2019年华南理工平时作业:【线性代数和概率统计】作业题(解答)

合集下载

华南理工网络教育 线性代数与概率统计》作业题(题目)

华南理工网络教育 线性代数与概率统计》作业题(题目)

华南理工网络教育线性代数与概率统计》作业题(题目)《线性代数与概率统计》

作业题

第一部分单项选择题

xx,,12111(计算,( A) ,xx,,1222

A( xx,12

B( xx,12

C( xx,21

D( 2xx,21

111(2行列式, B D,,,111

,,111A(3

B(4

C(5

D(6

231123,,,,,

,,,,AB3(设矩阵,求=,B AB,,111,112,,,,

,,,,011011,,,,,A(-1

B(0

C(1

D(2

,xxx,,,0,123,,4(齐次线性方程组有非零解,则=,( C) xxx,,,0,,123

,xxx,,,0123,A(-1

1

B(0

C(1

D(2

00,,,,197636,,,,,,B,5(设,,求=,(D ) ABA,,,,,530905,,,,,,76,, 104110,,A( ,,6084,,

104111,, B( ,,6280,,

104111,, C( ,,6084,,

104111,, D(,,6284,,

0A,,Aa,Bb,C6(设为m阶方阵,为n阶方阵,且,,,则=,( D) ABC,,,B0,, mA( (1),ab

n B( (1),ab

nm, C( (1),ab

nmD( (1),ab

123,,

,,

,1A,221,,A7(设,求=,( D)

,,343,,

2

132,,

,,35,,A( ,,3,,22

,,111,,,

132,,,

,,35,, B( ,3,,22

,,111,,,

132,,,

,,35,, C( ,3,,22

,,111,,,

132,,,

,,35,,D( ,,3,,22

华工《线性代数与概率统计》随堂练习题

华工《线性代数与概率统计》随堂练习题

线性代数与概率统计随堂练习

1.计算?()

A.

B.

C.

D.

答题: A. B. C. D. (已提交)

参考答案:A

问题解析:

2.行列式?

A.3

B.4

C.5

D.6

答题: A. B. C. D. (已提交)

参考答案:B

问题解析:

3.利用行列式定义计算n阶行列式:=?( ) A.

B.

C.

D.

答题: A. B. C. D. (已提交)

参考答案:C

问题解析:

4.用行列式的定义计算行列式中展开式.的系数。A.1, 4

B.1.-4

C.-1.4

D.-1.-4

答题: A. B. C. D. (已提交)

参考答案:B

问题解析:

5.计算行列式=?()

A.-8

B.-7

C.-6

D.-5

答题: A. B. C. D. (已提交)

参考答案:B

问题解析:

6.计算行列式=?()

A.130

B.140

A. B. C. D.

参考答案:D

7.四阶行列式的值等于()A.

B.

C.

D.

答题: A. B. C. D. (已提交)

参考答案:D

问题解析:

8.行列式=?()

A.

B.

C.

D.

答题: A. B. C. D. (已提交)

参考答案:B

问题解析:

9.已知.则?A.6m

B.-6m

C.12m

D.-12m

答题: A. B. C. D. (已提交)

参考答案:A

问题解析:

10.设=.则?

A.15|A|

B.16|A|

C.17|A|

D.18|A|

答题: A. B. C. D. (已提交)

参考答案:D

问题解析:

11. 设矩阵.求=?

A.-1

B.0

C.1

D.2

答题: A. B. C. D. (已提交)

参考答案:B

问题解析:

12. 计算行列式=?

A. B. C. D.

华工线性代数与概率统计随堂练习

华工线性代数与概率统计随堂练习

线性代数与概率统计随堂练习

1.计算

A.

B.

C.

D.

答题:A A. B. C. D. 已提交

参考答案:A

问题解析:

2.行列式

A.3

B.4

C.5

D.6

答题:B A. B. C. D. 已提交

参考答案:B

问题解析:

3.利用行列式定义计算n阶行列式:= A.

B.

C.

D.

