模拟电子技术电子书ppt课件

合集下载

模拟电子技术全套课件

模拟电子技术全套课件
模拟电路的性能指标包括电压增益、电流增益、带宽、噪声系数等,通过合理选择元件参数和优化电路结构,可以提升这些性能指标,从而提高电路的整体性能。
模拟电路的性能指标与优化
模拟电子电路设计
04
模拟电路设计的基本原则与方法
总结词:掌握模拟电路设计的基本原则和方法是设计出高效、稳定、可靠的模拟电路的关键。
详细描述
模拟电路的制程与工艺
模拟电子技术实践应用
05
信号调制与解调
通过模拟电路实现信号的调制和解调,以实现信号的传输和接收。
信号放大
模拟电路可用于放大微弱信号,为通信系统提供稳定、可靠的信号源。
滤波处理
模拟电路可用于对信号进行滤波处理,以提取有用信号并抑制噪声干扰。
模拟电路在通信系统中的应用
模拟电路可用于放大音频信号,为音响设备提供足够的功率。
按工作频带可分为窄带放大器和宽带放大器。
放大器的分类
增益、通频带、输入输出阻抗等。
放大器的主要参数
放大器基础
提取有用信息,抑制噪声和干扰。
信号处理的目的
滤波器的种类
滤波器的工作原理
低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
利用电路的频率特性实现对信号的过滤和处理。
03
02
01
信号处理与滤波器
音频信号放大
通过模拟电路实现音频效果的添加,如混响、均衡器等。
音频效果处理
模拟电路在音频录制和编辑过程中起到关键作用,如调音台等设备。
音频录制与编辑
模拟电路在音频处理中的应用
信号转换与接口
模拟电路用于实现不同系统之间的信号转换与接口连接。
控制系统稳定性
模拟电路有助于提高控制系统的稳定性和可靠性。

模拟电子技术基础PPT课件-经典全

模拟电子技术基础PPT课件-经典全
模拟电子技术基础
绪论
一、电子技术的发展 二、模拟信号与模拟电路 三、电子信息系统的组成 四、模拟电子技术基础课的特点 五、如何学习这门课程
一、电子技术的发展
电子技术的发展,推动计算机技术的发展,使之“无 孔不入”,应用广泛!
• 广播通信:发射机、接收机、扩音、录音、程控交换机、电 话、手机
• 网络:路由器、ATM交换机、收发器、调制解调器
因基区薄且多子浓度低,使极少 数扩散到基区的电子与空穴复合
基区空穴 的扩散
因发射区多子浓度高使大量 电子从发射区扩散到基区
最大功耗PZM= IZM UZ
动态电阻rz=ΔUZ /ΔIZ
若稳压管的电流太小则不稳压,若稳压管的电流太大则会
因功耗过大而损坏,因而稳压管电路中必需有限制稳压管电
流的限流电阻!
§1.3 晶体三极管
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响 五、主要参数
结电容小,故结允许 结电容大,故结允许 可大,小的工作频率
的电流小,最高工作 的电流大,最高工作 高,大的结允许的电
频率高。
频率低。
流大。
二、二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u)
u
i IS(eUT 1) (常温下UT 26mV)
击穿 电压
温度的 电压当量
漂移运动
因电场作用所产 生的运动称为漂移 运动。
参与扩散运动和漂移运动的载流子数目相同,达到动态 平衡,就形成了PN结。
PN 结的单向导电性
PN结加正向电压导通: 耗尽层变窄,扩散运动加
剧,由于外电源的作用,形 成扩散电流,PN结处于导通 状态。

《模拟电子技术》幻灯片PPT

《模拟电子技术》幻灯片PPT
变容二极管电路符号
5.光电耦合器件:将光电二极管和发光二极 管组合起来就组成光电耦合器件。它以光 为媒介可实现电信号的传递。
半导体三极管
半导体三极管有两种类型:NPN型和PNP型。
NPN构造
NPN符号
PNP构造
PNP符号
return
晶体三极管外形
晶体三极 管
半导体三极管
三极管有什么特性?
IB
一.直流参数 1. 夹断电压UGS〔off〕或开启电压UGS〔th〕
2. 饱和漏极电流IDSS 3. 直流输入电阻RGS
二.交流参数
1.低频跨导gm
g di du m
D
u 常数 DS
GS
2.极间电容,包括CGS、CGD、CDS
return
三.极限参数 1.漏极最大允许耗散功率 PDm=IDUDS 2.漏、源间击穿电压BUDS 3.栅源间击穿电压BUGS
4. 使用场效应管时各极必须加正确的工 作电压。
5. 在使用场效应管时, 要注意漏源电压、 漏源电流及耗散功率等, 不要超过规定的 最大允许值。
return
u (1 GS)2 i I D DSS
UG(S o f)f
return
2) 输出特性
输出特
性是指栅源
电压uGS一定, 漏 极 电 流 iD
与漏极电压
uDS之间的关
系, 即
i u f( D
) DS 常数 uGS
iD / mA 5
恒流区(放大区)
uD

