气焊与气割基本原理与安全要点

合集下载

气焊与气割

气焊与气割

第四节电石和乙炔发生器(站)的 使用安全要求 一、电石的使用安全要求 (一)电石的物理化学性质及毒性 1、电石与水的化合作用 2、电石的分解速度 3、硅铁杂质 4、电石的毒性
(二)电石发生爆炸失火的原因 (三)对电石运输、储存和使用 的安全要求 1、电石的运输 2、电石的储存 3、电石的使用 二、乙炔发生器(站)的使用要 求
(一)乙炔发生器的种类和构造 (二)乙炔发生器着火爆炸的原因 和分类 (三)乙炔发生器的安全装置 阻火装置、防爆泄压装置和指示装 置。 1、回火防止器 2、泄压膜 3、安全阀
4、压力表 四、乙炔发生器安全使用要求 1、乙炔发生器的布置原则 2、使用前的准备工作 3、工作
能够进行氧乙炔切割的金属的五个 条件: 条件: (1)金属在氧气中的燃点应低于其 ) 熔点。 熔点。 (2)气割时金属氧化物的熔点应低 ) 于金属的熔点。 于金属的熔点。 (3)金属在切割氧流中的燃烧应是 ) 放热反应。 放热反应。 (4)金属的导热性不能太高。 )金属的导热性不能太高。 (5)阻碍气割的杂质要少。 )阻碍气割的杂质要少。
中性焰有三个显著的区域:焰芯、内焰 和外焰。 1、焰芯:白而亮,轮廓清晰。温度 800~1200 ℃ 。 2、内焰:内焰处在焰芯前2~4mm部位 燃烧最剧烈,温度最高,可达 3100~3150 ℃ 。火焰具有还原性。 3、外焰:外焰火焰进行第二阶段的燃烧, 生产CO2和水。温度为1200~2500 ℃。 中性焰应用最广泛,一般用于焊接碳素 钢、紫铜和低合金钢等。
二、气焊与气割的安全特点 气焊气割的主要危险是火灾与爆 炸。防火防爆是气焊气割的主要 任务。 任务。
第二节 *
气焊气割火焰及工艺 参数的选择
一、气焊气割火焰 (一)焊接切割的火焰分类 氧—乙炔焰具有很高的温度(约 3200℃),加热集中,是气焊气割中主 要采用的火焰。氧—乙炔焰根据氧和乙 炔混合比的不同,可分为中性焰、碳化 焰和氧化焰。 (二)中性焰

气焊与气割的基本原理和安全特点

气焊与气割的基本原理和安全特点

气焊与气割的基本原理和安全特点气焊与气割的基本原理和安全特点一、气焊气焊是利用氧炔火焰的高温进行熔合,在接头上加热使之达到熔点,再加入低熔点的焊剂或者流动性良好的熔融金属,在加热的过程中将接头连接起来,从而实现连接的方法。

气焊通常会使用如下设备:氧气、燃气、加热器具、及辅助设备等。

气焊的基本原理是利用气体的燃烧热来达到焊接的目的。

首先燃烧的气体需要在气体喷嘴内部混合,而后燃烧产生的热量会在接头处集中,达到足够高温,使接头溶解,从而实现连接。

燃烧过程中不断向接头部位补给焊剂或熔融的金属,实现焊接即可。

气焊在施工中需要注意以下几点:1、气焊设备的组装应该正确,没有气体泄漏情况,同时在使用过程中注意电气安全,避免火源。

2、对于气态物质一定要注意避免人员在使用设备时靠近,伤害到各项安全措施。

3、在使用过程中记住用气量要恰当,不要浪费,使用完毕之后必须及时关闭设备,避免安全隐患。

二、气割气割通常是指利用氧炔火焰的高温将被割物质加温到熔化或氧化,从而实现分割的方法。

气割设备通常包括氧气、燃气、电源及其他辅助设备,和气焊设备非常类似。

气割的基本原理是利用气体的高温反应来实现分割的目的。

氧气在强烈的喷射速度下,将人工点火的燃气吹向被割对象,产生高温反应,达到将物质分开或消融的效果。

气割在施工中需要注意以下几点:1、要注意切割对象的位置,尤其是高风险区域。

强烈的加热反应会产生大量燃烧的气体,产生很大的火焰区域,在使用时应避免人员靠近,并采取适当的安全措施。

2、使用气割前需要对设备进行检查,合理组装,保证设备制动状态合适,以及消除潜在的气体泄漏和其他问题,快速送达专用阀门和附件设备。

3、在调节设备时保证气氛正常,如氧气和电焊用的气体配比、氧气压力以及燃气供应情况,如果不合理会影响到分割的效果。

综上,气焊和气割是现在建筑工程、制造业及航空业等行业的一种不可或缺的方法。

然而,在使用气焊和气割设备的过程中,也需要注意安全方面,施工人员需要注意各项安全措施和规范,确保现场工作的高效和持续性以及施工人员的身体健康。

气割与气焊基础知识

气割与气焊基础知识

2.火焰能率的调节 气焊火焰能率指每小时混合气体的消耗量(L/h)。气焊中,根据焊件 厚度及热物理性能等的不同,选择不同的焊炬型号及焊嘴号码,并通过 调节阀门来调节氧乙炔混合气体的流量,以得到不同的火焰能率。当要 减小中性焰或氧化焰的能率时,应先调节氧气阀门以减小氧气的流量, 后调节乙炔阀门以减小乙炔流量。当要增加火焰能率时,应先调节乙炔 阀门增加乙炔流量,后调节氧气阀门增加氧气流量。调节碳化焰能率的 方法与上述顺序相反。
2、火焰性质的调节
调节氧气、乙炔气体的不同混合比例,可得到中性焰、氧化焰和碳化焰三种性质不同的火焰。 1)火焰性质的调节 ① 刚点燃的火焰通常为碳化焰,然后根据所焊(割)材料的不同进行火焰调节。如要得到中性焰,就 应逐渐增加氧气量,使火焰由长变短,颜色由淡红色变为蓝白色,直至焰心及外焰的轮廓特别清晰、内 焰与外焰间的明显界限消失为止。 ② 在中性焰的基础上要得到碳化焰,就必须减少氧气量或增加乙炔量。这时火焰变长,焰心轮廓变得 不清晰。气焊时所用的碳化焰,其内焰长度一般为焰心长度的2倍左右。 ③ 在中性焰的基础上要得到氧化焰,就应逐渐增加氧气量。这时整个火焰将变短,当听到有急速的
火焰类型取决于焊接母材的材质。碳钢类材料多采用中性火焰焊 接,其它材料则有使用碳化焰和氧化焰的。各类火焰适用范围 :
3、焊嘴的选择: 焊嘴的大小与火焰的能率有关。单位时间内火焰所提供的热能的大小代表 火焰的能率。大号的焊嘴,火焰能率高,适于厚板的焊接,如下表所示。 给出了HO1-6型焊炬配用各种焊嘴适用范围。 汽车钣金件金属板厚多在1.5mm左右,因此,2号焊嘴使用最多。
二、气焊和气割设备组成: 主要由氧气瓶、乙炔瓶、焊炬等组成。如表所示。
序 部件名称 号 1 氧气瓶 2 乙炔瓶 3 减压器

