算法导论第二十四章答案

合集下载

算法导论课程作业答案

算法导论课程作业答案

算法导论课程作业答案Introduction to AlgorithmsMassachusetts Institute of Technology 6.046J/18.410J Singapore-MIT Alliance SMA5503 Professors Erik Demaine,Lee Wee Sun,and Charles E.Leiserson Handout10Diagnostic Test SolutionsProblem1Consider the following pseudocode:R OUTINE(n)1if n=12then return13else return n+R OUTINE(n?1)(a)Give a one-sentence description of what R OUTINE(n)does.(Remember,don’t guess.) Solution:The routine gives the sum from1to n.(b)Give a precondition for the routine to work correctly.Solution:The value n must be greater than0;otherwise,the routine loops forever.(c)Give a one-sentence description of a faster implementation of the same routine. Solution:Return the value n(n+1)/2.Problem2Give a short(1–2-sentence)description of each of the following data structures:(a)FIFO queueSolution:A dynamic set where the element removed is always the one that has been in the set for the longest time.(b)Priority queueSolution:A dynamic set where each element has anassociated priority value.The element removed is the element with the highest(or lowest)priority.(c)Hash tableSolution:A dynamic set where the location of an element is computed using a function of the ele ment’s key.Problem3UsingΘ-notation,describe the worst-case running time of the best algorithm that you know for each of the following:(a)Finding an element in a sorted array.Solution:Θ(log n)(b)Finding an element in a sorted linked-list.Solution:Θ(n)(c)Inserting an element in a sorted array,once the position is found.Solution:Θ(n)(d)Inserting an element in a sorted linked-list,once the position is found.Solution:Θ(1)Problem4Describe an algorithm that locates the?rst occurrence of the largest element in a?nite list of integers,where the integers are not necessarily distinct.What is the worst-case running time of your algorithm?Solution:Idea is as follows:go through list,keeping track of the largest element found so far and its index.Update whenever necessary.Running time isΘ(n).Problem5How does the height h of a balanced binary search tree relate to the number of nodes n in the tree? Solution:h=O(lg n) Problem 6Does an undirected graph with 5vertices,each of degree 3,exist?If so,draw such a graph.If not,explain why no such graph exists.Solution:No such graph exists by the Handshaking Lemma.Every edge adds 2to the sum of the degrees.Consequently,the sum of the degrees must be even.Problem 7It is known that if a solution to Problem A exists,then a solution to Problem B exists also.(a)Professor Goldbach has just produced a 1,000-page proof that Problem A is unsolvable.If his proof turns out to be valid,can we conclude that Problem B is also unsolvable?Answer yes or no (or don’t know).Solution:No(b)Professor Wiles has just produced a 10,000-page proof that Problem B is unsolvable.If the proof turns out to be valid,can we conclude that problem A is unsolvable as well?Answer yes or no (or don’t know).Solution:YesProblem 8Consider the following statement:If 5points are placed anywhere on or inside a unit square,then there must exist two that are no more than √2/2units apart.Here are two attempts to prove this statement.Proof (a):Place 4of the points on the vertices of the square;that way they are maximally sepa-rated from one another.The 5th point must then lie within √2/2units of one of the other points,since the furthest from the corners it can be is the center,which is exactly √2/2units fromeach of the four corners.Proof (b):Partition the square into 4squares,each with a side of 1/2unit.If any two points areon or inside one of these smaller squares,the distance between these two points will be at most √2/2units.Since there are 5points and only 4squares,at least two points must fall on or inside one of the smaller squares,giving a set of points that are no more than √2/2apart.Which of the proofs are correct:(a),(b),both,or neither (or don’t know)?Solution:(b)onlyProblem9Give an inductive proof of the following statement:For every natural number n>3,we have n!>2n.Solution:Base case:True for n=4.Inductive step:Assume n!>2n.Then,multiplying both sides by(n+1),we get(n+1)n!> (n+1)2n>2?2n=2n+1.Problem10We want to line up6out of10children.Which of the following expresses the number of possible line-ups?(Circle the right answer.)(a)10!/6!(b)10!/4!(c) 106(d) 104 ·6!(e)None of the above(f)Don’t knowSolution:(b),(d)are both correctProblem11A deck of52cards is shuf?ed thoroughly.What is the probability that the4aces are all next to each other?(Circle theright answer.)(a)4!49!/52!(b)1/52!(c)4!/52!(d)4!48!/52!(e)None of the above(f)Don’t knowSolution:(a)Problem12The weather forecaster says that the probability of rain on Saturday is25%and that the probability of rain on Sunday is25%.Consider the following statement:The probability of rain during the weekend is50%.Which of the following best describes the validity of this statement?(a)If the two events(rain on Sat/rain on Sun)are independent,then we can add up the twoprobabilities,and the statement is true.Without independence,we can’t tell.(b)True,whether the two events are independent or not.(c)If the events are independent,the statement is false,because the the probability of no rainduring the weekend is9/16.If they are not independent,we can’t tell.(d)False,no matter what.(e)None of the above.(f)Don’t know.Solution:(c)Problem13A player throws darts at a target.On each trial,independentlyof the other trials,he hits the bull’s-eye with probability1/4.How many times should he throw so that his probability is75%of hitting the bull’s-eye at least once?(a)3(b)4(c)5(d)75%can’t be achieved.(e)Don’t know.Solution:(c),assuming that we want the probability to be≥0.75,not necessarily exactly0.75.Problem14Let X be an indicator random variable.Which of the following statements are true?(Circle all that apply.)(a)Pr{X=0}=Pr{X=1}=1/2(b)Pr{X=1}=E[X](c)E[X]=E[X2](d)E[X]=(E[X])2Solution:(b)and(c)only。