S
0
V
4可 变 电
3阻 区
2
-1V

穿
-2V

-3V
return

模拟电子技术PPT课件全套课件

模拟电子技术PPT课件全套课件

扩散运动加强形成正向电流 IF 。 外电场使多子向 PN 结移动, 中和部分离子使空间电荷区变窄。 限流电阻
+
U

R
IF = I多子 I少子 I多子
2. 外加反向电压(反向偏置) — reverse bias IR 漂移运动加强形成反向电流 IR
P区 N区
U R PN 结的单向导电性:正偏导通,呈小电阻,电流较大; 反偏截止,电阻很大,电流近似为零。
C (cathode)
点接触型 按结构分 面接触型 平面型
正极引线 PN 结 N型锗 金锑 合金
正极 负极 引线 引线
引线
P N
P 型支持底衬
外壳
触丝
负极引线
点接触型
面接触型
底座
集成电路中平面型
1.2.2 二极管的伏安特性 一、PN 结的伏安方程
玻尔兹曼 常数
i D I S (e
反向饱 和电流
模块1
常用半导体器件
1.1 半导体的基本知识
1.2 半导体二极管
1.3 半导体三极管
1.4 场效应管 1.5 晶闸管及应用
1.1 半导体的基础知识
1.1.1 本征半导体 半导体 — 导电能力介于导体和绝缘体之间的物质。 本征半导体 — 纯净的半导体。如硅、锗单晶体。 载流子 — 自由运动的带电粒子。 共价键 — 相邻原子共有价电子所形成的束缚。
uD / UT
1)
温度的 电压当量
kT UT q
电子电量
当 T = 300(27C):
UT = 26 mV
二、二极管的伏安特性
iD /mA
0 U Uth
uD /V
iD = 0

模拟电子技术基础ppt课件

模拟电子技术基础ppt课件
2. PN 结外加反向电压时处于截止状态(反偏) 反向接法时,外电场与内电场的方向一致,增强了内 电场的作用;
外电场使空间电荷区变宽; 不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ; 由于少数载流子浓度很低,反向电流数值非常小。
24
P
耗尽层
N
IS
内电场方向
外电场方向
在硅或锗的晶体中掺入少量的 5 价杂质元素,如 磷、锑、砷等,即构成 N 型半导体(或称电子型 半导体)。
常用的 5 价杂质元素有磷、锑、砷等。
12
本征半导体掺入 5 价元素后,原来晶体中的某些 硅原子将被杂质原子代替。杂质原子最外层有 5 个价 电子,其中 4 个与硅构成共价键,多余一个电子只受 自身原子核吸引,在室温下即可成为自由电子。
36
二、温度对二极管伏安特性的影响(了解)
在环境温度升高时,二极管的正向特性将左移,反
向特性将下移。
I / mA
15
温度增加
10
5
– 50 – 25
–0.01 0 0.2 0.4 U / V
–0.02
二极管的特性对温度很敏感。
37
1.2.3 二极管的参数
(1) 最大整流电流IF
(2) 反向击穿电压U(BR)和最高反向工作电压URM
3. 折线模型
3. 杂质半导体总体上保持电中性。
4. 杂质半导体的表示方法如下图所示。
(a)N 型半导体
(b) P 型半导体
图 杂质半导体的的简化表示法 17
1.1.3 PN结
在一块半导体单晶上一侧掺杂成为 P 型半导体,另 一侧掺杂成为 N 型半导体,两个区域的交界处就形成了 一个特殊的薄层,称为 PN 结。

