二次函数图象符号类问题及二次函数解析式的求法

合集下载

二次函数解析式的8种求法

二次函数解析式的8种求法

二次函数解析式的8种求法河北 高顺利二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉:一、定义型:此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次.例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = .解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1由m 2–2m –1 = 2得m =-1 或m =3∴ m = 3 .二、开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 .分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一)三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.例3、二次函数 253212++=χχy 的图像是由221χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.解: 253212++=χχy = ()23212-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的.这两类题目多出现在选择题或是填空题目中四、一般式当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2,转化成一个三元一次方程组,以求得a ,b ,c 的值;五、顶点式若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数;六、两根式已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.例4、根据下面的条件,求二次函数的解析式:1.图像经过(1,-4),(-1,0),(-2,5)2.图象顶点是(-2,3),且过(-1,5)3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,-29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得:40542a b c a b c a b c -=++⎧⎪=-+⎨⎪=-+⎩ 解得:⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y2、设二次函数解析式为:y = a ( x – h )2 + k , 图象顶点是(-2,3)∴h =-2,k =3, 依题意得:5=a ( -1 + 2)2+3,解得:a =2∴y = 2( x +2)2 + 3=11822++x x3、设二次函数解析式为:y = a ( x – 1χ) ( x – 2χ).图像与x 轴交于(-2,0),(4,0)两点,∴1χ=-2,2χ=4依题意得:-29= a ( 1 +2) ( 1– 4) ∴a =21 ∴ y = 21 ( x +1) ( x – 4)=223212--x χ. 七、翻折型(对称性):已知一个二次函数c b a ++=χχγ2,要求其图象关于轴对称(也可以说沿轴翻折);轴对称及经过其顶点且平行于轴的直线对称,(也可以说抛物线图象绕顶点旋转180°)的图象的函数解析式,先把原函数的解析式化成y = a ( x – h )2 + k 的形式.(1)关于轴对称的两个图象的顶点关于轴对称,两个图象的开口方向相反,即互为相反数.(2)关于轴对称的两个图象的顶点关于轴对称,两个图象的形状大小不变,即相同.(3)关于经过其顶点且平行于轴的直线对称的两个函数的图象的顶点坐标不变,开口方向相反,即互为相反数.例6 已知二次函数,求满足下列条件的二次函数的解析式:(1)图象关于轴对称;(2)图象关于轴对称;(3)图象关于经过其顶点且平行于轴的直线对称.x x y x x x a y y ax a 5632+-=x x y x y x解:可转化为,据对称式可知 ①图象关于轴对称的图象的解析式为, 即:. ②图象关于轴对称的图象的解析式为:,即:;③图象关于经过其顶点且平行于轴的直线对称的图象的解析式为,即.八、数形结合数形结合式的二次函数的解析式的求法,此种情况是融代数与几何为一体,把代数问题转化为几何问题,充分运用三角函数、解直角三角形等来解决问题,只要充分运用有关几何知识求出解析式中的待定系数,以达到目的.例7、如图,已知抛物线c b y ++-=χχ271和x 轴正半轴交与A 、B 两点,AB =4,P 为抛物线上的一点,他的横坐标为-1,∠PAO =45 ,37cot =∠PBO .()1求P 点的坐标;()2求抛物线的解析式.解: 设P 的坐标为(-1,y ), ∵P 点在第三象限∴y <0,过点P 作PM ⊥X 轴于点M . 点M 的坐标为(-1,0)|BM| = |BA |+ |AM|5632+-=x x y 2)1(32+-=x y x 2)1(32---=x y 5632-+-=x x y y 2)1(32++=x y 5632++=x x y x 2)1(32+--=x y 1632++-=x x y∵∠PAO =45∴ |PM | = |AM| = |y | =-y ∵374cot =--==∠y y PM BM PBO ∴y = -3∴P 的坐标为(-1,-3)∴A 的坐标为(2,0)将点A 、点P 的坐标代如函数解析式 ⎪⎪⎩⎪⎪⎨⎧+--=-++-=c b c b 7132740 解得:87b = ; 127c =- ∴抛物线的解析式为:21812777y χχ=-+-.。

