灵敏度高,但易受样品基体干扰;毛细管电泳法高效㊁快速㊁成本低,但这些方法定性确证的能力不足.基于化妆品基质成分较为复杂多变,单一定性手段会给目标物检测带来困难,所以本文建立了气相色谱-质谱联用法测定化妆品中氢醌和苯酚.该方法前处理简单,检测灵敏度较高,利用选择离子监测模式可以很好地排除化妆品中干扰组分,得到更好地定性㊁定量结果.1㊀试验部分1.1㊀仪器和试剂Agilent7890A-5975C气相色谱-质谱联用仪(美国安捷伦公司);MS3涡旋混合器(德国IKA公司);分析天平(梅特勒-托利多公司);KQ-5200DB 型数控超声波清洗器(昆山市超声仪器有限公司).氢醌:99%,德国Dr.Ehrenstorfer公司;苯酚: 99.5%,德国Dr.Ehrenstorfer公司;甲醇为色谱纯.面霜㊁祛斑霜㊁精华液㊁洁面乳等测试用的各种化妆品均来源于本地超市.1.2㊀仪器条件1.2.1㊀气相条件色谱柱:HP-INNOWAX30mˑ0.32mmˑ0.25μm;进样口温度:220ħ;升温程序:120ħ保持1min,以10ħ/min升温至220ħ,保持10min;载气:氦气;流速:1.0mL/min;进样方式:分流进样, 10:1;进样量:1μL.1.2.2㊀质谱条件色谱-质谱接口温度:250ħ;离子源温度: 230ħ;离子源:EI源,70eV;监测方式:选择离子监测方式(SIM);溶剂延迟:4min;特征选择离子检测如表1所列.表1㊀特征选择离子检测表Table1㊀Characteristic selective ion detection table 名称特征选择离子/(m/z)苯酚94∗,66,39氢醌110∗,81,53㊀㊀∗:定量离子1.3㊀样品前处理称取样品1.0g(精确至0.1mg)于具塞比色管中,用甲醇定容至10mL,涡旋混匀后超声提取2min,8000r/min离心5min,取上清液过0.22μm 滤膜后备用.2㊀结果与讨论2.1㊀前处理条件的优化由于大部分化妆品中含有较高的油脂成分,且基质成分复杂,如果采用正己烷等这些极性较低的溶剂提取,易将更多杂质提取进入提取液,从而导致基质干扰加大㊁检测灵敏度降低.同时由于氢醌和苯酚都具有较强的极性,易溶于极性较强的甲醇和乙醇.所以本文分别考察了甲醇和乙醇的提取效果,发现这两种提取剂的提取效率无显著差别,但相对于乙醇来说,用甲醇作为提取剂时色谱峰形更尖锐㊁对称性更好,所以本文选择甲醇作为提取剂. 2.2㊀色谱条件的选择氢醌和苯酚两种物质都拥有苯基和羟基,物质的极性较强,一般选用极性较强的毛细管色谱柱进行分离,HP-INNOWAX(30mˑ0.32mmˑ0.25μm)毛细管色谱柱是键合/交联聚乙醇固定相的色谱柱,有很好的惰性,对各种极性化合物如酸㊁醛和醇类可以得到很尖锐的峰形,可以经受多次进水样和溶剂样品,故选用该色谱柱进行分析.HP-INNOWAX作为分析柱时的选择离子监测(SIM)图如图1所示.2.3㊀线性关系和检出限分别配制不同浓度的氢醌和苯酚标准溶液,以色谱峰面积对质量浓度做工作曲线,得苯酚和氢醌的回归方程㊁相关系数和线性范围,结果如表2所列.由表2可见,苯酚和氢醌分别在0.01~50㊁0.02~ 50μg/mL范围内呈现良好的线性.在上述试验条件下,称样量为1g时,苯酚的检出限为0.05μg/g (S/N=3),氢醌的检出限为0.10μg/g(S/N=3).2.4㊀准确度和精密度分别称取4类化妆品样品,加入低㊁中㊁高3个水平的氢醌和苯酚标准品进行加标回收试验,各样品中苯酚的质量分数为0.2㊁2.0和20μg/g,氢醌的质量分数为0.4㊁4.0和40μg/g.试验结果如表3㊁4所列.结果表明,苯酚的加标回收率均在91.3%~ 99.6%之间,相对标准偏差(RSD)为1.5%~ 6.0%;氢醌的加标回收率均在91.5%~99.7%之间,相对标准偏差(RSD)为3.2%~5.4%,说明该771分析测试技术与仪器第23卷图1㊀HP-INNOWAX作为分析柱时的SIM图Fig.1㊀SIM spectra of HP-INNOWAX used as analytical column表2㊀苯酚和氢醌的回归方程㊁相关系数㊁线性范围和检出限Table2㊀Regression equation,correlation coefficient,linear range and detection limit of phenol and hydroquinone 