气焊与气割的基本原理和安全特点

气焊与气割的基本原理和安全特点

1.⽓焊的基本原理 ⽓焊是利⽤可燃⽓体与助燃⽓体,通过焊炬进⾏混合后喷出,经点燃⽽发⽣剧烈的氧化燃烧,以此燃烧所产⽣的热量去熔化⼯件接头部位的母材和焊丝⽽达到⾦属牢固连接的⽅法。

(1)⽓焊应⽤的设备和⼯具 ⽓焊应⽤的设备包括氧⽓瓶、⼄炔瓶以及回⽕防⽌器等。

应⽤的⼯具包括焊炬、减压器以及胶管等。

(2)常⽤的⽓体及氧炔⽕焰 ⽓焊使⽤的⽓体包括助燃⽓体和可燃⽓体。

助燃⽓体是氧⽓;可燃⽓体有⼄炔、液化⽯油⽓和氢⽓等。

⼄炔与氧⽓混合燃烧的⽕焰叫做氧炔焰。

按氧与⼄炔的不同⽐值,可将氧炔焰分为中性焰、碳化焰(也叫还原焰)和氧化焰三种。

①中性焰中性焰燃烧后⽆过剩的氧和⼄炔。

它由焰芯、内焰和外焰三部分组成。

焰芯呈尖锥形,⾊⽩⽽明亮,轮廓清楚。

离焰芯尖端2—4mm处化学反应最激烈,因此温度,为3100~3200℃。

内焰呈蓝⽩⾊,有深蓝⾊线条;外焰的颜⾊从⾥向外由淡紫⾊变为橙黄⾊。

⽕焰呈中性焰。

②碳化焰碳化焰燃烧后的⽓体中尚有部分⼄炔未燃烧。

它的温度为2700~3000℃。

⽕焰明显,分为焰芯、内焰和外焰三部分。

③氧化焰氧化焰中有过量的氧。

由于氧化焰在燃烧中氧的浓度极⼤,氧化反应⼜⾮常剧烈,因此焰芯、内焰和外焰都缩短,⽽且内焰和外焰的层次极为不清,我们可以把氧化焰看作由焰芯和外焰两部分组成。

它的温度可达3100~3300℃。

由于⽕焰中有游离状态的氧,因此整个⽕焰有氧化性。

把安全⼯程师站点加⼊收藏夹 ⽓焊时,⽕焰的选择要根据焊接材料⽽定。

(3)⽓焊丝 ⽓焊⽤的焊丝起填充⾦属的作⽤,焊接时与熔化的母材⼀起组成焊缝⾦属。

常⽤⽓焊丝有碳素结构钢焊丝、合⾦结构钢焊丝、不锈钢焊丝、铜及铜合⾦焊丝、铝及铝合⾦焊丝、铸铁焊丝等。

在⽓焊过程中,⽓焊丝的正确选⽤⼗分重要,应根据⼯件的化学成分、机械性能选⽤相应成分或性能的焊丝,有时也可⽤被焊板材上切下的条料作焊丝。

(4)⽓焊熔剂(焊粉) 为了防⽌⾦属的氧化以及消除已经形成的氧化物和其他杂质,在焊接有⾊⾦属材料时,必须采⽤⽓焊熔剂。

气焊与气割基础知识

气焊与气割基础知识

气焊qìhàn气焊英文为 oxygen fuel gas welding (简称OFW)。

利用可燃气体与助燃气体混合燃烧生成的火焰为热源,熔化焊件和焊接材料使之达到原子间结合的一种焊接方法。

助燃气体主要为氧气,可燃气体主要采用乙炔、液化石油气等。

所使用的焊接材料主要包括可燃气体、助燃气体、焊丝、气焊熔剂等。

特点设备简单不需用电。

设备主要包括氧气瓶、乙炔瓶(如采用乙炔作为可燃气体)、减压器、焊枪、胶管等。

由于所用储存气体的气瓶为压力容器、气体为易燃易爆气体,所以该方法是所有焊接方法中危险性最高的之一。

优点a.设备简单、使用灵活;b.对铸铁及某些有色金属的焊接有较好的适应性;c.在电力供应不足的地方需要焊接时,气焊可以发挥更大的作用。

缺点a.生产效率较低;b.焊接后工件变形和热影响区较大;c.较难实现自动化。

器材气焊丝和气焊熔剂(1)气焊丝气焊时,焊丝不断地送入熔池内,并与熔化的基本金属熔合形成焊缝。

焊缝的质量在很大程度上与气焊丝的化学成分和质量有关。

常用气焊丝的型号和用途如下:1)结构钢焊丝一般低碳钢焊件采用的焊丝有H08A;重要的低碳钢焊件用H08Mn和H08MnA;中强度焊件用H15A;强度较高的焊件用H15Mn。

