二氧化锆陶瓷的加工技术
(完整word版)氧化锆陶瓷的制备工艺

氧化锆陶瓷的制备工艺一氧化锆陶瓷的原料氧化锆工业原料是由含锆矿石提炼出来的。
斜锆石(ZrO2)自然界锆矿石锆英石(ZrO2·SiO2)二氧化锆陶瓷的提炼方法氯化和热分解碱金属氧化物分解法石灰溶解法等离子弧法提炼氧化锆的主要方法沉淀法胶体法水解法喷雾热分解法㈠氯化和热分解法ZrO2∙SiO2+4C+4Cl2→ZrCl4+SiCl4+4CO其中ZrCl4和SiCl4 以分馏法加以分离,在150–180℃下冷凝出ZrCl4然后加水水解形成氧氯化锆,冷却后结晶出氧氯化锆晶体,经焙烧就得到氧化锆。
㈡碱金属氧化物分解法ZrO2∙SiO2+NaOH→Na2ZrO3 +Na2SiO4+H2OZrO 2∙SiO 2+Na 2CO 3→Na 2ZrSiO 3+CO 2 ZrO 2∙SiO 2+Na 2C03→Na 2ZrO 3+Na 2Si03+CO 2①反应后用水溶解,滤去Na 2Si03;②Na 2Zr03→ 水合氢氧化物 → 用硫酸进行钝化 →Zr 5O 8(SO 4)2·x H 20 → 氧化锆粉 ㈢石灰熔融法CaO+ZrO 2·SiO 2→ZrO 2+CaSiO 3 焙烧后用盐酸浸出除去CaSiO3 ㈣等离子弧法锆英石砂(ZrO 2∙SiO 2)㈤沉淀法沉淀法是在羧基氯化锆等水溶性锆盐与稳定剂盐的混合水溶液中加入氨水等碱性类物质,以获得氢氧化物共沉淀的方法。
将共沉淀物干焙烧氨 水 调 整 PH 值用水水解ZrO2SiO2注入高温等离子弧中熔化并离解凝固后SiO 2粘在ZrO 2结晶表面 用液体NaOH 煮沸可除SiO 2ZrO 2 和 硅酸铀 氧化锆洗 涤燥后一般得到的是胶态非晶体,经500—700℃左右焙烧而制成ZrO 2粉末。
㈥胶体法胶体法是合成粉体中各种前驱体在溶胶状态下混合均匀,而后固体从溶胶中析出的方法。
溶胶法① 溶胶—凝胶技术 ② 溶胶—沉淀法金属氧化物或氢氧化物的溶胶 胶体沉淀剂(在锆盐溶液中加有机化合物)凝 胶氧化物㈦水解法①醇盐水解法:将有机溶液中混合着锆和稳定剂的醇盐,进行加水分解的方法。
氧化锆陶瓷的制备

此法的优点是:(1)几乎全为一次粒子,团聚很少;(2) 粒子的大小和形状均一;(3)化学纯度和相结构的单 一性好。缺点是原料制备工艺较为复杂,成本较高。
共沉淀法和水解沉淀法的最后工序都是煅烧,其温度 越高,则粉体的晶粒度越大,团聚程度越高。这是由 于煅烧升温过程当完成了从非晶态转变为晶态的成 核过程以后便开始了晶粒长大阶段,并且晶粒中成晶 结构单元的扩散速度随温度升高而增大,相互靠近的 颗粒容易形成团聚。
粉体。工艺流程图如图3.2所示:
ZrOCl2浓度控制在0.2~0.3mol/l。此法的优 点是操作简便,缺点是反应时间较长(>48小时), 耗能较大,所得粉体也存在团聚现象。
(2)锆醇盐水解沉淀法是利用锆醇盐极易水 解的特性,在适当pH值的水溶液中进行水解得 到Zr(OH)4:
然后经过过滤、干燥、粉碎、煅烧得到ZrO2 粉体。工艺流程图如图3.3所示:
3 水热法
另一种较常见的方法是水热法:在高压釜内, 锆盐(ZrOCl2)和钇盐(Y(NO3)3)溶液加 入适当化学试剂,在高温 (>200℃)、高压 (≈10MPa)下反应直接生成纳米级氧化锆颗粒, 形成钇稳定的氧化锆固溶体。工艺流程图如 图3.4所示:
反应方程式为:
其反应的机理是:溶液中反应前驱物Zr(OH)4、 Y(OH)3在水热条件下达到过饱和状态,从而析出溶 解度更小、更稳定的ZrO2(Y2O3)相,二者溶解 度之差便是反应进行的驱动力。
粉体制备
锆英石的主要成分是ZrSiO4,一般均采用各种火法冶金与湿 化学法相结合的工艺,即先采用火法冶金工艺将ZrSiO4破坏, 然后用湿化学法将锆浸出,其中间产物一般为氯氧化锆或氢 氧化锆,中间产物再经煅烧可制得不同规格、用途的ZrO2产 品,目前国内外采用的加工工艺主要有碱熔法、石灰烧结法、 直接氯化法、等离子体法、电熔法和氟硅酸钠法等。
99陶瓷化学成分

99陶瓷化学成分
99陶瓷,又称氧化锆陶瓷,其主要化学成分是氧化锆(ZrO2)。
氧化锆陶瓷具有高硬度、高耐磨性、高耐高温性能、化学稳定性好等优点。
除了氧化锆,99陶瓷中还包含少量的氧化钇(Y2O3),以调整陶瓷的性能。
氧化锆陶瓷的制备过程通常包括以下步骤:
1. 采购原料:购买高纯度的氧化锆矿石作为主要原料。
2. 粉碎和混合:将氧化锆矿石进行粉碎,然后与氧化钇等其他原料混合。
混合过程中,加入一定的结合剂(如水玻璃)以提高陶瓷粉体的塑性。
3. 成型:将混合好的陶瓷粉体进行成型,常用的成型方法有注浆成型、压制成型、挤压成型等。
4. 烧结:将成型后的陶瓷件进行高温烧结。
烧结过程中,氧化锆矿石和氧化钇等原料发生化学反应,形成高密度的氧化锆陶瓷。
5. 加工:烧结后的氧化锆陶瓷件进行打磨、抛光等加工工序,
以满足不同的使用要求。
6. 检验和包装:对加工好的氧化锆陶瓷件进行性能检测,确保其质量合格。
合格的陶瓷件进行包装,准备发往市场。
99陶瓷广泛应用于航空航天、化工、电子、医疗等领域,因其优异的性能而受到关注。
有口碑的氧化锆加工工艺