名称回归方程相关系数线性范围/(mg/L)检出限/(mg/kg)苯酚y=15680x+17.410.999960.01~500.05氢醌y=14330x+117.70.999870.02~500.10表3㊀苯酚的回收率和精密度(n=6)Table3㊀Recovery and precision of phenol(n=6)样品名称添加值/(μg/g)平均回收率/%RSD/%面霜0.292.3 4.82.094.3 4.720.092.4 3.6精华液0.295.3 4.12.093.6 6.020.092.6 2.9爽肤水0.291.3 5.72.095.8 4.220.095.8 2.2洁面乳0.293.8 5.02.099.63.320.096.1 1.5表4㊀氢醌的回收率和精密度(n=6)Table4㊀Recovery and precision of hydroquinone(n=6)样品名称添加值/(μg/g)平均回收率/%RSD/%面霜0.491.5 5.44.094.3 3.640.097.5 3.2精华液0.490.8 5.24.097.8 4.240.098.0 3.6爽肤水0.496.3 4.44.098.9 3.240.099.7 3.2洁面乳0.492.8 5.14.097.4 4.440.097.2 4.8871第3期陈少波,等:气相色谱-质谱法测定化妆品中苯酚和氢醌方法具有较好的准确度和精密度,可以满足化妆品中苯酚和氢醌的分析要求.2.5㊀实际样品的测定随机抽取了日霜㊁精华液㊁爽肤水和洁面乳样品共6件进行检测,结果如表5所列.由表5可见,两件样品中分别有检测出氢醌和苯酚,其中日霜中苯酚的检出结果为0.2μg/g,祛斑霜中氢醌检出结果为124.1μg/g,表明化妆品中存在苯酚和氢醌的残留或者非法添加的问题,因此建立本检测方法很有必要.表5㊀化妆品中苯酚和氢醌检测结果∗Table5㊀Determination results of phenol andhydroquinone in cosmetics序号样品名称苯酚/(μg/g)氢醌/(μg/g)1日霜0.2BMDL2晚霜BMDL BMDL3祛斑霜BMDL124.14精华液BMDL BMDL5爽肤水BMDL BMDL6洁面乳BMDL BMDL ㊀㊀∗:BMDL表示低于方法检出限3㊀结论本文建立了甲醇超声提取,气相色谱-质谱联用测定化妆品中中苯酚和氢醌的方法.方法简单㊁快速㊁灵敏度高㊁检出限低㊁回收率和精密度好,可满足化妆品中苯酚和氢醌含量测定的要求,适合多种化妆品的检测.该方法的建立对于化妆品中氢醌和苯酚的风险检测具有重要的意义.参考文献:[1]㊀Nordlund J,Grimes P,Ortonne J P.The safety ofhydroquinone[J].Journal of the European Academy ofDermatology and Venere-ology,2006,20(7):781-787.[2]㊀甘卉芳.化妆品㊁洗涤用品和服饰中有害物质及其防护[M].北京:化学工业出版社,2000:49,82. [3]㊀李庆,谢晓萍,古梅英,等.229份美白祛斑类化妆品卫生毒理学检验结果[J].华南预防医学,2006,32(5):76-77.[4]㊀国家食品药品监督管理总局.(2015年第268号公告)‘化妆品安全技术规范“(2015年版)[S]. [5]㊀陶昕晨,彭超慧,吴忠富.高效液相色谱法同时测定化妆品中氢醌㊁苯酚和防腐剂等10种限用物质[J].广东化工,2015,42(20):123-125. [6]㊀江生,汪敏,杨小珊.毛细管柱气相色谱法检测化妆品中的苯酚和氢醌[J].科研,2016(1):34-34. [7]㊀杨景芝,孙衍华,周杰,等.KBrO3-KBr紫外分光光度法测定痕量苯酚[J].分析试验室,1999,18(4):57-59.[8]㊀张钱丽,刘小燕,王秀玲.紫外-可见分光光度法测定痕量防腐剂苯酚的研究[J].苏州科技学院学报,2007,24(4):53-56.[9]㊀韩康,翟学良.毛细管电泳法同时测定化妆品中氢醌㊁苯酚和防腐剂[J].分析试验室,2011,30(1):107-109.[10]㊀吴平谷,朱红,俞莎,等.去斑类化妆品中汞㊁氢醌和苯酚快速检测试剂盒法与仪器法比较[J].中国卫生检验杂志,2008,18(6):1058-1059,1076. [11]㊀李梦洁,柯燕娜,裴炜,等.化妆品中苯酚和氢醌的检测方法研究进展[J].日用化学品科学,2014,37(2):25-27.971。