二次函数解析式求法和图象与系数关系举例

二次函数解析式求法和图象与系数关系举例

二次函数解析式求法及图象与系数关系举例1.已知二次函数2(0)y ax bx c a =++≠中自变量x 和函数y 的部分对应值如下表求该二次函数的解析式;[解1]:观察所给的表格此函数图象关于x=12-对称,它的顶点坐标是(12-,94-)所以不妨设二次函数解析式为219()24y a x =+-又因为当x=0时 y=-2所以有 2192(0)24a -=+-a=1所以此二次函数的解析式为219()24y x =+-[解2]设此二次函数解析式为2(0)y ax bx c a =++≠当x=0时,y=-2; 当x=-1时,y=-2; 当x=1时,y=0;可以列出如下方程:2222(1)(1)011200a b ca b ca b c ⎧-=⨯-+⨯-+⎪=⨯+⨯+⎨⎪-=⨯+⨯+⎩解之得:a=1,b=1,c=-2 所以此二次函数的解析式为 22y x x =+-;2.已知抛物线2(0)y ax bx c a =++≠关于直线x=1轴对称,它的最低点的纵坐标为 -2,且抛物线与y 轴交于点(0,1),求这个二次函数的解析式;[解1]:因为抛物线2(0)y ax bx c a =++≠关于直线x=1轴对称,它的最低点的纵坐标为 -1,可知此抛物线的顶点坐标是(1,-2) 所以不妨设抛物线的解析式为2(1)2y a x =--; 又抛物线与y 轴交于(0,1) 所以有 21(01)2a =-- a=3所以抛物线的解析式为:23(1)2y x =--[解2] 依题意有:12ba-= ①2424ac b a -=- ② 2001a b c ⨯+⨯+=③ 联立①②③ 解之得 a=3 b=-6 c=1 所以此抛物线的解析式是:2361y x x =-+3.已知当x=1时,二次函数的最大值为2,且过点(2,-3),求此二次函数的解析式; [解1]:依题意设抛物线的解析式为2(0)y ax bx c a =++≠当x=1时 2112y a b c =⨯+⨯+= ①2424b aca-=② 2322a b c -=⨯+⨯+③ 解之得 a=-5 b=10 c=-3所以抛物线的解析式是:25103y x x =-+- [解2] 依题意抛物线的顶点坐标是(1,2) 所以不妨设抛物线的解析式为2(1)2y a x =-+ 有抛物线过(2,-3)所以 23(21)2a -=⨯-+ 解之得 a=-5 所以抛物线的解析式为25(1)2y x =--+4.抛物线2y x bx c =-++的图象如图所示,求抛物线的解析式 [解1]从抛物线图象可知:图象关于x=1 对称,与x 轴相交于两点(1x ,0),(3,0这两点也关于x=1对称;所以有:1312x += 1x =-1 所以可以设抛物线解析式为(1)(3)y a x x =+-而点(0,3)在抛物线上,所以 3(01)(03)a =+- a=-1因此,抛物线的解析式是(1)(3)y x x =-+-223y x x =-++ 即223y x x =-++x[解2]:从抛物线图象可知 12(1)b-=⨯-① 2300b c =-+⨯+②解之得 b=2,c=3因此,抛物线的解析式是:223y x x =-++5.二次函数y=x 2+bx+c 中,函数y 与自变量x 的部分对应值如下表,求m 的值并写出抛物线的解析式;[解1]:根据二次函数的对称性可以知道:m=-1;函数对应图象的对称轴为x=1, 且当x=1时,y=-2;所以不妨设二次函数的解析式为: 2(1)2y a x =-- 当x=0时,y=-1;即 21(01)2a -=-- a=1 所以此二次函数为2(1)2y x =--[解2]:因为当x=-1,0,1时,y=2,-1,-2;所以把相应值代入得到一个三元一次方程组,解之得a=1, b=-2, c=-1;6. 抛物线y=-x 2图象向右平移2个单位再向下平移3个单位,求所得图象的解析式。

如何求二次函数的解析式

如何求二次函数的解析式

怎样求二次函数的解析式(2013.11.27)求二次函数解析式的问题,由于其类型繁多,灵活性较大,同学们感到难以掌握.下面将二次函数解析式的求法归纳为五种类型,供同学们参考.一、三点型若已知二次函数图像上任意三点的坐标,则可以用一般式y= ax2+bx+c.解题策略:通过各种途径搜索转化题目的各个信息找到三个点的坐标,然后用待定系数法求解析式,此类问题是中考中最常见的一类。

例1 已知二次函数图像经过(1,0)、(-1,-4)和(0,-3)三点,求这个二次函数解析式.二、顶点型若已知二次函数图像的顶点坐标或对称轴方程和函数的最大(小)值,则可以用顶点式y=a(x -h)2+k.解题策略:想方设法找到顶点的坐标,然后用待定系数法求解析式,此法比较简单。