有口碑的氧化锆加工工艺氧化锆是一种广泛应用于医疗、电子、化工和航天等领域的重要材料,其加工工艺对产品的质量和性能具有重要影响。
下面将介绍几种有口碑的氧化锆加工工艺。
1. 等离子喷涂工艺等离子喷涂是一种常用的氧化锆加工工艺,通过等离子弧气体喷涂技术将氧化锆材料喷涂到基材表面形成涂层。
此工艺具有成本低、高效率、适用于各种形状和尺寸的基材等优点。
喷涂涂料一般为氧化锆粉末,通过等离子喷涂设备将粉末加热成熔融状态喷涂到基材上,然后在喷涂层上进行后处理,如烧结、抛光等。
等离子喷涂工艺可以制备出高密度、致密度高、陶瓷化和高性能的氧化锆材料。
2. CIP(等径压制)工艺CIP是一种通过等步骤压制方法将氧化锆粉末加工成形的工艺。
首先将粉末与适量的有机粘结剂混合均匀,然后通过模具进行压制,最后将成型体进行脱脂和烧结处理。
CIP工艺可以制备出高密度、高强度、低气孔率和尺寸精度高的氧化锆制品。
3. 热等静压工艺热等静压工艺是一种将氧化锆粉末加热和压制成形的工艺。
在此工艺中,首先将粉末与有机粘结剂混合均匀,然后放入模具进行压制,最后通过加热使粉末与粘结剂发生反应形成致密的氧化锆制品。
该工艺具有高度压制解决物质、高致密度和高精度等优点,可以制备出高纯度、均匀结构和优异性能的氧化锆制品。
4. 石墨烯增强陶瓷工艺石墨烯是一种具有优异力学性能和导电性的二维材料,可以通过添加石墨烯增强陶瓷工艺提高氧化锆的性能。
在此工艺中,将石墨烯与氧化锆粉末进行混合,然后按照一定配比进行压制和烧结。
石墨烯的添加可以提高氧化锆的断裂韧性、强度和热稳定性,使其在高温、高压和严酷环境下具有更好的性能。
以上是几种有口碑的氧化锆加工工艺,它们具有各自的特点和适用范围,可以根据实际需求选择合适的工艺进行加工。
氧化锆的加工工艺不仅对产品质量和性能有着重要影响,还在工艺技术的改进和创新中不断推动新材料的应用和发展。
纳米二氧化锆及纳米三氧化二铝增韧陶瓷最佳添加比例

纳米二氧化锆及纳米三氧化二铝增韧陶瓷最佳添加比例纳米材料科技报作者:QQ1498204641 纳米二氧化锆粉体作为第二相颗粒填加到其它陶瓷基体中可起到相变增韧作用。
近年来二氧化锆陶瓷优良的力学性能也引起了口腔医学家们的关注,成为引人注目的新型牙科材料。
除了传统的增韧方法,近年来纳米科技的发展使新材料、新技术不断涌现,纳米陶瓷被认为是解决陶瓷脆性的战略途径。
当前纳米二氧化锆(VK-R30Y3 粒径30nm)及纳米二氧化锆复合陶瓷已成为材料学界的研究热点纳米二氧化锆复合陶瓷的制备①填加不同比例纳米二氧化锆粉体的纳米复合陶瓷将体积比为3%、5%、10%、15%、20%、30%的纳米ZrO2(3Y)粉体(VK-R30Y3 粒径30nm)分别加入微米级氧化锆造粒粉中,球磨混匀,250Mpa 干压成型,对烧结后试样进行线收缩率、密度、表观气孔率、力学性能测试及XRD相结构分析和SEM观察,结果表明,加入3%、5%、10%ZrO2(3Y)纳米粉(VK-R30Y3 粒径30nm)组三点弯曲强度和断裂韧性值与对照组(纯造粒粉陶瓷)相比均有统计学意义,其中添加10%纳米粉的陶瓷试样力学性能最好,其三点弯曲和断裂韧性值分别为673.17±47.19Mpa和9.01±0.82Mpa·m1/2。
②填加不同比例纳米α-三氧化二铝(VK-L30,30nm,纯度99.99%)粉体的纳米Al2O3/ZrO2(3Y)复合陶瓷将体积比分别为3%、5%、10%、15%、20%、30%的纳米α-Al2O3粉体加入微米级氧化锆造粒粉中,球磨混匀,250Mpa干压成型,烧结后测试各组试样性能指标。
结果表明,加入3%、5%α-Al2O3纳米粉组三点弯曲强度和断裂韧性值与对照组相比有统计学意义,其中添加5%纳米粉的陶瓷试样力学性能最好,其三点弯曲和断裂韧性值分别为659.17±46.54Mpa和8.55±0.89Mpa·m1/2。
氧化锆陶瓷生产工艺

氧化锆陶瓷生产工艺目录一、概述 (2)二、氧化锆陶瓷的特征 (2)三、氧化锆陶瓷的应用 (3)四、普通氧化锆陶瓷产品制备工艺 (4)五、氧化锆陶瓷产品注塑件制备工艺 (10)六、氧化锆陶瓷优势 (12)一、概述氧化锆陶瓷呈白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。
在常压下纯ZrO2共有三种晶态。
■ 低温型单斜晶(m-ZrO2)■ 中温型四方晶(t-ZrO2)■ 高温型立方晶(c-ZrO2)上述三种晶型存在于不同的温度范围,并存在如下相互转化关系:二、氧化锆陶瓷的特征高熔点氧化锆的熔点为:2715℃,可作为高温耐火材料硬度大、耐磨性好按莫氏硬度:蓝宝石>氧化锆陶瓷>康宁玻璃>铝镁合金>钢化玻璃>聚碳酸酯强度、韧性大氧化锆的强度可达:1500MPa热导率和膨胀系数低在常见陶瓷材料中,其热导率最低(1.6-2.03W/(m.k)),热膨胀系数与金属接近。
电学性能好氧化锆的介电常数是蓝宝石的3倍,信号更灵敏。
三、氧化锆陶瓷的应用氧化锆陶瓷广泛运用于3C电子、光通讯、智能穿戴、生物医用、珠宝首饰、日常生活、耐火材料等领域。
四、普通氧化锆陶瓷产品制备工艺一般生产制备流程(一)、氧化锆陶瓷粉体的制备微晶陶瓷是一种通过加热玻璃晶化能得到一种含有大量微晶相和少量玻璃相的复合固体材料。
微晶锆系陶瓷简称为微晶锆,具有耐磨、耐腐蚀、高强高韧等性质。
微晶锆陶瓷粉体的质量要求如下:1、粒度分布是正态分布,分级精度要高;2、颗粒形状接近圆形,颗粒强度高,应力均匀;3、分散性要好,无团聚或很少团聚;4、纯度要高有害杂质的含量要尽可能低。
(二)、将氧化锆陶瓷粉体加工成型:目前工艺上主要有下面四种加工成型方法:1、注射成型注射成型是通过在粉体中添加流动助剂,充模得到所需形状胚体。
主要生产外形复杂,尺寸精确或带嵌件的小型精密陶瓷件。
2、模压成型模压成型是将经过造粒、流动性好、粒配合适的粉料,装入磨具内,通过压机的柱塞施加外力使粉料制成一定形状的胚体。
氧化锆粉体生产工艺

