最新高三教案-2018级高三数学总复习讲义——向量 精品

合集下载

高三数学一轮复习精品教案1:5.1 平面向量的概念与线性运算教学设计

高三数学一轮复习精品教案1:5.1 平面向量的概念与线性运算教学设计

5.1平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb 3.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.1.作两个向量的差时,要注意向量的方向是指向被减向量的终点;2.在向量共线的重要条件中易忽视“a≠0”,否则λ可能不存在,也可能有无数个;3.要注意向量共线与三点共线的区别与联系. 『试一试』1.(2013·苏锡常镇二调)如下图,在△OAC 中,B 为AC 的中点,若OC =x OA +y OB (x ,y ∈R ),则x -y =________.『解析』法一:(直接法)根据图形有⎩⎪⎨⎪⎧OC =OA +AC , AC =2AB ,AB =OB -OA ,所以OC =OA +2(OB -OA ),所以OC =-OA +2OB ,而OC =x OA +y OB ,所以⎩⎪⎨⎪⎧ x =-1,y =2,故x -y =-3.法二:(间接法)由B 为AC 的中点得OC +OA =2OB , 所以OC =-OA +2OB ,而OC =x OA +y OB ,所以⎩⎪⎨⎪⎧x =-1,y =2,故x -y =-3.『答案』-32.若菱形ABCD 的边长为2,则|AB -CB +CD |=________. 『解析』|AB -CB +CD |=|AB +BC +CD |=|AD |=2. 『答案』21.向量的中线公式若P 为线段AB 的中点,O 为平面内一点,则OP =12(OA +OB ).2.三点共线等价关系A ,P ,B 三点共线⇔AP =λAB (λ≠0)⇔ OP =(1-t )·OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔ OP =x OA +y OB (O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1). 『练一练』1.D 是△ABC 的边AB 上的中点,若CD =x BA +y BC ,则x +y =________.『解析』∵CD =BD -BC =12BA -BC ,则x =12,y =-1∴x +y =-12.『答案』-122.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________.『解析』由题意知a +λb =k 『-(b -3a )』,所以⎩⎪⎨⎪⎧λ=-k ,1=3k ,解得⎩⎨⎧k =13,λ=-13.『答案』-13考点一向量的有关概念1.给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =CD 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.『解析』①不正确.两个向量的长度相等,但它们的方向不一定相同. ②正确.∵AB =DC ,∴|AB |=|DC |且AB ∥DC ,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形,则AB ∥DC 且|AB |=|DC |,因此,AB =DC . ③正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. ⑤不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是②③. 『答案』②③.2.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是________.『解析』向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3. 『答案』3『备课札记』 『类题通法』平面向量中常用的几个结论(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)向量可以平移,平移后的向量与原向量是相等向量.解题时不要把它与函数图像的平移混为一谈.(3)a |a |是与a 同向的单位向量,-a|a |是与a 反向的单位向量. 考点二向量的线性运算『典例』 (2013·江苏高考)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值为________.『解析』 由题意DE =DB +BE =12AB +23BC =12AB +23(BA +AC )=-16AB +23AC ,所以λ1=-16,λ2=23,即λ1+λ2=12.『答案』 12『备课札记』若条件变为:若AD =2DB ,CD =13CA +λCB ,则λ=________.『解析』∵CD =CA +AD ,CD =CB +BD ,∴2CD =CA +CB +AD +BD .又∵AD =2BD ,∴2CD =CA +CB +13AB =CA +CB +13(CB -CA )=23CA +43CB .∴CD =13CA +23CB ,即λ=23.『答案』23『类题通法』在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解. 『针对训练』若A ,B ,C ,D 是平面内任意四点,给出下列式子: ①AB +CD =BC +DA ;②AC +BD =BC +AD ; ③AC -BD =DC +AB .其中正确的有________个.『解析』①式的等价式是AB -BC =DA -CD ,左边=AB +CB ,右边=DA +DC ,不一定相等;②式的等价式是AC -BC =AD -BD ,AC +CB =AD +DB =AB 成立;③式的等价式是AC -DC =AB +BD ,AD =AD 成立. 『答案』2考点三共线向量定理的应用『典例』 设两个非零向量a 与b 不共线, (1)若AB =a +b ,BC =2a +8b ,CD =3(a -b ), 求证:A ,B ,D 三点共线.(2)试确定实数k ,使k a +b 和a +k b 共线.『解』 (1)证明:∵AB =a +b ,BC =2a +8b ,CD =3(a -b ), ∴BD =BC +CD =2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB . ∴AB ,BD 共线,又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ),即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量, ∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.『备课札记』『类题通法』1.共线向量定理及其应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值.(2)若a ,b 不共线,则λa +μb =0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB =λAC ,则A 、B 、C 三点共线. 『针对训练』已知a ,b 不共线,OA =a ,OB =b ,OC =c ,OD =d ,OE =e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD =d -c =2b -3a ,CE =e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE =k CD ,即(t -3)a +t b =-3k a +2k b , 整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.『课堂练通考点』1.给出下列命题:①两个具有公共终点的向量,一定是共线向量. ②两个向量不能比较大小,但它们的模能比较大小. ③λa =0(λ为实数),则λ必为零.④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题的有________个.『解析』①错误,两向量共线要看其方向而不是起点或终点.②正确,因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误,当a =0时,不论λ为何值,λa =0.④错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量. 『答案』32.如下图,已知AB =a ,AC =b ,BD =3DC ,用a ,b 表示AD ,则AD =________.『解析』∵CB =AB -AC =a -b ,又BD =3DC ,∴CD =14CB =14(a -b ),∴AD =AC +CD =b +14(a -b )=14a +34b .『答案』14a +34b3.(2013·苏锡常镇二调)已知点P 在△ABC 所在的平面内,若2PA +3PB +4PC =3AB ,则△P AB 与△PBC 的面积的比值为________.『解析』因为2PA +3PB +4PC =3AB ,所以2PA +3PB +4PC =3PB -3PA , 即5PA +4PC =0,所以△P AB 与△PBC 的面积的比为P A ∶PC =4∶5. 『答案』454.(2014·“江南十校”联考)如下图,在△ABC 中,∠A =60°,∠A 的平分线交BC 于D ,若AB =4,且AD =14AC +λAB (λ∈R ),则AD 的长为________.『解析』因为B ,D ,C 三点共线,所以有14+λ=1,解得λ=34,如下图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN =14AC ,AM =34AB ,经计算得AN =AM =3,AD =3 3.『答案』335.在▱ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN =________(用a ,b 表示).『解析』由AN =3NC 得4AN =3AC =3(a +b ),AM =a +12b ,所以MN =34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b . 『答案』-14a +14b6.设点M是线段BC的中点,点A在直线BC外,BC2=16,|AB+AC|=|AB-AC|,则|AM|=________.『解析』由|AB+AC|=|AB-AC|可知,AB⊥AC,则AM为Rt△ABC斜边BC上的中线,因此,|AM|=12|BC|=2.『答案』2。

高三数学一轮复习教案――平面向量(附高考分类汇编)

高三数学一轮复习教案――平面向量(附高考分类汇编)

高三数学一轮复习精品教案――平面向量一、本章知识结构:二、重点知识回顾1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.2.向量的表示方法:①用有向线段表示;②用字母a 、b等表示;③平面向量的坐标表示:分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底。

任作一个向量a,由平面向量基本定理知,有且只有一对实数x 、y ,使得axi yj =+ ,),(y x 叫做向量a 的(直角)坐标,记作(,)a x y =,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,i (1,0)=,j (0,1)=,0(0,0)= 。

a =;若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=,A B =3.零向量、单位向量:①长度为0的向量叫零向量,记为0; ②长度为1个单位长度的向量,叫单位向量.就是单位向量)4.平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.向量a 、b 、c 平行,记作a ∥b ∥c.共线向量与平行向量关系:平行向量就是共线向量.5.相等向量:长度相等且方向相同的向量叫相等向量.6.向量的加法、减法:①求两个向量和的运算,叫做向量的加法。

向量加法的三角形法则和平行四边形法则。

②向量的减法向量a 加上的b 相反向量,叫做a 与b 的差。

即:a -b = a+ (-b );差向量的意义: OA = a, OB =b, 则BA =a- b③平面向量的坐标运算:若11(,)a x y = ,22(,)b x y = ,则a b +),(2121y y x x ++=,a b -),(2121y y x x --=,(,)a x y λλλ= 。

④向量加法的交换律:a +b =b +a ;向量加法的结合律:(a +b ) +c =a + (b +c )7.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa|=|λ||a|;(2)λ>0时λa与a方向相同;λ<0时λa与a方向相反;λ=0时λa =0;(3)运算定律 λ(μa )=(λμ)a ,(λ+μ)a =λa +μa ,λ(a +b )=λa +λb8. 向量共线定理 向量b 与非零向量a共线(也是平行)的充要条件是:有且只有一个非零实数λ,使b =λa。

最新-2018高三数学 5-2第二讲平面向量的坐标运算教师讲义手册课件全国版 文 新人教A版 精品

最新-2018高三数学 5-2第二讲平面向量的坐标运算教师讲义手册课件全国版 文 新人教A版 精品

故选B. 答案:B
3.已知a=(-1,3),b=(x,-1),且a∥b,则x等于 ()
解析:∵a∥b, ∴(-1)×(-1)-3×x=0⇒x= .故选C. 答案:C
4.设i、j是平面直角坐标系内分别与x轴、y轴正方向
A.(1,-2) C.(5,0) 解析:∵2 D. 答案:D
B.(7,6) D.(11,8) =8i+4j+3i+4j=11i+8j,故选
(2007·辽宁)△ABC的三内角A,B,C所对应边的长分
别为a,b,c.设向量p=(a+c,b),q=(b-a,c-a).若
p∥q,则角C的大小为
()
答案:B
解析:∵p∥q,∴(a+c)(c-a)=b(b-a)
即ab=a2+b2-c2,
故选B.
【例3】 在▱ABCD中,A(1,1), =(6,0),点M是线
平面直角坐标系中,O为坐标原点,已知两点
A(3,1),B(-1,3),若点C满足
其中α、β∈R
且α+β=1,则点C的轨迹方程为
()
A.(x-1)2+(y-2)2=5
B.3x+2y-11=0
C.2x-y=0
D.x+2y-5=0
答案:D
解析:本题主要考查向量的基本概念,共线向量的基 础知识以及轨迹方程的求法.
∴选D.
即x+2y-5=0.
1.要区分点的坐标与向量的坐标的区别,尽管在形 式上它们完全一样,但意义完全不同,向量的坐标中同样 有方向与大小的信息.
2.在处理分点问题比如碰到条件“若P是线段AB的 分点,且|PA|=2|PB|”时,P可能是AB的内分点,也可能是 AB的外分点,即可能的结论有:
3.数学上的向量是自由向量,向量x=(a,b)经过平 移后得到的向量的坐标仍是(a,b).

A版2018版高考数学理一轮专题复习课件专题5 平面向量 精品

A版2018版高考数学理一轮专题复习课件专题5 平面向量 精品
2.用基底表示其他向量 主要有以下三种方法: 方法一:通过观察图形直接寻求 向量之间的关系. 方法二:采用方程思想. 方法三:建立坐标系,根据向量 的坐标运算求解.
第一步,观察并将待求向量表示成两个 (或多个)相关向量a,b(或a,b,c,…)的和 或差;
第二步,把向量a,b(或a,b,c,…)分别进 行分解,直到用基底表示出向量a,b(或 a,b,c,…) ; 第三步,将a,b(或a,b,c,…)代入第一步 中的式子,从而得到结果.
第一步,把待求向量看作未知量; 第二步,列出方程组; 第三步,用解方程组的方法求解待求向 量.
考点29 平面向量的基本定理及坐标运算
考点29 考法3 平面向量基本定理的应用
1.基底的选择 (1)一组基底有两个向量; (2)这两个向量不共线.
2.用基底表示其他向量 主要有以下三种方法: 方法一:通过观察图形直接寻求 向量之间的关系. 方法二:采用方程思想. 方法三:建立坐标系,根据向量 的坐标运算求解.
3.平面向量的坐标运算
考点29 平面向量的基本定理及坐标运算
平面向量的基本定理及坐标运算
考点29
✓ 考法3 平面向量基本定理的应用
✓ 考法4 平面向量的共线问题 ✓ 考法5 平面向量的坐标表示与运算
考点29 平面向量的基本定理及坐标运算
考点29 考法3 平面向量基本定理的应用
1.基底的选择 (1)一组基底有两个向量; (2)这两个向量不共线.
应注意的是,基底的选择并不唯一,只 要两个向量不共线,都可作为一组基底. 2.平面向量的坐标表示
在平面直角坐标系内,分别取与x轴、y轴 正方向相同的两个单位向量i, j作为基底,对 平面内任一向量a,有且仅有一对实数x,y,使得 a=xi+yj,则实数对(x,y)叫做向量a的直角坐 标,记作a=(x,y),其中x,y分别叫做a在x轴,y 轴上的坐标,相等向量的坐标相同,坐标相同 的向量是相等向量.

高三第一轮复习教案-向量-4

高三第一轮复习教案-向量-4

向量的有关运算(一)基础知识回顾:1.向量的加法:求两个向量和的运算,叫做向量的加法。

向量加法有 法则和 法则. 2.向量加法的交换律:+=+; 向量加法的结合律:(+) +=+ (+)3.向量的减法:向量a 加上的b 相反向量叫做a 与b 的差。

即:a -b = a+ (-b ) 4.差向量的几何意义: = a , =b , 则=a - b5.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向 ;λ<0时λa 与a 方向 ;λ=0时λa=.运算定律:λ、μ为实数时,λ(μa )= ,(λ+μ)a = ,λ(a +b)= .6. 向量共线定理 向量b 与非零向量a 共线的充要条件:有且只有一个实数λ,使b =λa.(等价于:存在两个不同为零的实数λ1、λ2,使得).21=+λλ7.平面向量基本定理:如果1e ,2e 是同一平面内的两个 向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2使a=λ11e +λ22e .不共线向量1e 、2e 叫做表示这一平面内所有向量的一组基底;注意:(1)基底不惟一,关键是作为基底的两个向量不共线;(2)由定理可知:任一向量a在给出基底1e 、2e 的条件下可进行分解,且分解形式是惟一的. 即λ1、λ2是被a,1e ,2e 唯一确定的实数.8.非零向量a 和b 的数量积的定义:a ·b = (向量a 和b 的夹角为θ) 9. 若非零向量a 和b 的夹角为θ,则向量b 在a 上的投影为:10.平面向量数量积的性质:①2=||2; ②和的夹角公式:=θc o s ,或者||||,cos b a >=<;③当和方向 时·=| |·||,当和方向 时·=-| |·||; ④·、| |·||的大小关系是 . 11. 向量数量积的运算律①·=·(交换律)②(λa )·b = = ,③(a +b)·c =12.平面向量的坐标表示:分别取与x 轴、y 轴方向相同的两个单位向量i 、j作为基底。

2018年高考数学总复习教材复习课“平面向量”相关基础知识课件理

2018年高考数学总复习教材复习课“平面向量”相关基础知识课件理
[过双基]
1.向量共线定理 向量 b 与 a(a≠0)共线的充要条件是有且只有一个实数 λ,使得
__b_=__λ_a___.
2.平面向量的基本定理
如果 e1,e2 是同一平面内的两个 不共线 向量,那么对于这一 平面内的任意向量 a,有且只有 一对实数 λ1,λ2,使 a=λ1e1+λ2e2.
其中,不共线的向量 e1,e2 叫做表示这一平面内所有向量的一 组基底.
答案:D
2.设 a,b 都是非零向量,下列四个选项中,一定能使|aa|+|bb|=0 成
立的是
()
A.a=2b
B.a∥b
C.a=-13b
D.a⊥b
解析: “|aa|+|bb|=0,且 a,b 都是非零向量”等价于“非零
向量 a,b 共线且反向”,故答案为 C.
答案:C
向量共线定理及平面向量基本定理
1.(2017·大连双基测试)给出下列四个命题:
①两个具有公共终点的向量一定是共线向量;
②两个向量不能比较大小,但它们的模能比较大小;
③λa=0(λ为实数),则λ必为零;
④λ,μ为实数,若λa=μb,则a与b共线.
其中假命题的个数是
()
A.1
B.2
C.3
D.4
解析:①错误,两向量是否共线是要看Fra bibliotek方向而不是起点或终
∴λ1==mm,μ, ∴λμ=1,故选 D. 答案:D
2.(2017·南宁模拟)已知 e1,e2 是不共线向量,a=me1+2e2,b =
ne1-e2,且 mn≠0,若 a∥b,则mn 等于
()
A.-12
B.12
C.-2
D.2
解 析 : ∵ a∥b , ∴ a = λb , 即 me1 + 2e2 = λ(ne1 - e2) , 则