答题:C A. B. C. D. 已提交

参考答案:C

问题解析:

4.用行列式的定义计算行列式中展开式,的系数;A.1, 4 B.1,-4 C.-1,4 D.-1,-4

答题:B A. B. C. D. 已提交

参考答案:B

问题解析:

5.计算行列式= A.-8 B.-7C.-6D.-5

答题:B A. B. C. D. 已提交

参考答案:B

问题解析:

6.计算行列式= A.130 B.140C.150D.160

答题:D A. B. C. D. 已提交

参考答案:D

问题解析:

7.四阶行列式的值等于

A.

B.

C.

D.

答题:D A. B. C. D. 已提交

参考答案:D

问题解析:

8.行列式=

A.

B.

C.

D.

答题:B A. B. C. D. 已提交

参考答案:B

问题解析:

9.已知,则

A.6m

B.-6m

C.12m

D.-12m

答题:A A. B. C. D. 已提交

参考答案:A

问题解析:

10.设=,则

A.15|A|

B.16|A|

C.17|A|

D.18|A|

答题:D A. B. C. D. 已提交

参考答案:D

问题解析:

11. 设矩阵,求=

A.-1

B.0

C.1

D.2

答题:B A. B. C. D. 已提交

参考答案:B

问题解析:

12. 计算行列式=

A.-1500

《线性代数与概率统计》-平时作业

《线性代数与概率统计》-平时作业

《线性代数与概率统计》

作业题及其解答

一、计算题

1.

答案:原式=18.

2.计算行列式1

333

536

6

4

x x x ---+---. 答案:原式=31216x x --.

3.计算行列式121401

2110130131

D -=

. 答案:原式= -7.

4.设1213A ⎛⎫= ⎪⎝⎭,1012B ⎛⎫

= ⎪⎝⎭

,求AB 与BA .

答案:1213AB ⎛⎫= ⎪⎝⎭1012⎛⎫

⎪⎝⎭3446⎛⎫= ⎪⎝⎭, 1012BA ⎛⎫= ⎪⎝⎭1213⎛⎫ ⎪⎝⎭1238⎛⎫

= ⎪⎝⎭.

5.设2

()21f x x x =-+,1101A ⎛⎫= ⎪⎝⎭

,求矩阵A 的多项式()f A .

线

解:因为 2111112010101A AA ⎛⎫⎛⎫⎛⎫

=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭

所以,2121110()22010101f A A A E ⎛⎫⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=2302⎛⎫

⎪⎝⎭.

6.设矩阵263113111,112011011A B ⎡⎤⎡⎤

⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB .

解:AB =A B ⋅=(5)15-⋅=-.

7.设101111211A ⎛⎫ ⎪

=- ⎪ ⎪-⎝⎭

,求逆矩阵1-A .

解:因为 ()101100111010211001A E ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭23132100211010312001111r r r r --⎛--⎫

−−−→-- ⎪ ⎪-⎝⎭

所以 1211312111A ---⎛⎫

⎪=-- ⎪

⎪-⎝⎭

.

8.求22

2019华南理工大学网络教育线性代数与概率统计随堂练习答案

2019华南理工大学网络教育线性代数与概率统计随堂练习答案
B.事件可以表示为;
3.(单选题) 向指定的目标连续射击四枪,用表示“第次射中目标”,试用表示四枪中至少有一枪击中目标( ):
C.;
4.(单选题) 向指定的目标连续射击四枪,用表示“第次射中目标”,试用表示前两枪都射中目标,后两枪都没有射中目标。( )
A.;
5.(单选题) 向指定的目标连续射击四枪,用表示“第次射中目标”,试用表示四枪中至多有一枪射中目标
1.(单选题) 计算行列式=
B.-7;
2.(单选题) 计算行列式=
D.160.
3.(单选题) 四阶行列式的值等于多少
D..
4.(单选题) 行列式=
B.;
5.(单选题) 已知,则
A.6m;
1.(单选题) 设=,则
D.18|A|.
2.(单选题) 设矩阵,求=
B.0;
3.(单选题) 计算行列式=
C.-1800;
C.
1.(单选题) 设随机变量X的分布列为
则分别为( ).
D., .
2.(单选题) 一批产品分为一、二、三等品及废品,产值分别为6元、5元、4元、0元,各等品的概率分别为, ,,,则平均产值为( ).
B.元;
3.(单选题) 已知随机变量X在服从均匀分布,试求为( )
B.
4.(单选题) 设随机变量X的密度函数,则下列关于说法正确的是( )