焊接强度等级为300~350MPa的普通碳素钢时,采用H08A、H08Mn和H08MnA 等焊丝。

焊接优质碳素钢和低合金结构钢时,可采用碳素结构钢焊丝或合金结构钢焊丝,如H08Mn、H08MnA、H10Mn2以及H10Mn2MoA等。

2)铸铁用焊丝铸铁焊丝分为灰铸铁焊丝和合金铸铁焊丝,其型号、化学成分可参见相关国家标准。

(2)气焊熔剂1)气焊熔剂的作用气焊过程中,被加热的熔化金属极易与周围空气中的氧或火焰中的氧化合生成氧化物,使焊缝中产生气孔和夹渣等缺陷。

为了防止金属的氧化及消除已经形成的氧化物,在焊接有色金属、铸铁以及不锈钢等材料时必须采用气焊熔剂。

2)常用气焊熔剂及选用气焊熔剂应根据母材金属在气焊过程中所产生的氧化物的种类来选用。

气焊与气割基本原理与安全要点

气焊与气割基本原理与安全要点

气焊与气割基本原理与安全要点气焊与气割是金属加工中常用的两种方法。

气焊是利用火焰产生的高温熔化金属两端,形成焊缝,并通过熔化的金属填充焊缝,从而实现焊接的目的。

气割是利用氧气和燃气的高温燃烧产生的高温气流,将金属材料局部加热到熔化点,然后使用高压氧气将已经加热到熔化点的金属吹散,从而实现切割的目的。

气焊和气割是属于危险的工作,需要严格遵守安全要点,以确保人员安全。

以下是气焊和气割的基本原理和安全要点:气焊的基本原理:1. 使用氧气和可燃气体(如乙炔)产生火焰,通过燃烧将金属加热到熔化点;2. 加热金属两端,使其熔化并形成焊缝;3. 使用熔化的金属填充焊缝,进行焊接。

气割的基本原理:1. 使用燃烧的氧气和燃气高温气流对金属材料进行加热;2. 将金属材料加热到熔化点;3. 在金属材料已经加热到熔化点的情况下,使用高压氧气将金属材料吹散,实现切割。

安全要点:1. 工作环境保持通风良好。

气焊和气割中会产生大量的烟雾和废气,需要确保工作区域内的通风良好,以防止烟雾和废气积聚导致爆炸等危险。

2. 周围无可燃物。

气焊和气割会产生高温火焰和气流,需要确保周围没有可燃物质,以防止火灾。

3. 检查气瓶。

使用气焊和气割前,需要进行气瓶的检查,确保瓶身完好无损,阀门正常,并且具备压力表和安全阀等安全装置。

4. 安全佩戴个人防护装备。

如防火服、手套、护目镜、面具等。

防护装备能够保护工作人员免受火焰、高温和飞溅物的伤害。

5. 氧气和可燃气体的储存与使用。

氧气和可燃气体需要分别存放在符合要求的氧气瓶和燃气瓶中,并正确连接到燃烧器具上。

在使用时,需要确保阀门关闭严密,以免气体泄漏造成爆炸和火灾。

6. 妥善存放着火设备。

气焊和气割的着火设备一般是明火,需要在工作结束后妥善存放,确保灭火器具的齐全,并保持设备和周围区域的清洁,避免火花引发事故。

7. 注意焊接或切割部位的安全。

焊接和切割时需要注意保持焊缝或切割线的稳定,避免出现手部或其他身体部位接触火焰和气流。

气焊与气割的基本原理和安全特点范本

气焊与气割的基本原理和安全特点范本

气焊与气割的基本原理和安全特点范本气焊和气割是金属加工中常用的两种加工工艺,它们广泛应用于船舶、建筑、金属制品制造等领域。

本文将详细介绍气焊与气割的基本原理和安全特点。

一、气焊的基本原理和安全特点1. 气焊的基本原理气焊是利用液化气体或压缩气体作为燃料和氧气作为燃烧剂,通过燃烧产生的高温火焰来加热工件,使工件达到熔化或准熔状态,并在必要时添加填充金属,进行焊接连接的工艺。

气焊的基本流程包括:燃料与氧气的供应、火焰调节、预热和焊接。

在气焊中,燃烧产生的火焰高温可达到3000℃左右,能够将工件熔化,形成熔池,然后再通过添加适量的填充金属,在熔池中进行焊接。

2. 气焊的安全特点(1)高温和明火:气焊的火焰温度非常高,具有明火,容易引发火灾。

因此,在进行气焊作业时,必须采取必要的火灾防护措施。

(2)有毒气体生成:气焊过程中,燃烧产生的烟尘和有害气体,如一氧化碳、二氧化硫等,对人体健康有害。

因此,在气焊过程中,必须做好通风换气和佩戴防护设备,以保护工人的健康。

(3)易产生气体爆炸:由于气焊需要使用可燃气体和氧气,如果操作不当或未及时排除工作区域的可燃气体,容易导致气体爆炸事故。

因此,在使用气焊设备时,必须注意避免可燃气体的积聚,并加强防爆措施。

(4)辐射和灼伤:气焊火焰产生的高温辐射能够使人体受到灼伤,因此,在进行气焊作业时,必须穿戴合适的防护服和使用防火屏障,以减少辐射和灼伤的风险。

二、气割的基本原理和安全特点1. 气割的基本原理气割是利用氧气与燃料气体(如乙炔、丙烷等)的燃烧来加热金属工件,然后通过高压氧气的吹击将加热的金属表面氧化,形成金属氧化物,接着利用喷射的氧气将金属氧化物吹走,实现对金属工件进行切割、开槽等加工操作的工艺。