例2 已知抛物线的顶点坐标为(2,-3),且经过点(3,1),求其解析式.三、交点型若已知二次函数图像与x轴的两交点坐标或两交点间的距离及对称轴,则可以用交点形式y=a(x-x1)·(x-x2).解题策略:要注意题目所给的点的坐标特征,如果已知或可求出与x轴的交点坐标(纵坐标为0),就可以采用此法。

例3已知二次函数图像与x轴交于(-1,0)、(3,0)两点,且经过点(1,-5),求其解析式.四、平移型将二次函数图像平移,形状和开口方向、大小没有改变,发生变化的是顶点坐标.故可先将原函数解析式化成顶点形式,再按照“左加右减,上加下减”的法则,即可得出所求的抛物线的解析式.例4将抛物线y=x2+2x-3向左平移4个单位,再向下平移3个单位,求所得到的抛物线的解析式.五、对称型(1)抛物线y=a(x-h)2+k绕它的顶点旋转180°,得到的抛物线的解析式为;(2)抛物线y=a(x-h)2+k关于x轴对称的抛物线的解析式为.(3)抛物线y=a(x-h)2+k关于y轴对称的抛物线的解析式为.例5 已知抛物线1l:1322++-=xxy.则将1l绕它的顶点旋转180°得到的抛物线2l的解析式为,2l关于x轴对称的抛物线3l的解析式为,3l关于y轴对称的抛物线4l的解析式为六、综合型综合运用几何性质求二次解析式.例6 如下图,二次函数y=ax2+bx+c的图像与x轴交于A、B两点,与y轴交于C点,若AC=20,BC=15,∠ABC=90°,求这个二次函数解析式.【小试牛刀】1.(2001宁夏)已知二次函数的图象经过(0,0),(1,2),(-1,-4)三点,求这个二次函数的解析式.2.(1999江西)某抛物线的顶点为B(-1,2),并经过点A(1,0),求此抛物线的解析式.3.(2010重庆綦江县)已知抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.求该抛物线的解析式;4.(2001云南曲靖)已知直线y=x-3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,求此二次函数的解析式。

二次函数经典例题及解答

二次函数经典例题及解答

二次函数经典例题及解答二次函数一、中考导航图1.二次函数的意义2.二次函数的图像3.二次函数的性质顶点对称轴开口方向增减性4.待定系数法确定二次函数解析式5.二次函数与一元二次方程的关系三、中考知识梳理1.二次函数的图像二次函数y=ax2+bx+c(a≠0)的图像可以通过配方法化简为y=a(x+(b/2a))2+(4ac-b2)/4a2的形式。

确定顶点坐标后,可以对称求点列表并画图,或者使用顶点公式来求得顶点坐标。

2.理解二次函数的性质抛物线的开口方向由a的符号来确定。

当a>0时,抛物线开口向上,对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大。

当a0)或左增右减(a<0)。

此时,当x=-b/2a时,y取最值,最小值或最大值的大小为|(4ac-b2)/4a|。

3.待定系数法是确定二次函数解析式的常用方法待定系数法是通过给定的条件来确定二次函数的解析式。

可以任意给定三个点或三组x,y的值来确定解析式,组成三元一次方程组来求解。

也可以在给定条件中已知顶点坐标、对称轴或最值时,设解析式为y=a(x-h)2+k。

在给定条件中已知抛物线与x轴两交点坐标或已知抛物线与x轴一交点坐标和对称轴时,设解析式为y=a(x-x1)(x-x2)来求解。

4.二次函数与一元二次方程的关系抛物线y=ax2+bx+c与x轴的交点可以转化为一元二次方程ax2+bx+c=0的解。

当抛物线与x轴有两个交点时,方程有两个不相等实根;当抛物线与x轴有一个交点时,方程有两个相等实根;当抛物线与x轴无交点时,方程无实根。

5.抛物线y=ax2+bx+c中a、b、c符号的确定抛物线y=ax2+bx+c的开口方向由a的符号来确定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

b的符号可以表示抛物线与y轴的交点在y轴的上方或下方。

c的符号可以表示抛物线与x轴的交点在x轴的上方或下方。

四、中考题型例析1.确定二次函数解析式例1:求满足以下条件的二次函数的解析式:1)图像经过点A(-1,3)、B(1,3)、C(2,6);2)图像经过点A(-1,0)、B(3,0),函数有最小值-8;3)图像顶点坐标是(-1,9),与x轴两交点间的距离是6.分析:此题主要考查用待定系数法来确定二次函数解析式。