模拟电子技术PPT

模拟电子技术PPT

模拟电子技术基础
3.电子技术应用 (1) 通信系统 无线电通信(包括广播、电报、电视等)、 有线载波通信、激光通信、光纤维通信等。
(2) 自动控制 在自动化技术中,电子控制是后起之秀。 特点:快速、灵敏、精确等。
上页 下页 返回
模拟电子技术基础
(3) 测量方面的应用 a. 电量测量 b. 非电量电测量
模拟电子技术基础
0 绪言 0.1 什么是电子技术
电子技术就是研究电子器件、电子电路及其应用 的科学技术。 1.电子器件 电子器件的发展历程
上页 下页 返回
模拟电子技术基础
第一代电子器件
电真空器件
电子管 离子管
(1) 电子管
上页 下页 返回
模拟电子技术基础
电子管的结构和工作原理
a. 有密封的管壳,内部抽到高真空。 b. 在热阴极电子管中,有一个阴极。 c. 阴极可由灯丝加热,使温度升高, 发射出电子。 d. 电子受外加电场和磁场的作用, 在真空中运动就形成了电子管中的 电流。
电测量的主要特点 a. 准确度和灵敏度高,测量范围广。 b. 可以智能化。 c. 可以进行远距离测量。
上页 下页 返回
模拟电子技术基础
(4) 电子技术对计算机的发展 20世纪40年代第一台数字电子计算机的一些参数 a. 使用了18,000个电子管 b.功率130 kW c. 质量达30 t d.占地约150 m2 e. 运算速度约5000 次/秒 f. 故障率高
上页 下页 返回
模拟电子技术基础
电子管的主要特点 a. 体积大、重量重、耗电大、寿命短。 b. 目前在一些大功率发射装置中使用。
(2) 离子管 a. 与电子管类似,也抽成高真空。 b. 管子中的电流,除了电子外,也有正离子。

模拟电子技术基础课件(全)

模拟电子技术基础课件(全)

04
模拟电子电路分析
模拟电路的组成
负载
电路的输出部分,可以是电阻、 电容、电感等元件。
开关
控制电路的通断。
电源
为电路提供所需电压和电流。
传输线
连接电源和负载的导线或传输 介质。
保护元件
如保险丝、空气开关等,保护 电路免受过载或短路等故障的 影响。
模拟电路的分析方法
01
02
03
04
欧姆定律
用于计算电路中的电流和电压 。
稳定性影响因素
电路中的元件参数、电源电压、负载变化等 都会影响电路的稳定性。
稳定性分析方法
通过计算电路的极点和零点,分析系统的稳 定性。
提高稳定性的措施
如采用负反馈、调整元件参数等手段,提高 电路的稳定性。
05
模拟电子技术的应用
音频信号处理
音频信号放大
模拟电子技术可以用于放大音频 信号,提高声音质量,使声音更 加清晰和饱满。
技术进步与创新
绿色与可持续发展
随着科技的不断发展,模拟电子技术 也在不断创新和进步。新型材料、工 艺和设计方法的应用将进一步提高模 拟电路的性能和集成度。
在环保意识日益增强的背景下,模拟 电子技术将更加注重绿色、节能和可 持续发展,推动产业向低碳、环保的 方向发展。
与其他技术的融合
模拟电子技术正与其他领域的技术相 互融合,如人工智能、物联网和生物 医疗等,为各种应用场景提供更高效、 更智能的解决方案。
欧姆定律和基尔霍夫定律是电 路分析的基本定律,对于理解 和分析电路具有重要的作用。
电路分析方法
支路电流法
通过设定未知的电流为变量,建立并解决包含这些变量的线性方程组 来求解电路的方法。

模拟电子技术电子教案PPT课件

模拟电子技术电子教案PPT课件
因此,+3价元素原子获得一个电子, 成为一个不能移动的负离子,而半导 体仍然呈现电中性。
➢ P型半导体的特点: • 多数载流子为空穴; • 少数载流子为自由电子。
11
1.1.1 半导体的导电特性
(2) N型半导体--掺入微量的五价元 素(如磷)

+ N型+半导体:
4
4
4
多子自由-电自子 由电子
+ 4
9
1.1.1 半导体的导电特性
三、杂质半导体
在本征半导体中加入微量杂质,可使其导电性 能显著改变。根据掺入杂质的性质不同,杂质半 导体分为两类:电子型(N型)半导体和空穴型 (P型)半导体。
(1) P型半导体--掺入微量的三价元素(如硼)
+
+
+
4
4
4
+
+
+
4
3 硼原子4
+
+
+
4
4
4
10
1.1.1 半导体的导电特性
+ 5
少子+ 4 -空穴
磷原子