气割的基本流程包括:点火预热、进氧、点割、进割和保持割。

通过精确调整氧气和燃料气体的流量,使其在一定范围内维持稳定的燃烧状态,从而实现对金属工件的切割。

2. 气割的安全特点(1)高温和喷射力:气割火焰的温度通常可达到3000℃以上,同时有强大的喷射力,容易造成烧伤和切割时火花飞溅,引发火灾。

气焊与气割

气焊与气割

气焊与气割气焊是利用气体火焰作热源的焊接方法,最常用的是氧乙炔焊,此外还有氢氧焊。

近来,利用液化气或丙烷燃气的焊接正在迅速发展。

气焊的火焰温度较电弧焊电弧的温度低,火焰控制容易,热量输人调节方便,使用灵活,设备简单,主要用于单件、小批量生产或维修中。

此外,气焊的火焰还可用作钎焊、氧气切割时预热及小型零件热处理(火焰淬火)的热源。

气割是利用气体火焰的热能将工件切割处预热到一定温度,然后喷出高速切割氧流,使其燃烧并放出热量,从而实现切割的方法。

气焊和气割所用的气体、设备和工具是相同的,所不同的只是气焊时使用气焊炬,而气割时使用割炬。

一、气焊、气割所用气体、设备和工具气焊、气割常用的可燃气体是乙炔气(C2H2),使用的助燃气体是氧气(02)。

气焊、气割用的设备和工具主要有氧气瓶、溶解乙炔气瓶(或乙炔发生器)、减压器、气焊炬、割炬等。

1、氧气和氧气瓶氧气是助燃剂,与乙炔混合燃烧时,能产生大量的热。

气焊、气割用的氧气纯度应不低于98.5%,否则会影响火焰温度和气割速度。

氧气在高压情况下遇到油脂有爆炸的危险,所以一切有高压氧气通过的器件、管道等,不允许沾染油脂。

氧气瓶是储存高压氧气的圆柱形容器,外表漆成天蓝色作为标志。

氧气瓶属高压容器,有爆炸危险,使用中必须注意安全。

搬运时应避免剧烈震动和撞击。

焊接操作中氧气瓶距明火或热源应在5m以上。

夏日要防止曝晒,冬天如阀门冻结,严禁用火烘烤,应用热水解冻。

瓶中氧气不允许全部用完,余气表压应保持98-196kPa,以防瓶内混入其他气体而引起爆炸。

2、乙炔和溶解乙炔气瓶乙炔是可燃气体,无色,工业用乙炔因混有硫化氢、磷化氢等杂质而有刺鼻的臭味。

氧乙炔焰是气焊最常用的热源。

乙炔温度超过300℃且压力增大到147kPa以上时,遇火会爆炸。

当乙炔温度达到580C时会自行爆炸。

因此,乙炔最高工作压力禁止超过147kPa表压。

此外,乙炔的化学性质很活泼,不能与铜、银等长期接触,否则也会引起爆炸。

气焊与气割安全工艺及操作

气焊与气割安全工艺及操作

• • • • • • • • • • • • •
五、气瓶的安全使用 (一)气瓶爆炸事故的原因 (1)气瓶的材质、结构和制造工艺不符合安全要求。 (2)由于保管和使用不善,受日光曝嗮、明火、热辐射等作用。 (3)在搬运装卸时,气瓶从高处坠落,倾斜或滚动等发生剧烈碰撞冲 击。 (4)气瓶瓶阀无瓶帽保护,受振动或使用方法不当等,造成密封不严, 泄漏甚至瓶阀损坏、高压气流冲出。 (5)开气速度太快,气体迅速流经瓶阀时产生静电火花。 (6)氧气瓶瓶阀、阀门杆或减压阀等上黏有油脂,或氧气瓶内混入其 他可燃气体。 (7)可燃气瓶(乙炔、氢气、石油气瓶)发生漏气。 (8)乙炔瓶内填充的多孔性物质下沉,产生净空间,使乙炔气处于高 压状态。 (9)乙炔瓶处于卧放状态或大量使用乙炔时,丙酮随同流出。 (10)石油气瓶充装过满,受热时瓶内压力过高。 (11)气瓶未作定期技术检验。
• 3.乙炔的分解爆炸与存放的容器形状和大小有关,容器的 直径越小,则乙炔就越不容易爆炸。 • 4.乙炔与铜、银、水银等金属长期接触时,会生成乙炔铜 或乙炔银等爆炸性化合物,当受到剧烈震动或加热到 110~120º C时就会发生爆炸。所以凡是与乙炔接触的器具 设备禁止用银或纯铜制造,只准用含铜量不超过70%的铜 合金制造。 • 5.乙炔和氯、次氯酸盐等化合会发生燃烧和爆炸,所以乙 炔燃烧失火时,绝对禁止使用四氯化碳灭火器。 • 工业乙炔中含硫化氢、磷化氢、氨等有害杂质。在焊接 时,除了会影响焊缝质量外,还因磷化氢的燃点低,在 100º C时会自燃,所以规定乙炔中磷化氢的体积分数应小 于0.08%,硫化氢的体积分数应小于0.15%。
• 4.回火保险器 • 正常气焊时,火焰在焊炬的焊嘴外面燃烧,但当 气体供应不足、焊嘴阻塞、焊嘴太热或焊嘴离焊 件太近时,火焰会沿乙炔管路往回燃烧。如果回 火蔓延到乙炔瓶,就可能引起爆炸事故。回火保 险器的作用就是截留回火气体,保证乙炔瓶的安 全。 • 5.减压器又称压力调节器,它是将气瓶内的高压 气体将为工作时的低压气体的调节装置,起减压 和稳压。如氧气瓶内的氧气压力最高达15MPa,乙 炔瓶内的乙炔压力最高达1.5MPa,降为氧气的工 作压力一般为0.1-0.4MPa,乙炔的工作压力最高不 超过0.15MPa。

气焊与气割的基本原理、适用范围与安全特点模版(四篇)

气焊与气割的基本原理、适用范围与安全特点模版(四篇)

气焊与气割的基本原理、适用范围与安全特点模版一、气焊的基本原理气焊是一种利用燃烧的火焰将金属材料加热至熔化状态,然后通过熔化金属材料之间的混合和溶解来实现焊接的工艺。