二次函数的解析式的几种求法

二次函数的解析式的几种求法
C
5 · · · · ·
· · ·o B· · x -3 –2 –1 1 2 · ·
A
· -3 ·
-4
式或交点式求解。
(南通市)已知抛物线y=ax2+bx+c经过A,B,C 三点,当时,其图象如图所示。求抛物线的解析 式,写出顶点坐标。 y 2 A 4 -3 B 5 C x
如图,在直角坐标系中,以点A( 3,0) 为圆心,以 2 3 为半径的圆与x轴相交于点B、C,与y轴相交于点D、 E. 1 2 若抛物线 y x bx c 经过C、B两点,求抛 3
二次函数的几种解析 及求法
分水中学九(5)班
二次函数是初中代数的重要内 容之一,也是历年中考的重点。这 部分知识命题形式比较灵活,既有 填空题、选择题,又有解答题,而 且常与方程、几何、三角等综合在 一起,出现在压轴题之中。 因此, 熟练掌握二次函数的相关知识,会 灵活运用一般式、顶点式、交点式 求二次函数的解析式是解决综合应 用题的基础和关键。
c
h
1.首先要求出该抛物线的函数关系式 2.由函数关系式求出C点的坐标,即求 出点C 离地面的高度h, h-0.15米-刘炜的身高即,他跳离地面的 高度.
解:建立如图所示的直角坐标系,则抛物线的顶 点A(0,3.5),蓝筐中心点B(1.5,3.05)
所以,设所求的抛物线为y=ax² +3.5 又 抛物线经过点B(1.5,3.05),得 a=-0.2 即所求抛物线为y=-0.2x² +3.5 y 当x=-2.5时,代入得y=2.25 又2.25-1.9-0.15=0.2m 所以,他跳离地面的高度 为0.2m
二、求二次函数解析式的思想方法
1、 求二次函数解析式的常用方法: 待定系数法、配方法、数形结合等。 2、求二次函数解析式的 常用思想: 转化思想 : 解方程或方程组

求二次函数解析式几种常用方法

求二次函数解析式几种常用方法

求二次函数的解析式的几种方法山东省沂水县高桥镇初级中学 王瑞辉二次函数解析式的求法是二次函数知识的重点,也是中考必考内容。

现在举例,说明求二次函数解析式的常用方法,希望对同学们学习有所帮助。

一、二次函数常见的三种表达式:(1)一般式:y ax bx c a =++≠20();(2)交点式:y a x x x x =--()()12,其中点(,)()x x 1200,,为该二次函数与x 轴的交点;(3)顶点式:()2()0y a x h k a =-+≠,其中点(),h k 为该二次函数的顶点。

二、利用待定系数法求二次函数关系式(1)、已知二次函数图象上任意三个点的坐标,可设一般式求二次函数的关系式。

例1、已知抛物线2y ax bx c =++,经过点(2,1)、(-1,-8)、(0,-3).求这个抛物线的解析式. 解:根据题意得421,8,3,a b c a b c c ++=⎧⎪-+=-⎨⎪=-⎩ 解之得1,4,3,a b c =-⎧⎪=⎨⎪=-⎩所以抛物线为243;y x x =-+-说明:用待定系数法求系数a b c 、、需要有三个独立条件,若给出的条件是任意三个点,可设解析式为2(0)y ax bx c a =++≠,然后将三个点的坐标分别代入,组成一次方程组用加减消元法来求解.(2)、已知抛物线与x 轴的两个交点坐标和图象上另一个点坐标,可设交点式求二次函数的关系式。

若知道二次函数与x 轴有两个交点()()1200x x ,,,,则相当于方程20ax bx c ++=有两个不相等的实数根12x x ,,从而212()()ax bx c a x x x x ++=--,故二次函数可以表示为12()()(0)y a x x x x a =--≠.例2、已知一个二次函数的图象经过点A (-1,0),B (3,0),C (0,-3)三点.求此二次函数的解析式.解:根据题设,设此二次函数的解析式为(1)(3)y a x x =+-.又∵该二次函数又过点(0,-3), ∴(01)(03)3a +-=-. 解得1a =.因此,所求的二次函数解析式为(1)(3)y x x =+-,即223y x x =--.说明:在把函数与x 轴的两个交点坐标代入12()()(0)y a x x x x a =--≠求值时,要注意正确处理两个括号内的符号.(3)、已知抛物线顶点和另外一个点坐标时,设顶点式y =a (x -h )2+k (a ≠0)例3、对称轴与y 轴平行的抛物线顶点是(-2,-1),抛物线又过(1,0),求此抛物线的函数解析式。

二次函数的图像和性质、解析式求法(学生版)