气相色谱_质谱联用检测聚丙烯食品包装材料中的18种有毒有害物质_周松华

气相色谱_质谱联用检测聚丙烯食品包装材料中的18种有毒有害物质_周松华
收稿日期: 2014 - 08 - 21; 修稿日期: 2014 - 09 - 09 基金项目: 国家自然科学基金面上项目( 21277061,1277085) 作者简介: 周松华( 1989 - ) ,女,硕士,研究方向为分析化学。 通信作者: 林勤保( 1968 - ) ,男,博士,副教授,研究方向为食品包装及包装中化学成分的迁移,通信地址: 519070 广东珠海市前山路 206
57
包装与食品机械 2015 年第 33 卷第 1 期
乙酸乙酯 ( 色 谱 纯,Tedia,Ohio,USA) ; 甲 醇 ( 色谱纯,Merck) ; 正己烷( 色谱纯,Kermel) 。 1. 3 标品信息
2,4-甲苯二异氰酸酯,99. 5% ; 甲苯,100% ; 氯苯,99. 5% ; 间二甲苯,99. 9% ; 芳樟醇,97. 2% ; 对苯二胺,99. 0% ; 对羟基苯甲酸丁酯,98. 0% ; 二 苯甲酮,99. 0% ; 4,4-亚甲基双苯胺,99. 0% ,均为 Accustandard 公司生产 ( New Haven,美国) 。三
号 暨南大学珠海校区包装工程研究所,E-mail: tlinqb@ nu. edu. cn。
56
气相色谱 - 质谱联用检测聚丙烯食品包装材料中的 18 种有毒有害物质———周松华,林勤保,李波,吴宇梅,王志伟
detection limit were in the range of 1. 5 ~ 80. 0 μg ·L - 1 . The method completed the separation and detection of 18 substances within 20 minutes. The method is applied to determined the 18 substances in polypropylene packaging materials.

正庚烷-苯酚-环丁砜体系液液相平衡的测定

正庚烷-苯酚-环丁砜体系液液相平衡的测定

第 6 卷 第 4 期2020 年 8 月生物化工Biological Chemical EngineeringVol.6 No.4Aug. 2020正庚烷-苯酚-环丁砜体系液液相平衡的测定曾娓,周美婷,王维,时米东*(湘南学院 化学生物与环境工程学院,湖南郴州 423000)摘要:酚类物质的分离是煤焦油处理中的重要组成部分,萃取法是分离酚类物质的有效方法。

本文测定了温度为308.15 K、318.15 K,压力为101.325 kPa条件下的正庚烷-苯酚-环丁砜的液液相平衡数据,计算了分配系数和选择性;通过Hand方程验证了实验数据的可靠性。