气焊主要依靠的是燃气和空气的混合燃烧产生的高温火焰,以及火焰在焊接过程中释放的热量。

常用的燃气有乙炔、丙烷和天然气等,而常用的气焊火焰则有中性焰、还原焰和氧化焰等。

在气焊过程中,首先需要将燃气通过气体管道引入火焰喷嘴,然后加入适量的空气,形成可燃气体混合物。

当混合物从火焰喷嘴喷出并遇到点火源后,就会发生可燃燃烧,形成高温火焰。

这个高温火焰可以加热和熔化要焊接的金属材料,同时也可以提供足够的能量进行金属材料表面的清理和预热。

在材料熔化和火焰作用下的协同作用下,金属材料表面原子间的结合力得到破坏,焊缝形成。

二、气焊的适用范围气焊适用于各种金属材料的焊接,主要包括碳钢、合金钢、不锈钢、铜、铝和镍等材料。

在焊接碳钢和低合金钢时,常用的气焊火焰是中性焰,即燃气和空气的混合比例基本一致。

而在焊接不锈钢、铜和铝等材料时,常采用还原焰,即燃气比例较高,空气比例较低,以减少氧化反应对焊接质量的影响。

气焊广泛应用于焊接薄板、管道、结构件、容器和机械设备等领域。

在薄板焊接中,气焊具有热量集中、熔深小和对金属材料变形影响小的特点,适用于对焊缝质量和外观要求较高的焊接。

在管道焊接中,气焊可以灵活控制焊接速度和焊接质量,同时还可以应对不同直径和材质的管道焊接需求。

在结构件、容器和机械设备的焊接中,气焊可根据材料的特点和尺寸要求进行定点、定尺寸的焊接。

三、气焊的安全特点1.火焰具有可见光和紫外线辐射,使用时应避免直接视线曝光,并佩戴护眼镜和防护面罩。

2.火焰喷嘴和气瓶连接处存在高压气体,应严格遵守操作规程,确保连接牢固,防止漏气和爆炸事故。

3.燃气具有易燃易爆特性,存放和使用时应避免与火源、静电等引发点火的物质接触,以免发生火灾和爆炸。

4.氧气具有促进燃烧的作用,应严禁与有机物和易燃物质混合使用,以防止火灾和爆炸事故。

气焊与气割的基本原理及材料设备工具使用安全要求

气焊与气割的基本原理及材料设备工具使用安全要求

(三)液化石油气 液化石油气(简称石油气)是石油炼制工 业的副产品,其主要成分是丙烷(C3H8), 大约占50%~80%,其余是丙烯(C3H6)、丁 烷(C4H10)、丁烯(C4H8)等,在标准状态 下,石油气的密度为1.8~2.5kg/m³,比空气重, 但其液体的比重则比水、汽油轻。 石油气有一定毒性,空气中含量很少时,
氧流,使切口处的金属发生剧烈燃烧,生成液态的熔渣,这些熔渣很快地被高速氧气流吹走,金属燃烧所释放的热量对待切割的金属 进行预热,随着割炬沿切割方向的移动,实现切割的方法。 由于保管和使用不善,受日光暴晒、明火、热辐射等作用,使瓶温过高,压力剧增,直至超过瓶体材料强度极限,发生爆炸。 氢是一种无色无味的气体,密度非常小,只有空气的1/14,是最轻的气体。 空气、氩气、氮气、二氧化碳气胶管为黑色; 乙炔瓶的容量为40L,一般乙炔瓶中能溶解6~7kg乙炔。 5kg/m³,比空气重,但其液体的比重则比水、汽油轻。 (7)焊炬停止使用后应挂在适当的场合,或拆下橡皮管将焊炬存放在工具箱内。
(2)乙炔气瓶 乙炔瓶是贮存和运输乙炔气的压力容器,
足 以 熔 化 金 属 进 行 焊 接 。 乙 炔 是 一 种 危 险 的 易 瓶体装有两道防震胶圈。
一级氧气纯度不低于99. (3)点火时应把氧气调节阀稍微打开然后打开乙炔调节阀。
燃易爆气体。 气割是利用氧气也可燃气体混合燃烧的火焰热能,将工件切割处的金属预热到燃烧温度(燃点),然后向被加热到燃点的金属喷切割
2、减压器的安全使用
时所产生的火焰温度为3100~3300℃,因此用它 (2)气瓶必须配戴好瓶帽(有防护罩的除外),并要拧紧,防止摔断瓶阀造成事故。
(4)禁止用起重机吊运钢瓶,充实的钢瓶禁止喷漆作业。 (6)严禁敲击、碰撞,特别是乙炔瓶不应遭受剧烈震动或撞击,以免填料下沉而形成净空间影响乙炔的贮存。

气焊与气割的基本原理、适用范围及安全特点

气焊与气割的基本原理、适用范围及安全特点

气焊与气割的基本原理、适用范围及安全特点一、气焊的基本原理气焊是利用气体燃烧产生的高温火焰来将金属加热至熔化状态,进行金属结构的连接、修补等工作。

气焊中使用的气体包括氧气和燃料气体,常见的燃料气体有乙炔、丙烯等。

氧气和燃料气体经过管路进入气焊枪内,通过高压点火器点火,产生高温火焰。

气焊时,需要注意一下几点:1.选择合适的燃料气体,常用的燃料气体乙炔比丙烯燃点低,对金属的热影响较小,适用于连接焊接和表面填充焊接;2.控制氧气和燃料气体的比例,过多的氧气可能导致氧化,而过少的氧气可能导致金属无法完全熔化;3.选择合适的焊接材料,不同材质的焊接材料需要选择不同的燃料气体和焊接参数;4.气焊时需要保持枪头与工件的适当距离,以避免焊缝过宽或过深。

5.气焊的操作需要在通风良好的环境下进行,以免产生有害气体对人体造成伤害。

二、气割的基本原理气割是利用氧气和燃料气体将金属材料局部熔化并喷出,以达到在材料上切割的目的。

一般常用的燃料气体为乙炔、丙烯等。

气割时,先喷出氧气将金属加热至熔点,并燃烧成氧化物,随后将出口喷出的燃料气体送入,燃烧后再喷出,不断重复这个过程,将金属架分离。

气割的主要注意事项有:1.选择合适的燃料气体,常用的燃料气体为乙炔、丙烯等;2.控制氧气的流量和燃料气体的比例,过多的氧气可能导致浪费,同时过高的氧流量可能对人体造成危害;3.选择合适的切割头,不同材料的切割需要使用不同的切割头;4.气割需要在通风良好的环境下进行,以免产生有害气体对人体造成伤害。

三、气焊与气割的适用范围1.气焊适用于各种金属的焊接,特别适用于焊接低材质的铁、铬、镍等合金;2.气割适用于各种金属的切割,特别适用于切割厚金属板,可以切割任何由铁、镍、钢、铜、铝等金属制成的金属结构。

四、气焊与气割的安全特点1.在气焊与气割的过程中,需要穿戴合适的保护设备,例如防火服、可调节的焊接头盔、耳塞等;2.气体瓶需要妥善保管,在使用时需要检查氧气气瓶的使用寿命,以免出现意外;3.在使用气焊和气割时需要严格遵守操作规程,避免操作不当引起事故;4.气焊和气割的作业环境应保持通风良好,以免有害气体对人体的健康带来危害。