2018届高三新课标数学理大一轮复习教师用书:第五章 平面向量 含解析 精品

2018届高三新课标数学理大一轮复习教师用书:第五章 平面向量 含解析 精品

第五章⎪⎪⎪平面向量 第一节平面向量的概念及线性运算突破点(一) 平面向量的有关概念[典例] (1)设a ,b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |(2)设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )A .0B .1C .2D .3本节主要包括2个知识点: 1.平面向量的有关概念; 2.平面向量的线性运算.[解析](1)因为向量a|a|的方向与向量a相同,向量b|b|的方向与向量b相同,且a|a|=b|b|,所以向量a与向量b方向相同,故可排除选项A,B,D.当a=2b时,a|a|=2b|2b|=b|b|,故a=2b是a|a|=b|b|成立的充分条件.(2)向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故①是假命题;若a与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=-|a|a0,故②③也是假命题.综上所述,假命题的个数是3.[答案](1)C(2)D[易错提醒](1)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小;(2)大小与方向是向量的两个要素,分别是向量的代数特征与几何特征;(3)向量可以自由平移,任意一组平行向量都可以移到同一直线上.能力练通抓应用体验的“得”与“失”1.给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b.其中正确命题的序号是()A.②③B.①②C.③④D.①④解析:选A①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB=DC,∴|AB|=|DC|且AB∥DC.又A,B,C,D是不共线的四点,∴四边形ABCD为平行四边形;反之,若四边形ABCD为平行四边形,则AB∥DC且|AB|=|DC|,因此,AB=DC.③正确.∵a=b,∴a,b的长度相等且方向相同,又b=c,∴b,c的长度相等且方向相同,∴a,c的长度相等且方向相同,故a=c.④不正确.当a∥b且方向相反时,即使|a|=|b|,也不能得到a=b,故|a|=|b|且a∥b不是a=b的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.故选A.2.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②两个向量不能比较大小,但它们的模能比较大小;③λa =0(λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题的个数为( )A .1B .2C .3D .4解析:选C ①错误,两向量共线要看其方向而不是起点或终点.②正确,因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误,当a =0时,不论λ为何值,λa =0.④错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.错误的命题有3个,故选C.3.如图,设O 是正六边形ABCDEF 的中心,则图中与OC 相等的向量有________.答案:AB ,ED ,FO4.如图,△ABC 和△A ′B ′C ′是在各边的13处相交的两个全等的等边三角形,设△ABC 的边长为a ,图中列出了长度均为a3的若干个向量,则(1)与向量GH 相等的向量有________;(2)与向量GH 共线,且模相等的向量有________; (3)与向量EA 共线,且模相等的向量有________. 解析:向量相等⇔向量方向相同且模相等. 向量共线⇔表示有向线段所在的直线平行或重合.答案:(1) LB ',HC (2)EC ',LE ,LB ',GB ,HC (3)EF ,FB ,HA ',HK ,KB '突破点(二) 平面向量的线性运算1.向量的线性运算2.平面向量共线定理向量b 与a (a ≠0)共线的充要条件是有且只有一个实数λ,使得b =λa .[例1] (1)在△ABC 中,AB =c ,AC =b .若点D 满足BD =2DC ,则AD =( ) A.13b +23c B.53c -23b C.23b -13c D.23b +13c (2)在△ABC 中,N 是AC 边上一点且AN =12NC ,P 是BN 上一点,若AP =m AB +29AC ,则实数m 的值是________. [解析] (1)由题可知BC =AC -AB =b -c ,∵BD =2DC ,∴BD =23BC =23(b-c ),则AD =AB +BD =c +23(b -c )=23b +13c ,故选D.(2)如图,因为AN =12NC ,所以AN =13AC ,所以AP =m AB+29AC =m AB +23AN .因为B ,P ,N 三点共线,所以m +23=1,则m =13. [答案] (1)D (2)13[方法技巧]1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.2.利用平面向量的线性运算求参数的一般思路 (1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式. (3)比较,观察可知所求.平面向量共线定理的应用[例2] 设两个非零向量a 和b 不共线.(1)若AB =a +b ,BC =2a +8b ,CD =3(a -b ).求证:A ,B ,D 三点共线. (2)试确定实数k ,使ka +b 和a +kb 共线.[解] (1)证明:因为AB =a +b ,BC =2a +8b ,CD =3(a -b ),所以BD =BC +CD =2a +8b +3(a -b )=5(a +b )=5AB ,所以AB ,BD 共线. 又AB 与BD 有公共点B , 所以A ,B ,D 三点共线. (2)因为ka +b 与a +kb 共线, 所以存在实数λ,使ka +b =λ(a +kb ),即⎩⎪⎨⎪⎧k =λ,1=λk ,解得k =±1. 即k =1或-1时,ka +b 与a +kb 共线. [方法技巧]平面向量共线定理的三个应用(1)证明向量共线:对于非零向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB =λAC ,AB 与AC 有公共点A ,则A ,B ,C 三点共线.(3)求参数的值:利用向量共线定理及向量相等的条件列方程(组)求参数的值. [提醒] 证明三点共线时,需说明共线的两向量有公共点.能力练通 抓应用体验的“得”与“失”1.[考点一]如图所示,下列结论正确的是( )①PQ =32a +32b ;②PT =32a -b ;③PS =32a -12b ;④PR =32a +b . A .①② B .③④ C .①③D .②④解析:选C 根据向量的加法法则,得PQ =32a +32b ,故①正确;根据向量的减法法则,得PT =32a -32b ,故②错误;PS =PQ +QS =32a +32b -2b =32a -12b ,故③正确;PR =PQ +QR =32a +32b -b =32a +12b ,故④错误.故选C.2.[考点二]已知a ,b 是不共线的向量,AB =λa +b ,AC =a +μb ,λ,μ∈R ,则A ,B ,C 三点共线的充要条件为( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1解析:选D ∵A ,B ,C 三点共线,∴AB ∥AC ,设AB =m AC (m ≠0),则λa +b=m (a +μb ),∴⎩⎪⎨⎪⎧λ=m ,1=mμ, ∴λμ=1,故选D.3.[考点一]在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记AB ,BC 分别为a ,b ,则AH =( )A.25a -45b B.25a +45b C .-25a +45bD .-25a -45b解析:选B 如图,过点F 作BC 的平行线交DE 于G ,则G 是DE 的中点,且GF =12EC =14BC ,∴GF =14AD ,则△AHD ∽△FHG ,从而HF =14AH ,∴AH =45AF ,AF =AD +DF =b +12a ,∴AH =45⎝⎛⎭⎫b +12a =25a +45b ,故选B.4.[考点二]已知a ,b 是两个不共线的非零向量,且a 与b 起点相同.若a ,tb ,13(a +b )三向量的终点在同一直线上,则t =________.解析:∵a ,tb ,13(a +b )三向量的终点在同一条直线上,且a 与b 起点相同.∴a -tb与a -13(a +b )共线,即a -tb 与23a -13b 共线,∴存在实数λ,使a -tb =λ⎝⎛⎭⎫23a -13b ,∴⎩⎨⎧1=23λ,t =13λ,解得λ=32,t =12,若a ,tb ,13(a +b )三向量的终点在同一条直线上,则t =12.答案:12[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC =3CD ,则( ) A .AD =-13AB +43ACB .AD =13AB -43ACC .AD =43AB +13ACD .AD =43AB -13AC解析:选A AD =AC +CD =AC +13BC =AC +13(AC -AB )=43AC -13AB =-13AB +43AC ,故选A.2.(2014·新课标全国卷Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB +FC =( )A .AD B.12AD C .BC D.12BC解析:选A EB +FC =12(AB +CB )+12(AC +BC )=12(AB +AC )=AD ,故选A. 3.(2015·新课标全国卷Ⅱ)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.解析:∵λa +b 与a +2b 平行,∴λa +b =t (a +2b ),即λa +b =ta +2tb ,∴⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎨⎧λ=12,t =12.答案:12[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.(2017·杭州模拟)在△ABC 中,已知M 是BC 中点,设CB =a ,CA =b ,则AM =( )A.12a -b B.12a +b C .a -12bD .a +12b解析:选A AM =AC +CM =-CA +12CB =-b +12a ,故选A.2.已知O ,A ,B ,C 为同一平面内的四个点,若2AC +CB =0,则向量OC 等于( ) A.23 OA -13OB B .-13OA +23OBC .2OA -OBD .-OA +2OB解析:选C 因为AC =OC -OA ,CB =OB -OC ,所以2AC +CB =2(OC -OA )+(OB -OC )=OC -2OA +OB =0,所以OC =2OA -OB .3.在四边形ABCD 中,AB =a +2b ,BC =-4a -b ,CD =-5a -3b ,则四边形ABCD 的形状是( )A .矩形B .平行四边形C .梯形D .以上都不对解析:选C 由已知得,AD =AB +BC +CD =a +2b -4a -b -5a -3b =-8a -2b =2(-4a -b )=2BC ,故AD ∥BC .又因为AB 与CD 不平行,所以四边形ABCD 是梯形.4.已知向量a ,b ,c 中任意两个都不共线,但a +b 与c 共线,且b +c 与a 共线,则向量a +b +c =( )A .aB .bC .cD .0解析:选D 依题意,设a +b =mc ,b +c =na ,则有(a +b )-(b +c )=mc -na ,即a-c =mc -na .又a 与c 不共线,于是有m =-1,n =-1,a +b =-c ,a +b +c =0.5.已知△ABC 和点M 满足MA +MB +MC =0.若存在实数m 使得AB +AC =m AM 成立,则m =________.解析:由MA +MB +MC =0知,点M 为△ABC 的重心,设点D 为底边BC 的中点,则AM =23AD =23×12(AB +AC )=13(AB +AC ),所以AB +AC =3AM ,故m=3.答案:3[练常考题点——检验高考能力]一、选择题1.设M 是△ABC 所在平面上的一点,且MB +32MA +32MC =0,D 是AC 的中点,则|MD ||BM |的值为( ) A.13 B.12C .1D .2解析:选A ∵D 是AC 的中点,如图,延长MD 至E ,使得DE =MD ,∴四边形MAEC 为平行四边形,∴MD =12ME =12(MA +MC ),∴MA +MC =2MD .∵MB +32MA +32MC =0,∴MB =-32(MA +MC )=-3MD ,∴BM =3MD ,∴|MD ||BM |=|MD ||3MD |=13,故选A. 2.在△ABC 中,BD =3DC ,若AD =λ1AB +λ2AC ,则λ1λ2的值为( ) A.116 B.316 C.12 D.109解析:选B 由题意得,AD =AB +BD =AB +34BC =AB +34(AC -AB )=14AB +34AC ,∴λ1=14,λ2=34,∴λ1λ2=316.3.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC =2BD , CE =2EA ,AF =2FB ,则AD +BE +CF 与BC ( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A 由题意得AD =AB +BD =AB +13BC ,BE =BA +AE =BA +13AC ,CF =CB +BF =CB +13BA ,因此AD +BE +CF =CB +13(BC +AC -AB )=CB +23BC =-13BC ,故AD +BE +CF 与BC 反向平行.4.已知点O 为△ABC 外接圆的圆心,且OA +OB +CO =0,则△ABC 的内角A 等于( )A .30°B .45°C .60°D .90°解析:选A 由OA +OB +CO =0,得OA +OB =OC ,由O为△ABC 外接圆的圆心,可得|OA |=|OB |=|OC |.设OC 与AB 交于点D ,如图,由OA +OB =OC 可知D 为AB 的中点,所以OC =2OD ,D 为OC 的中点.又由|OA |=|OB |可知OD ⊥AB ,即OC ⊥AB ,所以四边形OACB 为菱形,所以△OAC 为等边三角形,即∠CAO =60°,故A =30°.5.已知点G 是△ABC 的重心,过点G 作一条直线与AB ,AC 两边分别交于M ,N 两点,且AM =x AB ,AN =y AC ,则xyx +y的值为( ) A .3 B.13 C .2 D.12解析:选B 由已知得M ,G ,N 三点共线,所以AG =λAM +(1-λ)AN =λx AB +(1-λ)y AC .∵点G 是△ABC 的重心,∴AG =23×12(AB +AC )=13(AB +AC ),∴⎩⎨⎧λx =13,(1-λ)y =13,即⎩⎨⎧λ=13x,1-λ=13y,得13x +13y =1,即1x +1y =3,通分得x +y xy =3,∴xy x +y =13.6.若点M 是△ABC 所在平面内的一点,且满足5AM =AB +3AC ,则△ABM 与△ABC 的面积的比值为( )A.15B.25C.35D.45解析:选C 设AB 的中点为D ,如图,连接MD ,MC ,由5AM=AB +3AC ,得5AM =2AD +3AC ①,即AM =25AD +35AC ,即25+35=1,故C ,M ,D 三点共线,又AM =AD +DM ②,①②联立,得5DM =3DC ,即在△ABM 与△ABC 中,边AB 上的高的比值为35,所以△ABM 与△ABC 的面积的比值为35.二、填空题7.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC =a ,CA =b ,给出下列命题:①AD =12a -b ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确命题的个数为________.解析:由BC =a ,CA =b 可得AD =12CB +AC =-12a -b ,BE =BC +12CA =a +12b ,CF =12(CB +CA )=12(-a +b )=-12a +12b ,AD +BE +CF =-12a -b +a +12b-12a +12b =0,所以①错,②③④正确.所以正确命题的个数为3. 答案:38.若|AB |=|AC |=|AB -AC |=2,则|AB +AC |=________.解析:∵|AB |=|AC |=|AB -AC |=2,∴△ABC 是边长为2的正三角形,∴|AB +AC |为△ABC 的边BC 上的高的2倍,∴|AB +AC |=2×2sin π3=2 3.答案:2 39.若点O 是△ABC 所在平面内的一点,且满足|OB -OC |=|OB +OC -2OA |,则△ABC 的形状为________.解析:因为OB +OC -2OA =OB -OA +OC -OA =AB +AC ,OB -OC =CB =AB -AC ,所以|AB +AC |=|AB -AC |,即AB ·AC =0,故AB ⊥AC ,△ABC 为直角三角形.答案:直角三角形10.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE =AD +μAB ,则μ的取值范围是________.解析:由题意可求得AD =1,CD =3,所以AB =2DC .∵点E 在线段CD 上,∴DE =λDC (0≤λ≤1).∵AE =AD +DE ,又AE =AD +μAB =AD +2μDC =AD +2μλDE ,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 答案:⎣⎡⎦⎤0,12 三、解答题11.如图,以向量OA =a ,OB =b 为邻边作▱OADB ,BM =13BC , CN =13CD ,用a ,b 表示OM , ON ,MN .解:∵BA =OA -OB =a -b ,BM =16BA =16a -16b ,∴OM =OB +BM =b +⎝⎛⎭⎫16a -16b =16a +56b . 又∵OD =a +b ,∴ON =OC +13CD =12OD +16OD=23OD =23a +23b , ∴MN =ON -OM =23a +23b -16a -56b =12a -16b .综上,OM =16a +56b ,ON =23a +23b ,MN =12a -16b .12.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE=23AD ,AB =a ,AC =b . (1)用a ,b 表示向量AD ,AE ,AF ,BE ,BF ; (2)求证:B ,E ,F 三点共线. 解:(1)延长AD 到G ,使AD =12AG ,连接BG ,CG ,得到▱ABGC ,如图, 所以AG =AB +AC =a +b ,AD =12AG =12(a +b ), AE =23AD =13(a +b ), AF =12AC =12b ,BE =AE -AB =13(a +b )-a =13(b -2a ), BF =AF -AB =12b -a =12(b -2a ).(2)证明:由(1)可知BE =23BF ,又因为BE ,BF 有公共点B , 所以B ,E ,F 三点共线.第二节平面向量基本定理及坐标表示突破点(一) 平面向量基本定理平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.[例1] 如果e 1,e 2是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( )A .e 1与e 1+e 2B .e 1-2e 2与e 1+2e 2C .e 1+e 2与e 1-e 2D .e 1+3e 2与6e 2+2e 1[解析] 选项A 中,设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧1=λ,1=0无解;选项B 中,设e 1-2e 2=λ(e 1+2e 2),则⎩⎪⎨⎪⎧1=λ,-2=2λ无解;选项C 中,设e 1+e 2=λ(e 1-e 2),则⎩⎪⎨⎪⎧1=λ,1=-λ无解;选项D 中,e 1+3e 2=12(6e 2+2e 1),所以两向量是共线向量,不能作为平面内所有向量的一组基底.[答案] D本节主要包括2个知识点: 1.平面向量基本定理; 2.平面向量的坐标表示.[易错提醒]某平面内所有向量的一组基底必须是两个不共线的向量,不能含有零向量.平面向量基本定理的应用[例2] (2016·江西南昌二模)如图,在△ABC 中,设AB =a ,AC =b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点恰为P ,则AP =( )A.12a +12b B.13a +23b C.27a +47b D.47a +27b [解析] 如图,连接BP ,则AP =AC +CP =b +PR ,①AP =AB +BP =a +RP -RB ,②①+②,得2AP =a +b -RB ,③又RB =12QB =12(AB -AQ )=12⎝⎛⎭⎫a -12 AP ,④ 将④代入③,得2AP =a +b -12⎝⎛⎭⎫a -12 AP , 解得AP =27a +47b .[答案] C [方法技巧]平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.能力练通 抓应用体验的“得”与“失”1.[考点二](2017·潍坊模拟)在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB =a ,AC =b ,则PQ =( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A 由题意知PQ =PB +BQ =23AB +13BC =23AB +13(AC -AB )=13AB +13AC =13a +13b ,故选A.2.[考点一](2016·泉州调研)若向量a ,b 不共线,则下列各组向量中,可以作为一组基底的是( )A .a -2b 与-a +2bB .3a -5b 与6a -10bC .a -2b 与5a +7bD .2a -3b 与12a -34b解析:选C 不共线的两个向量可以作为一组基底.因为a -2b 与5a +7b 不共线,故a -2b 与5a +7b 可以作为一组基底.3.[考点二]如图,在△OAB 中,P 为线段AB 上的一点,OP =x OA+y OB ,且BP =2PA ,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP =OB +BP ,又BP =2PA ,所以OP =OB +23BA =OB +23(OA -OB )=23OA +13OB ,所以x =23,y =13. 4.[考点二](2017·绵阳诊断)在△ABC 中,AN =12AC ,P 是BN 上一点,若AP =m AB +38AC ,则实数m 的值为________. 解析:∵B ,P ,N 三点共线,∴AP =t AB +(1-t )AN =t AB +12(1-t )AC ,又∵AP =m AB +38AC ,∴⎩⎪⎨⎪⎧m =t ,12(1-t )=38,解得m =t =14. 答案:14突破点(二) 平面向量的坐标表示1.平面向量的坐标运算(1)向量加法、减法、数乘的坐标运算及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则:a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法若向量的起点是坐标原点,则终点坐标即为向量的坐标.一般地,设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1).2.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.[例1] 已知A (-2,4),B (3,-1),C (-3,-4).设AB =a ,BC =b ,CA =c ,且CM =3c ,CN =-2b ,(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M ,N 的坐标及向量MN 的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)∵mb +nc =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.即所求实数m 的值为-1,n 的值为-1. (3)设O 为坐标原点, ∵CM =OM -OC =3c ,∴OM =3c +OC =(3,24)+(-3,-4)=(0,20), 即M (0,20).又∵CN =ON -OC =-2b ,∴ON =-2b +OC =(12,6)+(-3,-4)=(9,2), 即N (9,2).∴MN =(9,-18). [方法技巧]平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解.平面向量共线的坐标表示[例2] 已知a =(1,0),b =(2,1). (1)当k 为何值时,ka -b 与a +2b 共线;(2)若AB =2a +3b ,BC =a +mb ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1), ∴ka -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2),∵ka -b 与a +2b 共线,∴2(k -2)-(-1)×5=0, ∴k =-12.(2)AB =2a +3b =2(1,0)+3(2,1)=(8,3),BC =a +mb =(1,0)+m (2,1)=(2m +1,m ).∵A ,B ,C 三点共线,∴AB ∥BC ,∴8m -3(2m +1)=0, ∴m =32.[方法技巧]向量共线的坐标表示中的乘积式和比例式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0,这是代数运算,用它解决平面向量共线问题的优点在于不需要引入参数“λ”,从而减少了未知数的个数,而且它使问题的解决具有代数化的特点和程序化的特征.(2)当x 2y 2≠0时,a ∥b ⇔x 1x 2=y 1y 2,即两个向量的相应坐标成比例,这种形式不易出现搭配错误.(3)公式x 1y 2-x 2y 1=0无条件x 2y 2≠0的限制,便于记忆;公式x 1x 2=y 1y 2有条件x 2y 2≠0的限制,但不易出错.所以我们可以记比例式,但在解题时改写成乘积的形式.能力练通 抓应用体验的“得”与“失”1.[考点一]若向量a =(2,1),b =(-1,2),c =⎝⎛⎭⎫0,52,则c 可用向量a ,b 表示为( ) A.12a +b B.-12a -bC.32a +12b D.32a -12b 解析:选A 设c =xa +yb ,则⎝⎛⎭⎫0,52=(2x -y ,x +2y ),所以⎩⎪⎨⎪⎧2x -y =0,x +2y =52,解得⎩⎪⎨⎪⎧x =12,y =1,则c =12a +b .2.[考点一]已知点M (5,-6)和向量a =(1,-2),若MN =-3a ,则点N 的坐标为( ) A .(2,0) B .(-3,6) C .(6,2) D .(-2,0) 解析:选A MN =-3a =-3(1,-2)=(-3,6), 设N (x ,y ),则MN =(x -5,y +6)=(-3,6),所以⎩⎪⎨⎪⎧ x -5=-3,y +6=6,解得⎩⎪⎨⎪⎧x =2,y =0,即N (2,0).3.[考点二]已知向量OA =(k,12),OB =(4,5),OC =(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23 B.43 C.12 D.13解析:选A AB =OB -OA =(4-k ,-7),AC =OC -OA =(-2k ,-2).∵A ,B ,C 三点共线,∴AB ,AC 共线,∴-2×(4-k )=-7×(-2k ),解得k =-23.4.[考点二]已知梯形ABCD ,其中AB ∥DC ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥DC ,∴DC =2AB .设点D 的坐标为(x ,y ),则DC =(4-x ,2-y ),AB =(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).答案:(2,4)5.[考点二]已知OA =a ,OB =b ,OC =c ,OD =d , OE =e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),那么t 为何值时,C ,D ,E 三点共线?解:由题设知,CD =OD -OC =d -c =2b -3a ,CE =OE -OC =e -c =t (a +b )-3a =(t -3)a +tb .C ,D ,E 三点共线的充要条件是存在实数k , 使得CE =k CD ,即(t -3)a +tb =-3ka +2kb , 整理得(t -3+3k )a =(2k -t )b . 若a ,b 共线,则t 可为任意实数;若a ,b 不共线,则有⎩⎪⎨⎪⎧t -3+3k =0,2k -t =0,解得t =65.综上,可知a ,b 共线时,t 可为任意实数;a ,b 不共线时,t =65.[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅰ)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)解析:选A 设C (x ,y ),则AC=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y -1=-3,解得⎩⎪⎨⎪⎧x =-4,y =-2,从而BC =(-4,-2)-(3,2)=(-7,-4).故选A. 2.(2016·全国甲卷)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 解析:∵a =(m,4),b =(3,-2),a ∥b ,∴-2m -4×3=0.∴m =-6. 答案:-6[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若向量AB =(2,4),AC =(1,3),则BC =( ) A .(1,1) B .(-1,-1) C .(3,7)D .(-3,-7)解析:选B 由向量的三角形法则,BC =AC -AB =(1,3)-(2,4)=(-1,-1).故选B.2.(2017·丰台期末)已知向量a =(3,-4),b =(x ,y ),若a ∥b ,则( ) A .3x -4y =0 B .3x +4y =0 C .4x +3y =0D .4x -3y =0解析:选C 由平面向量共线基本定理可得3y +4x =0,故选C.3.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0)D .(-7,0)解析:选A 由题意可得3a -2b +c =3(5,2)-2(-4,-3)+(x ,y )=(23+x,12+y )=(0,0),所以⎩⎪⎨⎪⎧ 23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12). 4.若AC 为平行四边形ABCD 的一条对角线,AB =(3,5),AC =(2,4),则AD =( )A .(-1,-1)B .(5,9)C .(1,1)D .(3,5)解析:选A 由题意可得AD =BC =AC -AB =(2,4)-(3,5)=(-1,-1). 5.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 解析:AB =(a -1,3),AC =(-3,4),据题意知AB ∥AC ,∴4(a -1)=3×(-3),即4a =-5,∴a =-54.答案:-54[练常考题点——检验高考能力]一、选择题1.已知平面向量a =(1,-2),b =(2,m ),若a ∥b ,则3a +2b =( ) A .(7,2) B .(7,-14) C .(7,-4) D .(7,-8)解析:选B ∵a ∥b ,∴m +4=0,∴m =-4,∴b =(2,-4),∴3a +2b =3(1,-2)+2(2,-4)=(7,-14).2.设向量a =(x,1),b =(4,x ),且a ,b 方向相反,则x 的值是( ) A .2 B .-2 C .±2D .0解析:选B 因为a 与b 方向相反,所以b =ma ,m <0,则有(4,x )=m (x,1),∴⎩⎪⎨⎪⎧4=mx ,x =m ,解得m =±2.又m <0,∴m =-2,x =m =-2.3.已知在平行四边形ABCD 中,AD =(2,8),AB =(-3,4),对角线AC 与BD 相交于点M ,则AM =( )A.⎝⎛⎭⎫-12,-6 B.⎝⎛⎭⎫-12,6 C.⎝⎛⎭⎫12,-6 D.⎝⎛⎭⎫12,6解析:选B 因为在平行四边形ABCD 中,有AC =AB +AD ,AM =12AC ,所以AM =12(AB +AD )=12[(-3,4)+(2,8)]=12×(-1,12)=⎝⎛⎭⎫-12,6,故选B. 4.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d =( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析:选D 设d =(x ,y ),由题意知4a =4(1,-3)=(4,-12),4b -2c =4(-2,4)-2(-1,-2)=(-6,20),2(a -c )=2[(1,-3)-(-1,-2)]=(4,-2),又4a +(4b -2c )+2(a -c )+d =0,所以(4,-12)+(-6,20)+(4,-2)+(x ,y )=(0,0),解得x =-2,y =-6,所以d =(-2,-6).5.已知平行四边形ABCD 中,AD =(3,7),AB =(-2,3),对角线AC 与BD 交于点O ,则CO 的坐标为( )A.⎝⎛⎭⎫-12,5 B.⎝⎛⎭⎫12,5 C.⎝⎛⎭⎫12,-5D.⎝⎛⎭⎫-12,-5 解析:选D AC =AB +AD =(-2,3)+(3,7)=(1,10).∴OC =12AC =⎝⎛⎭⎫12,5.∴CO =⎝⎛⎭⎫-12,-5. 6.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,|OC |=2,若OC =λOA +μOB ,则λ+μ=( )A .2 2 B. 2 C .2D .4 2解析:选A 因为|OC |=2,∠AOC =π4,所以C (2,2),又OC =λOA +μOB ,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.二、填空题7.在△ABC 中,点P 在BC 上,且BP =2PC ,点Q 是AC 的中点,若 PA =(4,3),PQ =(1,5),则BC =________.解析:AQ =PQ -PA =(1,5)-(4,3)=(-3,2),∴AC =2AQ =2(-3,2)=(-6,4).PC =PA +AC =(4,3)+(-6,4)=(-2,7),∴BC =3PC =3(-2,7)=(-6,21).答案:(-6,21)8.已知向量AC ,AD 和AB 在正方形网格中的位置如图所示,若AC =λAB +μAD ,则λμ=________.解析:建立如图所示的平面直角坐标系xAy ,则AC =(2,-2),AB =(1,2),AD =(1,0),由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧ 2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3. 答案:-39.P ={a |a =(-1,1)+m (1,2),m ∈R},Q ={b |b =(1,-2)+n (2,3),n ∈R}是两个向量集合,则P ∩Q 等于________.解析:P 中,a =(-1+m,1+2m ),Q 中,b =(1+2n ,-2+3n ).则⎩⎪⎨⎪⎧-1+m =1+2n ,1+2m =-2+3n .得⎩⎪⎨⎪⎧m =-12,n =-7.此时a =b =(-13,-23). 答案:{(-13,-23)}10.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB =λAM +μAN ,则λ+μ=________.解析:由AB =λAM +μAN ,得AB =λ·12(AD +AC )+μ·12(AC +AB ),则⎝⎛⎭⎫μ2-1AB +λ2AD +λ2+μ2AC =0,得⎝⎛⎭⎫μ2-1AB +λ2AD +⎝⎛⎭⎫λ2+μ2⎝⎛⎭⎫AD +12 AD =0,得⎝⎛⎭⎫14λ+34μ-1AB +⎝⎛⎭⎫λ+μ2AD =0.又因为AB ,AD 不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.答案:45三、解答题11.如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA =a ,BC =b ,试用a ,b 为基底表示向量EF ,DF ,CD .解:EF =EA +AB +BF =-16b -a +12b =13b -a ,DF =DE +EF =-16b +⎝⎛⎭⎫13b -a =16b -a , CD =CF +FD =-12b -⎝⎛⎭⎫16b -a =a -23b .12.给定两个长度为1的平面向量OA 和OB ,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC =x OA +y OB ,其中x ,y ∈R ,求x +y 的最大值.解:以O 为坐标原点,OA 所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B -12,32,设∠AOC =αα∈0,2π3,则C (cos α,sin α),由OC =x OA +y OB ,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α, 所以x +y =cos α+3sin α=2sin ⎝⎛⎭⎫α+π6, 又α∈⎣⎡⎦⎤0,2π3,则α+π6∈⎣⎡⎦⎤π6,5π6. 所以当α+π6=π2,即α=π3时,x +y 取得最大值2.第三节平面向量的数量积及其应用突破点(一) 平面向量的数量积1.向量的夹角(1)定义:已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB 就是向量a 与b 的夹角.(2)范围:设θ是向量a 与b 的夹角,则0°≤θ≤180°.(3)共线与垂直:若θ=0°,则a 与b 同向;若θ=180°,则a 与b 反向;若θ=90°,则a 与b 垂直.2.平面向量的数量积(1)定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0·a =0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. (3)坐标表示:若a =(x 1,y 1),b =(x 2,y 2),则a ·b x 1x 2+y 1y 2. 3.平面向量数量积的运算律 (1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b ·c (分配律).1.利用坐标计算数量积的步骤第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用;第二步,根据数量积的坐标公式进行运算即可.本节主要包括3个知识点: 1.平面向量的数量积; 2.平面向量数量积的应用;3.平面向量与其他知识的综合问题.2.根据定义计算数量积的两种思路(1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解.[典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )A .-72B .-12C.32D.52(2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE =23BC ,DF =16DC ,则AE ·AF 的值为________.[解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =⎝⎛⎭⎫-12,1,所以a ·b =-1×⎝⎛⎭⎫-12+2×1=52. (2)取BA ,BC 为一组基底,则AE =BE -BA =23BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =⎝⎛⎭⎫23 BC -BA ·⎝⎛⎭⎫-712 BA +BC =712|BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918.[答案] (1)D (2)2918[易错提醒](1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”.能力练通 抓应用体验的“得”与“失”1.已知AB =(2,1),点C (-1,0),D (4,5),则向量AB 在CD 方向上的投影为( )A .-322B .-3 5 C.322D .3 5解析:选C 因为点C (-1,0),D (4,5),所以CD =(5,5),又AB =(2,1),所以向量AB 在CD 方向上的投影为|AB |cos 〈AB ,CD 〉=AB ·CD |CD |=1552=322.2.在边长为1的等边△ABC 中,设BC =a ,CA =b ,AB =c ,则a ·b +b ·c +c ·a =( ) A .-32B .0 C.32D .3解析:选A 依题意有a ·b +b ·c +c ·a =1×1×cos 120°+1×1×cos 120°+1×1×cos 120°=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-12=-32. 3.已知菱形ABCD 的边长为a ,∠ABC =60°,则BD ·CD =( ) A .-32a 2B .-34a 2C.34a 2 D.32a 2 解析:选D 如图所示,∵BD =BA +BC ,CD =BA ,∴BD ·CD =(BA +BC )·BA =BA 2+BC ·BA =a 2+a ·a cos 60°=32a 2.故选D.4.已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a ·b =________. 解析:因为a =(-2,-6),所以|a |=(-2)2+(-6)2=210,又|b|=10,向量a 与b 的夹角为60°,所以a ·b =|a||b|cos 60°=210×10×12=10.答案:105.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB =4AC ,则OC ·(OB -OA )=________.解析:由已知得|AB |=2,|AC |=24, 则OC ·(OB -OA )=(OA +AC )·AB =OA ·AB +AC ·AB =1×2cos3π4+24×2=-12.答案:-12突破点(二) 平面向量数量积的应用平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.1.第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a ·b =1D .(4a +b )⊥BC(2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 D.152[解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0. ∵a =(k,3),b =(1,4),c =(2,1), ∴2a -3b =(2k -3,-6).∴(2k -3,-6)·(2,1)=0,即(2k -3)×2-6=0. ∴k =3.[答案] (1)D (2)C [易错提醒]x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.平面向量模的相关问题(1)a 2=a ·a =|a |2;(2)|a ±b |=(a ±b )2=a 2±2a ·b +b 2.[例2] (1)(2017·衡水模拟)已知|a |=1,|b |=2,a 与b 的夹角为π3,那么|4a -b |=( )A .2B .6C .2 3D .12(2)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.[解析] (1)|4a -b |2=16a 2+b 2-8a ·b =16×1+4-8×1×2×cos π3=12.∴|4a -b |=2 3.(2)∵e 1·e 2=12,∴|e 1||e 2e 1,e 2=12,∴e 1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°. 由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.[答案] (1)C (2)233[方法技巧]求向量模的常用方法(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2. (2)若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.平面向量的夹角问题求解两个非零向量之间的夹角的步骤 第一步 由坐标运算或定义计算出这两个向量的数量积 第二步 分别求出这两个向量的模 第三步 根据公式cos 〈a ,b 〉=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求解出这两个向量夹角的余弦值 第四步根据两个向量夹角的范围是[0,π]及其夹角的余弦值,求出这两个向量的夹角[例3] (1)若非零向量a ,b 满足|a |=22|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4D .π(2)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.[解析] (1)由(a -b )⊥(3a +2b ),得(a -b )·(3a +2b )=0,即3a 2-a ·b -2b 2=0. 又∵|a |=223|b |,设〈a ,b 〉=θ, 即3|a |2-|a ||b |cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0. ∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)∵a 2=(3e 1-2e 2)2=9+4-2×3×2×13=9,b 2=(3e 1-e 2)2=9+1-2×3×1×13=8,a ·b =(3e 1-2e 2)·(3e 1-e 2)=9+2-9×1×1×13=8,∴cos β=a ·b |a ||b |=83×22=223.[答案] (1)A (2)223[易错提醒](1)向量a ,b 的夹角为锐角⇔a ·b >0且向量a ,b 不共线. (2)向量a ,b 的夹角为钝角⇔a ·b <0且向量a ,b 不共线.能力练通 抓应用体验的“得”与“失”1.[考点一]若向量a ,b 满足:|a |=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( ) A .2 B. 2 C .1 D.22解析:选B 由题意知⎩⎪⎨⎪⎧ (a +b )·a =0,(2a +b )·b =0,即⎩⎪⎨⎪⎧a 2+b ·a =0,①2a ·b +b 2=0,②将①×2-②得,2a 2-b 2=0,∴b 2=|b |2=2a 2=2|a |2=2,故|b |= 2.2.[考点三]已知|a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为( ) A .30° B .60° C .120°D .150°解析:选C 设向量a 与b 的夹角为θ,∵c =a +b ,c ⊥a ,∴c ·a =(a +b )·a =a 2+a ·b =0,∴|a |2=-|a ||b |·cos θ,∴cos θ=-|a |2|a ||b |=-|a ||b |=-12,∴θ=120°.3.[考点二](2016·兰州一模)设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=( ) A. 5 B.10 C .2 5D .10解析:选B ∵a ⊥b ,∴a ·b =0,即x -2=0,解得x =2,∴a +b =(3,-1),于是|a +b |=10,故选B.4.[考点三](2017·湖北八校联考)已知向量a =(3,1),b =(1,3),c =(k ,-2),若(a -c )∥b ,则向量a 与向量c 的夹角的余弦值是( )A.55B.15 C .-55D .-15解析:选A 由已知得a -c =(3-k,3), ∵(a -c )∥b ,∴3(3-k )-3=0,∴k =2,即c =(2,-2), ∴cos 〈a ,c 〉=a ·c |a ||c |=3×2+1×(-2)10×22=55.5.[考点一]已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量ka -b 垂直,则k =________.解析:∵a 与b 为两个不共线的单位向量,∴|a |=|b |=1,又a +b 与ka -b 垂直, ∴(a +b )·(ka -b )=0, 即ka 2+ka ·b -a ·b -b 2=0,∴k -1+ka ·b -a ·b =0,即k -1+k cos θ-cos θ=0(θ为a 与b 的夹角),∴(k -1)(1+cos θ)=0.又a 与b 不共线,∴cos θ≠-1,∴k =1. 答案:16.[考点二](2017·泰安模拟)已知平面向量a ,b 满足|b |=1,且a 与b -a 的夹角为120°,则a 的模的取值范围为________.解析:在△ABC 中,设AB =a ,AC =b ,则b -a =AC -AB =BC ,∵a 与b -a 的夹角为120°,∴B =60°,由正弦定理得1sin 60°=|a |sin C ,∴|a |=sin C sin 60°=233sin C ,∵C ∈⎝⎛⎭⎫0,2π3,∴sin C ∈(0,1],∴|a |=⎝⎛⎦⎤0,233.答案:⎝⎛⎦⎤0,233 突破点(三) 平面向量与其他知识的综合问题平面向量集数与形于一体,是沟通代数、几何与三角函数的一种非常重要的工具.在高考中,常将它与三角函数问题、解三角形问题、几何问题等结合起来考查.考点贯通 抓高考命题的“形”与“神”平面向量与三角函数的综合问题[例1] 已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R. (1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.[解] (1)f (x )=a ·b =2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z),解得k π-π6≤x ≤k π+π3(k ∈Z),。