二次函数的图像和性质、解析式求法(学生版)
D.
例1.1.3若 是二次函数,则 的值是__________.
例1.1.4二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为( )
A.-3
B.-1
C.2
D.5
随练1.1已知函数① ,② ,③ ,④ ,⑤ ,其中二次函数的个数为()
随练1.2已知函数 ,当 _________时,它是二次函数.
4.已知抛物线经过两点,且这两点的纵坐标相等时,可用对称点式求解函数解析式(交点式可视为对称点式的特例).
一.考点:二次函数解析式的求法.
二.重难点:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 轴有交点,即 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
随练5.1已知一个二次函数过 , , 三点,求二次函数的解析式.
随练5.2将二次函数 化为 的形式,结果为()
A.
B.
C.
D.
随练5.3已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式.
随练5.4已知二次函数y=x2+bx+c经过点(3,0)和(4,0),则这个二次函数的解析式是____.
2.画草图时应抓住以下几点:开口方向,对称轴,顶点,与 轴的交点,与 轴的交点.
一.考点: 的图象和性质.
二.重难点: 的图象和性质,参数对图像的影响.
三.易错点:利用函数图像推断参数的取值范围或者利用参数的取值范围推断函数图像.
题模一:y=a^2+bx+c的图象和性质
例4.1.1已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()

二次函数中考专题一:二次函数解析式的求法

二次函数中考专题一:二次函数解析式的求法

二次函数中考专题专题一:二次函数解析式的求法待定系数法:(1)已知抛物线上三点的坐标,则可采用一般式:y=ax2+bx+c(a≠0),利用待定系数法求出a、b、c;(2)若已知抛物线的顶点坐标或对称轴方程,则可采用顶点式:y=a(x-h)2+k(a≠0),其中顶点坐标为(h,k)对称轴为直线x=h;(3)若已知抛物线与x轴的交点的横坐标,则可采用交点式:y=a(x-x1)(x-x2)(a≠0),其中与x轴的交点坐标为(x1,0)(x2,0).例题:一、已知三点求解析式1.抛物线y=ax2+bx+c经过(-1,-22),(0,-8),(2,8)三点,求它的开口方向、对称轴和顶点.2.已知抛物线y=ax2+bx+c经过点(-1,10),(2,7),且3a+2b=0,求该抛物线的解析式。

3.抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式.4.已知:如图,二次函数y=ax2+bx+c的图象经过A,B,C三点,求此抛物线的解析式.5.已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的解析式;(2)求点M的坐标.6.如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.求抛物线的解析式.7.如图所示,抛物线y=ax2+bx-4a经过点A(-1,0),C(0,4).(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于x轴对称的点的坐标.二、已知顶点或对称轴求解析式1.在平面直角坐标系内,二次函数图象的顶点为A(1,-4),且过点B(3,0),求该二次函数的解析式.2.已知抛物线y=x2+kx+k+3,若抛物线的顶点在y轴上,求此抛物线的解析式。

3.已知某二次函数,当x=3时,函数有最小值-2,且函数图象与y轴交于,求此二次函数的解析式。

二次函数的解析式的三种形式二次函数的解析式求法解题技巧

二次函数的解析式的三种形式二次函数的解析式求法解题技巧

求二次函数的解析式及二次函数的应用
二次函数解析式的三种形式
(1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0);
(2)顶点式:y=a(xh)2+k(a,h,k是常数,a≠0)
(3)交点式:y=a(xx1)(xx2)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。

如果没有交点,则不能这样表示。

求二次函数解析式的方法
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。

二次函数应用解题技巧
(1)应用二次函数解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。

(2)应用二次函数求实际问题中的最值:即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。

求最值时,要注意求得答案要符合实际问题。

二次函数的图像和性质、解析式求法(学生版)

二次函数的图像和性质、解析式求法(学生版)

y=a^2+bx+c 的图象和性质
知识精讲
一. y ax2 bx c 的图象及性质:
a 的符号
图象
开口 对称 方向 轴
顶点坐标
性质
5
a0
向上
x b 2a
x b 时, y 随 x 的增大而增大; 2a
(
b
4ac b2
,
)
x b 时, y 随 x 的增大而减小; 2a
题模精讲
题模一:y=a^2+bx+c 的图象和性质
例 4.1.1 已知二次函数 y=(x﹣h)2+1(h 为常数),在自变量 x 的值满足 1≤x≤3 的情况下,与
其对应的函数值 y 的最小值为 5,则 h 的值为( )
A. 1 或﹣5
B. ﹣1 或 5
C. 1 或﹣3
D. 1 或 3
例 4.1.2 点 P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数 y=﹣x2+2x+c 的图象上,则
2.左右平移是针对 x ,上下平移是针对 y .
题模精讲
题模一:y=a(x-h)^2+k 的图象和性质
例 3.1.1 抛物线 y x 22 3 的顶点坐标是( )
A. 2,3
B. 2,3
C. 2, 3
D. 2, 3
例 3.1.2 将二次函数 y x2 2x 3 化成 y x h2 k 形式,则 h k 结果为( )
0
2.二次函数 y ax2 bx c 的结构特征:等号左边是函数,右边是关于自变量 x 的二次式, x 的最高次数是 2 .
三点剖析
一.考点:二次函数的概念.