算法导论复习资料

算法导论复习资料

算法导论复习资料一、选择题:第一章的概念、术语。

二、考点分析:1、复杂度的渐进表示,复杂度分析。

2、正确性证明。

考点:1)正确性分析(冒泡,归并,选择);2)复杂度分析(渐进表示O,Q,©,替换法证明,先猜想,然后给出递归方程)。

循环不变性的三个性质:1)初始化:它在循环的第一轮迭代开始之前,应该是正确的;2)保持:如果在循环的某一次迭代开始之前它是正确的,那么,在下一次迭代开始之前,它也应该保持正确;3)当循环结束时,不变式给了我们一个有用的性质,它有助于表明算法是正确的。

插入排序算法:INSERTION-SORT(A)1 for j ←2 to length[A]2 do key ←A[j]3 ▹Insert A[j] into the sorted sequence A[1,j - 1].4 i ←j - 15 while i > 0 and A[i] > key6 do A[i + 1] ←A[i]7 i ←i - 18 A[i + 1] ←key插入排序的正确性证明:课本11页。

归并排序算法:课本17页及19页。

归并排序的正确性分析:课本20页。

3、分治法(基本步骤,复杂度分析)。

——许多问题都可以递归求解考点:快速排序,归并排序,渐进排序,例如:12球里面有一个坏球,怎样用最少的次数找出来。

(解:共有24种状态,至少称重3次可以找出不同的球)不是考点:线性时间选择,最接近点对,斯特拉算法求解。

解:基本步骤:一、分解:将原问题分解成一系列的子问题;二、解决:递归地解各子问题。

若子问题足够小,则直接求解;三、合并:将子问题的结果合并成原问题的解。

复杂度分析:分分治算法中的递归式是基于基本模式中的三个步骤的,T(n)为一个规模为n的运行时间,得到递归式T(n)=Q(1) n<=cT(n)=aT(n/b)+D(n)+C(n) n>c附加习题:请给出一个运行时间为Q(nlgn)的算法,使之能在给定的一个由n个整数构成的集合S和另一个整数x时,判断出S中是否存在有两个其和等于x的元素。