最新高三教案-2018年高考第一轮复习数学:5.1向量的概念、向量的加法与减法、实数与向量的积 精品

最新高三教案-2018年高考第一轮复习数学:5.1向量的概念、向量的加法与减法、实数与向量的积 精品

第五章 平面向量●网络体系总览平面向量解斜三角形向量的概念向量的运算向量的表示向量的应用几何表示坐标表示代数运算几何运算线段的定比分点平移正弦定理余弦定理●考点目标定位1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.2.掌握向量的加法与减法的运算律及运算法则.3.掌握实数与向量的积的运算律及运算法则.4.了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.●复习方略指南向量是数学中的重要概念,它广泛应用于生产实践和科学研究中,其重要性逐渐加强.从近几年高考试题可以看出,主要考查平面向量的加减运算、平面向量的坐标表示、平面向量的数量积、图形的平移等基本概念、运算及简单应用.随着新教材的逐步推广、使用,“平面向量”将会成为命题的热点,一般选择题、填空题重在考查平面向量的概念、数量积及其运算律.本单元试题的常见类型有:(1)与“定比分点”有关的试题;(2)平面向量的加减法运算及其几何意义;(3)平面向量的数量积及运算律,平面向量的坐标运算,用向量的知识解决几何问题; (4)正、余弦定理的应用. 复习本章时要注意:(1)向量具有大小和方向两个要素.用线段表示向量时,与有向线段起点的位置没有关系,同向且等长的有向线段都表示同一向量.(2)共线向量和平面向量的两条基本定理,揭示了共线向量和平面向量的基本结构,它们是进一步研究向量的基础.(3)向量的加、减、数乘积是向量的线性运算,其结果仍是向量.向量的数量积结果是一个实数.向量的数量积,可以计算向量的长度、平面内两点间距离、两个向量的夹角,判断相应的两条直线是否垂直.(4)向量的运算与实数的运算有异同点,学习时要注意这一点,如数量积不满足结合律.(5)要注意向量在几何、三角、物理学中的应用.(6)平面向量与空间向量的数量积及坐标运算是高考的重点,复习中要注意培养准确的运算能力和灵活运用知识的能力.5.1 向量的概念、向量的加法与减法、实数与向量的积●知识梳理1.平面向量的有关概念:(1)向量的定义:既有大小又有方向的量叫做向量.(2)表示方法:用有向线段来表示向量.有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示.(3)模:向量的长度叫向量的模,记作|a |或|AB |.(4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向不确定. (5)单位向量:长度为1个长度单位的向量叫做单位向量.(6)共线向量:方向相同或相反的向量叫共线向量,规定零向量与任何向量共线. (7)相等的向量:长度相等且方向相同的向量叫相等的向量. 2.向量的加法:(1)定义:求两个向量和的运算,叫做向量的加法. (2)法则:三角形法则;平行四边形法则. (3)运算律:a +b =b +a ;(a +b )+c =a +(b +c ). 3.向量的减法:(1)定义:求两个向量差的运算,叫做向量的减法. (2)法则:三角形法则;平行四边形法则. 4.实数与向量的积:(1)定义:实数λ与向量a 的积是一个向量,记作λa ,规定:|λa |=|λ||a |.当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa 与a 平行.(2)运算律:λ(μa )=(λμ)a ,(λ+μ)a =λa +μa ,λ(a +b )=λa +λb . 5.两个重要定理:(1)向量共线定理:向量b 与非零向量a 共线的充要条件是有且仅有一个实数λ,使得b =λa ,即b ∥a ⇔b =λa (a ≠0).(2)平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且仅有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.●点击双基1.(2004年天津,理3)若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于A.(-3,6)B.(3,-6)C.(6,-3)D.(-6,3)解析:易知a 与b 方向相反,可设b =(λ,-2λ)(λ<0).又|b |=35=224λλ+,解之得λ=-3或λ=3(舍去).∴b =(-3,6). 答案:A2.(2004年浙江,文4)已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α等于A.43 B.-43 C.34 D.-34 解析:由a ∥b ,∴3cos α=4sin α.∴tan α=43. 答案:A3.若ABCD 为正方形,E 是CD 的中点,且=a ,=b ,则等于 A.b +21a B.b -21a C.a +21bD.a -21b 解析:BE =AE -AB =AD +DE -AB =AD +21AB -AB =b -21a . 答案:B4.e 1、e 2是不共线的向量,a =e 1+k e 2,b =k e 1+e 2,则a 与b 共线的充要条件是实数k 等于 A.0 B.-1 C.-2 D.±1 解析:a 与b 共线⇔存在实数m ,使a =m b , 即e 1+k e 2=mk e 1+m e 2.又e 1、e 2不共线, ∴⎩⎨⎧==.1k m mk ,∴k =±1.答案:D5.若a =“向东走8 km ”,b =“向北走8 km ”,则|a +b |=_______,a +b 的方向是_______. 解析:|a +b |=6464+=82(km ). 答案:82 km 东北方向●典例剖析【例1】 已知向量a 、b 满足|a |=1,|b |=2,|a -b |=2,则|a +b |等于 A.1B.2C.5D.6剖析:欲求|a +b |,一是设出a 、b 的坐标求,二是直接根据向量模计算. 解法一:设a =(x 1,y 1),b =(x 2,y 2),则x 12+y 12=1,x 22+y 22=4,a -b =(x 1-x 2,y 1-y 2), ∴(x 1-x 2)2+(y 1-y 2)2=4. ∴x 12-2x 1x 2+x 22+y 12-2y 1y 2+y 22=4. ∴1-2x 1x 2-2y 1y 2=0.∴2x 1x 2+2y 1y 2=1.∴(x 1+x 2)2+(y 1+y 2)2=1+4+2x 1x 2+2y 1y 2=5+1=6. ∴|a +b |=6.解法二:∵|a +b |2+|a -b |2=2(|a |2+|b |2), ∴|a +b |2=2(|a |2+|b |2)-|a -b |2 =2(1+4)-22=6. ∴|a +b |=6.故选D.深化拓展此题也可以利用“解斜三角形”的方法进行处理.【例2】 如图,G 是△ABC 的重心,求证:GA +GB +GC =0.AB C DGE剖析:要证GA +GB +GC =0,只需证GA +GB =-GC ,即只需证GA +GB 与GC 互为相反的向量.证明:以向量GB 、GC 为邻边作平行四边形GBEC,则GB +GC =GE =2GD .又由G 为△ABC 的重心知AG =2GD ,从而GA =-2GD .∴GA +GB +GC =-2GD +2GD =0.评述:向量的加法可以用几何法进行.正确理解向量的各种运算的几何意义,能进一步加深对“向量”的认识,并能体会用向量处理问题的优越性.深化拓展此题也可用向量的坐标运算进行证明.【例3】 设OA 、OB 不共线,点P 在AB 上,求证:OP =λOA +μOB 且λ+μ=1,λ、μ∈R .剖析:∵点P 在AB 上,可知AP 与AB 共线,得AP =t AB .再用以O 为起点的向量表示. 证明:∵P 在AB 上,∴AP 与AB 共线. ∴AP =t AB .∴OP -OA =t (OB -OA ). ∴OP =OA +t OB -t OA =(1-t )OA +t OB .设1-t =λ,t =μ,则OP =λOA +μOB 且λ+μ=1,λ、μ∈R .评述:本例的重点是考查平面向量的基本定理,及对共线向量的理解及应用. 深化拓展①本题也可变为OA ,OB 不共线,若OP =λOA +μOB ,且λ+μ=1,λ∈R ,μ∈R ,求证:A 、B 、P 三点共线.提示:证明AP 与AB 共线.②当λ=μ=21时,OP =21(OA +OB ),此时P 为AB 的中点,这是向量的中点公式. 【例4】 若a 、b 是两个不共线的非零向量(t ∈R ).(1)若a 与b 起点相同,t 为何值时,a 、t b 、31(a +b )三向量的终点在一直线上?(2)若|a |=|b |且a 与b 夹角为60°,那么t 为何值时,|a -t b |的值最小? 解:(1)设a -t b =m [a -31(a +b )](m ∈R ),化简得(32m -1)a =(3m-t )b . ∵a 与b 不共线, ∴⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-.2123030132t m t m m ,∴t =21时,a 、t b 、31(a +b )的终点在一直线上. (2)|a -t b |2=(a -t b )2=|a |2+t 2|b |2-2t |a ||b |cos60°=(1+t 2-t )|a |2,∴t =21时,|a -t b |有最小值23|a |. 评述:用两个向量共线的充要条件,可解决平面几何中的平行问题或共线问题.思考讨论两个向量共线与两条线段在一条直线上是否一样?●闯关训练 夯实基础1.(2004年广东,1)已知平面向量a =(3,1),b =(x ,-3)且a ⊥b ,则x 等于 A.3 B.1 C.-1 D.-3 解析:由a ⊥b ,则3x -3=0,∴x =1. 答案:B2.若a 、b 为非零向量,且|a +b |=|a |+|b |,则有 A.a ∥b 且a 、b 方向相同 B.a =b C.a =-b D.以上都不对 解析:a 、b 为非零向量,且|a +b |=|a |+|b |,∴a ∥b 且方向相同. 答案:A3.在四边形ABCD 中,AB -DC -CB 等于 A.ACB.BDC.ADD.AC解析:--=-=+=. 答案:C4.设四边形ABCD 中,有DC =21AB 且|AD |=|BC |,则这个四边形是A.平行四边形B.矩形C.等腰梯形D.菱形解析:∵DC =21AB ,∴DC ∥AB ,且DC ≠AB .又|AD |=|BC |,∴四边形为等腰梯形. 答案:C5.l 1、l 2是不共线向量,且a =-l 1+3l 2,b =4l 1+2l 2,c =-3l 1+12l 2,若b 、c 为一组基底,求向量a .解:设a =λ1b +λ2c ,即-l 1+3l 2=λ1(4l 1+2l 2)+λ2(-3l 1+12l 2), 即-l 1+3l 2=(4λ1-3λ2)l 1+(2λ1+12λ2)l 2,∴⎩⎨⎧-=-.31221342121=+,λλλλ解得λ1=-181,λ2=277,故a =-181b +277c . 6.设两向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.解:e 12=4,e 22=1,e 1²e 2=2³1³cos60°=1, ∴(2t e 1+7e 2)²(e 1+t e 2)=2t e 12+(2t 2+7)e 1²e 2+7t e 22=2t 2+15t +7.∴2t 2+15t +7<0.∴-7<t <-21.设2t e 1+7e 2=λ(e 1+t e 2)(λ<0)⇒⎩⎨⎧==λλt t 72⇒2t 2=7⇒t =-214, ∴λ=-14. ∴当t =-214时,2t e 1+7e 2与e 1+t e 2的夹角为π. ∴t 的取值范围是(-7,-214)∪(-214,-21). 思考讨论向量a 、b 的夹角为钝角,则cos 〈a ,b 〉<0,它们互为充要条件吗?培养能力7.已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1、e 2不共线,向量c =2e 1-9e 2.问是否存在这样的实数λ、μ,使向量d =λa +μb 与c 共线?解:∵d =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(-3λ+3μ)e 2,要使d 与c 共线,则应有实数k ,使d =k c ,即(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 1-9k e 2,由⎩⎨⎧-=+-=+,,k k 933222μλμλ得λ=-2μ.故存在这样的实数λ、μ,只要λ=-2μ,就能使d 与c 共线.8.如图所示,D 、E 是△ABC 中AB 、AC 边的中点,M 、N 分别是DE 、BC 的中点,已知=a ,=b ,试用a 、b 分别表示、和.BCDNE解:由三角形中位线定理,知DE 21BC . 故DE =21BC ,即DE =21a . CE =CB +BD +DE =-a +b +21a =-21a +b , MN =MD +DB +BN =21ED +DB +21BC =-41a +21a -b =41a -b . 探究创新9.在△ABC 中,AM ∶AB =1∶3,AN ∶AC =1∶4,BN 与CM 交于点E ,AB =a ,AC =b ,用a 、b 表示.解:由已知得AM =31AB ,AN 设ME =λMC ,λ∈R ,则AE 而MC =AC -AM ,∴=+λ(-) =31+λ(-31). ∴AE =(31-3λ)AB +λAC .同理,设NE =t NB ,t ∈R ,则AE =AN +NE =41AC +t NB =41AC +t (AB -AN )=41AC +t (AB -41AC ). ∴=(41-4t)+t . ∴(31-3λ)+λ=(41-4t )+t .由AB 与AC 是不共线向量,得⎪⎪⎩⎪⎪⎨⎧-==-,,441331t t λλ解得⎪⎪⎩⎪⎪⎨⎧==.113112t ,λ∴AE =113AB +112AC ,即AE =113a +112b . 评述:此题所涉及的量较多,且向量与向量之间的关系较为复杂,因此对学生来说确有一定困难.通过共线向量,增加辅助量来理清向量之间关系是“探索”之所在,即对基本定理的深化及应用.●思悟小结1.我们学习的向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.2.共线向量和平面向量的两条基本定理,揭示了共线向量和平面向量的基本结构,它们是进一步研究向量的基础.3.对于两个向量平行的充要条件:a ∥b ⇔a =λb ,只有b ≠0才是正确的.而当b =0时,a ∥b 是a =λb 的必要不充分条件. 4.向量的坐标表示体现了数形的紧密关系,从而可用“数”来证明“形”的问题. 5.培养学生的观察、分析、归纳、抽象的思维能力. ●教师下载中心 教学点睛1.本课复习的重点是:理解向量的基本概念,掌握向量的加法、减法运算,掌握实数与向量的积的运算.2.复习时要构建良好的知识结构.3.向量的加法、减法运算既要注重几何运算,又要注重代数运算.4.强化数学思想的教学,尤其是数形结合思想、化归思想等. 拓展题例【例题】 对任意非零向量a 、b ,求证:|a |-|b |≤|a ±b |≤|a |+|b |. 证明:分三种情况考虑.(1)当a 、b 共线且方向相同时,|a |-|b |<|a +b |=|a |+|b |,|a |-|b |=|a -b |<|a |+|b |. (2)当a 、b 共线且方向相反时,∵a -b =a +(-b ),a +b =a -(-b ),利用(1)的结论有||a |-|b ||<|a +b |<|a |+|b |,|a |-|b |<|a -b |=|a |+|b |.(3)当a ,b 不共线时,设OA =a ,OB =b ,作OC =OA +OB =a +b ,BA =OA -OB =a -b ,利用三角形两边之和大于第三边,两边之差小于第三边,得||a |-|b ||<|a ±b |<|a |+|b |.综上得证.。

【2018新课标 高考必考知识点 教学计划 教学安排 教案设计】高三数学:平面向量的概念及其线性运算要点精讲

【2018新课标 高考必考知识点 教学计划 教学安排 教案设计】高三数学:平面向量的概念及其线性运算要点精讲

1. 平面向量的有关概念(1)向量的定义:在数学与物理中,既有大小又有方向的量; (2)表示方法:有向线段表示法,坐标法;(3)模:AB a =的大小(或长度)叫做向量的模,记作AB 或a ;(4)零向量:模为零的向量,零向量的方向与任一向量平行,零向量可与任一向量垂直;(5)单位向量:模等于1的向量,一个非零向量除以它的模,可得所需单位向量; (6)共线向量:方向相同或相反的非零向量叫平行向量也叫共线向量; (7)相等的向量:方向相同,大小相等的向量。

2. 平面向量的线性运算(1)向量的加法、减法服从三角形法则和平行四边形法则; (2)实数与向量的积即为数乘运算。

数乘运算满足如下运算律: ()()a a λμλμ=;()a a a λμλμ+=+;()a b a b λλλ+=+。

3. 向量共线定理:向量b 与非零向量a 共线的充要条件是有且仅有一个实数λ,使得b =λa ,即b ∥a ⇔b =λa (a ≠0)。

例题1 平行四边形OADB 的对角线交点为C ,BM =13BC ,CN =13CD ,OA =a ,OB =b ,用a 、b 表示OM 、ON 、MN 。

解析:BA =a -b ,BM =16BA =16a -16b ,OM =OB +BM =16a +56b ,OD =a +b ,ON =OC +CN =12OD +16OD=23OD =23a +23b , MN =ON -OM =12a -16b 。

点拨:求向量的线性表达式,一是直接运用三角形法则与平行四边形法则来求,二是应用平行向量基本定理,用待定系数法求系数。

例题2 已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1、e 2不共线,向量c =2e 1-9e 2。

问是否存在这样的非零实数λ、μ,使向量d =λa +μb 与c 共线?解析:d 可用e 1、e 2表示,∵e 1、e 2不共线,∴若d 与c 共线,则其对应系数应成比例或存在实数k ,使d =k c 。

专题08 平面向量(教学案)-2018年高考理数二轮复习精品资料(解析版)