谈谈二次函数解析式的几种求法

谈谈二次函数解析式的几种求法

谈谈二次函数解析式的几种求法二次函数是初中数学非常重要的知识点,也是中考的必考内容。

本人在多年的教学中体会较多,现就二次函数的解析式的几种求法,谈谈几点看法。

二次函数的解析式的求法有很多种,但常见的也就以下几种。

(一)三点式即已知抛物线的三点坐标,求其解析式例如:一抛物线经过点(-1,-1)(0,2)(1,1)求这个函数的解析式。

解法如下:我们知道,二次函数的一般形式为y=ax²+bx+c,只需把上述三点代入y=ax²+bx+c即可解:设所求的二次函数的解析式为y=ax²+bx+c,把点(-1,-1)(0,2)(1,1)代入得 a-b+c=-1 a=2c=-2 b=1a+b+c=1 ,解得 c=-2即所求的二次函数的解析式为y=2x²+x-2(二)顶点式我们知道二次函数经过配方可得y=a(x-h)²+k的形式。

例:已知二次函数的顶点为(-1,-2)且经过点(1,10),求这个函数的表达式?解法如下:解:设所求抛物线为y=a (x+1)²-2, 再把(1,10)代入上式求得c=3.所以所求二次函数的解析式为y=3(x+1)²-2 即 y=3x ²+6x+1(三)交点式我们知道二次函数y=ax ²+bx+c 与x 轴的两交点的横坐标亦即是方程ax ²+bx+c=0的两个根,利用这种关系,也能够求出一些二次函数的解析式。

例如:某二次函数与x 轴的两交点为(3,0)(1,0)且经过点(0,3)求这个二次函数的解析式。

解:设所求的二次函数的表达式为y=a (x-3)(x-1),把(0,3) 代人上式得a=1, ∴所求函数的解析式为y=(x-3)(x-1), 即y=x ²-4x+3(四)平移法例:平移二次函数y=2x ²的图像是它经过点(-1,1)(2,3)两点,求这时函数对应的二次函数的解析式?我们知道,平移二次函数的图像时,a 的值是不变的,所以,只要确定b 、c 的值就能够了。

二次函数解析式的求法

二次函数解析式的求法

函数解析式的求法一、已知抛物线上任意三点时,通常设解析式为一般式c bx ax y ++=2,然后解三元方程组求解;1. 已知二次函数的图象经过A (0,3)、B (1,3)、C (-1,1)三点,求该二次函数的解析式。

2. 已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式。

二、已知抛物线的顶点坐标时和抛物线上另一点时,通常设解析式为顶点式()k h x a y +-=2求解。

3. 已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。

4. 已知二次函数的图象的顶点坐标为(1,-3),且经过点P (2,0)点,该二次函数的解析式为。

三、(选学)已知抛物线与轴的交点的坐标时,通常设解析式为交点式))((21x x x x a y --=。

5. 的图象经过A (-1,0),B (3,0),函数有最小值-8,求该二次函数的解析式。

B6. 已知x =1时,函数有最大值5,且图形经过点(0,-3),则该二次函数的解析式。

7. 抛物线c bx x y ++=22与x 轴交于(2,0)、(-3,0),则该二次函数的解析式。

8. 若抛物线c bx ax y ++=2的顶点坐标为(1,3),且与22x y =的开口大小相同,方向相反,则该二次函数的解析式。

9. 抛物线c bx x y ++=22与x 轴交于(-1,0)、(3,0),则b =,c =.10. 若抛物线与x 轴交于(2,0)、(3,0),与y 轴交于(0,-4),则该二次函数的解析式。

C11. 已知二次函数c bx ax y ++=2的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。

练习1、二次函数y=ax 2+bx+c 的对称轴为x=3,最小值为-2,,且过(0,1),求此函数的解析式。

2、 已知抛物线c bx ax y ++=2开口向下,并且经过A (0,1)和M (2,-3)两点。

二次函数解析式的求法

二次函数解析式的求法

关于二次函数解析式的求法泽州县川底中学史靖二次函数是初中数学的一个重要内容,也是高中数学的相关知识的基础。

熟练掌握求二次函数解析式的方法,不仅可以加强对二次函数内容的理解,而且有助于一元二次方程、一元一次不等式的学习,进一步使学生认识数形结合的数学思想,建立初步解析几何的基本理念都起着重要的作用。