《算法导论(第二版)》(中文版)课后答案

《算法导论(第二版)》(中文版)课后答案

26.1-2
26.2-1
26.2-4
14
《算法导论(第二版) 》参考答案 26.3-1 s–1–6–t s–2–8–t s–3–7–t 26.3-3
26.4-2 根据 26.22 对每个顶点执行 relabel 操作的次数最多为 2|V|-1 所以对每条边检测次数最多为 2*(2|V|-1)次 O(V) 在剩余网络中最多 2|E|条边 O(E) 所以为 O(VE)
f1[ j ] f 2 [ j 1] t2, j 1 a1, j f 2 [ j ] f1[ j 1] t1, j 1 a2, j
所以有:
f1[ j ] f 2 [ j ] f 2 [ j 1] t2, j 1 a1, j f1[ j 1] t1, j 1 a2, j
6
《算法导论(第二版) 》参考答案
最终答案:((A1A2)((A3A4)(A5A6))) 15.2-2
15.3-2 没有重叠的子问题存在 15.3-4 这题比较简单,由 P328 的(15.6)(15.7)展开两三步就可以看出来. 15.4-3 先初始化 c 数组元素为无穷大
7
《算法导论(第二版) 法, 最好是像书上画一颗递归树然后进行运算。
1
《算法导论(第二版) 》参考答案
注意题目中的要求使用递归树的方法,最好是像书上画一颗递归树然后进行运 算。 4.2.2 证略 4.2.3 由 2 i n 得 i=lgn
T (n) 2 i cn cn
i 0
由课本 P328(15.6) (15.7)式代入,可得:
min( f1[ j 1] a1, j , f 2 [ j 1] t2, j 1 a1, j ) min( f 2 [ j 1] a2, j , f1[ j 1] t1, j 1 a2, j ) min( f1[ j 1], f 2 [ j 1] t2, j 1 ) a1, j min( f 2 [ j 1], f1[ j 1] t1, j 1 ) a2, j f 2 [ j 1] t2, j 1 a1, j f1[ j 1] t1, j 1 a2, j

算法导论 答案 (2)

算法导论 答案 (2)

算法导论答案算法导论概述《算法导论》是一本经典的计算机科学教材,由Thomas H. Cormen、Charles E. Leiserson、Ronald L. Rivest和Clifford Stein合著。

这本书详细介绍了算法的设计、分析和实现,并涵盖了算法导论领域的许多重要概念和技术。

本文将为你提供一些关于《算法导论》中一些常见问题的答案。

1. 什么是算法?算法是一系列明确定义的步骤,用于解决特定问题或完成特定任务。

它可以是一个计算过程、一个程序或一个有限的操作序列。

算法通常用于计算和数据处理领域,是计算机科学的核心概念。

2. 为什么学习算法很重要?学习算法的重要性体现在以下几个方面:•提高问题解决能力:算法是解决问题的有效工具。

学习算法可以帮助我们思考和理解问题,并设计出相应的解决方案。

•优化计算性能:算法的设计和分析可以帮助我们提高计算的效率和性能。

合适的算法可以在短时间内处理大规模数据集和复杂计算任务。

•促进技术创新:算法是许多技术和应用的基石,包括人工智能、机器学习、数据挖掘等。

学习算法可以为我们打开更多的研究和创新机会。

3. 《算法导论》提供了哪些内容?《算法导论》这本书详细介绍了算法的基本概念和设计技巧,并提供了许多典型算法的实现和分析。

以下是该书的一些主要内容:•算法分析:对算法进行时间复杂度和空间复杂度的理论分析,帮助我们评估算法的效率和性能。

•排序和查找算法:介绍了各种排序算法(如插入排序、归并排序、快速排序)和查找算法(如二分查找、哈希表)。

•图算法:讨论了图的表示方法和图搜索算法(如深度优先搜索、广度优先搜索)以及最短路径算法(如Dijkstra算法)等。

•动态规划和贪心算法:介绍了动态规划和贪心算法的原理和应用,用于解决具有最优子结构性质的问题。

•分治算法和递归思想:讲解了分治算法的基本原理,并提供了许多使用递归思想解决问题的例子。

•NP完全问题:探讨了NP完全问题的性质和求解方法,引导了读者进入计算复杂性理论的领域。

算法导论(第三版)-复习-第六部分图论22-26[转]

算法导论(第三版)-复习-第六部分图论22-26[转]

算法导论(第三版)-复习-第六部分图论22-26[转]22习题22.1-5 有向图G(V, E)的平⽅图。

链表表⽰时,对每结点u的Adj[u]中所有v加⼊队列,后边出队边将Adj[v]加⼊Adj[u]中。

矩阵表⽰时,若w[i, j]、w[j, k]同时为1则将w[i, k]置1.习题22.1-6 O(V)的时间寻找通⽤汇点。

汇点的特征是邻接矩阵的第j列除[j, j]外所有元素为1. 可将每⾏调整[j ,j]后作为⼀个整数,所有整数与运算,为1的位是汇点。

习题22.1-7 有向⽆环图的关联矩阵B,BB’每个元素C[i, j]=∑B[i, k]*B’[k, j]=∑B[i, k]*B[j, k],即同时进i, j两结点与同时出i, j的结点总数-⼀进⼀出i, j两结点的结点总数。