专题08 平面向量(教学案)-2018年高考理数二轮复习精品资料(解析版)

高考侧重考查正、余弦定理与其他知识(如三角函数、平面向量等)的综合应用,试题一般为中档题,各种题型均有可能出现.预测2018年高考仍将以正、余弦定理的综合应用为主要考点,重点考查计算能力及应用数学知识分析、解决问题的能力.1.向量的基本概念(1)既有大小又有方向的量叫做向量. (2)零向量的模为0,方向是任意的,记作0. (3)长度等于1的向量叫单位向量. (4)长度相等且方向相同的向量叫相等向量.(5)方向相同或相反的非零向量叫平行向量,也叫共线向量.零向量和任一向量平行. 2.共线向量定理向量a (a ≠0)与b 共线,当且仅当存在唯一一个实数λ,使b =λa . 3.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.4.两向量的夹角已知两个非零向量a 和b ,在平面上任取一点O ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作a 与b 的夹角.5.向量的坐标表示及运算 (1)设a =(x 1,y 1),b =(x 2,y 2),则 a ±b =(x 1±x 2,y 1±y 2),λa =(λx 1,λy 1).(2)若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). 6.平面向量共线的坐标表示 已知a =(x 1,y 1),b =(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a 与b 共线.7.平面向量的数量积 设θ为a 与b 的夹角. (1)定义:a ·b =|a ||b |cos θ.(2)投影:a ·b|b |=|a |cos θ叫做向量a 在b 方向上的投影.8.数量积的性质 (1)a ⊥b ⇔a ·b =0;(2)当a 与b 同向时,a ·b =|a |·|b |;当a 与b 反向时,a ·b =-|a |·|b |;特别地,a ·a =|a |2; (3)|a ·b |≤|a |·|b |; (4)cos θ=a ·b |a |·|b |.9.数量积的坐标表示、模、夹角 已知非零向量a =(x 1,y 1),b =(x 2,y 2) (1)a ·b =x 1x 2+y 1y 2;(2)|a |=x 21+y 21;(3)a ⊥b ⇔x 1x 2+y 1y 2=0; (4)cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.【误区警示】1.两向量夹角的范围是[0,π],a ·b >0与〈a ,b 〉为锐角不等价;a ·b <0与〈a ,b 〉为钝角不等价. 2.点共线和向量共线,直线平行与向量平行既有联系又有区别. 3.a 在b 方向上的投影为a ·b |b |,而不是a ·b|a |.4.若a 与b 都是非零向量,则λa +μb =0⇔a 与b 共线,若a 与b 不共线,则λa +μb =0⇔λ=μ=0.考点一 平面向量的概念及运算例1. 【2017课标1,理13】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= .【答案】所以|2|12a b +==【变式探究】(2016·高考全国甲卷)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 解析:基本法:∵a ∥b ,∴a =λb 即(m,4)=λ(3,-2)=(3λ,-2λ)∴⎩⎪⎨⎪⎧m =3λ,4=-2λ,故m =-6. 速解法:根据向量平行的坐标运算求解: ∵a =(m,4),b =(3,-2),a ∥b ∴m ×(-2)-4×3=0 ∴-2m -12=0,∴m =-6. 答案:-6【变式探究】(1)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)答案:A【举一反三】向量的三角形法则要保证各向量“首尾相接”;平行四边形法则要保证两向量“共起点”,结合几何法、代数法(坐标)求解.(2)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.AD →B.12AD →C.BC →D.12BC →解析:基本法一:设AB →=a ,AC →=b ,则EB →=-12b +a ,FC →=-12a +b ,从而EB →+FC →=⎝⎛⎭⎫-12b +a +⎝⎛⎭⎫-12a +b =12(a +b )=AD →,故选A.基本法二:如图,EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →. 答案:A考点二 平面向量数量积的计算与应用例2.【2017天津,理13】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,()AE AC AB λλ∈=-R ,且4AD AE ⋅=-,则λ的值为___________.【答案】311【变式探究】(2016·高考全国丙卷)已知向量BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°解析:基本法:根据向量的夹角公式求解.∵BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,∴|BA →|=1,|BC →|=1,BA →·BC →=12×32+32×12=32,∴cos ∠ABC =cos 〈BA →,BC →〉=BA →·BC →|BA →|·|BC →|=32.∵0°≤〈BA →,BC →〉≤180°,∴∠ABC =〈BA →,BC →〉=30°.速解法:如图,B 为原点,则A ⎝⎛⎭⎫12,32∴∠ABx =60°,C ⎝⎛⎭⎫32,12∠CBx =30°,∴∠ABC =30°.答案:A【变式探究】(1)向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2答案:C【举一反三】当向量以几何图形的形式(有向线段)出现时,其数量积的计算可利用定义法;当向量以坐标形式出现时,其数量积的计算用坐标法;如果建立坐标系,表示向量的有向线段可用坐标表示,计算向量较简单.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 解析:基本法:以AB →、AD →为基底表示AE →和BD →后直接计算数量积. AE →=AD →+12AB →,BD →=AD →-AB →,∴AE →·BD →=⎝⎛⎭⎫AD →+12AB →·(AD →-AB →) =|AD →|2-12|AB →|2=22-12×22=2.速解法:(坐标法)先建立平面直角坐标系,结合向量数量积的坐标运算求解.如图,以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴,建立平面直角坐标系,则A (0,0),B (2,0),D (0,2),E (1,2),∴AE →=(1,2),BD →=(-2,2), ∴AE →·BD →=1×(-2)+2×2=2. 答案:2考点三 平面向量的综合应用例3、【2017课标3,理12】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为A .3B .CD .2【答案】A【解析】如图所示,建立平面直角坐标系【举一反三】【2017江苏,16】 已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值. 【答案】(1)5π6x =(2)0x =时,错误!未找到引用源。

高三数学课件-2018.9.18高三数学(第31讲向量与向量的

高三数学课件-2018.9.18高三数学(第31讲向量与向量的

典 例 分 析 3.向量的运用 例5、圆梦丛书第84页例4
基础训练
完成《圆梦丛Βιβλιοθήκη 》 P83基础达标练习.课后作业
1.预习《圆梦丛书》第32讲知识梳理、 基础达标;
2. 完成《圆梦丛书》P84能力提升习题.
知 识 要点
2.向量的表示方法 用小写字母表示,用有向线段表示,用坐标表示. 3.向量的运算 加法、减法运算法则:平行四边形法则、三角形 法则. 运算律:交换律、结合律.
典 例 分 析
1.向量的概念问题
例1、圆梦丛书第83页例1
典 例 分 析 2.几何图形中的基向量 例2、圆梦丛书第83页例2 例3、圆梦丛书第83页例3 例4、圆梦丛书第84页例5 【小结】平面内的任何一个向量可以用平面内不 共线的两个向量 a, b 表示,这是用向量解题的基 本功.在解题时要注意充分利用平面几何的一些定 理、性质,善于发现相等向量、共线向量及相反 向量,从而使所求向量与已知向量建立直接联系.
高三年级
第31讲


向量与向量的加减法
湖南师大附中
彭萍
知 识 要点 1.
既有大小又有方向的量叫做向量. 长度为0的向量叫做零向量,记作 0,规定零 向量的方向是任意的. 长度为1的向量叫做单位向量. 方向相同或相反的非零向量叫做平行向量 (或共线向量). 长度相等且方向相同的向量叫做相等向量;
长度相等且方向相反的向量叫做相反向量.

2018届北师大版高三数学一轮复习课件:第五章 平面向

2018届北师大版高三数学一轮复习课件:第五章 平面向

相同 的向量 ____且方向_____ 相等向量 长度相等
相反 的向量 ____且方向_____ 相反向量 长度相等
两向量只有相等或不等, 不能比较大小 0的相反向量为0
2.向量的线性运算
向量运算 定 义
法则(或几何意义)
运算律
求两个 加法 向量和 的运算
(1)交换律: b+a a+b=_____. (2)结合律:
名称 向量 定义 既有大小又有方向的量;向量的大 备注 平面向量是自由向量
小叫做向量的长度(或称模)
零向量 长度为零的向量;其方向是任意的 单位 向量
0 记作___
非零向量a的单位向
长度等于1个单位的向量
a 量为 ± |a|
相反的非零向量 ____或____ 平行向量 方向相同 平行 或 0与任一向量_______ 方向相同或相反的非零向量又 共线 共线向量 叫做共线向量
C,D四点不一定在一条直线上.
答案 (1)√ (2)× (3)× (4)√ (5)√
2.给出下列命题:①零向量的长度为零,方向是任意的; → → ②若 a,b 都是单位向量,则 a=b;③向量AB与BA相等. 则所有正确命题的序号是( A.① B.③ ) C.①③ D.①②
解析
根据零向量的定义可知①正确; 根据单位向量的
答案 ①
规律方法 递性.
(1)相等向量具有传递性, 非零向量的平行也具有传
(2)共线向量即为平行向量,它们均与起点无关. (3)向量可以平移,平移后的向量与原向量是相等向量.解题时, 不要把它与函数图象的移动混为一谈. a a (4)非零向量 a 与 的关系: 是与 a 同方向的单位向量. |a| |a|
→ → → → → BC=OC-OB=-OA-OB=-a-b.

高三第一轮复习教案-向量

高三第一轮复习教案-向量

向量的平行与垂直一、基础知识回顾:1.平行向量定义:①方向 或 的非零向量叫平行向量,向量a 、b 平行,记作a ∥b ;②规定:0与任一向量 ; ③共线向量与平行向量关系:平行向量就是共线向量.2. 向量共线定理 向量b 与非零向量a 共线的充要条件:有且只有一个实数λ,使b =λa .(等价于:存在两个不同为零的实数λ1、λ2,使得).21=+λλ3. 非零向量和的数量积的定义:·= (向量和的夹角为θ)4. 非零向量和垂直的定义:如果两个非零向量和 ,则说和垂直,记作⊥5.非零向量垂直的充要条件:符号语言:⇔⊥坐标语言:设→a =(x 1,y 1), →b =(x 2,y 2),则⇔⊥b a6. 向量共线的充要条件:符号语言:⇔//b =λa (a≠,R ∈λ)坐标语言:设→a =(x 1,y 1), →b =(x 2,y 2),则⇔//二、基础训练1.与向量)4,3(-=a 垂直的单位向量是_________ _____. 2.与向量)4,3(-=平行的单位向量是_______ _______.3.若D B A e e CD e e CB e k e AB e e ,,,2,3,2,,21212121若已知是两个不共线的向量-=+=+=三点共线,则k =______________. 4.若的是则b a y yx x y x b y x a //),,(),,(21212211=== ( )A.充要条件B.充分非必要条件C.必要非充分条件D.既非充分又非必要条件三、典型例题例1.已知向量(1,2),(,1),2a b x u a b ===+,2v a b =-,且//u v ,求实数x 的值。

例2.已知).1,2(),0,1(==b a (1)求|3|b a+; (2)当k 为何实数时,k -a b 与b a 3+平行, 平行时它们是同向还是反向?. (3)当k 为何实数时,k -a b 与b a3+垂直?.例3.已知点)5,4(),2,1(),0,0(B A O 及t ⋅+=,试问:(1)当t 为何值时,P 在x 轴上? P 在y 轴上? P 在第三象限?(2)O 、A 、B 、P 四点能否构成平行四边形?若能,则求出t 的值.若不能,说明理由.例4.已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°, (1)求证:)(b a -⊥c ;(2)若1||>++c b a k)(R k ∈,求k 的取值范围.四、课后作业 班级 姓名( )1.如果)4,1()3,22(++=--=x x b x a 与互相垂直,则实数x 等于A .21 B .27 C .21或27 D .27或-2 ( )2.三点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)共线的充要条件是A .x 1y 2-x 2y 1=0B .x 1y 3-x 3y 1=0C .))(())((12131312y y x x y y x x --=--D .))(())((13121312y y y y x x x x --=-- ( )3.已知为则且⋅==,2||,1||//A .2B .-2C .±2D .±3( )4.非零向量、b a b a b a b a b -+=与则向量不平行于且满足,|,|||的位置关系是A .平行B .垂直C .共线且同向D .共线且反向 ( )5.下列命题中正确的是A .若0,0==⋅b a b a 或则B .若b a b a //,0则=⋅C .若2)(,b a b a b a ⋅=⋅⊥则D .若||||,,b a b a b a =⋅则共线( )6.向量→AB =(3,4)按向量a =(1,2)平移后为 A 、(4,6) B 、(2,2) C 、(3,4) D 、(3,8) ( )7.下面四个条件:53=-=+且① ②)0(≠∈=b R b a 且唯一且λλλ③),(2121R x x x x ∈=+ )0,(0=+∈=+y x R y x y x 且④其中能使与共线的是A .①②B .①③C .②④D .③④( )8. 在△ABC 中,∠C=90°,),3,2(),1,(==k 则k 的值是A .1.5B .-1.5C .5D . -59.已知.//,_______,______),3,4(),7,(x x x x 时时当===+== 10.设)31,(cos ),sin ,23(αα==b a ,且有b a //,则锐角=α 。