气焊与气割的基本原理和安全特点

气焊与气割的基本原理和安全特点

气焊与气割的基本原理和安全特点气焊和气割是常见的金属加工方法,具有广泛的应用范围。

气焊是通过加热金属并在其熔融状态下将金属连接在一起,而气割则是通过将高温氧气和燃料气体混合燃烧产生的高温火焰切割金属。

本文将详细介绍气焊和气割的基本原理和安全特点。

一、气焊的基本原理气焊是利用火焰将两个金属工件加热至熔融状态,再通过加入焊料使其相互融合,并在冷却过程中形成一体化的连接。

气焊的基本原理如下:1. 燃料气体燃烧:气焊常使用乙炔和氧气作为燃料气体。

乙炔与氧气在适当比例下燃烧,产生高温火焰用于加热工件。

2. 火焰传热:利用高温火焰对工件加热。

火焰中心温度可达到3000°C以上,能够快速将金属达到熔点。

3. 焊料添加:焊接过程中,常需要加入焊料,如焊剂或焊丝,以保证焊接接头的质量和可靠性。

4. 冷却固化:焊接完成后,通过自然冷却或其他冷却方法使焊接接头冷却固化,形成强固的焊缝。

二、气焊的安全特点气焊具有一定的危险性,因此在使用气焊设备时,应注意以下安全特点:1. 火焰高温:气焊燃烧产生的火焰温度极高,对人体和周围物体具有很高的热能,容易引发火灾和烫伤。

因此在使用过程中必须遵循安全操作规程,严格控制火焰的使用范围和距离。

2. 气体泄漏风险:气焊设备使用燃气,如乙炔和氧气。

燃气泄漏会导致火灾和爆炸的危险。

因此,在使用气焊设备前,应检查燃气管道和阀门是否完好,确保无泄漏。

3. 高压氧气安全:氧气是气焊中常用的气体之一,液化氧气具有高压气体的特点,具有较大的爆炸和燃烧危险。

在使用和储存液化氧气时,必须遵守严格的安全操作规范,防止发生意外。

4. 电气设备安全:气焊设备中包含电气部分,如点火装置和控制系统。

在使用过程中,要确保电气设备的完好和保护措施的有效性,以防止电击和火灾等意外事故。

三、气割的基本原理气割是用高温火焰切割金属的一种方法。

其基本原理如下:1. 燃烧产生的高温火焰:气割使用的燃料气体通常为乙炔和氧气。

气焊与气割的基本原理、适用范围与安全特点

气焊与气割的基本原理、适用范围与安全特点

气焊与气割的基本原理、适用范围与安全特点气焊和气割是金属加工中常用的加工技术,它们都是利用高温来加工金属材料。

本文将介绍气焊和气割的基本原理、适用范围和安全特点。

一、气焊的基本原理气焊是利用燃气或液化石油气与氧气的混合燃烧,产生的高温火焰来加热金属材料,使其达到熔化温度,然后用填充材料填充焊缝,形成焊接接头的加工技术。

气焊的基本原理可以简单概括为以下几点:1.燃烧原理:气焊使用燃气或液化石油气与氧气的混合燃烧,生成高温的火焰。

燃烧产生的热量可以加热金属材料,使其达到熔化温度。

2.火焰调节:气焊火焰有不同的调节方式,可以通过调节燃气和氧气的比例来改变火焰的温度和性质。

一般来说,气焊需要一个中性火焰,燃气和氧气的比例为1:1。

3.填充材料:在气焊过程中,还需要使用填充材料来填充焊缝,形成焊接接头。

填充材料一般为焊丝或焊条,它们可以与被焊接的金属材料融合在一起,形成一个坚固的焊缝。

二、气焊的适用范围气焊可以用于焊接各种金属材料,包括钢、铁、铝、铜和合金等。

它适用于以下几个方面的应用:1.修复和维护:气焊可以用于修复和维护各种金属制品,如机械设备、车辆和管道等。

通过气焊技术,可以将损坏的部件焊接起来,使其恢复原有的功能。

2.制造业:气焊广泛应用于制造业中的金属加工过程。

它可以用于焊接金属结构、焊接管道和容器等。

气焊可以提高生产效率,并且可以焊接大尺寸和厚度的金属材料。

3.建筑业:气焊也可以用于建筑业中的金属加工。

例如,在建筑结构的焊接过程中,可以使用气焊来连接各个部件,形成一个坚固的整体。

三、气焊的安全特点气焊的过程中,燃气和氧气是用来燃烧的,因此需要注意安全事项,以确保操作人员和周围环境的安全。

以下是气焊的安全特点:1.注意通风:气焊时产生的烟尘和有害气体有可能对健康造成危害,因此应保持良好的通风环境。

操作人员应在通风良好的地方工作,或者使用适当的防护设备。

2.防止火灾:气焊是通过燃烧产生高温火焰来进行加工的,因此很容易引发火灾。

气焊与气割的基本原理、适用范围与安全特点范本(2篇)

气焊与气割的基本原理、适用范围与安全特点范本(2篇)