习题22.2-7 类似BFS,d mod2为0则标为B(娃娃脸),d mod2为1则标为H(⾼跟鞋)。

但若有边连接相同类的结点,则⽆法划分。

wrestler(G){for each u in G{(u,v)=Adj[u];if(v.mark==u.mark){throw error;}if(v.d==NIL) {v.d=u.d+1; v.mark=v.d mod 2;}}}习题22.2-8 任意点之间的最短路径。

重复的Dijktra算法或Floyd-Warshall算法习题22.2-9 ⽆向图扩展为有向图。

问题变成要遍历所有边⼀次。

访问结点u时,将u的⼦结点v的其他边都可视为⼦集v,问题等价于u到v,访问v的集合,v到u。

u标为visiting⼊列,然后访问v,v标为visiting⼊列,然后访问v的后继结点,访问过的边标为visited,返回到visiting的点时,如果该点所有连接的边都标为visited只剩⼀条返回上级的边,则返回上级结点并将点标为visited,v出列,访问u的其他⼦结点,最终u出列。

全部结点出列后达到遍历所有边⼀次。

算法导论参考 答案

算法导论参考 答案

第二章算法入门由于时间问题有些问题没有写的很仔细,而且估计这里会存在不少不恰当之处。

另,思考题2-3 关于霍纳规则,有些部分没有完成,故没把解答写上去,我对其 c 问题有疑问,请有解答方法者提供个意见。

给出的代码目前也仅仅为解决问题,没有做优化,请见谅,等有时间了我再好好修改。

插入排序算法伪代码INSERTION-SORT(A)1 for j ←2 to length[A]2 do key ←A[j]3 Insert A[j] into the sorted sequence A[1..j-1]4 i ←j-15 while i > 0 and A[i] > key6 do A[i+1]←A[i]7 i ←i − 18 A[i+1]←keyC#对揑入排序算法的实现:public static void InsertionSort<T>(T[] Input) where T:IComparable<T>{T key;int i;for (int j = 1; j < Input.Length; j++){key = Input[j];i = j - 1;for (; i >= 0 && Input[i].CompareTo(key)>0;i-- )Input[i + 1] = Input[i];Input[i+1]=key;}}揑入算法的设计使用的是增量(incremental)方法:在排好子数组A[1..j-1]后,将元素A[ j]揑入,形成排好序的子数组A[1..j]这里需要注意的是由于大部分编程语言的数组都是从0开始算起,这个不伪代码认为的数组的数是第1个有所丌同,一般要注意有几个关键值要比伪代码的小1.如果按照大部分计算机编程语言的思路,修改为:INSERTION-SORT(A)1 for j ← 1 to length[A]2 do key ←A[j]3 i ←j-14 while i ≥ 0 and A[i] > key5 do A[i+1]←A[i]6 i ←i − 17 A[i+1]←key循环丌变式(Loop Invariant)是证明算法正确性的一个重要工具。

算法导论参考答案

算法导论参考答案

第二章算法入门由于时间问题有些问题没有写的很仔细,而且估计这里会存在不少不恰当之处。

另,思考题2-3 关于霍纳规则,有些部分没有完成,故没把解答写上去,我对其 c 问题有疑问,请有解答方法者提供个意见。

给出的代码目前也仅仅为解决问题,没有做优化,请见谅,等有时间了我再好好修改。

插入排序算法伪代码INSERTION-SORT(A)1 for j ←2 to length[A]2 do key ←A[j]3 Insert A[j] into the sorted sequence A[1..j-1]4 i ←j-15 while i > 0 and A[i] > key6 do A[i+1]←A[i]7 i ←i − 18 A[i+1]←keyC#对揑入排序算法的实现:public static void InsertionSort<T>(T[] Input) where T:IComparable<T>{T key;int i;for (int j = 1; j < Input.Length; j++){key = Input[j];i = j - 1;for (; i >= 0 && Input[i].CompareTo(key)>0;i-- )Input[i + 1] = Input[i];Input[i+1]=key;}}揑入算法的设计使用的是增量(incremental)方法:在排好子数组A[1..j-1]后,将元素A[ j]揑入,形成排好序的子数组A[1..j]这里需要注意的是由于大部分编程语言的数组都是从0开始算起,这个不伪代码认为的数组的数是第1个有所丌同,一般要注意有几个关键值要比伪代码的小1.如果按照大部分计算机编程语言的思路,修改为:INSERTION-SORT(A)1 for j ← 1 to length[A]2 do key ←A[j]3 i ←j-14 while i ≥ 0 and A[i] > key5 do A[i+1]←A[i]6 i ←i − 17 A[i+1]←key循环丌变式(Loop Invariant)是证明算法正确性的一个重要工具。