结果表明,环丁砜对苯酚具有优异的萃取效果;Hand方程的R2大于0.93,说明实验数据具有较好的可靠性。

液液相平衡数据的测定为煤焦油中酚类物质的分离提供了热力学基础数据。

关键词:正庚烷;苯酚;环丁砜;液液相平衡中图分类号:O642 文献标志码:ADetermination of Liquid-liquid Equilibrium for (n-heptane-phenol-sulfolane) SystemZeng Wei, Zhou Mei-ting, Wang Wei, Shi Mi-dong*(School of Chemical Biology and Environmental Engineering, Xiangnan University, Hunan Chenzhou 423000)Abstract: The separation of phenols is an important part of coal tar treatment. Extraction method is an effective method for separating phenolic substances. In this work, the liquid-liquid equilibrium experimental data of n-heptane-phenol-sulfolane at 308.15 K, 318.15 K and 1 atm were determined, and the distribution coefficient and selectivity were calculated; Hand equations was adopted to verify the reliability of experimental data. The results demonstrated that sulfolane has good extraction effect on phenol extraction; For Hand equation, R2 were greater than 0.93, indicating that the experimental data were highly accurate. The determination of liquid-liquid phase equilibrium data provides basic thermodynamic data for the separation of phenols in coal tar.Key words: 1-Heptane; Phenol; Sulfolane; Liquid-liquid equilibrium中低温煤焦油是煤焦化过程的重要副产品,含有较多的含氧化合物和链状物,其中酚及其衍生物含量达25%以上[1],烷状烃约为20%。

乙酸乙酯萃取苯酚水溶液的实验流程

乙酸乙酯萃取苯酚水溶液的实验流程

乙酸乙酯萃取苯酚水溶液的实验流程英文回答:To extract phenol from an aqueous solution using ethyl acetate, the following experimental procedure can be followed:1. Prepare the phenol-water solution: Take a known volume of the phenol-water solution in a separatory funnel. The concentration of phenol in the solution should be known.2. Add ethyl acetate: Add a suitable volume of ethyl acetate to the separatory funnel. The volume of ethyl acetate should be sufficient to extract the desired amountof phenol from the aqueous solution.3. Shake the separatory funnel: Close the separatory funnel and shake it vigorously for a few minutes. This will help in the extraction of phenol into the ethyl acetate layer.4. Allow phase separation: After shaking, allow the layers to separate. The ethyl acetate layer, containing the extracted phenol, will separate from the aqueous layer.5. Separate the layers: Carefully open the stopcock of the separatory funnel and drain the aqueous layer into a separate container. Be cautious not to mix the layers during this process.6. Collect the ethyl acetate layer: Collect the ethyl acetate layer containing the extracted phenol in a clean container. This can be done by carefully pouring the ethyl acetate layer into the container.7. Repeat if necessary: If a higher extraction efficiency is desired, the above steps can be repeated with fresh ethyl acetate. This will help in further extracting phenol from the remaining aqueous solution.8. Evaporate ethyl acetate: The collected ethyl acetate layer can be evaporated to obtain phenol. This can be doneby placing the container with the ethyl acetate in a fume hood and allowing the ethyl acetate to evaporate. The remaining phenol can be collected and used for further analysis or experiments.中文回答:乙酸乙酯萃取苯酚水溶液的实验流程如下:1. 准备苯酚水溶液,在一个分液漏斗中取一定体积的苯酚水溶液。

苯酚焦油 苯酚精制工艺流程

苯酚焦油 苯酚精制工艺流程

苯酚焦油苯酚精制工艺流程英文回答:Phenolic creosote is a byproduct of the coal carbonization process, which is mainly composed of phenols, polycyclic aromatic hydrocarbons, and other organic compounds. It is a dark, viscous liquid with a strong, smoky odor. Phenolic creosote is commonly used as a wood preservative due to its excellent anti-fungal and anti-insect properties.To refine phenolic creosote and obtain phenol, a valuable chemical compound, a purification process is required. The process typically involves several steps, including distillation, fractionation, and crystallization.Firstly, distillation is used to separate the phenolic creosote into different fractions based on their boiling points. The mixture is heated, and the vapors are condensed and collected at different temperatures. This processallows the separation of phenol from other compounds present in the creosote.Next, the fractionation process is employed to further purify the collected phenol. The collected fraction is subjected to fractional distillation, which involves multiple distillation steps. Each distillation step helps to separate impurities and increase the purity of the phenol. The temperature and pressure conditions are carefully controlled to achieve optimal separation.Finally, crystallization is used to obtain pure phenol crystals. The fractionated phenol is dissolved in asuitable solvent, and the solution is cooled to induce crystallization. The crystals are then separated from the solvent through filtration or centrifugation. The resulting solid phenol crystals can be further processed or used directly in various applications.中文回答:苯酚焦油是煤炭气化过程的副产物,主要由苯酚、多环芳烃和其他有机化合物组成。