【三维设计】2018届高三数学(文)高考总复习文档讲义:第四章-平面向量数系的扩充与复数的引入

【三维设计】2018届高三数学(文)高考总复习文档讲义:第四章-平面向量数系的扩充与复数的引入

第四章⎪⎪⎪平面向量、数系的扩充与复数的引入第一节平面向量的概念及其线性运算1.向量的有关概念三角形法平行四边三角向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . [小题体验]1.下列四个命题中,正确的命题是( ) A .若a ∥b ,则a =b B .若|a |=|b |,则a =b C .若|a |=|b |,则a ∥b D .若a =b ,则|a |=|b |答案:D2.(教材习题改编)化简:(1)( AB ―→+MB ―→)+BO ―→+OM ―→=________. (2) NQ ―→+QP ―→+MN ―→-MP ―→=________. 答案:(1)AB ―→(2)03.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案:-131.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个. 3.要注意向量共线与三点共线的区别与联系.[小题纠偏]1.若菱形ABCD 的边长为2,则|AB ―→-CB ―→+CD ―→|=________. 解析:|AB ―→-CB ―→+CD ―→|=|AB ―→+BC ―→+CD ―→|=|AD ―→|=2. 答案:22.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b |=|a |+|b |,则p 是q 的________条件.解析:若a =b ,则|a +b |=|2a |=2|a |,|a |+|b |=|a |+|a |=2|a |,即p ⇒q . 若|a +b |=|a |+|b |,由加法的运算知a 与b 同向共线, 即a =λb ,且λ>0,故q ⇒/ p . ∴p 是q 的充分不必要条件. 答案:充分不必要考点一 平面向量的有关概念(基础送分型考点——自主练透)[题组练透]1.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.2.(易错题)给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件;③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.解析:①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c . ②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→,又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. 答案:①②[谨记通法]向量有关概念的5个关键点(1)向量:方向、长度.(2)非零共线向量:方向相同或相反. (3)单位向量:长度是一个单位长度. (4)零向量:方向没有限制,长度是0.(5)相等相量:方向相同且长度相等.如“题组练透”第2题易混淆有关概念. 考点二 向量的线性运算(基础送分型考点——自主练透)[题组练透]1.(2017·武汉调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA ―→+OB ―→+OC ―→+OD ―→等于( )A .OM ―→B .2OM ―→C .3OM ―→D .4OM ―→解析:选D 因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA ―→+OC ―→=2OM ―→,OB ―→+OD ―→=2OM ―→,所以OA ―→+OB ―→+OC ―→+OD ―→=4OM ―→.2.(2017·唐山统考)在等腰梯形ABCD 中,AB ―→=-2CD ―→,M 为BC 的中点,则AM ―→=( ) A .12AB ―→+12AD ―→B .34AB ―→+12AD ―→C .34AB ―→+14AD ―→D .12AB ―→+34AD ―→解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB―→+AC ―→)=12(AB ―→+AD ―→+DC ―→)=12⎝⎛⎭⎫AB ―→+AD ―→+12 AB ―→ =34AB ―→+12AD ―→. 3.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE ―→=λ1AB―→+λ2AC ―→(λ1,λ2为实数),则λ1+λ2的值为________.解析:DE ―→=DB ―→+BE ―→=12AB ―→+23BC ―→=12AB ―→+23(BA ―→+AC ―→)=-16AB ―→+23AC ―→,所以λ1=-16,λ2=23,即λ1+λ2=12.答案:12[谨记通法]1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.2.利用平面向量的线性运算求参数的一般思路 (1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式. (3)比较、观察可知所求.考点三 共线向量定理的应用(重点保分型考点——师生共研)[典例引领]设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使ka +b 和a +kb 同向.解:(1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b , ∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→. ∴AB ―→,BD ―→共线,又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)∵ka +b 与a +kb 同向,∴存在实数λ(λ>0),使ka +b =λ(a +kb ), 即ka +b =λa +λkb .∴(k -λ)a =(λk -1)b . ∵a ,b 是不共线的两个非零向量,⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1,又∵λ>0,∴k =1.[由题悟法]共线向量定理的3个应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB ―→=λAC ―→,则A ,B ,C 三点共线. (3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值. [提醒] 证明三点共线时,需说明共线的两向量有公共点.[即时应用]如图,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC ―→=b .(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线.解:(1)延长AD 到G , 使AD ―→=12AG ―→,连接BG ,CG ,得到▱ABGC , 所以AG ―→=a +b , AD ―→=12AG ―→=12(a +b ),AE ―→=23AD ―→=13(a +b ),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b )-a =13(b -2a ),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a ).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.一抓基础,多练小题做到眼疾手快1.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,若AB ―→+AD ―→=λAO ―→,则λ=( )A .1B .2C .4D .6解析:选B 根据向量加法的运算法则可知,AB ―→+AD ―→=AC ―→=2AO ―→,故λ=2. 2.在△ABC 中,AD ―→=2DC ―→,BA ―→=a ,BD ―→=b ,BC ―→=c ,则下列等式成立的是( ) A .c =2b -a B .c =2a -b C .c =32a -12bD .c =32b -12a解析:选D 依题意得BD ―→-BA ―→=2(BC ―→-BD ―→), 即BC ―→=32BD ―→-12BA ―→=32b -12a .3.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( )A .矩形B .平行四边形C .梯形D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.4.(2017·扬州模拟)在△ABC 中,N 是AC 边上一点且AN ―→=12NC ―→,P 是BN 上一点,若AP ―→=m AB ―→+29AC ―→,则实数m 的值是________.解析:如图,因为AN ―→=12NC ―→,P 是BN ―→上一点.所以AN ―→=13AC ―→,AP ―→=m AB ―→+29AC ―→=m AB ―→+23AN ―→,因为B ,P ,N 三点共线,所以m +23=1,则m =13.答案:135.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA ―→=a ,OB ―→=b ,则DC ―→=________,BC ―→=________.(用a ,b 表示)解析:如图,DC ―→=AB ―→=OB ―→-OA ―→=b -a ,BC ―→=OC ―→-OB ―→=-OA ―→-OB ―→=-a -b .答案:b -a -a -b二保高考,全练题型做到高考达标1.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB ―→=a ,AD ―→=b, 则BE ―→等于( )A .12b -aB .12a -bC .-12a +bD .12b +a解析:选C BE ―→=BA ―→+AD ―→+12DC ―→=-a +b +12a =b -12a ,故选C .2.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( )A .1B .-12C .1或-12D .-1或-12解析:选B 由于c 与d 共线反向,则存在实数k 使c =kd (k <0),于是λa +b =k []a +(2λ-1)b .整理得λa +b =ka +(2λk -k )b .由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.3.下列四个结论:①AB ―→+BC ―→+CA ―→=0;②AB ―→+MB ―→+BO ―→+OM ―→=0;③AB ―→-AC ―→+BD ―→-CD ―→=0;④NQ ―→+QP ―→+MN ―→-MP ―→=0,其中一定正确的结论个数是( ) A .1 B .2 C .3D .4解析:选C ①AB ―→+BC ―→+CA ―→=AC ―→+CA ―→=0,①正确;②AB ―→+MB ―→+BO ―→+OM ―→=AB ―→+MO ―→+OM ―→=AB ―→,②错;③AB ―→-AC ―→+BD ―→-CD ―→=CB ―→+BD ―→+DC ―→=CB ―→+BC ―→=0,③正确;④NQ ―→+QP ―→+MN ―→-MP ―→=NP ―→+PN ―→=0,④正确.故①③④正确.4.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC ―→=2BD ―→,CE ―→=2EA ―→,AF ―→=2FB ―→,则AD ―→+BE ―→+CF ―→与BC ―→( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A 由题意得AD ―→=AB ―→+BD ―→=AB ―→+13BC ―→,BE ―→=BA ―→+AE ―→=BA ―→+13AC ―→,CF ―→=CB ―→+BF ―→=CB ―→+13BA ―→,因此AD ―→+BE ―→+CF ―→=CB ―→+13(BC ―→+AC ―→-AB ―→)=CB ―→+23BC ―→=-13BC ―→,故AD ―→+BE ―→+CF ―→与BC ―→反向平行.5.设O 在△ABC 的内部,D 为AB 的中点,且OA ―→+OB ―→+2OC ―→=0,则△ABC 的面积与△AOC 的面积的比值为( )A .3B .4C .5D .6解析:选B ∵D 为AB 的中点,则OD ―→=12(OA ―→+OB ―→),又OA ―→+OB ―→+2OC ―→=0,∴OD ―→=-OC ―→,∴O 为CD 的中点, 又∵D 为AB 中点, ∴S △AOC =12S △ADC =14S △ABC ,则S △ABCS △AOC=4. 6.在▱ABCD 中,AB ―→=a ,AD ―→=b ,AN ―→=3NC ―→,M 为BC 的中点,则MN ―→=________(用a ,b 表示).解析:由AN ―→=3NC ―→,得AN ―→=34AC ―→=34(a +b ),AM ―→=a +12b ,所以MN ―→=AN ―→-AM ―→=34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b . 答案:-14a +14b7.设点M 是线段BC 的中点,点A 在直线BC 外,BC ―→2=16,|AB ―→+AC ―→|=|AB ―→-AC ―→|,则|AM ―→|=________.解析:由|AB ―→+AC ―→|=|AB ―→-AC ―→|可知,AB ―→⊥AC ―→, 则AM 为Rt △ABC 斜边BC 上的中线, 因此,|AM ―→|=12|BC ―→|=2.答案:28.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC ―→=a ,CA ―→=b ,给出下列命题:①AD ―→=12a -b ;②BE ―→=a +12b ;③CF ―→=-12a +12b ;④AD ―→+BE ―→+CF ―→=0.其中正确命题的个数为________.解析:BC ―→=a ,CA ―→=b ,AD ―→=12CB ―→+AC ―→=-12a -b ,故①错;BE ―→=BC ―→+12CA ―→=a +12b ,故②正确;CF ―→=12(CB ―→+CA ―→)=12(-a +b )=-12a +12b ,故③正确;AD ―→+BE ―→+CF ―→=-b -12a +a +12b +12b -12a =0,故④正确.∴正确命题为②③④. 答案:39.在△ABC 中,D ,E 分别为BC ,AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB ―→=a ,AC ―→=b ,试用a ,b 表示AD ―→,AG ―→.解:AD ―→=12(AB ―→+AC ―→)=12a +12b .AG ―→=AB ―→+BG ―→=AB ―→+23BE ―→=AB ―→+13(BA ―→+BC ―→)=23AB ―→+13(AC ―→-AB ―→) =13AB ―→+13AC ―→ =13a +13b . 10.设e 1,e 2是两个不共线的向量,已知AB ―→=2e 1-8e 2,CB ―→=e 1+3e 2,CD ―→=2e 1-e 2.(1)求证:A ,B ,D 三点共线;(2)若BF ―→=3e 1-ke 2,且B ,D ,F 三点共线,求k 的值.解:(1)证明:由已知得BD ―→=CD ―→-CB ―→=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2, ∵AB ―→=2e 1-8e 2, ∴AB ―→=2BD ―→.又∵AB ―→与BD ―→有公共点B , ∴A ,B ,D 三点共线. (2)由(1)可知BD ―→=e 1-4e 2,∵BF ―→=3e 1-ke 2,且B ,D ,F 三点共线, ∴BF ―→=λBD ―→(λ∈R), 即3e 1-ke 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ. 解得k =12.三上台阶,自主选做志在冲刺名校1.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE ―→=AD ―→+μAB ―→,则μ的取值范围是________.解析:由题意可求得AD =1,CD =3,所以AB ―→=2DC ―→. ∵点E 在线段CD 上, ∴DE ―→=λDC ―→(0≤λ≤1). ∵AE ―→=AD ―→+DE ―→,又AE ―→=AD ―→+μAB ―→=AD ―→+2μDC ―→=AD ―→+2μλDE ―→, ∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12.即μ的取值范围是⎣⎡⎦⎤0,12. 答案:⎣⎡⎦⎤0,12 2.已知O ,A ,B 是不共线的三点,且OP ―→=m OA ―→+n OB ―→(m ,n ∈R). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 证明:(1)若m +n =1, 则OP ―→=m OA ―→+(1-m )OB ―→ =OB ―→+m (OA ―→-OB ―→), ∴OP ―→-OB ―→=m (OA ―→-OB ―→), 即BP ―→=m BA ―→,∴BP ―→与BA ―→共线. 又∵BP ―→与BA ―→有公共点B ,∴A ,P ,B 三点共线. (2)若A ,P ,B 三点共线, 则存在实数λ,使BP ―→=λBA ―→, ∴OP ―→-OB ―→=λ(OA ―→-OB ―→). 又OP ―→=m OA ―→+n OB ―→.故有m OA ―→+(n -1)OB ―→=λOA ―→-λOB ―→, 即(m -λ)OA ―→+(n +λ-1)OB ―→=0. ∵O ,A ,B 不共线,∴OA ―→,OB ―→不共线,∴⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,∴m +n =1.第二节平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.[小题体验]1.已知a =(4,2),b =(-6,m ),若a ∥b ,则m 的值为______. 答案:-32.(教材习题改编)已知a =(2,1),b =(-3,4),则3a +4b =________. 答案:(-6,19)3.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .解析:由题意,设e 1+e 2=m a +n b . 因为a =e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )e 2.由平面向量基本定理,得⎩⎪⎨⎪⎧m -n =1,2m +n =1,所以⎩⎨⎧m =23,n =-13.答案:23 -131.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.[小题纠偏]1.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 答案:02.(2015·江苏高考)已知向量a =(2,1),b =(1,-2),若ma +nb =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:∵ma +nb =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-3考点一 平面向量基本定理及其应用(基础送分型考点——自主练透)[题组练透]1.如图,在三角形ABC 中,BE 是边AC 的中线,O 是BE 边的中点,若AB ―→=a ,AC ―→=b ,则AO ―→=( )A .12a +12bB .12a +13bC .14a +12bD .12a +14b解析:选D ∵在三角形ABC 中, BE 是AC 边上的中线, ∴AE ―→=12AC ―→.∵O 是BE 边的中点,∴AO ―→=12(AB ―→+AE ―→)=12AB ―→+14AC ―→=12a +14b .2.(易错题)如图,以向量OA ―→=a ,OB ―→=b 为邻边作▱OADB ,BM ―→=13BC ―→,CN ―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→.解:∵BA ―→=OA ―→-OB ―→=a -b , BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b , ∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→ =23OD ―→=23a +23b , ∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[谨记通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理,如“题组练透”第2题.考点二 平面向量的坐标运算(基础送分型考点——自主练透)[题组练透]1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b 为( ) A .(-3,4) B .(3,4) C .(3,-4)D .(-3,-4)解析:选A 由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),∴b =12(-6,8)=(-3,4),故选A .2.已知点M (5,-6)和向量a =(1,-2),若MN ―→=-3a ,则点N 的坐标为( ) A .(2,0) B .(-3,6) C .(6,2)D .(-2,0)解析:选A MN ―→=-3a =-3(1,-2)=(-3,6), 设N (x ,y ),则MN ―→=(x -5,y +6)=(-3,6),所以⎩⎪⎨⎪⎧ x -5=-3,y +6=6,即⎩⎪⎨⎪⎧x =2,y =0.3.已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b ,(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M ,N 的坐标及向量MN ―→的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵mb +nc =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c , ∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18).[谨记通法]平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解.考点三 平面向量共线的坐标表示(重点保分型考点——师生共研)[典例引领]已知a =(1,0),b =(2,1).(1)当k 为何值时,ka -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +mb ,且A ,B ,C 三点共线,求m 的值. 解:(1)∵a =(1,0),b =(2,1), ∴ka -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2), ∵ka -b 与a +2b 共线, ∴2(k -2)-(-1)×5=0, ∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3), BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线, ∴AB ―→∥BC ―→, ∴8m -3(2m +1)=0, ∴m =32.[由题悟法] 向量共线的充要条件(1)a ∥b ⇔a =λb (b ≠0);(2)a ∥b ⇔x 1y 2-x 2y 1=0(其中a =(x 1,y 1),b =(x 2,y 2)).当涉及向量或点的坐标问题时一般利用(2)比较方便.[即时应用]1.已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B .43C .12D .13解析:选A AB ―→=OB ―→-OA ―→=(4-k ,-7), AC ―→=OC ―→-OA ―→=(-2k ,-2). ∵A ,B ,C 三点共线,∴AB ―→,AC ―→共线, ∴-2×(4-k )=-7×(-2k ), 解得k =-23.2.(2017·贵阳监测)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )∥(m -n ),则λ=________.解析:因为m +n =(2λ+3,3),m -n =(-1,-1),又(m +n )∥(m -n ),所以(2λ+3)×(-1)=3×(-1),解得λ=0.答案:0一抓基础,多练小题做到眼疾手快1.在平行四边形ABCD 中,AC 为对角线,若AB ―→=(2,4),AC ―→=(1,3),则BD ―→=( ) A .(-2,-4) B .(-3,-5) C .(3,5)D .(2,4)解析:选B 由题意得BD ―→=AD ―→-AB ―→=BC ―→-AB ―→=(AC ―→-AB ―→)-AB ―→=AC ―→-2AB ―→=(1,3)-2(2,4)=(-3,-5).2.已知A (-1,-1),B (m ,m +2),C (2,5)三点共线,则m 的值为( ) A .1 B .2 C .3D .4解析:选A AB ―→=(m ,m +2)-(-1,-1)=(m +1,m +3), AC ―→=(2,5)-(-1,-1)=(3,6), ∵A ,B ,C 三点共线,∴AB ―→∥AC ―→, ∴3(m +3)-6(m +1)=0, ∴m =1.故选A .3.