4
4
4
12
1.1.1 半导体的导电特性
注意:
❖杂质半导体中的多数载流子的浓度与 掺杂浓度有关;而少数载流子是因本 征激发产生,因而其浓度与掺杂无关, 只与温度等激发因素有关.
13
1.1.2 PN结
一.PN结的形成
在一块本征半导体的两边,分别形
成P型和N型半导体,在两种载流子交界
《模拟电子技术》
1
第一章 半导体二极管及其应用电路
本章主要内容: 1.1 半导体的基础知识 1.2 半导体二极管 1.3 特殊二极管 1.4 半导体二极管的应用 1.5 本章小结

模拟电子技术教学PPT

模拟电子技术教学PPT

A +
3k
6V
UAB
12V
– B
电路如图,求:UAB
取 B 点作参考点, 断开二极管,分析二 极管阳极和阴极的电 位。
V阳 =-6 V V阴 =-12 V V阳>V阴 二极管导通 若忽略管压降,二极管可看作短路,UAB =- 6V 否则, UAB低于-6V一个管压降,为-6.3V或-6.7V
在这里,二极管起钳位作用。
0 8V
ui
二极管阴极电位为 8 V
电路的传输特性
ui > 8V,二极管导通,可看作短路 uo = 8V ui < 8V,二极管截止,可看作开路 uo = ui
二极管的用途: 1.整流:将正弦交流信号变为单向信号 2.检波:将周期非正弦信号变为单向信号 3.钳位:二极管一端与固定电位相连接,另一端 不高于(低于)该电位。 不同方向钳位构成限幅电路 4.开关:用于数字电路 5.元件保护:二极管反向并联,限制其端电压 6.温度补偿:利用半导体的温度特性
P区的空穴向N区扩散并与电子复合
空间电荷区
N区
成一个PN结 。
N区的电子内向电P区场扩方散并向与空穴复合
上页 下页 返回
第1章
在一定条件下,多子扩散和少子漂移达到动态平衡。
P区 少子漂移
空间电荷区
N区
多子扩散
内电场方向
上页
下页 返回
P 少子漂移
空间电荷区
N
结论:
多子扩散
内电场方向
在PN结中同时存在多子的扩散运动和少子的漂移运动。
导-5通0 时-2的5 正向电压压降:硅
管约为:0.6V~0.8V,锗管
O 0.4 击穿电压
0.8

模拟电子课件ppt

模拟电子课件ppt

实验三:滤波电路设计与实现
总结词
掌握滤波电路的设计与实现方法
VS
详细描述
通过设计并实现滤波电路,了解滤波电路 的基本原理和分类,掌握巴特沃斯、切比 雪夫等滤波器的设计方法,理解滤波电路 在信号处理和通信系统中的应用。
06
CATALOGUE
模拟电子常见问题与解决方案
问题一:放大电路失真问题
• 总结词:放大电路失真问题通常是由于信号源内 阻、信号源负载、电源内阻和电源电压等因素引 起的。
振荡电路
总结词
振荡电路用于产生正弦波或方波等周期性信号。
详细描述
振荡电路通过正反馈和选频网络,使电路产生自激振荡, 从而输出具有一定频率和幅度的周期性信号。
总结词
振荡电路有多种类型,包括RC振荡器、LC振荡器和晶体 振荡器等。
详细描述
RC振荡器利用电阻和电容的组合产生振荡,LC振荡器利 用电感和电容的组合产生振荡,晶体振荡器则利用石英晶 体的特性产生稳定的振荡信号。
系统设计流程
需求分析
明确系统的功能需求和 技术指标,为后续设计
提供依据。
方案设计
根据需求分析,制定系 统设计方案,包括硬件 和软件架构、模块划分
等。
详细设计
对每个模块进行详细设 计,包括电路原理图、 PCB布线图、程序流程
图等。
调试与测试
对系统进行集成和测试 ,确保系统功能和性能
的正确性。
系统设计优化
问题一:放大电路失真问题
详细描述
信号源内阻过大,导致信号源无法提供足够的电流,从而使放大电路无法正常工作 。
信号源负载过大,导致信号源无法提供足够的电压,从而使放大电路无法正常工作 。
问题一:放大电路失真问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2.3.7 基本共射放大电路的截止失真
基本共射放大电路的饱和失真
动画:2-2放大器截止失真和饱和失真
动画:2-3放大器截止失真和饱和失真波形
波形的失真:
饱和 失真
截止 失真
由于放大电路的工作点达到了三极管 的饱和区而引起的非线性失真。对于NPN管, 输出电压表现为底部失真。
由于放大电路的工作点达到了三极管 的截止区而引起的非线性失真。对于NPN管, 输出电压表现为顶部失真。
U CE V QC CIC(Q R cR e)
方法二:
VBBRb1Rb1Rb2 VCC
Rb=Rb1∥Rb2 由输入回路:
VBB=IBQRb+UBEQ+IEQRe
解得:
IEQ
VBB UBEQ
Rb 1
R
e
三.动态参数的估算
交流等效电路
U o Ib(RR cL) Ui Ibrbe
Au
RL rbe
(1)直流通路:直流电流流经的通路,用于 静态分析。对于直流通路:电容视为开路;电 感视为短路;信号源视为短路,但保留其内阻。
(2)交流通路:交流电流流经的通路,用于 动态分析。对于交流通路:大容量电容(耦合 电容、旁路电容等)视为短路;大容量电感视 为开路;直流电源视为短路。
思考题:(1)为什么直流通路中“电 容视为开路、电感视为短路、信号源视 为短路” ?
(2)为什么交流通路中“大容量电 容视为短路、大容量电感视为开路、直 流电源视为短路” ?
I
BQ