线性代数与概率统计课堂作业题目答案完整版

线性代数与概率统计课堂作业题目答案完整版

《线性代数与概率统计》

作业题

第一部分 单项选择题 1.计算

112212

12

x x x x ++=++?(A )

A .12x x -

B .12x x +

C .21x x -

D .212x x -

2.行列式1

11

1

1

1111

D =-=--? (B )

A .3

B .4

C .5

D .6

3.设矩阵231123=111,112011011A B -⎡⎤⎡⎤

⎢⎥⎢⎥=⎢⎥⎢⎥

⎢⎥⎢⎥-⎣⎦⎣⎦

,求AB =?(B ) A .-1

B .0

C .1

D .2

4.齐次线性方程组123123123

000x x x x x x x x x λλ++=⎧⎪

++=⎨⎪++=⎩有非零解,则λ=?(C )

A .-1

B .0

C .1

D .2

5.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪

⎪⎭

⎝⎛=6735

63

00B ,求AB =?(D ) A .1041106084⎛⎫

⎪⎝⎭

B .1041116280⎛⎫

⎪⎝⎭

C .1041116084⎛⎫ ⎪⎝⎭

D .1041116284⎛⎫

⎪⎝⎭

6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,0

0A C B

⎛⎫

=

⎪⎝⎭

,则C =?(D ) A .(1)m

ab - B .(1)n ab - C .(1)

n m ab +-

D .(1)nm

ab -

7.设⎪⎪⎪⎭

⎛=34

3122

321A ,求1

-A =?(D )

A .13

2353

22111⎛⎫ ⎪ ⎪-

- ⎪ ⎪-⎝⎭

B .132********-⎛⎫

⎪ ⎪- ⎪ ⎪-⎝⎭ C .13

2353

22111-⎛⎫ ⎪

华南理工大学网络教育线性代数与概率统计模拟试题

华南理工大学网络教育线性代数与概率统计模拟试题

线性代数与概率统计模拟试题一.单项选择题(每小题5分,共8小题,总计40分)

1.计算=?()

A.

B.

C.

D.

2.已知,则=?

A.6m

B.-6m

C.12m

D.-12m

3.如果,则a,b分别为?()

A.0,3

B.0,-3

C.1,3

D.1,-3

4.行列式=?()

A.

B.

C.

D.

5.甲乙两人同时向目标射击,甲射中目标的概率为0.8,乙射中目标的概率是0.85,两人同时射中目标的概率为0.68,则目标被射中的概率为()

A.0.8

B.0.85

C.0.97

D.0.96

6.一批产品由8件正品和2件次品组成,从中任取3件,则这三件产品全是正品的概率为()

A.

B.

C.

D.

7.观察一次投篮,有两种可能结果:投中与未投中。令

试求X的分布函数。

A.B.

C.D.

8.设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则两粒都发芽的概率为()

A.0.8

B.0.72

C.0.9

D.0.27

二.计算题(每小题8分,共6小题,总计48分)

1.计算行列式

2.试问取何值时,齐次线性方程组有非零解?

3.解线性方程组

4.一批产品有10件,其中4件为次品,现从中任取3件,求取出的3件产品中有次品的概率。

5.若书中的某一页上印刷错误的个数X服从参数为0.5的泊松分布,求此页上至少有一处错误的概率为?()

6.设A,B是两个事件,已知P(A)=0.5,P(B)=0.7,P(A+B)=0.8,试求:P(A-B)与P(B-A)。

三.应用题(每小题6分,共2小题,总计12分)

1.设某仪器总长度X为两个部件长度之和,即X=X1+X2,且已知它们的分布列分别为

线性代数与概率统计作业题答案

线性代数与概率统计作业题答案

《线性代数与概率统计》

作业题

第一部分 单项选择题 1.计算

112212

12

x x x x ++=++?(A )

A .12x x -

B .12x x +

C .21x x -

D .212x x -

2.行列式1

111

1

1111

D =-=--(B)

A .3

B .4

C .5

D .6

3.设矩阵231123111,112011011A B -⎡⎤⎡⎤

⎢⎥⎢⎥==⎢⎥⎢⎥

⎢⎥⎢⎥-⎣⎦⎣⎦

,求AB =?(B) A .-1

B .0

C .1

D .2

4.齐次线性方程组123123123

000x x x x x x x x x λλ++=⎧⎪

++=⎨⎪++=⎩有非零解,则λ=?(C )