openjudge 24 单词长度

openjudge 24 单词长度

openjudge 24 单词长度摘要:一、问题背景1.介绍OpenJudge 平台2.问题编号243.问题主题:单词长度二、问题分析1.问题描述2.问题分析3.可能的解决方案三、算法设计与实现1.暴力枚举法2.动态规划法3.Trie 树4.算法比较与优化四、代码实现1.使用暴力枚举法实现2.使用动态规划法实现3.使用Trie 树实现4.代码性能测试与分析五、总结与展望1.问题总结2.算法优缺点分析3.对未来相关问题的展望正文:一、问题背景在编程竞赛和算法练习平台上,如LeetCode、牛客网等,经常会遇到一些有趣且具有一定挑战性的算法题目。

今天我们要探讨的是来自OpenJudge 平台的第24 题:单词长度。

该问题要求我们设计一个程序,输入一个字符串,输出其中单词的最大长度。

二、问题分析对于这个问题,首先需要明确什么是单词。

在英文中,单词是由空格分隔的连续字符。

给定一个字符串,我们需要找到其中最长的单词长度。

这个问题看似简单,但实际上需要我们设计一个高效的算法来解决。

三、算法设计与实现为了解决这个问题,我们可以尝试使用以下三种算法:1.暴力枚举法:遍历字符串的每一个字符,判断当前字符是否为单词的边界。

如果当前字符是边界,则更新单词长度。

这种方法时间复杂度为O(n^2),空间复杂度为O(1),其中n 为字符串长度。

2.动态规划法:我们可以用一个数组dp 来存储以每个字符结尾的单词长度。

这样,在遍历字符串的过程中,我们可以根据dp 数组快速判断当前字符是否为单词边界,并更新dp 数组。

时间复杂度为O(n),空间复杂度为O(n),其中n 为字符串长度。

3.Trie 树:利用Trie 树存储字符串中的所有单词,并记录每个节点的子节点数量。

这样,在遍历字符串的过程中,我们可以通过查询Trie 树来获取以当前字符结尾的单词长度。

时间复杂度为O(n),空间复杂度为O(n),其中n 为字符串长度。

算法导论第三版答案

算法导论第三版答案
Solution to Exercise 2.3-5
Procedure BINARY-SEARCH takes a sorted array A, a value , and a range Œlow : : high of the array, in which we search for the value . The procedure compares to the array entry at the midpoint of the range and decides to eliminate half the range from further consideration. We give both iterative and recursive versions, each of which returns either an index i such that AŒi D , or NIL if no utions for Chapter 2: Getting Started
AŒlow : : high contains the value . The initial call to either version should have the parameters A; ; 1; n.
Selected Solutions for Chapter 2: Getting Started
2-3
d. We follow the hint and modify merge sort to count the number of inversions in ‚.n lg n/ time.
To start, let us define a merge-inversion as a situation within the execution of merge sort in which the MERGE procedure, after copying AŒp : : q to L and AŒq C 1 : : r to R, has values x in L and y in R such that x > y. Consider an inversion .i; j /, and let x D AŒi and y D AŒj , so that i < j and x > y. We claim that if we were to run merge sort, there would be exactly one mergeinversion involving x and y. To see why, observe that the only way in which array elements change their positions is within the MERGE procedure. Moreover, since MERGE keeps elements within L in the same relative order to each other, and correspondingly for R, the only way in which two elements can change their ordering relative to each other is for the greater one to appear in L and the lesser one to appear in R. Thus, there is at least one merge-inversion involving x and y. To see that there is exactly one such merge-inversion, observe that after any call of MERGE that involves both x and y, they are in the same sorted subarray and will therefore both appear in L or both appear in R in any given call thereafter. Thus, we have proven the claim.