氧化锆粉体生产工艺氧化锆(ZrO2)是一种重要的陶瓷材料,具有广泛的应用领域,如电子、光学、医疗和陶瓷制品等。
氧化锆粉体作为制备这些应用材料的基础原料,其生产工艺对最终产品的质量和性能具有重要影响。
本文将介绍氧化锆粉体的生产工艺,包括原料制备、烧结工艺、筛分工艺和粉体表面处理等。
一、原料制备氧化锆粉体的制备首先需要合适的原料,一般选用氧化锆矿石作为主要原料。
原料的选择要考虑矿石的纯度、颗粒大小和化学成分等因素。
矿石经过破碎、磨矿等工艺处理,得到符合要求的矿石颗粒。
二、烧结工艺1. 矿石预处理:将原料矿石送入预处理设备中进行干燥和除杂处理,以提高矿石的可烧结性。
2. 烧结:将经过预处理的矿石放入烧结炉中,通过高温和压力作用下,使矿石颗粒发生烧结反应,形成粉体颗粒。
烧结温度一般为1500℃-1700℃。
三、筛分工艺烧结后得到的粉体颗粒粒径较大,需要经过筛分工艺进行分级处理,以得到所需颗粒大小范围的氧化锆粉体。
筛分过程中,可以通过调整筛网孔径和振动频率等参数,控制粉体颗粒的粒径分布。
四、粉体表面处理为了提高氧化锆粉体的分散性和流动性,需要对其进行表面处理。
常用的表面处理方法包括干法处理和湿法处理。
干法处理包括干法粉体改性和干法润湿剂处理,通过表面吸附或表面反应的方式改善粉体的性能。
湿法处理则是在粉体表面添加润湿剂,提高粉体与溶剂之间的相容性。
氧化锆粉体的生产工艺包括原料制备、烧结工艺、筛分工艺和粉体表面处理等环节。
逐步完成这些工艺可以获得具有所需颗粒大小和性能的氧化锆粉体。
这些粉体可作为制备陶瓷、电子器件和医疗器械等材料的基础原料,广泛应用于众多领域。
通过不断优化工艺参数和技术手段,可以提高氧化锆粉体的质量和性能,满足不同应用领域的需求。
机加工工艺文件和作业指导书的案例在机械制造过程中,机加工工艺文件和作业指导书是非常重要的文件,它们为企业的生产操作提供了具体指导,确保产品能够按照规定的标准和质量要求进行加工。
【精品文章】浅谈二氧化锆ZrO2的超细粉体的制备技术

浅谈二氧化锆ZrO2的超细粉体的制备技术
二氧化锆ZrO2具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。
锆英石的主要成分是ZrSiO4 ,一般均采用各种火法冶金与湿化学法相结合的工艺,即先采用火法冶金工艺将ZrSiO4 破坏,然后用湿化学法将锆浸出,其中间产物一般为氯氧化锆或氢氧化锆,中间产物再经煅烧可制得不同规格、用途的ZrO2产品,目前国内外采用的加工工艺主要有碱熔法、石灰烧结法、直接氯化法、等离子体法、电熔法和氟硅酸钠法等。
用传统工艺制备的ZrO2 是ZrO2·8H2O化合物,是制备ZrO2超细粉和其他ZrO2制品的原料。
随着高性能陶瓷材料的发展和纳米技术的兴起,制备高纯、超细ZrO2粉体的技术意义重大,研究其制备应用技术已成为当前的一个热点,现在较为通用的制备技术主要有:
化学共沉淀法和以共沉淀为基础的沉淀乳化法、微乳液沉淀反应法的主要工艺路线是:以适当的碱液如氢氧化钠、氢氧化钾、氨水、尿素等作沉淀剂(控制pH≈8~9),从ZrOCl 2 ·8H 2 O 或Zr(NO 3 ) 4 、Y(NO 3 ) 3 (作为稳定剂)等盐溶液中沉淀析出含水氧化锆Zr(OH) 4(氢氧化锆凝胶)和Y(OH) 3 (氢氧化钇凝胶),再经过过滤、洗涤、干燥、煅烧(600~900℃)等工序制得钇稳定的氧化锆粉体。
工艺流程图如图 1 所示:此法由于设备工艺简单,生产成本低廉,且易于获得纯度较高的纳米级超细粉体,因而被广泛采用。
目前国内大部分氧化锆生产企业,如九江泛美亚、深圳南玻、上海友特、广东宇田等,采用的都是这种方法。
但是共沉淀法的主要缺点是没有解决超细粉体的硬团聚问题,粉体的分散性差,烧结活性低。
ZrO2精细陶瓷材料湿法成型工艺概述