萃取分光光度法测定水质挥发酚的注意事项

萃取分光光度法测定水质挥发酚的注意事项
Wo Yanbo, Shi Meixia, Liu Xingyan, Cao Ning (Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic,
中图分类号:X832
文献标识码:A
文章编号:1008-9500(2020)11-0004-03
DOI:10.3969/j.issn.1008-9500.2020.11.002
Points for Attention in Determination of Volatile Phenol in Water by Extraction Spectrophotometry
Ningbo 315800, China) Abstract: Volatile phenol in water will directly affect human health, it is of great significance to effectively monitor the volatile phenol content in water. However, in the actual environmental monitoring process, the determination of volatile phenol content in water is more complicated, in order to effectively ensure that the accuracy and precision of the test results meet the requirements, it is necessary for people to understand the precautions of the entire determination process. This paper analyzes the precautions when the extraction spectrophotometry is used to determine the water quality volatile phenol, in order to improve the water quality detection effect. Keywords: volatile phenol; extraction spectrophotometry; water quality; matters needing attention

分光光度法测定水中挥发酚含量的不确定度评定

分光光度法测定水中挥发酚含量的不确定度评定

分析检测分光光度法测定水中挥发酚含量的不确定度评定张丽琴(山西省检验检测中心食品与粮食检验技术研究所,山西太原 030012)摘 要:本文依据《化学分析测量不确定度评定》(JJF1135—2005),按照《生活饮用水标准检验方法 感官性状和物理指标》(GB/T 5750.4—2006)中的4-氨基安替比林三氯甲烷萃取分光光度法,测定饮用 水中的挥发酚含量,对实验过程中的各因素引入的不确定度进行计算,得到该实验的扩展不确定度为 0.000 326 mg/L,影响该实验不确定度的主要因素为标准曲线的拟合过程。

关键词:不确定度;挥发酚;饮用水Evaluation of Uncertainty in Determination of volatile Phenol Content in water by PhotometerZHANG Liqin(Institute of Food and Grain Inspection Technology, Shanxi Inspection and Testing Center,Taiyuan 030012, China)Abstract: This paper determines the volatile phenol content of the factors introduced in drinking water by the 4-aminotebilin trichloromethane extraction method (JJF1135-2005), the sensory traits and physical indicators (GB/T 5750.4-2006), and the main factor of the standard curve.. The uncertainty introduced by each factor in the experiment process is calculated. The expanded uncertainty of this experiment is 0.000 326 mg/L. It is concluded that the main factor affecting the uncertainty of the experiment is the fitting process of the standard curve.Keywords: uncertainty; volatile phenol; drinking water依据《生活饮用水标准检验方法感官性状和物理指标》(GB/T 5750.4—2006)中的4-氨基安替比林三氯甲烷萃取分光光度法,测定饮用水中的挥发酚含量实验过程复杂,容易出现误差的环节较多,因此,对实验结果进行不确定度评价是很有必要的,测量不确定度是表示合理地赋予被测量之值的分散性,与测量结果相联系的参数[1],衡量检测结果是否准确,本文依据《化学分析测量不确定度评定》(JJF1135—2005),对一加标饮用水盲样进行了检测,分析了不确定度的来源及影响,为以后检验工作中误差规避和结果分析提供了依据。

Skalar连续流动分析法同时测定饮用水中挥发酚和阴离

Skalar连续流动分析法同时测定饮用水中挥发酚和阴离

Skalar 连续流动分析法同时测定饮用水中挥发酚和阴离绵阳市疾病预防控制中心四川绵阳621000[摘要]目的建立连续流动分析仪同时测定饮用水中挥发酚,阴离子合成洗涤剂的方法。