V
BB
-U Rb
BEQ
I CQ I BQ
U CEQ V CC I CQ R c
例2.
例3.
2.3.2 图解法
熟练掌握
在特性曲线上,通过作图的方法对放大电路进行分析。
一.静态工作点的分析
输入特性曲线
注意:对于PNP管,由于是负电源供电,失真的表现 形式,与NPN管正好相反。
放大电路动态范围
放大电路要想 获得大的不失真 输出幅度,要求:
工作点Q要设置
在输出特性曲线 放大区的中间部 位;
要有合适的交 流负载线。
图2.3.11 最大不失真输出电压
Vom2
Vom1
Vom=min{Vom1, Vom2}
1)直接耦合共射放大电路 2)阻容耦合共射放大电路
二. 常见的两种共射放大电路
1)直接耦合共射放大电路
IBQVCCR bU 2 BEQURBb1EQ
ICQ IBQ
U CEQ V CC ICR Q C
二. 常见的两种共射放大电路
2)阻容耦合共射放大电路
IBQ
VC
CUBEQ Rb
ICQ IBQ
U CEQ V CC ICR Q C
(程开明,重庆大学出版社) 3.《模拟电子技术》
(胡宴如,高等教育出版社)
目录: 第一章 半导体器件基础 第二章 基本放大电路(重点章节) 第三章 多级放大电路 第四章 集成运算放大电路(选读) 第五章 放大电路的频率响应(简介) 第六章 放大电路中的反馈(重点章节)
目录: 第七章 信号的运算和处理(选读) 第八章 波形的发生和信号的转换(选读) 第九章 功率放大电路(选读) 第十章 直流电源(选读) 第十一章 读图(自学)
≈rbe
-2 <10
≈1/rce
3) 简化的h参数等效模型
忽略h12e,h22e
得:
Ube Ic
h 11 e Ib h 21 e Ib
Ube Ic
r be Ib
Ib
4)rbe的近似表达式 U be IbrbbIerbe
rb e
UT I EQ
低频小功率管 rbb’≈200
rbeU Ibberbb
Auu
Au
UO Ui
Aui
Ar
UO Ii
Aii
Ai
IO Ii
Aiu
Ag
IO Ui
2. 输入电阻 Ri
3. 输出电阻 Ro
定义:
Ri
Ui Ii
有效值
衡量放大电路获取 信号的能力
定义:
Ro
Uo Io
RL ,US0

Uo
RL Ro RL
Uo

Ro
(Uo Uo
1)RL
衡量放大电路带负 载的能力
输入电阻和输出电阻对放大能力的影响
• 首先,画出交流通路,如图2.3.18所示。
VCC
Rb
C1
Rs + us –
Rc C2
Rs
RL
+ us
Rb