ZrO2精细陶瓷材料湿法成型工艺概述摘要:zr02具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下为导体等良性质。
在20世纪70年代出现了氧化锆陶瓷增韧材料,使氧化锆陶瓷材料的力学性能获得了大幅度的提高,极大的扩展了zr02在结构陶瓷领域的应用。
本文主要介绍了论述了氧化锆精细陶瓷材料的湿法成型工艺的有关研究现状,分析了不同工艺方法的优缺点和应用领域。
关键词:关氧化错高性能陶瓷制备应用就目前陶瓷制备工艺的发展水平来看,成型工艺在整个陶瓷材料的制备过程中起着承上启下的作用,是保证陶瓷材料及部件的性能可靠性及生产可重复性的关键,与规模化和工业化生产直接相关。
下面介绍氧化锆精细陶瓷材料湿法成型较为常用的几种方法。
一、注浆成型注浆成型属于传统工艺,适合制备形状复杂的大型陶瓷部件,但坯体质量,包括外形、密度、强度等都较差,工人劳动强度大且不适合自动化作业。
二、热压铸成型热压铸成型是在较高温度下使陶瓷粉体与粘结剂(石蜡)混合,获得热压铸用的浆料,浆料在压缩空气的作用下注入金属模具,保压冷却,脱模得到蜡坯,蜡坯在惰性粉料保护下脱蜡后得到素坯,素坯再经高温烧结成瓷。
热压铸成型的生坯尺寸精确。
内部结构均匀,模具磨损较小,生产效率高,适合各种原料。
蜡浆和模具的温度需严格控制,否则会引起欠注和变形,因此不适合用来制造大型部件,同时两步烧成工艺较为复杂,能耗较高。
三、流延成型流延成型是把陶瓷粉料与大量的有机粘结剂、增塑剂、分散剂等充分混合,得到可以流动的粘稠浆料,把浆料加人流延机的料斗,用刮刀控制厚度,经加料嘴向传送带流出.烘干后得到膜坯。
此工艺适合制备薄膜材料,为了获得较好的柔韧性而加入大量的有机物,要求严格控制工艺参数,否则易造成起皮、条纹、薄膜强度低和不易剥离等缺陷。
所用的有机物有毒性,会产生环境污染,应尽可能采用无毒或少毒体系,减少环境污染。
四、直接凝固注模成型直接凝固注模成型是由苏黎世联邦工学院开发的一种成型技术。
氧化锆陶瓷热脱脂

氧化锆陶瓷热脱脂
氧化锆陶瓷热脱脂是一种制备氧化锆陶瓷的方法,其主要原理是通过
高温热处理将陶瓷中的有机物质脱除,从而得到高纯度的氧化锆陶瓷。
这种方法具有工艺简单、成本低廉、制备效率高等优点,因此在工业
生产中得到了广泛应用。
氧化锆陶瓷是一种高强度、高硬度、高耐磨、高耐腐蚀、高绝缘性能
的陶瓷材料,具有广泛的应用前景。
它可以用于制造高温炉具、磨料、电子元器件、医疗器械等领域。
而氧化锆陶瓷热脱脂技术的出现,为
氧化锆陶瓷的制备提供了一种简单、高效、低成本的方法。
氧化锆陶瓷热脱脂的制备过程主要包括以下几个步骤:
1. 制备陶瓷原料:将氧化锆粉末和有机物质混合均匀,制备成陶瓷原料。
2. 成型:将陶瓷原料进行成型,可以采用压制、注塑等方法。
3. 热脱脂:将成型后的陶瓷样品放入高温炉中进行热脱脂处理,将陶
瓷中的有机物质脱除。
4. 烧结:将热脱脂后的陶瓷样品进行高温烧结,使其形成致密的氧化锆陶瓷。
氧化锆陶瓷热脱脂技术的优点主要有以下几个方面:
1. 工艺简单:氧化锆陶瓷热脱脂技术的制备过程简单,不需要复杂的设备和工艺。
2. 成本低廉:相比其他制备氧化锆陶瓷的方法,氧化锆陶瓷热脱脂技术的成本更低。
3. 制备效率高:氧化锆陶瓷热脱脂技术可以制备大量的氧化锆陶瓷,制备效率高。
4. 陶瓷质量高:氧化锆陶瓷热脱脂技术可以制备高纯度、高密度、高强度的氧化锆陶瓷。
总之,氧化锆陶瓷热脱脂技术是一种简单、高效、低成本的制备氧化锆陶瓷的方法,具有广泛的应用前景。
随着科技的不断进步,相信这种技术将会得到更加广泛的应用和发展。
二氧化锆和铸瓷

二氧化锆和铸瓷二氧化锆和铸瓷是现代牙科医学中使用的两种材料,都具有较好的生物相容性和机械性能,在修复牙齿的过程中起到了不可替代的作用。
下面我们将分步骤阐述这两种材料的相关知识。
一、二氧化锆1.什么是二氧化锆二氧化锆是一种高科技陶瓷材料,具有卓越的物理、化学和生物学特性,是目前最优秀的终生牙科修复材料之一。
2.二氧化锆的制备方法目前市面上的二氧化锆主要分为两种,一种是粉末冶金法制备的二氧化锆,另一种是高温等离子法制备的氧化锆。
3.二氧化锆的特异性优势二氧化锆的高韧性、高强度、抗氧化、抗酸碱腐蚀、无机质释放等特性,决定了它能够成为理想的牙科修复材料,且长期保持持久的性能。
4.二氧化锆的制备与嵌体传统的二氧化锆是通过粉末模压的方式加工成块状,然后削减成精确的形状,再通过烧结技术烧制而成。
而现代二氧化锆等离子喷雾技术,可以直接将颗粒性粉末形成2D形状和3D复杂形状。
二氧化锆制备出的嵌体,外观精适可控,可以达到高精度的牙体修复要求。
二、铸瓷1.什么是铸瓷铸瓷是传统的金属铸造技术加上陶瓷覆盖层而形成的复合物,瓷层是由陶瓷颗粒构成,形成了一层高度美观、抗氧化、抗磨损、耐腐蚀的层。
2.铸瓷的制备过程铸瓷制备过程分为金属铸造和陶瓷烧结两个环节。
首先将金属冶炼成可熔融状态的合金,加工成形,然后在熔炉中加热至适当温度,从而使其熔化并铸造出零件,最后通过喷涂或涂抹的方式将瓷浆倒在金属零件表面,将其进行烧结。
3.铸瓷的特性铸瓷具有较高的美观性、生物相容性和稳定性,而且表面光滑、不易着色,且具有良好的耐磨、耐酸碱腐蚀、抗氧化等特性。
4.铸瓷与二氧化锆的比较相比于二氧化锆,铸瓷的制备过程更为复杂且需要较长时间,但铸瓷较为便宜,且具有良好的生物相容性和稳定性,而且修复后的效果也非常好。
而二氧化锆则虽然价格昂贵一些,但其机械性能和美观度都更高。
综上所述,二氧化锆和铸瓷都是现代牙科修复中必不可少的材料。
在使用时应根据具体情况选择合适的材料,修复出更加稳定、美观的牙齿,以提高生活质量和快乐感。
二氧化锆陶瓷的相变增韧机理和应用