方法采用连续流动分析技术,在线蒸馏,萃取,测定饮用水中挥发酚、阴离子合成洗涤剂的含量。

结果测定的挥发酚、阴离子洗涤剂在线性范围内的相关系数R均在0.999以上,检出限分别为0.0010 mg/L、0.03 mg/L。

各指标在不同浓度下的相对标准偏差(RSD)为1.48%~7.22%,加标回收率在90.0%~109.0%的范围内。

结论该法简单、快速、无污染,检出限低,精密度和准确度好,满足实验室质量控制要求,适用于大批量样品分析。

关键词:连续流动分析法;挥发酚;阴离子合成洗涤剂Simultaneous determination of volatile phenol, anionic synthetic detergent in drinking water by Skalar continual flow analysisDu Yanli, He JunMianyang Center for Disease Control and Prevention,Mianyang 621000,Sichuan Province,China.作者单位:绵阳市疾病预防控制中心(四川绵阳 621000)作者简介:杜艳丽(1981-),研究生,主管技师,理化检验Abstract Objective To establish a methdod for the determination of volatile phenol, anionic synthetic detergent in drinking water by continual flow analysis.Methods The samples were distilled andextracted on line by continual flow analysis technology. The content of volatile phenol, anionic synthetic detergent were determined. Results The correlation coefficients R of volatile phenol, anionic synthetic detergent in the linear range were all above 0.999, and the detection limits were 0.0010 mg / L, 0.03 mg / L, respectively. The relative standard deviation (RSD) of each index at different concentrations was 1.48% ~ 7.22%, and the recovery was in the range of 90.0% ~ 109.0%. Conclusion This method is simple,fast and accurate, with low detection limit and less pollution, so it is suitable for the analysis and dtermination of large quantities samples.Key words Continuous flowanalysis; Volatile phenol; Anionic synthetic detergent挥发酚,阴离子合成洗涤剂是饮用水常规必测的两个项目,是评价饮用水卫生的重要指标。

超高效液相色谱法快速灵敏检测水中苯酚

超高效液相色谱法快速灵敏检测水中苯酚

0.129
0.031
图 6 色谱图 Fig.6 chromatograms
3 结论
超高效液相色谱方法是基于液相色谱发展起来的新 科技,比普通液相色谱灵敏、快速,具有更好的分离检 测效率。苯酚对人体有害,传统的分光光度法过程比较 繁琐,费时,灵敏度不高。据目前文献报道,还没有一 个安全、简单、快速检测水中苯酚的方法,本文建立了 超高效液相色谱荧光法检测水中苯酚,样品只需过 0.22μm 滤膜,检出限可从国标 2μg/L 降到 0.06μg/L,方 法简单、灵敏、快速、环保。