Rc RL
图2.3.18 阻容耦合共射放大电路的交流通路
Back Next Home
• 画出放大电路的微变等效电路如图2.3.19所示。
Ii Ib
Ic
Rs
V
i
Vs
Rb
Ib Rc
RL VO
2.2.4 放大电路的组成原则
一.组成原则 ① 电源→ T 放大(JE正偏, JC反偏) ② 电阻→ Q 合理 (不产生明显失真) ③ 输入回路 : ui → ube→ii(ib) ④ 输出回路 : io (ic)流过负载产生uo
电源正确、电阻适当、信号可入、信号能出
二. 常见的两种共射放大电路
IBQ
VCCUBEQ Rb
ICQ IBQ
UCEQ V CC ICR QC
图2.2.5 阻容耦合共射放大电路
2.晶体管共射h参数等效模型
1) h参数等效模型
晶体管 线性双口网络 等效电路
2.晶体管共射h参数等效模型
1) h参数等效模型
全微分
电压相加是串联 电流相加是并联
2) h参数的物理意义
将晶体管的非线性特性线性化,即用线性电路代替 晶体管。
1.晶体管的直流模型及静态工作点的估算法
1)直流模型
2)静态工作点的估算法
例1:
IBQVBB R bU 2BEQ URBb1EQ
ICQ IBQ
U CEQ V CC ICR Q C
图2.2.4 直接耦合共射放大电路
2)静态工作点的估算法 例2:
ui=0: VBB→IB →IC →URC →UCE
直流量 Q 电量{
交流量 性能
ui≠0:
2.2.2 设置静态工作点的必要性
一.静态工作点
ui=0 IB,UBE,IC,UCE 记为 IBQ,UBEQ,ICQ,UCEQ
输入特性曲线上的点(UBEQ,IBQ) 和输出特性曲线上的点
(UCEQ,ICQ),称之为静态工作点Q。
P om Pv
负载获得的最大功率 电源消耗的功率
IC
IB UBE
UCE
2.2 基本共射放大电路的工作原理
2.2.1 基本共射放大电路的组成及各元件的作用
组成:T,Rb,RC,VBB,VCC,ui
作用: ① T: 放大
② VBB: JE正偏
Rb: IB
③ VCC: JC反偏
和图1.3.3相同 RC: △ic→△uo
温度补偿的方法来稳定Q
2.5 晶体管单管放大电路的三种基 本接法(三种组态)

公共端 输入端 输出端 (交流通路中)

基 共射 E
B
C
本 CE
接 共基 法 CB B E C
共集 CBE
CC
2.5.1 基本共集放大电路(CC)
一.电路的组成
二.静态分析
V B BIBR Q bU BE IQ ER Q e
曲线上的Q点做
一条斜率为-
1/RL 直 线 , 该
直线即为交流负 载线。如图2.3.8 所示
iC VCC Rc
ICQ
斜率
1
R c// R L
斜率 - 1
Q
IBQ
Rc
V C EQ
VCC
vCE
图 2 .3 .8 交 流 负 载 线
Back Next Home
图2.3.10 例2.3.1图

2.3.3 等效电路法
T 晶体管参数变化 Q 电路动态参数变化
动画:2-8温度对Q点的影响
2.4.2 典型的静态工作点稳定电路
一.电路组成和Q点稳定原理
加入Re !
Q点稳定原理:电路中,满足 I1》IBQ
T↑ Ic(IE)↑
UE ↑ (=IERe)

IB ↓
UBE ↓ (=UB-UE)
动画:2-5射极偏置电路
UBQ
Rb1 Rb1 Rb2
Ri=Rb1∥Rb2 ∥rbe
Ro=Rc
动态参数的估算
若无旁路电容, 交流等效电路
U o Ib(RR cL)
U i Ibrbe IeRe Ibrbe Ib(1)Re
A u rbe (1R L)Re
Ri=Rb1∥Rb2 ∥[rbe+(1+β)Re]
Ro=Rc
例2.4.1
2.4.3 稳定静态工作点的措施(其他措施)
输入回路方程:uBE=VBB-iBRb
输入回路的直流负载线
IBQ 、UBEQ
图解法 静态工作点的分析
输出特性曲线 输 出 回 路 方 程 : uCE=VCC-
输出回路的直流负载线
ICQ 、UCEQ
三.波形非线性失真的分析
图2.3.6 基本共射放大电路的波形分析
动画:2-1放大电路的动态图解分析
波形非线性失真的分析 基本共射放大电路的截止失真
Ri
图2.3.19 微变等效电路 Ro
Ri
Vi Ii
R b // r be
AV
VO Vi
Ic (Rc // Ib rbe
相关文档
最新文档