A .-1

B .0

C .1

D .2

5.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪

⎪⎭

⎝⎛=6735

63

00B ,求AB =?(D ) A .1041106084⎛⎫

⎪⎝⎭

B .1041116280⎛⎫

⎪⎝⎭

C .1041116084⎛⎫ ⎪⎝⎭

D .1041116284⎛⎫

⎪⎝⎭

6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,0

0A C B

⎛⎫

=

⎪⎝⎭

,则C =?( D ) A .(1)m

ab - B .(1)n ab - C .(1)

n m ab +-

D .(1)nm

ab -

7.设⎪⎪⎪⎭

⎛=34

3122

321A ,求1

-A =?(D )

A .13

2353

22111⎛⎫ ⎪ ⎪-

- ⎪ ⎪-⎝⎭

B .132********-⎛⎫

⎪ ⎪- ⎪ ⎪-⎝⎭ C .13

2353

22111-⎛⎫ ⎪

⎪- ⎪ ⎪-⎝⎭ D .13

2019华南理工平时作业:《线性代数与概率统计》作业题(解答)

2019华南理工平时作业:《线性代数与概率统计》作业题(解答)

《线性代数与概率统计》

作业题

一、计算题

1. 计算行列式

123

312

231 D=.

解:

2.计算行列式

133

353

664

x

x

x

--

-+-

--

线

3.计算行列式12

14012110130

1

31

D -=

.

4.设1213A ⎛⎫= ⎪

⎝⎭,1012B ⎛⎫

= ⎪⎝⎭

,求AB 与BA .

5.设2

()21

f x x x

=-+,

11

01

A

⎛⎫

= ⎪

⎝⎭

,求矩阵A的多项式()

f A

.

6.设矩阵

263113

111,112

011011

A B

⎡⎤⎡⎤

⎢⎥⎢⎥

==

⎢⎥⎢⎥

⎢⎥⎢⎥

-

⎣⎦⎣⎦

,求

AB.

7.设

101

111

211

A

⎛⎫

=- ⎪

-

⎝⎭

,求逆矩阵1-

A

.

8.求

224114

113021

121113

312211

422608

A

⎛⎫

----

=

---

---

⎝⎭

的秩.

9.解线性方程组

123

123

123 4254 225 x x x

x x x

++=⎨

⎪++=⎩

.

10.解线性方程组 ⎪⎩⎪

⎨=+=++622452431

321321x x x x x

.

11.甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率.

12.一箱中有50件产品,其中有5件次品,从箱中任取10件产品,求恰有两件次品的概率.

13.设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.

14.某工厂生产一批商品,其中一等品点1

2

,每件一等品获利3元;二等品占

1

3

每件二等品获利1元;次品占1

2019华南理工大学网络教育线性代数与概率统计随堂练习答案

2019华南理工大学网络教育线性代数与概率统计随堂练习答案
C.;
3.(单选题) 设连续型随机变量X的密度函数为,试求的概率为( ).
A.;
4.(单选题) 在某公共汽车站,每个8分钟有一辆公共汽车通过,一个乘客在任意时刻到达车站是等可能的,则该乘客候车时间X的分布及该乘客等车超过5分钟的概率分别为多少?
B.;
5.(单选题) 某电子仪器的使用寿命X(单位:小时)服从参数为的指数分布,则此仪器能用10000小时以上的概率为?( )
B.;
4.(单选题) 若书中的某一页上印刷错误的个数X服从参数为的泊松分布,求此页上至少有一处错误的概率为?( )
A.;
5.(单选题) 从一副扑克牌(52张)中任意取出5张,求抽到2张红桃的概率?
B.;
1.(单选题) 设随机变量X的密度函数为则常数A及X的分布函数分别为( ).
C.;
2.(单选题) 设连续型随机变量X的密度函数为,则A的值为:
B.;
8.(单选题) 利用初等变化,求的逆=?( )D. .
9.(单选题) 设,则=?
B. ;
10.(单选题) 设,是其伴随矩阵,则=?( )
A. ;
11.(单选题) 设n阶矩阵可逆,且,则=?( )
A.;
12.(单选题) 设矩阵的秩为r,则下述结论正确的是( )
D.中有一个r阶子式不等于零.
13.(单选题) 阶行列式中元素的代数余子式与余子式之间的关系是( )。

2019华南理工网络教育线性代数随堂练习(全)答案

2019华南理工网络教育线性代数随堂练习(全)答案

1.(单选题) 计算?A.;

2.(单选题) 行列式?B.4;

3.(单选题) 计算行列式. B.18;

4.(单选题) 计算行列式?C.0;

1.(单选题) 计算行列式?C.;

2.(单选题) 计算行列式?D..