洗溶剂,谱图见图 2。
图 4 不同激发波长色谱图 Fig.4 chromatograms of difference Ex.
2014
2.3 工作曲线和线性范围 用超 纯 水 配 制 标 准 溶 液 系列 0.204,1.02,2.04,
26
检测与分析
5.10,10.2,20.4,50.1μg/L,上机检测。以峰面积-浓度 得到标准曲线,相关系数为 0.9998,见图 5。按 3 倍信 噪比和 10 倍信噪比得到方法的检出限 (LOD) 和定量 限 (LOQ) 分别为 0.06μg/L,0.2μg/L。
spectrophotometry,this method has characteristics which the total analysis time effectively decreased and sensitivity of
sample analysis increased. The separation of phenol was carried out on an Acquity UPLC BEH C18 column (1.7μm,
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2. Labeling of phenolic compounds with Dns-Cl [16,17]
Derivatization of phenolic compounds with DnsCl was carried out by two kinds of procedures (methods 1 and 2). Phenolic compounds were dissolved in organic solvent (method 1) and in aqueous solvent (method 2). Methods 1 and 2 were typically carried out as follows: method 1, a stock solution of 10 mM phenolic compounds was prepared by dissolving them in acetone. One mg ml 2 1 Dns-Cl methylene chloride solution (5 ml) and 10 mM Na 3 PO 4 aqueous solution (pH 11.2) (0.5 ml) were added to a phenolic compound solution (5 ml) which was prepared by diluting the stock solution with acetone. After being stirred for ca. 10 s and left in a dark place for ca. 10 min, the mixture was subjected to CE–CL detection. Method 2 (two-phase system with TBABr as a phase transfer catalyst): a stock solution of 10 mM phenolic compounds was prepared by dissolving them in methanol–water (1:1) solution. One mg ml 2 1 Dns-Cl methylene chloride solution (0.6 ml) and 30 mg ml 2 1 TBABr alkaline solution (10 mM NaOH) (0.1 ml) were added to a phenolic compound solution (0.5 ml) which was prepared by diluting the stock solution with methanol–water (1:1) solution. The mixture solution was stirred for ca. 2 min. The organic phase obtained after the centrifugation was used for CE measurement.
0021-9673 / 02 / $ – see front matter 2002 Elsevier Science B.V. All rights reserved. PII: S0021-9673( 02 ) al. / J. Chromatogr. A 978 (2002) 213–220
1. Introduction The influences of endocrine-disrupting chemicals for animals, humans, and environments have attracted a great deal of public attention [1,2]. Endocrine-disrupting chemicals have been mainly analyzed with GC–MS. However, this analytical method is expensive and several days are required to obtain
Kazuhiko Tsukagoshi*, Takahide Kameda, Masayo Yamamoto, Riichiro Nakajima
Department of Chemical Engineering and Materials Science, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610 -0321, Japan Received 1 July 2002; received in revised form 26 August 2002; accepted 5 September 2002
derivatization with dansyl chloride. Halvax et al. analyzed dansyl phenolic compounds by liquid chromatography with fluorescence detection [10]. On the other hand, Kwakman et al. reported sensitive liquid chromatographic determination of alkyl-, nitro-, and chlorophenols by precolumn derivatization with dansyl chloride and peroxyoxalate CL detection [11]. The sensitivity of the CL detection was reported to be |1 or 2 orders of magnitude larger than that of the fluorescence detection [12,13]. Several groups have reported an analysis of phenolic compounds by CE using absorption detection [14,15]. In this study, we tried for the first time to apply CE with CL detection using peroxyoxalate reagent to the analysis of dansyl phenolic compounds. Two batch-type CL detection cells, which were originally developed by the authors, were examined. Fifteen kinds of phenolic compounds were successfully separated and detected by use of a running buffer solution containing sodium dodecylsulfate (SDS) and acetonitrile. The present method was applied to the analysis of phenolic compounds in surface and reused waters by being combined with column concentration.
* Corresponding author. Tel.: 1 81-774-656-595; fax: 1 81-774656-803. E-mail address: ktsukago@mail.doshisha.ac.jp (K. Tsukagoshi).
analytical results, because the pretreatment or the derivatization of this analysis is complicated [3,4]. We have developed capillary electrophoresis (CE) with chemiluminescence (CL) detection [5]. Several CL reagents such as luminol [6], peroxyoxalate [7], 1,10-phenanthroline [8], and Ru(II) complex [9] have been utilized. The method can offer excellent selectivity and sensitivity. Furthermore, it features easy and rapid operation as well as inexpensive reagents and instruments. Some phenolic compounds are well-known as endocrine-disrupting chemicals. One sensitive detection method is fluorescence detection through
Abstract Phenolic compounds were analyzed by means of capillary electrophoresis with chemiluminescence detection. Peroxyoxalate chemiluminescence reagent was used together with dansyl chloride as a labeling reagent. The reagent concentrations, the labeling procedures, and the performance of chemiluminescence detection cells were examined for sensitive detection of phenolic compounds. Six kinds of phenolic compounds (phenol, 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, and 2,4,6-trichlorophenol) were determined over a range of three orders of magnitude with detection limits of the order of 10 2 7 M ; their detection limits were ca. 10 times as low as those obtained by an ordinary fluorescence detector. A running buffer solution containing sodium dodecylsulfate and acetonitrile provided satisfactory results in the separation of 15 kinds of phenolic compounds. The combination of capillary electrophoresis with chemiluminescence detection and column concentration procedure supported the possibility that the present system could be applied to real samples such as surface and reused waters. 2002 Elsevier Science B.V. All rights reserved. Keywords: Chemiluminescence detection; Detection, electrophoresis; Buffer composition; Chlorophenols; Nitrophenols; Phenols
相关文档
最新文档