算法导论(第二版)课后习题解答

算法导论(第二版)课后习题解答
n
Θ
i=1
i
= Θ(n2 )
This holds for both the best- and worst-case running time. 2.2 − 3 Given that each element is equally likely to be the one searched for and the element searched for is present in the array, a linear search will on the average have to search through half the elements. This is because half the time the wanted element will be in the first half and half the time it will be in the second half. Both the worst-case and average-case of L INEAR -S EARCH is Θ(n). 3
Solutions for Introduction to algorithms second edition
Philip Bille
The author of this document takes absolutely no responsibility for the contents. This is merely a vague suggestion to a solution to some of the exercises posed in the book Introduction to algorithms by Cormen, Leiserson and Rivest. It is very likely that there are many errors and that the solutions are wrong. If you have found an error, have a better solution or wish to contribute in some constructive way please send a message to beetle@it.dk. It is important that you try hard to solve the exercises on your own. Use this document only as a last resort or to check if your instructor got it all wrong. Please note that the document is under construction and is updated only sporadically. Have fun with your algorithms. Best regards, Philip Bille

算法导论中文版答案

算法导论中文版答案

24.2-3
24.2-4
24.3-1 见图 24-6 24.3-2
24.3-3
24.3-4 24.3-5 24.3-6
24.3-7
24.3-8 这种情况下不会破坏已经更新的点的距离。 24.4**** 24.5****
25.1-1 见图 25-1 25.1-2 为了保证递归定义式 25.2 的正确性 25.1-3
8.3-3 8.3-4
8.3-5(*) 8.4-1 见图 8-4 8.4-2
8.4-3 3/2,1/2 8.4-4(*) 8.4-5(*)
9.1-1
9.1-2 9.2-1 9.3-1
第九章
9.3-2 9.3-3
9.3-4 9.3-5
9.3-6 9.3-7
9.3-8
9.3-9
15.1-1
6.4-4
6.4-5
6.5-1 据图 6-5 6.5-2
6.5-3 6.5-4 6.5-5
6.5-6 6.5-7
6.5-8
7.1-1 见图 7-1 7.1-2
7.1-3 7.1-4 7.2-1 7.2-2
7.2-3 7.2-4 7.2-5
第七章
7.2-6 7.3-1
7.3-2
7.4-1 7.4-2
5.3-6
6.1-1 6.1-2 6.1-3 6.1-4 6.1-5 6.1-6
第6章
6.1-7
6.2-1 见图 6-2 6.2-2
6.2-3
6.2-4
6.2-5 对以 i 为根结点的子树上每个点用循环语句实现 6.2-6
6.3-1
见图 6-3 6.3-2
6.3-3
6.4-1 见图 6-4 6.4-2 HEAPSORT 仍然正确,因为每次循环的过程中还是会运行 MAX-HEAP 的过程。 6.4-3

算法导论doc

算法导论doc

第1章算法在计算中的作用章算法在计算中的作用什么是算法?为什么要对算法进行研究?相对于计算机中使用的其他技术来说,算法的作用是什么?在本章中,我们就要来回答这些问题. 1. 1算法算法简单来说,所谓抹法(also*llem)就是定义良好的计算过程,它取一个或一组值作为输入,并产生出一个或一组值作为输出。

并产生出一个或一组值作为输出。

亦即,亦即,算法就是一系列的计算步驭,算法就是一系列的计算步驭,用来将输人数据转换用来将输人数据转换成输出结果。

成输出结果。

我们还可以将算法看作是一种工具。

用来解决一个具有良好规格说明的计算问题。

有关该问题的表述可以用通用的语言,来规定所需的输人/输出关系。

与之对应的算法则描迷了一个特定的计算过程,用于实现这一输人/输出关系输出关系例如.假设需要将一列数按非降顺序进行排序。

在实践中,这一问皿经常山现。

它为我们引入许多标准的算法设计技术和分析工具提供了丰富的问题场景。

下面是有关该排序间题的形式化定义,的形式化定义,输入:由n 个数构成的一个序列编出:对输人序列的一个排列(重排) 例如,给定一个输人序列(31. 41. 59. 26, 41, 58).一个排序算法返回的怕出序列是(26, 31. 41. 41. 58, 59).这样的一个输人序列称为该排序问趣的一个实例G .-e)。