1.(单选题) 利用行列式定义,计算n阶行列式:=? C.;

2.(单选题) 计算行列式展开式中,的系数。B.1,-4;

1.(单选题) 计算行列式=?B.-7;

2.(单选题) 计算行列式=?D.160.

3.(单选题) 四阶行列式的值等于多少?

4.(单选题) 行列式=?B.;

1.(单选题) 设=,则? D.18|A|.

2.(单选题) 设矩阵,求=?B.0;

3.(单选题) 计算行列式=? C.-1800;

1.(单选题) 齐次线性方程组有非零解,则=?C.1;

2.(单选题) 齐次线性方程组有非零解的条件是=?A.1或-3;

3.(单选题) 如果非线性方程组系数行列式,那么,下列正确的结论是哪个?B.唯一解;

4.(单选题) 如果齐次线性方程组的系数行列式,那么,下列正确的结论是哪个?

A.只有零解

5.(单选题) 齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它一定有___解。B.零,非零;

1.(单选题) 设,,求=?

D..

2.(单选题) 设矩阵,,为实数,且已知,则的取值分别为什么?A.1,-1,3;

3.(单选题) 设矩阵,求=?C.1;

1.(单选题) 设, 满足, 求=?()

C.;

2.(单选题) 设,,求=?()

D..

3.(单选题) 如果,则分别为?B.0,-3;

4.(单选题) 设,矩阵,定义,则=?

华工《线性代数与概率统计》(工程数学)随堂练习参考答案

华工《线性代数与概率统计》(工程数学)随堂练习参考答案

《线性代数与概率统计》随堂练习参考答案

?(

行列式?

用行列式地定义计算行列式中展开式,地系数

=

计算行列式=

行列式=

,

=,

,

计算行列式=?

有非零解

齐次线性方程组有非零解地条件是=

总有

设, ,求=

,,

设, 满足, 求=.

,

,

,,设,n则=

.对任意地为对称矩阵

.若则

设为,为且,,,则=.

设,求=

=

设均为

均为

,都可逆

,

,

,

设,则=?(

. B.

. D.

,=

阶矩阵可逆且,则=

. B.

. D.

阶行列式地代数余子式之间地关系是

设矩阵地秩为

.中有一个

.中任意一个

.中任意一个

.中有一个

地秩为?(求地秩为?(

,=

地秩

,

用消元法解线性方程组,.

有非零解

已知线性方程组:无解则=

中未知量个数为

设是矩阵齐次线性方程组仅有零解地充分条件是(.地列向量组线性相关

.地列向量组线性无关

.地行向量组线性无关

.地行向量组线性无关

=

求齐次线性方程组地基础解系是(

求齐次线性方程组地基础解系为()

元非齐次方程组地导出组仅有零解则()

设为矩阵线性方程组地对应导出组为,

.若仅有零解则有唯一解

有非零解则有无穷多解

.若有无穷多解则有非零解

有无穷多解则仅有零解

.样本空间为,事件“出现奇数点”为

.样本空间为,事件“出现奇数点”为

.样本空间为,事件“出现奇数点”为

.样本空间为,事件“出现奇数点”为

.用表示“第一次取到数字,第二次取到数字”则样本空间

.

.事件可以表示为

.事件可以表示为

.事件可以表示为

用表示“第次射中目标”试用表示.

《线性代数与概率统计》作业题(答案)

《线性代数与概率统计》作业题(答案)

《线性代数与概率统计》作业题(答案)

第一部分 单项选择题 1.