二氧化锆陶瓷的相变增韧机理和应用一、本文概述本文旨在深入探讨二氧化锆陶瓷的相变增韧机理及其在多个领域的应用。
作为一种重要的工程材料,二氧化锆陶瓷因其出色的物理和化学性质,如高硬度、高耐磨性、良好的化学稳定性和生物相容性等,在航空航天、机械、电子、生物医疗等领域具有广泛的应用前景。
然而,其脆性大的特点限制了其在某些领域的应用。
为了解决这个问题,科研工作者们发现,通过控制二氧化锆陶瓷中的相变过程,可以有效地提高其韧性,这就是所谓的相变增韧机理。
本文将首先介绍二氧化锆陶瓷的基本性质,包括其晶体结构、物理和化学性质等。
然后,将重点阐述相变增韧机理,包括其原理、影响因素以及实现方法。
在此基础上,本文将进一步探讨二氧化锆陶瓷在航空航天、机械、电子、生物医疗等领域的应用,以及在这些应用中如何利用相变增韧机理来提高其性能。
本文还将对二氧化锆陶瓷的未来发展趋势进行展望,以期为其在更多领域的应用提供理论支持和实践指导。
二、二氧化锆陶瓷的基本性质二氧化锆(ZrO₂)陶瓷是一种具有独特物理和化学性质的先进陶瓷材料。
它的主要特点包括高强度、高硬度、高耐磨性、高化学稳定性以及优异的隔热性能。
二氧化锆陶瓷还具有一种特殊的性质,即其在一定条件下可以发生相变,这种性质为二氧化锆陶瓷的增韧提供了可能。
在常温下,二氧化锆陶瓷主要以单斜晶相(m-ZrO₂)存在,这种晶相具有较高的稳定性。
然而,当受到外部应力或温度升高的影响时,部分单斜晶相二氧化锆会转变为四方晶相(t-ZrO₂)。
这种相变过程中,二氧化锆的体积会发生变化,产生微小的应力场,这些应力场可以吸收并分散外部施加的应力,从而阻止裂纹的扩展,提高陶瓷的韧性。
除了相变增韧外,二氧化锆陶瓷还可以通过添加稳定剂(如氧化钇、氧化钙等)来稳定其四方晶相,使其在室温下就能保持较高的韧性。
这种稳定化处理不仅可以提高二氧化锆陶瓷的力学性能,还可以扩大其应用范围。
二氧化锆陶瓷的基本性质为其在增韧机制和实际应用中提供了重要的基础。
二氧化锆涂层工艺

二氧化锆涂层工艺一、引言二氧化锆涂层是一种由二氧化锆(ZrO2)制成的陶瓷涂层,因其具有高硬度、良好的耐磨性和耐腐蚀性,被广泛应用于各种领域,如航空航天、汽车、医疗和电子产品等。
本文将对二氧化锆涂层工艺进行详细介绍,帮助读者了解这一工艺的原理、优点、应用和发展趋势。
二、二氧化锆涂层工艺原理二氧化锆涂层工艺主要采用物理气相沉积(PVD)或化学气相沉积(CVD)技术,在基材表面形成一层二氧化锆涂层。
PVD技术是将二氧化锆靶材置于真空环境中,通过高能粒子轰击,使靶材表面的原子或分子获得足够的能量,克服表面能势垒,逸出靶材表面,并在基材表面凝结形成涂层。
而CVD技术则是利用含二氧化锆前驱体的气体,在高温环境下与基材表面发生化学反应,形成二氧化锆涂层。
三、二氧化锆涂层的优点1.高硬度:二氧化锆涂层具有高硬度,其洛氏硬度值可达HRA85以上,可以有效提高基材的耐磨性和耐划痕性。
2.良好的耐腐蚀性:二氧化锆涂层具有优异的耐腐蚀性能,可以抵御酸、碱、盐等化学物质的侵蚀,延长基材的使用寿命。
3.良好的高温稳定性:二氧化锆涂层具有较好的热稳定性,可以在高温环境下保持稳定的性能,适用于高温环境下的应用。
4.低摩擦系数:二氧化锆涂层具有较低的摩擦系数,可以有效降低基材的摩擦阻力,提高产品的使用效率。
5.环保:二氧化锆涂层工艺不产生有害物质,符合环保要求。
四、二氧化锆涂层的应用由于二氧化锆涂层具有优异的性能,其应用领域十分广泛。
在航空航天领域,二氧化锆涂层可用于保护飞机发动机部件和卫星太阳能电池板等;在汽车领域,二氧化锆涂层可用于提高发动机部件和汽车外观件的耐磨性和耐腐蚀性;在医疗领域,二氧化锆涂层可用于医疗器械的表面处理,提高医疗器械的耐用性和安全性;在电子产品领域,二氧化锆涂层可用于保护电子元件和电路板等。
五、二氧化锆涂层的发展趋势随着科技的不断进步和应用需求的不断增长,二氧化锆涂层工艺将得到更广泛的应用和推广。
未来,二氧化锆涂层工艺的发展趋势将包括以下几个方面:1.新材料的研发:随着材料科学的不断发展,新型的二氧化锆涂层材料将不断涌现,为各领域的应用提供更多选择。
纳米级二氧化锆的制备和应用

其优点是颗粒的形态容易控制 ,其缺陷是可以得到 的前驱体类型不多 。有人用氢电弧等离子体法 、激 光加热法 、爆炸丝法等制备出二氧化锆纳米颗粒 。 1. 1. 2 化学气相合成法 ( CV S) [4 ,5 ] CV S 法是将 一种挥发性的金属有机物前驱体在减压下分解而形 成 。具体反应过程是用 99. 99 %的氦气气流和叔丁 基锆一起喷入反应区 ,同时通入氧气流 。氦气和氧 气流量比例为 1∶10 ,气流压力为 1 kPa ,反应温度为 1 000 ℃,气流经过反应器使锆的化合物被分解 ,形 成 ZrO2 纳米颗粒 ,最后利用温度梯度收集颗粒 。该 法的优点是纳米微晶的形成过程是在均匀气相下进 行的 ,故得到的微粒均匀 ,温度压力和气流的流动易 控制 ,实验具有可重复性 ,但产量较低 ,成本较高 。 目前 Vladimir 等人[4 ]已经用 CVS 法制备出 5 nm 的 ZrO2 微粉 。 1. 1. 3 化学气相沉积法[6 ] CVD 法是在一定的 反应条件 (~300 ℃,5 h , 101133 kPa) 下 ,反应前驱 物蒸气在气态下分解得到 ZrO2 ,ZrO2 形成时具有很 高的过饱和蒸气压 ,自动凝聚形成大量的晶核 ,这些 晶核在加热区不断长大 ,聚集成颗粒 ,随着气流进入 低温区急冷 ,颗粒生长聚集晶化的过程停止 ,最后在 收集室内收集得到粉体 。CVD 法可通过选择适当 的浓度 、流速 、温度和组成配比等工艺条件而实现对 粉体组成 、形貌 、尺寸 、晶相等控制 。反应方程式可 为:
热化学气相反应法 、等离子体加强化学气相反应法
等。
1. 1. 4 化学气相凝聚法 ( CVC) [3 ] 化学气相凝聚
法就是将热 CVD 法的化学反应过程和气体中蒸发
法的冷凝过程结合起来的结果 ,即利用气相原料 (金
二氧化锆陶瓷的制备及性能分析