如图,在△OAB 中,P 为线段AB 上的一点,OP ―→=x OA ―→+y OB ―→,且BP ―→=2PA ―→,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP ―→=OB ―→+BP ―→,又BP ―→=2PA ―→,所以OP ―→=OB ―→+23BA ―→=OB―→+23(OA ―→-OB ―→)=23OA ―→+13OB ―→,所以x =23,y =13. 4.已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角θ=________. 解析:因为a ∥b ,所以(1-sin θ)×(1+sin θ)-1×12=0,得cos 2θ=12,所以cos θ=±22,又∵θ为锐角,∴θ=π4.答案:π45.在△ABC 中,点P 在BC 上,且BP ―→=2PC ―→,点Q 是AC 的中点,若 PA ―→=(4,3),PQ ―→=(1,5),则BC ―→=________.解析:AQ ―→―→=PQ ―→-PA ―→=(-3,2), ∴AC ―→=2AQ ―→=(-6,4). PC ―→=PA ―→+AC ―→=(-2,7), ∴BC ―→=3PC ―→=(-6,21). 答案:(-6,21)二保高考,全练题型做到高考达标1.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0)D .(-7,0)解析:选A 由题意可得3a -2b +c =(23+x,12+y )=(0,0),所以⎩⎪⎨⎪⎧23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12). 2.已知向量a ,b 不共线,c =ka +b (k ∈R),d =a -b ,如果c ∥d ,那么( ) A .k =1且c 与d 同向 B .k =1且c 与d 反向 C .k =-1且c 与d 同向D .k =-1且c 与d 反向解析:选D 由题意可得c 与d 共线,则存在实数λ,使得c =λd ,即⎩⎪⎨⎪⎧k =λ,1=-λ,解得k =-1.c =-a +b =-(a -b )=-d ,故c 与d 反向.3.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x,3),若(2a +b )∥c ,则x =( )A .-2B .-4C .-3D .-1解析:选D ∵a -12b =(3,1),∴a -(3,1)=12b ,则b =(-4,2).∴2a +b =(-2,6).又(2a +b )∥c ,∴-6=6x ,x =-1.故选D .4.已知点A (2,3),B (4,5),C (7,10),若AP ―→=AB ―→+λAC ―→(λ∈R),且点P 在直线x -2y =0上,则λ的值为( )A .23B .-23C .32D .-32解析:选B 设P (x ,y ),则由AP ―→=AB ―→+λAC ―→,得(x -2,y -3)=(2,2)+λ(5,7)=(2+5λ,2+7λ),∴x =5λ+4,y =7λ+5.又点P 在直线x -2y =0上,故5λ+4-2(7λ+5)=0,解得λ=-23.故选B .5.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC ―→=a ,BD ―→=b ,则AF ―→=( )A .14a +12bB .12a +14bC .23a +13bD .13a +23b解析:选C 如图,∵AC ―→=a ,BD ―→=b ,∴AD ―→=AO ―→+OD ―→=12AC ―→+12BD ―→=12a +12b .∵E 是OD 的中点, ∴|DE ||EB |=13, ∴|DF |=13|AB |.∴DF ―→=13AB ―→=13(OB ―→-OA ―→)=13×⎣⎡⎦⎤-12BD ―→-⎝⎛⎭⎫-12AC ―→ =16AC ―→-16BD ―→=16a -16b , ∴AF ―→=AD ―→+DF ―→=12a +12b +16a -16b =23a +13b ,故选C .6.已知向量a =(1,3),b =(-2,1),c =(3,2).若向量c 与向量ka +b 共线,则实数k =________.解析:ka +b =k (1,3)+(-2,1)=(k -2,3k +1),因为向量c 与向量ka +b 共线,所以2(k -2)-3(3k +1)=0,解得k =-1.答案:-17.已知向量OA ―→=(1,-3),OB ―→=(2,-1),OC ―→=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB ―→,AC ―→不共线. ∵AB ―→=OB ―→-OA ―→=(2,-1)-(1,-3)=(1,2), AC ―→=OC ―→-OA ―→=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1. 答案:k ≠18.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R),则λμ=________.解析:以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO ―→=(-1,1),b =OB ―→=(6,2),c =BC ―→=(-1,-3). ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2), 即-λ+6μ=-1,λ+2μ=-3, 解得λ=-2,μ=-12,∴λμ=4.答案:49.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =mb +nc 的实数m ,n ; (2)若(a +kc )∥(2b -a ),求实数k . 解:(1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,解得⎩⎨⎧m =59,n =89.(2)a +kc =(3+4k,2+k ),2b -a =(-5,2),由题意得2×(3+4k )-(-5)×(2+k )=0,解得k =-1613.10.如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA ―→=a ,BC ―→=b ,试用a ,b 为基底表示向量EF ―→,DF ―→,CD ―→.解:EF ―→=EA ―→+AB ―→+BF ―→=-16b -a +12b =13b -a ,DF ―→=DE ―→+EF ―→=-16b +⎝⎛⎭⎫13b -a =16b -a , CD ―→=CF ―→+FD ―→=-12b -⎝⎛⎭⎫16b -a =a -23b .三上台阶,自主选做志在冲刺名校1.如图,G 是△OAB 的重心,P ,Q 分别是边OA ,OB 上的动点,且P ,G ,Q 三点共线.设OP ―→=x OA ―→,OQ ―→=y OB ―→,则1x +1y=________.解析:∵点P ,G ,Q 在一条直线上,∴PG ―→=λPQ ―→. ∴OG ―→=OP ―→+PG ―→=OP ―→+λPQ ―→=OP ―→+λ(OQ ―→-OP ―→) =(1-λ)OP ―→+λOQ ―→=(1-λ)x OA ―→+λy OB ―→,① 又∵G 是△OAB 的重心, ∴OG ―→=23OM ―→=23×12(OA ―→+OB ―→)=13OA ―→+13OB ―→.② 而OA ―→,OB ―→不共线,∴由①②,得⎩⎨⎧(1-λ)x =13,λy =13.解得⎩⎨⎧1x=3-3λ,1y =3λ.∴1x +1y =3.答案:32.已知三点A (a,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值; (2)若A ,B ,C 三点共线,试求a +b 的最小值.解:(1)因为四边形OACB 是平行四边形, 所以OA ―→=BC ―→,即(a,0)=(2,2-b ),⎩⎪⎨⎪⎧ a =2,2-b =0,解得⎩⎪⎨⎪⎧a =2,b =2.故a =2,b =2.(2)因为AB ―→=(-a ,b ),BC ―→=(2,2-b ), 由A ,B ,C 三点共线,得AB ―→∥BC ―→, 所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0,所以2(a +b )=ab ≤⎝ ⎛⎭⎪⎫a +b 22,即(a +b )2-8(a +b )≥0, 解得a +b ≥8或a +b ≤0. 因为a >0,b >0,所以a +b ≥8,即a +b 的最小值是8. 当且仅当a =b =4时,“=”成立.第三节平面向量的数量积与平面向量应用举例1.向量的夹角(1)a·b =b·a .(2)(λa )·b =λ(a·b )=a·(λb ). (3)(a +b )·c =a·c +b·c . 4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.[小题体验]1.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ为( ) A .π6 B .π3 C .2π3 D .5π6答案:D2.已知|a |=5,|b |=4,a 与b 的夹角为120°,则a ·b =_____. 答案:-103.(2016·山东高考)已知向量a =(1,-1),b =(6,-4).若a ⊥(ta +b ),则实数t 的值为________.解析:∵a =(1,-1),b =(6,-4),∴ta+b=(t+6,-t-4).又a⊥(ta+b),则a·(ta+b)=0,即t+6+t+4=0,解得t=-5.答案:-51.数量积运算律要准确理解、应用,例如,a·b=a·c(a≠0)不能得出b=c,两边不能约去一个向量.2.两个向量的夹角为锐角,则有a·b>0,反之不成立;两个向量夹角为钝角,则有a·b<0,反之不成立.3.a·b=0不能推出a=0或b=0,因为a·b=0时,有可能a⊥b.4.在用|a|=a2求向量的模时,一定要把求出的a2再进行开方.[小题纠偏]1.给出下列说法:①向量b在向量a方向上的投影是向量;②若a·b>0,则a和b的夹角为锐角,若a·b<0,则a和b的夹角为钝角;③(a·b)c=a(b·c);④若a·b=0,则a=0或b=0.其中正确的说法有________个.答案:02.(2016·北京高考)已知向量a=(1,3),b=(3,1),则a与b夹角的大小为________.解析:由题意得|a|=1+3=2,|b|=3+1=2,a·b=1×3+3×1=23.设a与b的夹角为θ,则cos θ=232×2=32.∵θ∈[0,π],∴θ=π6.答案:π6考点一平面向量的数量积的运算(基础送分型考点——自主练透)[题组练透]1.(易错题)设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =( ) A .(-15,12) B .0 C .-3D .-11解析:选C ∵a +2b =(1,-2)+2(-3,4)=(-5,6), ∴(a +2b )·c =(-5,6)·(3,2)=-3.2.已知AB ―→=(2,1),点C (-1,0),D (4,5),则向量AB ―→在CD ―→方向上的投影为( ) A .-322B .-3 5C .322D .3 5解析:选C 因为点C (-1,0),D (4,5),所以CD ―→=(5,5),又AB ―→=(2,1),所以向量AB ―→在CD ―→方向上的投影为|AB ―→|cos 〈AB ―→,CD ―→〉=AB ―→·CD ―→|CD ―→|=1552=322.3.已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a ·b =________. 解析:因为a =(-2,-6), 所以|a |=(-2)2+(-6)2=210,又|b|=10,向量a 与b 的夹角为60°, 所以a ·b =|a|·|b|·cos 60°=210×10×12=10.答案:104.如图,在等腰直角三角形ABC 中,∠C =90°,AC =2,D 为BC 的中点,则AB ―→·AD ―→=________.解析:法一:由题意知,AC =BC =2,AB =22, ∴AB ―→·AD ―→=AB ―→·(AC ―→+CD ―→) =AB ―→·AC ―→+AB ―→·CD ―→=|AB ―→|·|AC ―→|cos 45°+|AB ―→|·|CD ―→|cos 45° =22×2×22+22×1×22=6.法二:建立如图所示的平面直角坐标系, 由题意得A (0,2),B (-2,0), D (-1,0),∴AB ―→=(-2,0)-(0,2)=(-2,-2), AD ―→=(-1,0)-(0,2)=(-1,-2), ∴AB ―→·AD ―→=-2×(-1)+(-2)×(-2)=6. 答案:6[谨记通法]向量数量积的2种运算方法考点二 平面向量数量积的性质(题点多变型考点——多角探明) [锁定考向]平面向量的夹角与模的问题是高考中的常考内容,题型多为选择题、填空题,难度适中,属中档题.常见的命题角度有: (1)平面向量的模; (2)平面向量的夹角;(3)平面向量的垂直.[题点全练]角度一:平面向量的模1.已知e 1,e 2是单位向量,且e 1·e 2=12.若向量b 满足b ·e 1=b ·e 2=1,则|b |=________.解析:∵e 1·e 2=12,∴|e 1||e 2|e 1,e 2=12,∴e 1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°. 由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.答案:233角度二:平面向量的夹角2.(2017·山西四校联考)已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为( )A .π6B .π4C .π3D .2π3解析:选B ∵a ⊥(a -b ),∴a ·(a -b )=a 2-a ·b =1-2a ,b =0,∴a ,b =22,∴a ,b =π4. 3.(2017·江西八校联考)在△ABC 中,AB ―→=(2,3),AC ―→=(1,2),则△ABC 的面积为________.解析:由题意得,(|AB ―→|· |AC ―→|)2=(|AB ―→|·|AC ―→|·cos 〈AB ―→,AC ―→〉)2+(|AB ―→|·|AC ―→|·sin 〈AB ―→,AC ―→〉)2,即(|AB ―→|·|AC ―→|)2=(AB ―→·AC ―→)2+(|AB ―→|·|AC ―→|·sin 〈AB ―→,AC ―→〉)2, ∴|AB ―→|·|AC ―→|·sin 〈AB ―→,AC ―→〉=2-3, ∴S △ABC =12|AB ―→|·|AC ―→|·sin 〈AB ―→,AC ―→〉=1-32.答案:1-32角度三:平面向量的垂直4.(2016·山东高考)已知非零向量m ,n 满足4|m|=3|n|,cos 〈m ,n 〉=13,若n ⊥(t m+n ),则实数t 的值为( )A .4B .-4C .94D .-94解析:选B ∵n ⊥(t m +n ),∴n·(t m +n )=0, 即t m·n +|n |2=0,∴t|m||n|cos 〈m ,n 〉+|n |2=0. 又4|m |=3|n |,∴t ×34|n|2×13+|n |2=0,解得t =-4.故选B .[通法在握]平面向量数量积求解问题的策略(1)求两向量的夹角:cos θ=a ·b|a |·|b |,要注意θ∈[0,π]. (2)求向量的模:利用数量积求解长度问题的处理方法有: ①a 2=a ·a =|a |2或|a |=a ·a . ②|a ±b |=(a ±b )2=a 2±2a ·b +b 2. ③若a =(x ,y ),则|a |=x 2+y 2.(3)两向量垂直的应用:两非零向量垂直的充要条件是:a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |.[演练冲关]1.(2017·合肥质检)已知不共线的两个向量a ,b 满足|a -b |=2且a ⊥(a -2b ),则|b |=( )A . 2B .2C .2 2D .4解析:选B 由a ⊥(a -2b )得,a ·(a -2b )=|a |2-2a ·b =0,则|a -b |=(a -b )2=|a |2-2a ·b +|b |2=|b |=2,故选B .2.已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.解析:a ·b =(3e 1-2e 2)·(3e 1-e 2)=9+2-9×1×1×13=8.∵|a |2=(3e 1-2e 2)2=9+4-12×1×1×13=9,∴|a |=3.∵|b |2=(3e 1-e 2)2=9+1-6×1×1×13=8,∴|b |=22, ∴cos β=a ·b |a |·|b |=83×22=223. 答案:2233.已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λ AB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.解析:BC ―→=AC ―→-AB ―→,由于AP ―→⊥BC ―→, 所以AP ―→·BC ―→=0, 即(λAB ―→+AC ―→)·(AC ―→-AB ―→) =-λAB ―→2+AC ―→2+(λ-1)AB ―→·AC ―→ =-9λ+4+(λ-1)×3×2×⎝⎛⎭⎫-12 =0,解得λ=712.答案:712考点三 平面向量与三角函数的综合(重点保分型考点——师生共研)[典例引领]已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R . (1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.解:(1)f (x )=a ·b =2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z),解得k π-π6≤x ≤k π+π3(k ∈Z),所以f (x )的单调递减区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z). (2)∵f (A )=1+2cos ⎝⎛⎭⎫2A +π3=-1, ∴cos ⎝⎛⎭⎫2A +π3=-1. 又π3<2A +π3<7π3, ∴2A +π3=π,即A =π3.∵a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.① ∵向量m =(3,sin B )与n =(2,sin C )共线, 所以2sin B =3sin C .由正弦定理得2b =3c ,② 由①②,可得b =3,c =2.[由题悟法]平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求值域等.[即时应用](2017·临沂模拟)已知向量m =(sin α-2,-cos α),n =(-sin α,cos α),其中α∈R . (1)若m ⊥n ,求角α;(2)若|m -n |=2,求cos 2α的值. 解:(1)若m ⊥n ,则m ·n =0, 即为-sin α(sin α-2)-cos 2α=0,即sin α=12,可得α=2k π+π6或α=2k π+5π6,k ∈Z .(2)若|m -n |=2,即有(m -n )2=2, 即(2sin α-2)2+(2cos α)2=2,即为4sin 2α+4-8sin α+4cos 2 α=2, 即有8-8sin α=2,可得sin α=34,即有cos 2α=1-2sin 2α=1-2×916=-18.一抓基础,多练小题做到眼疾手快1.设x ∈R ,向量a =(1,x ),b =(2,-4),且a ∥b ,则a ·b =( ) A .-6 B .10 C . 5D .10解析:选D ∵a =(1,x ),b =(2,-4)且a ∥b ,∴-4-2x =0,x =-2,∴a =(1,-2),a ·b =10,故选D . 2.(2017·河南八市重点高中质检)已知平面向量a ,b 的夹角为2π3,且a ·(a -b )=8,|a |=2,则|b |等于( )A . 3B .2 3C .3D .4解析:选D 因为a ·(a -b )=8,所以a ·a -a ·b =8,即|a |2-|a ||b a ,b =8,所以4+2|b |×12=8,解得|b |=4.3.已知|a |=3,|b |=2,(a +2b )·(a -3b )=-18,则a 与b 的夹角为( ) A .30° B .60° C .120°D .150°解析:选B (a +2b )·(a -3b )=-18, ∴a 2-6b 2-a ·b =-18,∵|a |=3,|b |=2,∴9-24-a ·b =-18, ∴a ·b =3,∴a ,b =a ·b |a ||b |=36=12,∴a ,b =60°.4.已知a =(m +1,-3),b =(1,m -1),且(a +b )⊥(a -b ),则m 的值是________. 解析:a +b =(m +2,m -4),a -b =(m ,-2-m ),∵(a +b )⊥(a -b ),∴m (m +2)-(m -4)(m +2)=0, ∴m =-2. 答案:-25.△ABC 中,∠BAC =2π3,AB =2,AC =1,DC ―→=2BD ―→,则AD ―→·BC ―→=________.解析:由DC ―→=2BD ―→,得AD ―→=13(AC ―→+2AB ―→).∴AD ―→·BC ―→=13(AC ―→+2AB ―→)·(AC ―→-AB ―→)=13(AC ―→2+AC ―→·AB ―→-2AB ―→2) =13⎣⎡⎦⎤12+1×2×⎝⎛⎭⎫-12-2×22=-83. 答案:-83二保高考,全练题型做到高考达标1.已知向量a =(1,x ),b =(-1,x ),若2a -b 与b 垂直,则|a |=( ) A . 2 B . 3 C .2D .4解析:选C 由已知得2a -b =(3,x ),而(2a -b )·b =0⇒-3+x 2=0⇒x 2=3,所以|a |=1+x 2=4=2.2.(2017·贵州适应性考试)若单位向量e 1,e 2的夹角为π3,向量a =e 1+λe 2(λ∈R),且|a |=32,则λ=( ) A .-12B .32-1C .12D .32解析:选A 由题意可得e 1·e 2=12,|a |2=(e 1+λe 2)2=1+2λ×12+λ2=34,化简得λ2+λ+14=0,解得λ=-12,故选A . 3.平面四边形ABCD 中,AB ―→+CD ―→=0,(AB ―→-AD ―→)·AC ―→=0,则四边形ABCD 是( ) A .矩形 B .正方形 C .菱形D .梯形解析:选C 因为AB ―→+CD ―→=0,所以AB ―→=-CD ―→=DC ―→,所以四边形ABCD 是平行四边形.又(AB ―→-AD ―→)·AC ―→=DB ―→·AC ―→=0,所以四边形对角线互相垂直,所以四边形ABCD 是菱形.4.(2016·重庆适应性测试)设单位向量e 1,e 2的夹角为2π3,a =e 1+2e 2,b =2e 1-3e 2,则b 在a 方向上的投影为( )A .-332B .- 3C . 3D .332解析:选A 依题意得e 1·e 2=1×1×cos 2π3=-12,|a |=(e 1+2e 2)2=e 21+4e 22+4e 1·e 2=3,a·b =(e 1+2e 2)·(2e 1-3e 2)=2e 21-6e 22+e 1·e 2=-92,因此b 在a 方向上的投影为a·b |a |=-923=-332,故选A .5.(2017·成都模拟)已知菱形ABCD 边长为2,∠B =π3,点P 满足AP ―→=λAB ―→,λ∈R ,若BD ―→·CP ―→=-3,则λ的值为( )A .12B .-12C .13D .-13解析:选A 法一:由题意可得BA ―→·BC ―→=2×2cos π3=2,BD ―→·CP ―→=(BA ―→+BC ―→) ·(BP ―→-BC ―→) =(BA ―→+BC ―→)·[(AP ―→-AB ―→)-BC ―→] =(BA ―→+BC ―→)·[(λ-1)·AB ―→-BC ―→]=(1-λ)BA ―→2-BA ―→·BC ―→+(1-λ)BA ―→·BC ―→-BC ―→2 =(1-λ)·4-2+2(1-λ)-4 =-6λ=-3,∴λ=12,故选A .法二:建立如图所示的平面直角坐标系,则B (2,0),C (1,3),D (-1,3). 令P (x,0),由BD ―→·CP ―→=(-3,3)·(x -1,-3)=-3x +3-3=-3x =-3得x =1. ∵AP ―→=λAB ―→,∴λ=12.故选A .6.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )b ,则|c |=________. 解析:由题意可得a ·b =2×1+4×(-2)=-6, ∴c =a -(a ·b )b =a +6b =(2,4)+6(1,-2)=(8,-8), ∴|c |=82+(-8)2=82.答案:8 27.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则向量m ,n 的夹角的余弦值为________.解析:因为m +n =(2λ+3,3),m -n =(-1,-1), 所以由(m +n )⊥(m -n )得(m +n )·(m -n )=0, 即(2λ+3)×(-1)+3×(-1)=0,解得λ=-3, 则m =(-2,1),n =(-1,2), 所以cos 〈m ,n 〉=m·n |m ||n |=45. 答案:458.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB ―→=4AC ―→,则OC ―→·(OB ―→-OA ―→)=________.解析:由已知得|AB ―→|=2,|AC ―→|=24,则OC ―→·(OB ―→-OA ―→)=(OA ―→+AC ―→)·AB ―→=OA ―→·AB ―→+AC ―→·AB ―→=2cos 3π4+24×2=-12.。