气焊与气割的基本原理、适用范围与安全特点范本气焊和气割是金属加工中常用的两种热加工方法,它们都是利用氧-燃料火焰进行加热或切割的工艺。

本文将介绍气焊和气割的基本原理、适用范围和安全特点。

一、气焊的基本原理气焊是一种利用燃烧燃料的气体产生的高温火焰来加热金属,使金属表面熔化并产生焊接连接的方法。

气焊的基本原理是利用氧燃烧产生的高温火焰将焊接件的焊缝加热到熔化温度,并通过熔池的液态金属与焊丝进行熔合,并通过熔池的冷却凝固形成焊缝。

气焊的工作原理可以分为两个步骤:预热和焊接。

首先,利用火焰预热焊缝和焊丝,使其达到足够的温度。

然后,通过调整火焰,使焊丝在预热的情况下熔化并涂覆在焊缝上,形成熔池。

随着熔池的冷却凝固,焊缝形成。

二、气割的基本原理气割是一种利用氧燃烧产生的高温火焰将金属材料进行切割的方法。

气割的基本原理是利用火焰高温导致金属表面迅速氧化,并通过喷射氧气产生的物理撞击力将氧化物排除,从而形成一个切割通道。

气割的工作原理可以分为三个步骤:预热、燃烧和吹割。

首先,利用火焰预热金属表面,使其达到足够的温度。

然后,通过调整火焰,使焊缝上的金属迅速氧化并形成一层氧化物。

最后,通过喷射氧气产生的高速气流,将氧化物从切割沟槽中排出,实现切割金属的目的。

三、气焊与气割的适用范围气焊适用于多种金属材料的焊接,包括碳钢、低合金钢、不锈钢和铜合金等。

气焊广泛应用于船舶、石油化工、建筑和制造等行业,特别是对于较大厚度的金属件,气焊具有较好的焊缝质量和焊缝外观等优势。

气割适用于多种金属材料的切割,包括碳钢、不锈钢、铸铁和铜合金等。

气割广泛应用于金属加工、船舶制造、桥梁建设和矿山开采等领域,特别是对于较大厚度的金属材料,气割具有高效、灵活、便捷的优点。

四、气焊与气割的安全特点气焊和气割是高温火焰加工方法,具有一定的安全风险。

为了确保操作人员的安全,以下是气焊和气割的安全特点:1. 火焰和气体混合物的稳定性在气焊和气割过程中,需要确保火焰的稳定性和气体混合物的适当比例。

气焊与气割

气焊与气割

氧气切割示意图
4、气割操作 工艺
1).预热
先在切割线的端头(工件的边缘)预热,使其温度达到燃 烧温度(呈红色)。
2).切割
在切割过程中,割炬移动要均匀,割嘴与工件的距离应保持 不变(3~5mm)。手工气割时,割嘴沿气割方向后倾20°~ 30°,以提高气割速度。气割速度是否正常,可根据熔渣流动 方向来判断
缺点: ? 设备复杂
? 成本高
? 使用维护较困难
? 对接头装配质量要求严格及需要防护 X 射线
2.激光焊
激光焊——利用激光器产生的单色性、方向性非常高的 激光束,经过光学聚焦后,把其聚焦到直径为10 μm的焦点 上,能量密度达到106 W/cm2以上,通过光能转变为热能,从 而熔化金属进行焊接的方法。
优点: ? 接头质量好
? 零部件变形小 ? 可焊接其他焊接方法难于焊接的工件和材料
缺点: ? 循环时间长 ? 生产率低 ? 焊件装配要求较高
? 设备一次性投资较大 ? 焊件尺寸受到相对限制
4.焊接机器人 (1)焊接机器人 机器人——由程序控制的电子机械装置,具有某些类 似人的器官的功能,能完成一定的操作或运输任务。 组成:
气焊火焰的性质对焊接质量影响很大。一般来说气焊时,对 需要尽量减少元素烧损的材料,应选用中性火焰;对允许和需 要起还原作用和增碳的材料,应选用碳化焰;对母材含有低沸 点元素(如锡、锌)的材料,需要生成覆盖在熔池表面可燃气体的消耗量,单位为L/h。
手工钨极氩弧焊设
1)焊前清理。 2)焊接工艺参数。
电源种类与极性
被焊金属材料
直流正接
低碳钢,低合金钢,不锈钢,耐热钢,铜、钛及其合金
直流反接
常用于各种金属的熔化极氩弧焊,钨极氩弧焊很少采用

气焊与气割的基本原理、适用范围与安全特点

气焊与气割的基本原理、适用范围与安全特点

气焊与气割的基本原理、适用范围与安全特点气焊与气割是常见的金属加工技术,广泛应用于工业生产和修理领域。

本文将分别介绍气焊与气割的基本原理、适用范围以及安全特点。

气焊的基本原理是利用高温燃烧火焰对金属进行加热,使其熔化并达到焊接的目的。

气焊通常使用的燃烧介质是氧气与乙炔的混合气体,其主要成分是乙炔(C2H2),它与氧气(O2)混合并燃烧时产生高温火焰。

乙炔的燃烧温度达到约3300摄氏度,火焰的高温可以熔化大部分常见的金属。

气焊主要用于金属焊接和熔割,并在制造、维修和建筑等行业广泛应用。

它适用于多种金属材料的焊接,包括铁、钢、铜、铝等。

气焊可以用于焊接金属构件,如钢结构、管道、油罐等,并可以用于燃气设备的制造和修理。

气焊还广泛应用于金属切割和熔割,可以将金属板材切割成所需尺寸,并进行金属零件的拆解和修整。

气焊的安全特点主要有以下几点:1.火焰控制:在气焊过程中,控制火焰的大小和形状非常重要。

火焰过大或过小都会影响焊接质量和安全性。

因此,操作人员必须掌握火焰调节的技巧,保持火焰清晰、稳定和适当。

2.气体安全:乙炔是一种易燃、可爆炸的气体,使用乙炔气缸需要注意安全。

气焊操作时,必须确保气瓶装嵌牢固,不要撞击或碰撞,防止气瓶泄漏或爆炸。

3.防护措施:气焊过程中火焰产生的强热辐射和光辐射对人员和周围环境有一定的危害。

因此,操作人员应戴上防护眼镜和防护面罩,避免眼睛受伤。

同时,还应穿戴防护服、手套和耐热鞋,避免皮肤接触到高温火焰或熔化金属。

4.通风设施:气焊会产生一些有害气体和烟尘,如一氧化碳和金属烟尘。

因此,在操作环境中应设置良好的通风设施,确保烟尘排出和空气流通,减少对操作人员的伤害。

气割的基本原理是利用高温火焰与金属发生氧化反应,产生一氧化碳和铁氧化物等气体,然后利用氧化物将金属表面割断。

气割也是使用氧气与乙炔混合气体作为燃烧介质,但与气焊不同,气割的焰温要比气焊高,通常达到3500摄氏度以上。

气割主要用于金属材料的切割,特别适合于较厚的金属板材和结构件的割断。

气焊与气割的安全技术规范

气焊与气割的安全技术规范

一、概述(一)气焊与气割的基本原理和安全特点气焊是利用可燃气体与氧气混合燃烧的火焰,将金属连接处熔化,使之牢固连接的焊接方法.气焊所用的可燃气体主要有乙炔和液化石油气.气焊使用的设备包括:氧气瓶、乙炔发生器(或乙炔气瓶)。

应用的器具有:焊炬、减压器、橡皮气管等.这些设备和器具的应用情况如图1所示。

焊缝的填充材料称为焊丝,根据不同的焊件分别选择低碳钢、铸铁、黄铜、青铜等焊丝。

焊接铸铁、不锈钢和有色金属时,还需要加焊粉,其目的是熔解和清除焊件上的氧化膜,并在熔池表面形成熔渣,保护熔池不被氧化,排除熔池中的气体、氧化物及其它杂质,改善熔池中的气体、氧化物及其它杂质,改善熔池中液态的流动性,获得优质接头。