计算11221

21

2

x x x

x ++=

++?(A )

A .1

2

x x - B .1

2

x x + C .2

1

x x - D .2

1

2x

x -

2.行列式1

11

1

1

1111

D =-=--(B )

A .3

B .4

C .5

D .6

3.设矩阵231123111,112011011A B -⎡⎤⎡⎤

⎢⎥⎢⎥==⎢⎥⎢⎥

⎢⎥⎢⎥-⎣⎦⎣⎦

,求AB =?(B ) A .-1 B .0 C .1 D .2 4.齐次线性方程组123123123

000x x x x x x x x x λλ++=⎧⎪

++=⎨⎪++=⎩有非零解,则λ=?

(A )

A .-1

B .0

C .1

D .2 5.设

⎪⎭

⎫ ⎝⎛=50906791A ,

⎪⎪⎪⎪⎪⎭

⎝⎛=67356300B ,求AB =?( D )

A .104

11060

84⎛⎫

⎪⎝

B .104

11162

80⎛⎫

⎪⎝⎭

C .104

11160

84⎛⎫

⎪⎝

D .104

11162

84⎛⎫

⎪⎝

6.设A 为m 阶方阵,B 为n 阶方阵,且

A a =,

B b =,

0A C B

⎛⎫=

⎪⎝⎭

,则C =?( D )

A .(1)

m

ab

-B .(1)n

ab - C .(1)

n m

ab

+- D .(1)

nm

ab

-

7.

⎪⎪⎪⎭

⎫ ⎝

⎛=34

3122

321A ,求1

-A =?(D )

A .

13

2353

22111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭

B .

132********-⎛⎫

⎪ ⎪- ⎪ ⎪-⎝⎭

C .

1

3

2353

22111-⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭

华南理工大学《线性代数与概率统计》随堂练习及答案

华南理工大学《线性代数与概率统计》随堂练习及答案

第一章行列式·1.1 行列式概念

1.(单选题)

答题: A. B. C. D. (已提交)参考答案:A

2.(单选题)

答题: A. B. C. D. (已提交)参考答案:B

3.(单选题)

答题: A. B. C. D. (已提交)

参考答案:B

4.(单选题)

答题: A. B. C. D. (已提交)参考答案:C

5.(单选题)

答题: A. B. C. D. (已提交)参考答案:C

6.(单选题)

答题: A. B. C. D. (已提交)参考答案:D

7.(单选题)

答题: A. B. C. D. (已提交)参考答案:C

8.(单选题)

答题: A. B. C. D. (已提交)参考答案:B

第一章行列式·1.2 行列式的性质与计算

1.(单选题)

答题: A. B. C. D. (已提交)参考答案:B

2.(单选题)

答题: A. B. C. D. (已提交)参考答案:D

3.(单选题)

答题: A. B. C. D. (已提交)参考答案:C

4.(单选题)

答题: A. B. C. D. (已提交)参考答案:D

5.(单选题)

答题: A. B. C. D. (已提交)参考答案:D

6.(单选题)

答题: A. B. C. D. (已提交)参考答案:B

7.(单选题)

答题: A. B. C. D. (已提交)参考答案:A

8.(单选题)

答题: A. B. C. D. (已提交)参考答案:D

9.(单选题)

答题: A. B. C. D. (已提交)

参考答案:B

10.(单选题)

答题: A. B. C. D. (已提交)参考答案:C

第一章行列式·1.3 克拉姆法则

华理线性代数答案

华理线性代数答案
由可交换矩阵的定义知道所求矩阵必为3阶方阵不妨设其为于是有baab11121321222331323312211331233220082007利用等式173512351235123197126673852922某公司为了技术革新计划对职工实行分批脱产轮训已知该公司现有2000人正在脱产轮训而不脱产职工有8000年从不脱产职工中抽调30的人脱产轮训同时又有60脱产轮训职工结业回到生产岗位设职工总数不变令0706800003042000试用a与x通过矩阵运算表示一年后和两年后的职工状况并据此计算届时不脱产职工与脱产职工各有多少人
解:原式等于:
2 2 a11 x12 + a22 x2 + a33 x3 + ( a12 + a21 ) x1 x2 + ( a13 + a31 ) x1 x3 + ( a23 + a32 ) x2 x3
⎡ ⎢ (2) A = ⎢ ⎢ ⎢ ⎣
1 2 3 2