二氧化锆陶瓷的制备及性能分析二氧化锆陶瓷(ZrO2)是一种重要的结构材料,具有高温稳定性、优异的机械性能和优良的化学稳定性,因此在许多应用领域具有广泛的应用前景,如热障涂层、高温结构材料、生物医学材料等。
本文将介绍二氧化锆陶瓷的制备方法以及其性能分析。
二氧化锆陶瓷的制备方法主要包括固相反应法、水热法和溶胶-凝胶法等。
固相反应法是最常用的方法之一,其步骤主要包括将适当比例的锆粉和稳定剂混合、研磨混合均匀之后,在高温(约1300-1600℃)下烧结获得锆粉颗粒之间的结合,形成致密的二氧化锆陶瓷。
水热法则是通过在高温高压的水环境下,将锆盐溶解于水中,经过一系列的化学反应形成二氧化锆的纳米粒子,并在特定的条件下,通过后续的热处理制备得到二氧化锆陶瓷。
溶胶-凝胶法是一种常用的制备纳米颗粒的方法,通过将锆酸醋酸盐等无机盐溶解于溶剂中,得到溶胶,然后通过控制其凝胶过程形成凝胶,最后经过热处理获得二氧化锆陶瓷。
二氧化锆陶瓷的性能分析主要包括物理性能、力学性能和化学性能等。
物理性能主要包括晶体结构和晶型、晶粒大小和分布、密度等。
力学性能主要包括抗压强度、弹性模量和硬度等。
化学性能主要包括化学稳定性和生物相容性等。
在物理性能方面,二氧化锆陶瓷具有良好的热稳定性和机械稳定性,其晶体结构为立方相或四方相,晶粒通常在纳米级别,有利于提高材料的力学性能和化学稳定性。
在力学性能方面,二氧化锆陶瓷具有高抗压强度和硬度,其抗压强度通常在1000-2000MPa之间,硬度在8-12GPa之间。
这使得它适用于各种高强度和高温环境下的应用。
在化学性能方面,二氧化锆陶瓷具有较好的化学稳定性和生物相容性,能够在酸碱环境和生物体内保持稳定。
这使得它在生物医学领域有着广泛的应用,如人工关节、骨修复材料等。
综上所述,二氧化锆陶瓷具有优异的物理性能、力学性能和化学性能,制备方法多样,可以通过调控工艺参数和添加适宜的添加剂来改善其性能。
随着科学技术的进步,二氧化锆陶瓷在材料科学和工程领域的应用前景将更加广阔。
高纯二氧化锆生产工艺流程

高纯二氧化锆生产工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!高纯二氧化锆生产工艺流程随着科技的不断发展,高纯二氧化锆在医疗、航空、军工等领域的应用越来越广泛。
氧化锆全锆工艺流程

氧化锆全锆工艺流程
氧化锆的全锆工艺流程主要包括以下几个步骤:
1. 原料准备:将氧化锆粉末按照一定的比例混合,以确保成分的均匀性和稳定性。
同时,还需要准备一定量的溶剂,如水或有机溶液。
2. 粉末研磨:将混合好的氧化锆粉末放入球磨机中进行研磨。
研磨的目的是使粉末的颗粒尺寸更加均匀细小,提高氧化锆的分散性和可塑性。
3. 成型:将研磨好的氧化锆粉末进行成型。
常见的成型方法有压力成型、注塑成型等。
通过成型,可以使氧化锆形成所需的形状和尺寸。
4. 烧成:将成型后的氧化锆制品放入高温炉中进行烧成。
烧成的目的是使氧化锆中的水分、有机物等挥发,同时使氧化锆中的晶型得以固定。
5. 加工:烧成后的氧化锆制品需要进行加工,包括切削、磨削、抛光等,以获得所需的尺寸和表面光洁度。
6. 检测:最后,对加工好的氧化锆制品进行检测,以确保其质量和性能符合要求。
以上是氧化锆的全锆工艺流程,具体步骤和工艺参数可能会根据不同的生产厂家和生产条件有所不同。
氧化锆陶瓷

氧化锆陶瓷氧化锆陶瓷第二部分项目第一节特种陶瓷特种陶瓷,又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大类。
在陶瓷坯料中加入特别配方的无机材料,经过 1360 度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能,如:电、磁、光、热、声、化学、生物等功能;以及耦合功能,如压电、热电、电光、声光、磁光等功能。
一、分类特种陶瓷是二十世纪发展起来的,在现代化生产和科学技术的推动和培育下,它们quot繁殖quot得非常快,尤其在近二、三十年,新品种层出不穷,令人眼花缭乱。
按照化学组成划分有: 氧化物陶瓷氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、二氧化钛、二氧化钍、三氧化铀等。
氮化物陶瓷氮化物陶瓷:氮化硅、氮化铝、氮化硼、氮化铀等。
碳化物陶瓷碳化物陶瓷:碳化硅、碳化硼、碳化铀等。
硼化物陶瓷硼化物陶瓷:硼化锆、硼化镧等。
硅化物陶瓷硅化物陶瓷:二硅化钼等。
氟化物陶瓷氟化物陶瓷:氟化镁、氟化钙、三氟化镧等。
硫化物陶瓷硫化物陶瓷:硫化锌、硫化铈还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。
除了主要由一种化合物等。
其他构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。
例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。
此外,有一大类在陶瓷中添加了金属而生成的金属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷,硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。
近年来,为了改善陶瓷的脆性,在陶瓷基体中添加了金属纤维和无机纤维,这样构成的纤维补强陶瓷复合材料,是陶瓷家族中最年轻但却是最有发展前途的一个分支。
为了生产、研究和学习上的方便,有时不按化学组成,而根据陶瓷的性能,把它们分为高强度陶瓷,高温陶瓷,高韧性陶瓷,铁电陶瓷,压电陶瓷,电解质陶瓷,半导体陶瓷,电介质陶瓷,光学陶瓷(即透明陶瓷),磁性瓷,耐酸陶瓷和生物陶瓷等等。
精密陶瓷加工工艺