二次函数的解析式总共有三个:一般式:y=ax2+bx+c(a≠0) 其中a、b、c为常数顶点式:y=a(x-h)2+k其中a、h、k为常数且a ≠0,(h,k)为顶点坐标交点式:y=a(x-x1)(x-x2)其中a 、x1、x2为常数且a≠0。

对于同一个二次函数而言三种形式是一致的。

二次函数解析式的求法通常有以下的方式:一、从解析式本身入手二次函数解析式首先从二次函数解析式本身特点和给出点的关系上求二次函数解析式。

1、已知二次函数图像上三点的坐标,求二次函数解析式。

通常设一般式y=ax2+bx+c 其中a、b、c、为常数且a≠0,求解析式即求a、b、c。

只要已知三个点根据抛物线上点的坐标与方程一一对应关系即可得出一个三元一次方程组,解之便得出a、b、c即二次函数解析式2、已知抛物线的顶点坐标及另一点的坐标,二次函数的最值、对称轴及一点坐标时,适宜用顶点式,无论是最值、对称轴可归结到与顶点相关的问题,通过带入顶点式方程y=a(x-h)2+k,h,k为已知数,只需将另一点代入便可得到关于a的方程。

解之便得到a。

从而得到二次函数解析式。

3、已知抛物线与x轴的两个交点和抛物线上的另一个交点坐标,通常用交点式。

抛物线与x轴的交点即ax2+bx+c=0 两个实根。

而ax2+bx+c=0即a(x-x1)(x-x2)=0把(x1,0)(x2,0)代入,根据对应关系便可得到y=a(x-x1)(x-x2),其中x1,x2为已知数。

再把另一点的坐标代入便可得到关于a的方程,解出a,从而推出二次函数的解析式。

以上便是从解析式入手求法的通常情况。

二次函数求解析式

二次函数求解析式

求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:(1)已知抛物线上三点的坐标,一般选用一般式;(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;(4)已知抛物线上纵坐标相同的两点,常选用顶点式。