一般来说,。

一般来说,某一个问题的实例包含了求解该间题所需的输人(它满足有关该同题的表述中所给出的任何限制)。

在计算机科学中,排序是一种基本的操作(很多程序都将它用作一种申间步骤)。

因此,迄今为止,科研人员提出了多种非常好的排序算法。

科研人员提出了多种非常好的排序算法。

对于一项特定的应用来说,对于一项特定的应用来说,对于一项特定的应用来说,如何选择最如何选择最佳的排序算法要考虑多方面的因素,其中最主要的是考虑待排序的数据项数、这些数据项已排好序的程度、对数据项取值的可能限制、对数据项取值的可能限制、打算采用的存储设备的类型打算采用的存储设备的类型〔内存、磁盘、磁带)等。

算法导论中文版答案

算法导论中文版答案
len=j;//更新 len
} cout<<len<<endl; } return 0; } 15.5-1
15.5-2 15.5-3
15.5-4
16.1-1
第 16 章
16.1-2 16.1-3
16.1-4 16.2-1 16.2-2
16.2-3
16.2-4
16.2-5 16.2-6
16.2-7
25.3-6
5.3-6
6.1-1 6.1-2 6.1-3 6.1-4 6.1-5 6.1-6
第6章
6.1-7
6.2-1 见图 6-2 6.2-2
6.2-3
6.2-4
6.2-5 对以 i 为根结点的子树上每个点用循环语句实现 6.2-6
6.3-1
见图 6-3 6.3-2
6.3-3
6.4-1 见图 6-4 6.4-2 HEAPSORT 仍然正确,因为每次循环的过程中还是会运行 MAX-HEAP 的过程。 6.4-3
6.4-4
6.4-5
6.5-1 据图 6-5 6.5-2
6.5-3 6.5-4 6.5-5
6.5-6 6.5-7
6.5-8
7.1-1 见图 7-1 7.1-2
7.1-3 7.1-4 7.2-1 7.2-2
7.2-3 7.2-4 7.2-5
第七章
7.2-6 7.3-1
7.3-2
7.4-1 7.4-2
16.3-1 16.3-2
16.3-3 16.3-4
16.3-5
16.3-6 那就推广到树的结点有三个孩子结点,证明过程同引理 16.3 的证明。 16.3-7 16.3-8
第 24 章
24.1-1 同源顶点 s 的运行过程,见图 24-4 24.1-2

《算法导论(原书第3版)》第24章部分题目解答

《算法导论(原书第3版)》第24章部分题目解答

《算法导论(原书第3版)》第24章部分题⽬解答第24章单源最短路径24.1 Bellman-Ford算法24.1-4思路:先做|V|-1遍松弛操作,然后再做⼀遍松弛操作,对于这次松弛操作中dist值被更新的点,必然包含了每个负环中的⾄少⼀个点。

对于这些点做dfs查找它们能够在图中到达哪些点,所有被搜索到的点即为题⽬要求找的点部分c++代码:#include <bits/stdc++.h>using namespace std;const int maxn = ...;const int inf = 0x3f3f3f3f;//正⽆穷struct E{int x,y,z;//三元组(x,y,z)表⽰⼀条有向边。

从x出发到y,权值为z。

}vector<E> es;//存边vector<int> e[maxn];//模拟邻接链表vector<int> vec;//存起始点void bellman(int s){for(int i = 1; i<=n; i++)d[i]=inf;d[s] = 0;for(int t = 1; t<n; t++){for(auto e:es){if(d[e.x]!=inf && d[e.x]+e.z<d[e.y])d[e.y] = d[e.x] + w;}}for(auto e:es){if(d[e.x]!=inf && d[e.x]+e.z<d[e.y]){vec.push_back(y);}}}int v[maxn];void dfs(int x){v[x] = 1;for(auto y: e){if(!v[y]) dfs(y);}}void solve(int s){bellman(s);for(auto x:vec){if(!v[x]) dfs(x);}for(int i = 1; i<=n; i++){if(v[i]) cout<<"负⽆穷"<<endl;else if(d[i]==inf) cout<<"不可达"<<endl;else cout<<d[i]<<endl;}}24.1-5思路:跑⼀遍Bellman-Ford算法,具体做法如下:1、初始化∀v∈V,d[v]=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档