精密陶瓷加工工艺引言精密陶瓷是一种具有高强度、高硬度、耐高温、耐腐蚀等优异性能的新型材料,广泛应用于航空航天、电子信息、医疗器械等领域。
而精密陶瓷的加工工艺对于最终产品的质量和性能起着至关重要的作用。
本文将介绍精密陶瓷加工的工艺流程和相关技术,以及在实际生产中需要注意的问题。
工艺流程原料准备精密陶瓷的制备过程通常需要使用多种原料,如氧化铝、氧化锆等。
这些原料需要经过筛分、称量等步骤进行准备,确保其质量和比例符合要求。
配料混合原料经过准备后,需要进行配料混合。
通常采用干法或湿法混合两种方法。
干法混合是将原料放入球磨机中进行混合,湿法混合则是将原料与溶剂混合搅拌。
成型成型是将混合好的原料进行造型的过程。
常见的成型方法包括注塑成型、压制成型、注浆成型等。
其中,注塑成型是将热软化的原料通过注射机注入模具中,然后冷却固化;压制成型是将原料放入模具中,施加一定压力进行成型;注浆成型则是将原料与溶剂混合后,通过真空吸附在模具表面形成薄壁。
烧结烧结是精密陶瓷加工过程中最关键的步骤之一。
烧结是指将成型好的陶瓷坯体经过高温处理使其结晶生长并形成致密的陶瓷材料。
烧结温度和时间是影响陶瓷材料性能的重要因素,需要根据具体材料进行调控。
精密加工经过烧结后的陶瓷坯体通常需要进行精密加工,以满足产品的精度要求。
常见的精密加工方法包括车削、铣削、磨削等。
这些方法可以对陶瓷表面进行加工,提高其精度和光洁度。
表面处理精密陶瓷通常需要进行表面处理,以增加其耐磨、抗腐蚀等性能。
常见的表面处理方法包括喷涂、电化学沉积、热处理等。
相关技术数控加工技术数控加工技术是精密陶瓷加工中的重要技术手段之一。
通过数控机床进行加工,可以提高产品的精度和稳定性。
数控加工技术可以实现复杂形状的加工,并减少人为操作误差。
精密测量技术精密测量技术在精密陶瓷加工中起着重要作用。
通过使用精密测量仪器,可以对产品进行尺寸、形状等方面的测量,保证产品符合设计要求。
常见的精密测量技术包括三坐标测量、光学测量等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二氧化锆材料的加工技术姓名:罗乔学号:510011593摘要陶瓷材料种类很多,它具有熔点高、硬度高,化学稳定性高、耐高温、耐磨损、耐氧化、耐腐蚀,以及弹性模量大、强度高等优良性质。
也正是由于陶瓷材料的这些性质能决定了它的加工也是和普通的材料有着截然不同的加工方式。
随着现代工业的发展,对于新型材料的需求也越来越多,陶瓷材料在近十几年来得到飞速的发展。
随着它的应用领域越来越广,人们对它的研究也越来越深入。
本文将介绍二氧化锆这种比较典型的特种陶瓷材料(人工合成材料)并对其加工技术进行叙述和探讨在国内陶瓷材料的加工技术水平和发展程度。
关键词:陶瓷材料二氧化锆激光加工磨料水射流铣削加工金刚石套料钻ABSTRACTThere is so many kinds of Ceramic material.They have the excellent properties.Such as the High melting point,High hardness,High Chemical stability, Heat-resistant,Resistant to wear,Resistance to oxidation,Corrosion resisting,High Elastic modulus,High strength and so on.Because of these properties , its processing is also with ordinary materials a totally different processing methods.With the development of modern industry,The demand for new materials will be more and more.Ceramic materials get rapid development in recent decade.Along with its application field more and more widely, people have studied it also more and more deeply.This paper will introduce alumina and zro2 which is Synthetic material and its processing technology description and explore the domestic ceramic materials processing techniques and development degree.KEY WORD : Ceramic materials zirconium dioxide Laser processingAbrasive Water technology milling Diamond set of material drill1 材料介绍陶瓷材料种类很多,它具有熔点高、硬度高,化学稳定性高、耐高温、耐磨损、耐氧化、耐腐蚀,以及弹性模量大、强度高等优良性质。
也正是由于陶瓷材料的这些性能决定了它的加工也是和普通的材料有着截然不同的加工方式。
随着现代工业的发展,对于新型材料的需求也越来越多,陶瓷材料在近十几年来得到飞速的发展,随着它的应用领域越来越广,人们对它的研究也越来越深入,本文将介绍二氧化锆这种比较典型的特种陶瓷材料(人工合成材料)并对其加工技术进行叙述和探讨在国内陶瓷材料的加工技术水平和发展程度。
二氧化锆陶瓷,高纯度的二氧化锆为白色粉末,含有杂质时略带黄色或灰色。
二氧化锆有三种晶型,低温为单斜晶系,密度 5.65g/3cm ;高温时为四方晶系,密度6.10g/3cm ;更高的温度下转变为立方晶系,密度为6.27g/3cm 。
二氧化锆陶瓷的熔点在2700C ︒以上,能耐2300C ︒的高温,其推荐使用温度为2000~2200C ︒。
同时二氧化锆的热膨胀系数的变化受温度的影响明显。
在20~200C ︒阶段下,热膨胀系数为6108⨯/C ︒,在1000C ︒附件,由于晶体结构由c →t 转变,产生体积收缩。