3⎤ ⎥ 2 ⎥ ,求 A2008 ; 1 ⎥ ⎥ 2 ⎦
故 A 是对称矩阵,且
A2 = ( I − 2
⎡ 35 ⎤ ⎥ 解: (1) ⎢ ⎢ 6 ⎥ ;(2) 14;(3) ⎢ ⎣ 49 ⎥ ⎦
⎡ −1 2 ⎤ ⎢ −2 4 ⎥ ;(4) ⎡ 6 −7 8 ⎤ . ⎢ 20 −5 −6 ⎥ ⎥ ⎢ ⎣ ⎦ ⎢ ⎥ ⎣ −3 6 ⎦

2019华南理工大学网络教育线性代数与概率统计随堂练习

2019华南理工大学网络教育线性代数与概率统计随堂练习

1.(单选题) 计算?

A.;

2.(单选题) 行列式?

B.4;

3.(单选题) 计算行列式.

B.18;

4.(单选题) 计算行列式?

C.0;

1.(单选题) 计算行列式?

C.;

2.(单选题) 计算行列式?

D..

1.(单选题) 利用行列式定义,计算n阶行列式:=? C.;

2.(单选题) 计算行列式展开式中,的系数。

B.1,-4;

1.(单选题) 计算行列式=?

B.-7;

2.(单选题) 计算行列式=?

D.160.

3.(单选题) 四阶行列式的值等于多少?

D..

4.(单选题) 行列式=?

B.;

5.(单选题) 已知,则?A.6m;

1.(单选题) 设=,则?

D.18|A|.

2.(单选题) 设矩阵,求=?

B.0;

3.(单选题) 计算行列式=?

C.-1800;

1.(单选题) 齐次线性方程组有非零解,则=?

C.1;

2.(单选题) 齐次线性方程组有非零解的条件是=?

A.1或-3;

3.(单选题) 如果非线性方程组系数行列式,那么,下列正确的结论是哪个?

B.唯一解;

4.(单选题) 如果齐次线性方程组的系数行列式,那么,下列正确的结论是哪个?

A.只有零解;

5.(单选题) 齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它一定有___解。

B.零,非零;

1.(单选题) 设,,求=?

D..

2.(单选题) 设矩阵,,为实数,且已知

,则的取值分别为什么?

A.1,-1,3;

3.(单选题) 设矩阵,求=?

C.1;

1.(单选题) 设, 满足, 求=?()

C.;

2.(单选题) 设,,求=?()

D..

3.(单选题) 如果,则分别为?

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《线性代数与概率统计》

作业题

一、计算题

1. 计算行列式

123

312

231

D=.

解:

2.计算行列式

133

353

664

x

x

x

--

-+-

--

线

3.计算行列式

1214

0121

1013

0131

D

-

=.

4.设

12

1

3

A

⎛⎫

= ⎪

⎝⎭

,

10

12

B

⎛⎫

= ⎪

⎝⎭

,求AB与BA.

5.设2

()21

f x x x

=-+,

11

01

A

⎛⎫

= ⎪

⎝⎭

,求矩阵A的多项式()

f A.

6.设矩阵

263113

111,112

011011

A B

⎡⎤⎡⎤

⎢⎥⎢⎥

==

⎢⎥⎢⎥

⎢⎥⎢⎥

-

⎣⎦⎣⎦

,求AB.

7.设

101

111

211

A

⎛⎫

=- ⎪

-

⎝⎭

,求逆矩阵1-

A.

8.求

224114

113021

121113

312211

422608

A

⎛⎫

----

=

---

---

⎝⎭

的秩.

9.解线性方程组

123

123

123

21 4254 225

x x x

x x x

x x x

-+=

++=

⎪++=

.

10.解线性方程组 ⎪⎩⎪

⎨⎧=+=++=+-622452413231

321321x x x x x x x x .

11.甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率.

12.一箱中有50件产品,其中有5件次品,从箱中任取10件产品,求恰有两件次品的概率.

13.设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.

14.某工厂生产一批商品,其中一等品点1

2

,每件一等品获利3元;二等品占

1

3

每件二等品获利1元;次品占1

6

,每件次品亏损2元。求任取1件商品获利X的

数学期望()

E X与方差()

D X。

二、应用题

15.甲、乙两工人在一天的生产中,出现次品的数量分别为随机变量12,X X ,且分布列分别为:

若两人日产量相等,试问哪个工人的技术好?

相关文档
最新文档