高三数学总复习讲义——向量

高三数学总复习讲义——向量

高三数学总复习讲义——向量一、知识清单(一)向量的有关定义1.向量:既有大小又有方向的量叫做向量.向量的大小叫向量的模(也叫向量的长度).用|表示|2.向量的表示方法:(1)字母表示法:如,,,a b c r r rL 等.(2)坐标表示法:在平面直角坐标系中,设向量OA u u u r的起点O 为在坐标原点,终点A 坐标为(),x y ,则(),x y 称为OA u u u r 的坐标,记为OA u u u r=(),x y .(3)几何表示法:用一条有向线段表示向量.如AB uuu r ,CD uuu r 等.注:向量既有代数特征,又有几何特征,它是数形兼备的好工具.3.相等向量:长度相等且方向相同的向量.向量可以自由平移,平移前后的向量相等.两向量a r 与b r相等,记为a b =r r .注:向量不能比较大小,因为方向没有大小.4.零向量:长度为零的向量叫零向量.零向量只有一个,其方向是任意的.5.单位向量:长度等于1个单位的向量.单位向量有无数个,每一个方向都有一个单位向量.6.共线向量:方向相同或相反的非零向量,叫共线向量.任一组共线向量都可以移到同一直线上.规定:0r与任一向量共线.注:共线向量又称为平行向量.7.相反向量: 长度相等且方向相反的向量. (二)向量的运算 1.运算定义①向量的加减法,②实数与向量的乘积,③两个向量的数量积,这些运算的定义都是 “自然的”,它们都有明显的物理学的意义及几何意义.其中向量的加减法运算结果仍是向量,两个向量数量积运算结果是数量。