但加入增韧剂后抑制了相变,热膨胀系数不再受c →t 转变的影响。
二氧化锆的化学稳定性很高,各种酸中仅溶于氢氟酸。
二氧化锆容易与碱和碳酸盐熔烧,形成锆酸盐。
与其他主要陶瓷种类的力学性能相比较,二氧化锆的抗热震性较差。
由于二氧化锆固溶体具有离子导电性,故可用作高温下工作的固体电解质,应用于工作温度为1000~2000C ︒的化学燃料电池,还可用于其他电源。
利用稳定二氧化锆的高温导电性,还可将这种材料作为电流加热的光源和电热发热元件。
由于二氧化锆还能抗熔融金属的侵蚀,所以多用作铂等金属的冶炼坩埚和1800C ︒以上的发热体和炉子、反应堆绝热材料等。
特别指出,二氧化锆作添加剂可大大提高陶瓷材料的强度和韧性。
氧化锆增韧氧化铝陶瓷材料的强度达1200MPa 、断裂韧性为15.0,分别比原氧化铝提高了三倍和近三倍。
它的炕腐蚀性可以用它来做盛钢水包的内衬,在连续铸钢中做浇口砖。
二氧化锆由于其的高强度和优良的韧性(常温抗压强度可以达到2100MPa,1000C︒时为1190MPa,经过增韧的陶瓷常温抗弯强度最高可以达到2000MPa)可以用来制造发动机构件,如轴承、气缸等。
二氧化锆还具有高温半导体性,室温下纯二氧化锆是良好的绝缘体,但超过1000C︒后导电很好,电阻为4cmΩ,所以这种优良的特性可以将它广泛的应用于热敏感材料类,而且是适合那∙种高温情况下,很具有应用潜力,而且在最新的MEMS技术中也可以得到一定的应用。
最后,二氧化锆还具有比较好的敏感特性,二氧化锆稳定化后有氧空气的存在,可用以制作气敏元件,作为测量一些气体的探头,同时对于之前提到的MEMS技术中更是有很好的应用潜力,由于它的这种半导体和以及气体敏感元件,可以在很多地方得到广泛的应用,然而加工确是阻碍此种材料应用的一个最大的阻碍。
2 二氧化锆的加工技术现阶段,绝大部分采用硬烧结金刚石等硬质刀具来切削陶瓷材料,当然,二氧化锆材料还没有强度高到连金刚石都对付不了的程度,但是采用烧结金刚石的方法却注定它的加工效率要慢一拍,这样也将最终导致我们的生产上面会出现很大的供不应求的状况,如何改善就成为了现在的一个研究重点了,下面就将介绍一些现代比较先进的加工技术。
2.1 激光热应力切割技术利用经聚焦的高功率密度激光束照射工件,在超过阀值功率密度的前提下,热能被材料吸收,由此引起照射点材料温度急剧上升,热量以某个速率(视材料的热扩散率而定),从入射点传导出去对于容易受热破坏的脆性材料,比如陶瓷,通过激光扫描产生的热应力诱导并控制裂纹扩展的方法来分割脆性材料的方法称为激光热应力分割技术。
这种加工方法就是通过激光(或其他热源,如热空气射流)的扫描照射,在被切割材料内造成适当的温度梯度(但不至造成材料软化和机械性质的大幅变化),非均匀温度场将导致材料产生热应力,当其裂纹尖端热应力超过材料的临界应力时,裂纹扩展,即产生裂缝,分开材料。
例如由上海交大胡俊副教授主持的学生研究过对陶瓷的激光热应力切割技术的数值仿真和实验分析,其中就提到,现阶段,绝大部分采用硬烧结金刚石等硬质刀具来切削零件现阶段还存在着生产率低下、加工成本高、切割质量差等一系列难以克服的缺点。
现阶段在采用激光加工的时候,陶瓷材料存在以下一些优点,那就是:陶瓷对激光的吸收率高,二氧化锆陶瓷对激光的吸收率约90%左右,高热时分解和升华,即一旦受高能量密度的激光束照射,就会发生局部的分解和升华,有助于提高激光加工的效率。
在期中还提到国内外多名研究人员在激光加工陶瓷中所做出的一些成果以及一些仿真实验所得出来的结论都表明目前激光切割陶瓷技术很多都是采用激光划片技术,在由胡俊副教授主持的研究主要是针对氧化铝这种材料的研究,然而从中却也可以发现其实这种激光加工很适合多种陶瓷的加工,尤其是对于二氧化锆,激光吸收率比氧化铝还要高。
这也就可以保证了它的加工效率要比氧化铝要高,在生产方面,这种激光加工方法也是应用于一些特殊的加工场合,尤其是一些精度要求特别高的场合,因为这种加工技术的最大优势就是精度高,然而这种加工也存在一定的技术缺陷,它对于热对流和热传导技术还没有相应的解决,同时对于激光的光斑的大小和形状都还是有待于后人进行研究的。
这些技术一旦被突破,对于陶瓷的激光加工将会是一个很大的提高,更是标志着这项技术成熟的一个瓶颈技术。
2.2磨料水射流加工将“水滴石穿”技术应用于陶瓷材料是一种再形象不过的加工技术。
这也是磨料水射流铣削加工的基本原理。
这种加工技术就是将水液体和磨料进行混合,然后进行加压,然后在混合后的混料进行高压喷射,借助高压和混合液的冲击,将材料进行去除的方法。
这种方法是一种很好的加工陶瓷材料的方法,期中的磨料是金刚石磨粒。
由于磨料水射流所具有的加工优点,它可以加工几乎所有的材料,尤其适宜加工不易使用激光等热加工技术加工的硬脆材料,如陶瓷、聚合物、玻璃、石材等,因此在某些需要应用微型切割的领域中,微型磨料水射流切割成为首选的加工技术。
微型磨料水射流设备与普通磨料水射流设备相比要小得多,水与磨料的消耗量只占普通磨料射流的1%左右,可以切割适用于普通磨料水射流切割的一切材料。
这种方法的使用对于胚体的加工也确实是一种很大的改进,同时这种加工具有加工范围广,可控性好,还具有很强的切割力,切口质量也是非常的好,同时这种生产方式安全,效率高,在发展方面有很大的潜力,美中不足的就是它的成本太高,同时对于较薄的工件很容易冲弯,对喷嘴的耐磨损性要求高,随着现在材料的不断更新,相信会有一天,在成本降到一定程度同时材料达到相应的要求的时候,这种方法也是值得推广的。
但在研究中还提到目前对该技术的切割机理还没有形成统一的理论。
这主要是由于材料的去除过程受众多因素的影响,如水射流结构、加工参数及被加工材料的性质等。
大部分学者认为,磨料水射流对于塑性材料和脆性材料的去除机理存在不同的形式。
所以在对于磨料水射流铣削技术的研究中,他们也提出了一套相应的原理,以及对其进行了相应的实验以及仿真。
对于切割技术,现在的磨料水射流技术已经很成熟了,但是对于铣削技术却是还很欠缺。
由山东大学黄传真教授以及他所带领的博士生冯敏霞共同研究了关于磨料水射流铣削陶瓷材料加工技术研究,以黄传真教授就对这种水射流的铣削加工进行了相应的加工实验,当然也取得了相应的成果。
最终他们得出了相应的结论,那就是高压水射流技术具有无热影响区、加工力小、加工范围广和可加工复杂形状等优点,所以它是加工陶瓷和玻璃等脆性难加工材料的理想加工技术。