与X轴交点的情况当△=b2-4ac>0时,函数图像与x轴有两个交点。

(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。

(-b/2a,0)。

Δ=b2-4ac<0时,抛物线与x轴没有交点。

二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。

1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。

已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。

①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。

例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。

点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。

解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。

②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。

例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。

点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。

二次函数中的符号问题与求解析式

二次函数中的符号问题与求解析式
我们还将介绍如何在坐标系上画出二次函数的图像,并解释顶点的作用和它 如何与符号问题相关联。
(使用images布局)
常量项符号的影响
正数常量项
使抛物线图像上移
负数常量项
使抛物线图像下移
零常量项
使抛物线经过x轴
二次项系数符号的影响
1
负系数
2
抛物线开口向下
3
正系数
抛物线开口向上
系数越大
抛物线形态越尖
配方法
配方法(消元法)是求解析式的一种方法。它通过配方和移项,将二次函数 转化为求平方根的形式。
我们将演示如何使用配方法来求解析式,并讨论何时它是一个好的选择,何 时它可能会非常棘手。(使用images布局)
因式分解
1
步骤一
将三项式按照二次项和一次项系数的公共因子分成两组。
2
步骤二
ቤተ መጻሕፍቲ ባይዱ
对每一组进行因式分解,得到两个括号里面的内容。
3
步骤三
将两个括号里面的内容相乘,得到解析式。
二次公式法
二次公式法,也叫根公式,是涉及求根的二次方程最常用的一种方法。它能 够在不经过因式分解的情况下求解析式。
我们将演示如何使用二次公式法,并与其他方法进行比较,以便更好地理解 它的优点和限制。
问题与解答
讲座结束后,我们将开放提问时间,以回答听众们可能遇到的问题。我们将解答最畅销的问题,并确保为每个 人提供满意的答案。
二次函数中的符号问题与 求解析式
本次讲座将介绍二次函数的定义和特点,讨论各符号对函数图像的影响,并 演示如何使用不同的方法求解析式。
二次函数的定义和特点
二次函数是二次多项式的函数,定义为 $f(x)=ax^2+bx+c, \, a\neq0$。它的图 像通常是一个开口向上或向下的抛物线,具有对称轴、顶点和焦点等特点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c
(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()
A.第8秒B.第10秒C.第12秒D.第15秒
2. 已知二次函数y=ax2+bx+c的图象如图1所示,则下列结论正确的是()
A.a>0 B.c<0 C.b2-4ac<0 D.a+b+c>0
3. 已知二次函数y=ax2+bx+c的图像如图2所示,那么下列判断不正确的是()
A.ac<0 B.a-b+c>0
C.b=-4a D.关于x的方程ax2+bx+c=0的根是x1=-1,x2=5
4.(2010钦州市)已知二次函数2
y ax bx c
=++(a≠0)的图象如图3所示,则下列结论:① ac >0;
② a–b +c <0;③当x <0时,y <0;④方程20
ax bx c
++=(a≠0)有两个大于-1的实数根.其中错误的结论有()
A.②③B.②④C.①③D.①④
5. 已知函数y1=x2与函数y2=-1
2
x+3的图象大致如图4,若y1<y2,则自变量x的取值范围是()
A.-3
2<x<2 B.x>2或x<-3
2
C.-2<x<3
2D.x<-2或x>3
2
6. (2010鄂州)二次函数y=ax2+bx+c(a≠0)的图象如图5所示,下列结论:①a、b异号;②
当x=1和x=3时,函数值相等;③4a+b=0;④当y=4时,x的取值只能为0.其中正确的结论有______个.
A.1 B.2 C.3 D.4
图6 图7
7. 已知二次函数y=ax2+bx+c的图象如图6.则下列5个代数式:ac,a+b+c,4a-2b+c,
2a+b,2a-b中,其值大于0的个数为()
A.2 B 3 C、4 D、5
8.(2009庆阳)图7为二次函数2
y ax bx c
=++的图象,给出下列说法:
①0
ab<;②方程20
ax bx c
++=的根为
12
13
x x
=-=
,;③0
a b c
++>;④当1
x>时,
y随x值的增大而增大;⑤当0
y>时,13
x
-<<.其中,正确的说法有.(请写
出所有正确说法的序号)
9.(2010玉溪)如图8是二次函数)0
(
2≠
+
+
=a
c
bx
ax
y在平面直角坐标系中的图象,根据图
形判断①c>0;②a+b+c<0;③ 2a-b<0;b2+8a>4a c中正确的是(填写序
号).
10. (2009年黄石市)已知二次函数2
y ax bx c
=++的图象如图9所示,有以下结论:①
a b c
++<;②1
a b c
-+>;③0
abc>;④420
a b c
-+<;⑤1
c a
->其中所有正确
结论的序号是()
A.①②B.①③④C.①②③⑤D.①②③④⑤
11. (2010年包头市,20,3分)已知二次函数2
y ax bx c
=++的图象与x轴交于点(20)
-,、
1
(0)
x,,且
1
12
x
<<,与y轴的正半轴的交点在(02)
,的下方.下列结论:①420
a b c
-+=;
②0
a b
<<;③20
a c
+>;④210
a b
-+>.其中正确结论的个数是个.
12.(2010天津市,10,3分)已知二次函数2
y ax bx c
=++(0
a≠)的图象如图10所示,有下列
结论:①240
b ac
->;②0
abc>;③80
a c
+>;④930
a b c
++<.其中,正确结论的个
数是()
A.1 B.2 C.3 D.4 图2
1 5
2
O
图3
x
y
O
图8 图10 图5
图1
图4
图9
二次函数解析式的求法
1. 已知抛物线y=ax2+bx+c的顶点是(0,2),且过点(3,4),求该抛物线的解析式.
2. 抛物线y=ax2+bx+c经过点(3,0)和(2,-3),且以直线x=1为对称轴,求其函数解
析式.
3. 已知二次函数的图象过点A(1,3),B(-1,3),C(2,-1)三点,求二次函数的解析
式.
4. 运用“交点式”解答课后练习第1题.(见教材P13页)
5. 已知二次函数的图象经过点(7,2)和(-1,18),并且与x轴只有一个公共点,求此二次
函数的解析式.6. 如图,在平面直角坐标系中,⊙A的半径为4,A的坐标为(2,0),⊙A与x轴交于E、F
两点,与y轴交于C、D两点,过C点作⊙A的切线BC交x轴于B.
(1)求直线BC的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为⊙A与x轴的交点,求抛物线的解析式.
7. 如图,抛物线
y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x-7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQAC的面积为S.求S与t之间的
函数关系式及自变量t的取值范围;
(3)在线段BM上是否存在点N,使△NMC为等腰三角形?若存在,请求出点N的坐标;
若不存在,请说明理由.。

相关文档
最新文档