例如焊接铝材时,采用氯化物(KCl、NaCl)和氟化物(NaF)等组成的焊粉。

气焊主要应用于薄钢板、铸铁件、刀具和有色金属的爆件、硬质合金等材料的堆焊以及磨损零件的补焊.气割是利用可燃气体与氧气混合燃烧的预热火焰,将被切割金属加热到燃烧点,并在氧气射流中剧烈燃烧而将金属分开的加工方法。

可燃气体与氧气的混合以及切割氧的喷射是利用割炬来完成的。

气割所用的可燃气体主要是乙炔.气割所用的设备和器具,除割炬外均与气焊相同。

气割在工业企业中广泛应用于各种碳素结构钢和低合金结构钢的下料工序。

气焊与气割过程中都存在着不安全和有害因素,所使用的乙炔、丙烷、氢气和氧气等都是易燃易爆气体;乙炔瓶、氧气瓶、液化石油气瓶和乙炔发生器等,均属于压力容器。

在焊补燃料容器和管道时,还会遇到其它易燃易爆气体及各种压力容器。

由于在气焊和气割操作中需要与可燃气体和压力容器接触,同时又使用明火,如果焊接设备或安全装置有缺陷,或者违反安全操作规程,就有可能造成爆炸和火灾事故。

在气焊火焰的作用下,尤其是气割时氧气射流的喷射,使火星、熔珠和铁渣四处飞溅,容易造成灼、烫伤事故。

而且熔珠和铁渣能飞溅到距离操作点5m以外,遇有易燃易爆物品,也会引起火灾或爆炸事故。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行业资料:________ 气焊与气割基本原理与安全要点
单位:______________________
部门:______________________
日期:______年_____月_____日
第1 页共5 页
气焊与气割基本原理与安全要点
气焊是利用可燃气与氧气混合燃烧所产生的热量,对金属进行局部加热的一种使金属连接的熔焊方法。

气割是利用可燃气与氧气混合燃烧所产生的高温,使金属局部熔化,再以高速喷射的氧气流吹去熔融金属,使金属断开。

1气焊与气割的原理
气焊与气割的原理和所用的气源是相同的。

只是焊炬的构造和喷嘴稍有不同。

目前所用的可燃气体有乙炔和液化石油气,助燃气体为氧气、这些气体都是在一定的压力下进行工作的,乙炔发生器、乙炔气瓶、液化石油气和氧气瓶均属压力容器。

2碳化钙
碳化钙(俗称电石),是将生石灰与熊炭在电炉中熔炼而成的。

电石与水产生化学反应,生成乙炔气体和氢氧化钙,并放出大量的热。

3乙炔
乙炔是无色的可燃气体。

在常温常压下,乙炔的比重1.1㎏/m3,比空气轻,自燃点为4800C,在空气中的着火温度为4280C。

乙炔与空气混合燃烧所产生的火焰温度为23500C,与氧气混合燃烧所产生的温度为3100-33000C。

乙炔气毒性很弱,有轻度麻醉作用,但因其中含有磷化氢、硫化氢和不完全燃烧产生的一氧化碳,在通风不良时,长期接触可引起中毒。

4石油气
石油气是石油加工的副产品,含有丙烷50%-80%、丁烷、丙烯、丁烯和少量的乙烷、乙烯、戊烷等碳氢化台物。

在常
第 2 页共 5 页
温常压下是略带臭味的无色气体,比空气重,一旦外泄则会聚集在地面或低洼处反及与地面相通的电缆沟、暖气沟、下水道等处,且不易散失,遇明火后会发生火灾和爆炸
5液化石油气
在常温下将石油气加上0.8-1.5MPa的压力即变为液体,体积同时缩小250-350倍,液化后便于装入钢瓶贮存和运输。

石油气本身对人体毒性很小,当空气中石油气的浓度大于10%时,几分钟内就会使人头脑发晕,但是不会造成中毒。

不过.当其燃烧供氧不足时、会产生一氧化碳。

若室内通风不良,一氧化碳聚集超过容许浓度会使人发生中毒或窒息。

气焊与气割安全操作规程
1、氧气在使用时,应立放绑牢,严禁用带有工具启闭氧气阀门。

2、装氧气调压器前,应先吹扫氧气瓶咀,操作人员应站在氧气出口的侧面。

3、氧气瓶与乙炔发生器、易燃物或明火之间的距离不少于10公尺,并应采取遮挡措施。

4、氧气压力使用到0.1~0.2兆帕时,即作为空瓶处理,不得继续使用。

空瓶应置放于指定地点。

5、冬季使用时,如瓶阀被冻结,严禁以火烘烤,应用热水解冻。

减压器:
第 3 页共 5 页
1、零部件不完整、不灵敏或有泄漏处不得使用。

2、减压器不得沾有油脂。

3、减压器装在氧气瓶咀后,应缓慢开启氧气阀,以免减压器伤人。

4、缓慢旋紧调整螺杆,检查有无泄漏处,表计指示是否灵敏、正确。

如有自流或泄漏处,应及时拆修,不得使用。

5、冬季使用时,如出现冻结现象,禁止明火解冻。

回火防止器:
1、水封式回火防止器使用时应立放,应保持一定的水位。

逆流火焰消除后,应及时补充水。

2、禁止使用泄漏的回火防止器。

3、严禁用明火解冻。

4、干式回火防止器的爆破口,不得指向人群或其它设备。

割焊炬:
1、使用前,应检查有无泄漏处,阀门是否灵活,气路是否畅通。

2、焊割咀如有温度过高时,应用冷水冷却。

胶管:
1、氧气、乙炔胶管不得互用,更不能用压缩空气胶管代替氧气管。

2、胶管有泄漏处应更换或切除,再用管接头接通,严禁用胶布绑扎。

3、胶管严禁与明火或热物接触。

4、胶管冻结时,应用蒸汽或人水解冻,严禁用明火烤化。

5、胶管应排列整齐,穿越马路或铁道时,应用铁管作保护埋入地下或从铁道下面穿过。

第 4 页共 5 页
行业资料
本文至此结束,感谢您的浏览!
(资料仅供参考)
下载修改即可使用
第5 页共5 页。

相关文档
最新文档