研究这些运算,发现它们有很好地运算性质,这些运算性质为我们用向量研究问题奠定了基础,向量确实是一个好工具.特别是向量可以用坐标表示,且可以用坐标来运算,向量运算问题可以完全坐标化.运 算 图形语言符号语言坐标语言加法与减法OA --→+OB --→=OC --→OB --→OA --→-=AB --→记OA --→=(x 1,y 1),OB --→=(x 1,y 2)则OA OB +uu u r uuu r=(x 1+x 2,y 1+y 2) OB OA -uuu r uu u r=(x 2-x 1,y 2-y 1)OA --→+AB --→=OB --→实数与向量的乘积AB --→=λa →λ∈R记a →=(x ,y ) 则λa →=(λx ,λy )两个向量的数量积cos ,a b a b a b ⋅=⋅r r r r r r 记1122(,),(,)a x y b x y ==r r则a →·b →=x 1x 2+y 1y 22.运算律加法:①a b b a +=+r r r r (交换律); ②()()a b c a b c ++=++r r r r r r (结合律) 实数与向量的乘积:①()a b a b λλλ+=+r r r r ; ②()a a a λμλμ+=+r r r;③()()a a λμλμ=r r两个向量的数量积: ①a →·b →=b →·a →; ②(λa →)·b →=a →·(λb →)=λ(a →·b →);③(a →+b →)·c →=a →·c →+b →·c →注:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算, 例如(a →±b→)2=222a a b b →→→→±⋅+3.运算性质及重要结论⑴平面向量基本定理:如果12,e e u r u u r是同一平面内两个不共线的向量,那么对于这个平面内任一向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r ,称1122e e λλ+u r u u r 为12,e e u r u u r的线性组合。

高考数学向量讲解教案

高考数学向量讲解教案

高考数学向量讲解教案教案标题:高考数学向量讲解教案教学目标:1. 理解向量的概念和性质;2. 掌握向量的表示方法和运算法则;3. 能够解决与向量相关的高考数学题目。

教学重点:1. 向量的概念和性质;2. 向量的表示方法;3. 向量的运算法则。

教学难点:1. 向量的线性运算;2. 向量的数量积和向量积的计算;3. 向量的应用题解决方法。

教学准备:1. 教师准备:教学课件、教学素材、教学工具;2. 学生准备:教材、笔记本、计算器。

教学过程:一、导入(5分钟)1. 引入向量的概念,通过实际例子让学生理解向量的含义和作用;2. 提问:你认为向量有哪些特点和性质?二、讲解向量的概念和性质(15分钟)1. 定义向量的概念,并解释向量的方向和大小;2. 介绍向量的性质,如相等向量、零向量、负向量等;3. 通过示例让学生掌握向量的表示方法。

三、向量的运算法则(20分钟)1. 向量的加法:讲解向量的平行四边形法则和三角形法则,并通过实例演示;2. 向量的减法:引入负向量的概念,讲解向量减法的运算法则;3. 向量的数量积:介绍数量积的定义和计算公式,并讲解数量积的几何意义;4. 向量的向量积:引入向量积的概念,讲解向量积的定义和计算公式。

四、解决高考数学题目(20分钟)1. 练习基础题目:通过高考真题或模拟题让学生巩固向量的概念和运算法则;2. 解析典型题目:选取一些典型的高考数学向量题目,讲解解题思路和方法。

五、总结与拓展(10分钟)1. 总结本节课的重点内容,强化学生对向量的概念和运算法则的理解;2. 拓展练习:布置一些高难度的向量题目,让学生进行自主拓展。

教学反思:本节课通过引入向量的概念和性质,讲解了向量的表示方法和运算法则,同时通过解决高考数学题目巩固了学生的学习成果。

在教学过程中,可以适当增加一些互动环节,提高学生的参与度和学习兴趣。

同时,教师需要根据学生的实际情况,调整教学进度和难度,确保教学效果的最大化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

09级高三数学总复习讲义——向量知识清单一、向量的有关概念1.向量:既有大小又有方向的量叫做向量.向量的大小叫向量的模(也就是用来表示向量的有向线段的长度).2.向量的表示方法:⑴字母表示法:如,,,a b c等.⑵几何表示法:用一条有向线段表示向量.如AB ,CD等.⑶坐标表示法:在平面直角坐标系中,设向量OA的起点O 为在坐标原点,终点A 坐标为(),x y ,则(),x y 称为OA 的坐标,记为OA=(),x y .注:向量既有代数特征,又有几何特征,它是数形兼备的好工具.3.相等向量:长度相等且方向相同的向量.向量可以自由平移,平移前后的向量相等.两向量a与b 相等,记为a b = .注:向量不能比较大小,因为方向没有大小.4.零向量:长度为零的向量叫零向量.零向量只有一个,其方向是任意的.5.单位向量:长度等于1个单位的向量.单位向量有无数个,每一个方向都有一个单位向量.6.共线向量:方向相同或相反的非零向量,叫共线向量.任一组共线向量都可以移到同一直线上.规定:0与任一向量共线.注:共线向量又称为平行向量.7.相反向量: 长度相等且方向相反的向量. 二、向量的运算 (一)运算定义①向量的加减法,②实数与向量的乘积,③两个向量的数量积,这些运算的定义都是 “自然的”,它们都有明显的物理学的意义及几何意义.其中向量的加减法运算结果仍是向量,两个向量数量积运算结果是数量。

研究这些运算,发现它们有很好地运算性质,这些运算性质为我们用向量研究问题奠定了基础,向量确实是一个好工具.特别是向量可以用坐标表示,且可以用坐标来运算,向量运算问题可以完全坐标化.加法:①a b b a +=+ (交换律); ②()()a b c a b c ++=++(结合律)实数与向量的乘积:①()a b a b λλλ+=+ ; ②()a a a λμλμ+=+;③()()a a λμλμ=两个向量的数量积: ①a →²b →=b →²a →; ②(λa →)²b →=a →²(λb →)=λ(a →²b →);③(a →+b →)²c →=a →·c →+b →²c →注:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算, 例如(a →±b →)2=222a a b b →→→→±⋅+ (三)运算性质及重要结论⑴平面向量基本定理:如果12,e e是同一平面内两个不共线的向量,那么对于这个平面内任一向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+ ,称1122e e λλ+ 为12,e e的线性组合。

①其中12,e e叫做表示这一平面内所有向量的基底;②平面内任一向量都可以沿两个不共线向量12,e e的方向分解为两个向量的和,并且这种分解是唯一的.这说明如果1122a e e λλ=+ 且''1122a e e λλ=+ ,那么1122λλλλ''=,=.③当基底12,e e是两个互相垂直的单位向量时,就建立了平面直角坐标系,因此平面向量基本定理实际上是平面向量坐标表示的基础.向量坐标与点坐标的关系:当向量起点在原点时,定义向量坐标为终点坐标,即若A(x ,y ),则→--OA =(x ,y );当向量起点不在原点时,向量→--AB 坐标为终点坐标减去起点坐标,即若A (x 1,y 1),B (x 2,y 2),则→--AB =(x 2-x 1,y 2-y 1) ⑵两个向量平行的充要条件符号语言:)0(//→→→→→→≠=⇔b b a b a λ坐标语言为:设非零向量()()1122,,,a b x y x y ==,则a →∥b →⇔(x 1,y 1)=λ(x 2,y 2),即1212x x y y λλ=⎧⎨=⎩,或x 1y 2-x 2y 1=0, 在这里,实数λ是唯一存在的,当a →与b →同向时,λ>0;当a →与b→异向时,λ<0。

|λ|=|b ||a |→→,λ的大小由a →及b →的大小确定。

因此,当a →,b →确定时,λ的符号与大小就确定了.这就是实数乘向量中λ的几何意义。

⑶两个向量垂直的充要条件符号语言:⇔⊥→→b a 0=⋅→→b a坐标语言:设非零向量()()1122,,,a b x y x y ==,则⇔⊥→→b a 02121=+y y x x⑷两个向量数量积的重要性质: ①22||→→=a a 即 2||→→=a a (求线段的长度);②⇔⊥→→b a 0=⋅→→b a (垂直的判断);③cos a ba bθ⋅=⋅ (求角度)。

以上结论可以(从向量角度)有效地分析有关垂直、长度、角度等问题,由此可以看到向量知识的重要价值.注:①两向量a →,b →的数量积运算结果是一个数cos a b θ⋅ (其中,a b θ=),这个数的大小与两个向量的长度及其夹角的余弦有关.②cos b θ 叫做向量b 在a方向上的投影(如图).数量积的几何意义是数量积a b 等于a 的模与b 在a方向上的投影的积.③如果111(,)P x y ,222(,)P x y ,则12PP=2121(,)x x y y --,∴12PP =,这就是平面内两点间的距离公式. 课前预习1.在ABCD中,BC CD BA -+=( )()BC A ()D AB ()A BC ()A C D2.平面内三点(0,3),(3,3),(,1)A B C x --,若→--AB ∥→--BC ,则x 的值为( )(A)-5 (B)-1 (C)1 (D)5 3. 设a →,b →, c →是任意的非零平面向量,且相互不共线,则: ①(a →²b →)c →-(c →²a →)b →=0②|a →|-|b →|<|a →b →-|③(b →²c →)a →-(c →²a →)b →不与c →垂直 ④(3a →+2b →)²(3a →-2b →)=9|a →|2- 4b →|2中, 真命题是( )(A)①② (B)②③ (C)③④ (D)②④ 4. △OAB 中,→--OA =a →,→--OB =b →,→--OP =p →,若p →=()||||abt a b →→→→+,t ∈R ,则点P 在( )(A)∠AOB 平分线所在直线上 (B)线段AB 中垂线上 (C)AB 边所在直线上 (D)AB 边的中线上5. 正方形P RS Q 对角线交点为M ,坐标原点O 不在正方形内部,且→--OP =(0,3),→--OS =(4,0),则→--RM =( )(A)(21,27--) (B)(21,27) (C)(7,4) (D)(27,27)6.已知()(),3,2,4,a x b a b ==-⊥,则实数x =_______.7.已知()()2,8,6,4,a b a b +=--=-- 则a = _____, b = ______,a 与b的夹角的余弦值是_____.8.在△OAB 中,(2cos ,2sin )OA αα= , (5cos ,5sin )OB ββ=,若5OA OB ⋅=- ,则OAB S ∆= ▲ .; 9. 已知ABC的三个顶点分别为(()(3,,6,0,5,,A B C 求ACB ∠的大小. 10. 已知△ABC 中,A (2,-1),B (3,2),C (-3,-1),BC 边上的高为AD ,求点D 和向量→--AD 坐标。

11.在△OAB 的边OA 、OB 上分别取点M 、N ,使|→--OM |∶|→--OA |=1∶3,|→--ON |∶|→--OB |=1∶4,设线段AN 与BM 交于点P ,记→--OA = a →,→--OB =b →,用 a →,b →表示向量OP --→.典型例题一、平面向量的实际背景与基本概念EG1.如图1,设O是正六边形的中心,分别写出图中与OA 、OB 、OC相等的向量。

变式1:如图1,设O 是正六边形的中心,分别写出 图中与OD 、DC 共线的向量。

解:变式2:如图2,设O 是正六边形的中心,分别写出图中与的模相等的向量以及方向相同的向量。

解: 二、平面向量的线性运算 EG2.如图,在平行四边形ABCD 中,AB = a ,AD =b , 你能用a ,b 表示向量 AC ,DB 吗?变式1:如图,在五边形ABCDE 中,AB = a ,BC = b , CD = c ,EA = d ,试用a ,b , c , d 表示向量CE 和DE .变式2:如图,在平行四边形ABCD 中,若,OA = a ,OB = b则下列各表述是正确的为( )A .OA OB AB += B .OC OD AB +=C .CD =- a + b D .BC =-(a + b )变式3:已知=a ,=b, =c ,=d , 且四边形ABCD 为平行四边形,则( ) A. a +b +c +d =0 B. a -b +c -d =0 C. a +b -c -d =0D. a -b -c +d =0变式4:在四边形ABCD 中,若12AB CD =-,则此四边形是( )A .平行四边形B .菱形C .梯形D .矩形变式5:已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的 ( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件变式6:在四边形ABCD 中,=a +2b ,=-4a -b ,=-5a -3b ,其中a 、b 不共线,则四边形ABCD 为( )D E C AA B B AC O FD E 图1 F图2A.平行四边形B.矩形C.梯形D.菱形 变式7:已知菱形ABCD ,点P 在对角线AC 上(不包括端点A 、C ),则AP 等( ) A.λ(AB +AD ),λ∈(0,1)B.λ(AB +BC ),λ∈(0,22) C.λ(AB -AD ),λ∈(0,1)D.λ(-),λ∈(0,22)变式8:已知D 、E 、F 分别是△ABC 的边BC 、CA 、AB 的中点,且BC =a ,CA =b,=c ,则下列各式:①=21c -21b ②=a +21b ③=-21a +21b④AD +BE +=0其中正确的等式的个数为( )A.1B.2C.3D.4EG3.如图,已知任意两个非零向量a 、b ,试作OA = a + b ,OB =a + 2b , OC = a + 3b ,你能判断A 、B 、C 三点之间的位置关系吗?为什么? 变式1:已知OA = a + 2b ,OB = 2a + 4b ,OC =3a + 6b(其中a 、b 是两个任意非零向量) ,证明:A 、B 、C 三点共线.证明:∵ABOB OA =-= a + 2b ,AC OC OA =-=2a + 4b ,∴ 2AC AB =所以,A 、B 、C 三点共线.变式2:已知点A 、B 、C 在同一直线上,并且OA = a + b ,(2)OB m =-a + 2b ,(1)OC n =+a + 3b (其中a 、b 是两个任意非零向量) ,试求m 、n 之间的关系.EG4.已知四边形ABCD ,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,求证:EF HG =变式1:已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F , 求证:2AB DC EF +=.三、平面向量的基本定理及坐标表示EG4.已知a = (4,2),b = (6,y ),且a // b ,求 y .变式1:与向量a = (12,5) 平行的单位向量为( )A .1251313⎛⎫ ⎪⎝⎭,-B .1251313⎛⎫- ⎪⎝⎭,-C .1251313⎛⎫ ⎪⎝⎭, 或1251313⎛⎫- ⎪⎝⎭,-D .1251313⎛⎫- ⎪⎝⎭, 或1251313⎛⎫ ⎪⎝⎭,-变式2:已知a (1,2)=,b (),1x =,当a +2b 与2a -b 共线时,x 值为 ( )b a FA .1B .2C .13D .12变式3:已知A (0,3) 、B (2,0) 、C (-1,3) 与2+方向相反的单位向量是( )A .(0,1)B .(0,-1)C . (-1,1)D .(1,-1)变式4:已知a = (1,0),b = (2,1) .试问:当k 为何实数时, k a -b 与a +3b平行, 平行时它们是同向还是反向?EG5.设点P 是线段12PP 上的一点,1P 、2P 的坐标分别为()11y x ,,()22y x ,. (1) 当点P 是线段12PP 上的中点时,求点P 的坐标;(2) 当点P 是线段12PP 的一个三等分点时,求P 的坐标变式1:已知两点()3,2M ,()5,5N --,12MP MN =,则P 点坐标是 ( )A .()8,1-B .31,2⎛⎫-- ⎪⎝⎭C .31,2⎛⎫⎪⎝⎭D .()8,1-变式2:如图,设点P 、Q 是线段AB 的三等分点,若OA =a , OB =b ,则OP = ,OQ= (用a 、b 表示)四、平面向量的数量积 EG6.已知|a |=6,|b | =4且a 与b 的夹角为60︒,求 (a + 2b)²(a 3-b变式1:已知()()3,4,223,a b a b a b ==++=那么a 与b 夹角为A 、60︒B 、90︒C 、120︒D 、150︒变式2:已知向量a 和b 的夹角为60°,| a | = 3,| b | = 4,则(2a – b )²a 等于(A )15 (B )12 (C )6 (D )3变式3:在△ABC 中,已知|AB |=4,|AC |=1,S △ABC =3,则AB ²AC 等于( )A.-2B.2C.±2D.±4 变式4:设向量2172e e t +与向量21e t e +的夹角为钝角,求实数t 的取值范围.EG7.已知|a |=3,|b | =4且a 与b 不共线,k 为何实数时,向量a + k b 与a k -b 互相垂直?变式1:已知a ⊥b ,|a |=2,|b | =3,且向量3a + 2b 与k a -b 互相垂直,则k 的值为( )A .32-B .32C .32± D .1变式2:已知|a |=1,|b | =2且(a -b )⊥a ,则a 与b 夹角的大小为 .EG8.已知a = (4,2),求与向量a 垂直的单位向量的坐标.变式1:若i = (1,0), j =(0,1),则与2i +3j 垂直的向量是 ( )A .3i +2jB .-2i +3jC .-3i +2jD .2i -3j 变式2:已知向量)1,1(=,)3,2(-=,若k 2-与垂直,则实数k =( )A .1B .-1C .0D .2变式3:若非零向量,互相垂直,则下列各式中一定成立的是 ( )A .-=+B .||||-=+C .0))((=-+b a b aD .0)(2=-b a 变式4:已知向量a =(3,-4),b =(2,x ), c =(2,y )且a ∥b ,a ⊥c .求|b -c |的值.EG9.已知A (1,2),B (2,3),C (2-,5),试判断ABC ∆的形状,并给出证明.变式1:O 是ABC ∆所在的平面内的一点,且满足()()0OB OC OC OA -⋅-=,则ABC ∆ 一定为( )A .正三角形B .等腰直角三角形C .直角三角形D .斜三角形变式2:已知A 、B 、C 三点不共线,O 是△ABC 内的一点,若OA +OB +OC =0,则O 是△ABC 的( )A . 重心B . 垂心C . 内心D . 外心变式3:已知02=+⋅,则△ABC 一定是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 变式4:四边形ABCD 中,)3,2(),,(),1,6(--===y x (1)若//,试求x 与y 满足的关系式;(2)满足(1)的同时又有⊥,求y x ,的值及四边形ABCD 的面积。

相关文档
最新文档