2018年中考数学考点指导:几何图形变换的切入点-文档资料
2018中考数学压轴题探究专题:图形变换综合探究专题
中考数学解法探究专题图形变换综合探究专题考题研究:本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。
解题攻略:图形的轴对称、平移、旋转是近年中考的新题型、热点题型,它主要考查学生的观察与实验能力,探索与实践能力,因此在解题时应注意以下方面: 1.熟练掌握图形的轴对称、图形的平移、图形的旋转的基本性质和基本方法。
2.结合具体问题大胆尝试,动手操作平移、旋转,探究发现其内在规律是解答操作题的基本方法。
3.注重图形与变换的创新题,弄清其本质,掌握其基本的解题方法,尤其是折叠与旋转等。
解题思路:1.变换中求角度注意平移性质:平移前后图形全等,对应点连线平行且相等.2.变换中求线段长时把握折叠的性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上.3.变换中求坐标时注意旋转性质:对应线段、对应角的大小不变,对应线段的夹角等于旋转角.4.变换中求面积,注意前后图形的变换性质及其位置等情况。
例题解析1.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=45°.【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;为等腰直角三角形即可得.(3)连接A′F′,利用勾股定理逆定理证△A′C′F′即为所求;【解答】解:(1)△A′B′C′(2)△D′E′F′即为所求;,(3)如图,连接A′F′、△DEF≌△D′E′F′,∵△ABC≌△A′B′C′,∠A′C′F′+∠D′E′F′=∴∠C+∠E=∠A′C′B′∵A′C′==、A′F′==,C′F′==,∴A′C′2,2+A′F′2=5+5=10=C′F′为等腰直角三角形,∴△A′C′F′,∴∠C+∠E=∠A′C′F′=45°故答案为:45°.2.实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM 的数量关系,写出折叠方案,并结合方案证明你的结论.【考点】PB:翻折变换(折叠问题);LB:矩形的性质;P9:剪纸问题.【分析】(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BM上O 处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM;【解答】解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.3.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.【考点】P7:作图﹣轴对称变换;KQ:勾股定理;PA:轴对称﹣最短路线问题.【分析】(1)根据A点坐标建立平面直角坐标系即可;(2)分别作出各点关于x轴的对称点,再顺次连接即可;(3)作出点B关于y轴的对称点B2,连接A、B2交y轴于点P,则P点即为所求.【解答】解:(1)如图所示;(2)如图,即为所求;(3)作点B关于y轴的对称点B2,连接A、B2交y轴于点P,则点P即为所求.设直线AB2的解析式为y=kx+b(k≠0),∵A(﹣4,6),B2(2,2),∴,解得,∴直线AB2的解析式为:y=﹣x+,∴当x=0时,y=,∴P(0,).4.阅读填空:(1)请你阅读芳芳的说理过程并填出理由:如图1,已知AB∥CD.求证:∠BAE+∠DCE=∠AEC.理由:作EF∥AB,则有EF∥CD(平行于同一条直线的两条直线平行)∴∠1=∠BAE,∠2=∠DCE(两直线平行,内错角相等)∴∠AEC=∠1+∠2=∠BAE+∠DCE(等量代换)思维拓展:(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAE=m°,∠ABC=n°,求∠BED的度数.(用含m、n的式子表示)(3)将图2中的线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,得到图3,直接写出∠BED的度数是180°﹣n°+m°(用含m、n的式子表示).【考点】Q2:平移的性质;JB:平行线的判定与性质.【分析】(1)根据平行线的性质即可得到结论;(2)先过点E作EH∥AB,根据平行线的性质和角平分线的定义,即可得到结论;(3)过E作EG∥AB,根据平行线的性质和角平分线的定义,即可得到结论.【解答】解:阅读填空:(1)平行于同一条直线的两条直线平行;两直线平行,内错角相等;等量代换,故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,等量代换;思维拓展:(2)如图2,过点E作EH∥AB,∵AB∥CD,∠FAD=m°,∴∠FAD=∠ADC=m°,∵DE平分∠ADC,∠ADC=m°,.∴∠EDC=∠ADC=m°,∵BE平分∠ABC,∠ABC=n°,∴∠ABE=∠ABC=n°,∵AB∥CD,∴AB∥CD∥EH,∴∠ABE=∠BEH=n°,∠CDE=∠DEH=m°,∴∠BED=∠BEH+∠DEH=n°+m°=(n°+m°);(3)∠BED的度数改变.过点E作EG∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=∠FAD=m°∴∠ABE=∠ABC=n°,∠CDE=∠ADC=m°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°﹣∠ABE=180°﹣n°,∠CDE=∠DEF=m°,∴∠BED=∠BEF+∠DEF=180°﹣n°+m°.故答案为:180°﹣n°+m°.5.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).【考点】R2:旋转的性质.【分析】(1)在Rt△ABE中,利用三角函数即可直接求得BE的长;(2)在Rt△CDE中,利用三角函数求得DE的长,然后利用DB=DE+EB求解.【解答】解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=AE=×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°﹣30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=≈=40(米),则BD=DE+BE=40+40=80(米).6.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D.当与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设△DC′E′CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.【考点】R2:旋转的性质;E3:函数关系式;LD:矩形的判定与性质;T7:解直角三角形.【分析】(1)根据等角的余角相等即可证明;与AB相交于Q时,即<x≤时,过P (2)分两种情形①如图1中,当C′E′作MN∥DC′,设∠B=α.②当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,分别求解即可;【解答】(1)证明:如图1中,∵∠EDE′=∠C=90°,∴∠ADP+∠CDE=90°,∠CDE+∠DEC=90°,∴∠ADP=∠DEC.与AB相交于Q时,即<x≤时,过P作MN∥(2)解:如图1中,当C′E′DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ?cosα=y,PN=×(3﹣x),∴(3﹣x)+y=x,∴y=x﹣,当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,∴PN=DM,∵DM=(3﹣x),PN=PQ?sinα=y,∴(3﹣x)=y,∴y=﹣x+.综上所述,y=7.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)只要证明△AOD≌△BOC,即可解决问题;(2)①如图2中,结论:OH=AD,OH⊥AD.延长OH到E,使得HE=OH,连接BE,由△BEO≌△ODA即可解决问题;②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD 于G.由△BEO≌△ODA即可解决问题;【解答】(1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,∵在△AOD与△BOC中,,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∠OAD=∠OBC,∵点H为线段BC的中点,∴OH=HB,∴∠OBH=∠HOB=∠OAD,又因为∠OAD+∠ADO=90°,所以∠ADO+∠BOH=90°,所以OH⊥AD(2)解:①结论:OH=AD,OH⊥AD,如图2中,延长OH到E,使得HE=OH,连接BE,易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOH=∠EOB+∠AOH=90°,∴OH⊥AD.②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD 于G.易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOF=∠EOB+∠AOG=90°,∴∠AGO=90°∴OH⊥AD.8.如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣1,3),B(﹣3,1),C(﹣1,1).请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出B1的坐标.(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并求出点A1走过的路径长.【考点】R8:作图﹣旋转变换;O4:轨迹;P7:作图﹣轴对称变换.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据弧长公式列式计算即可得解.【解答】解:(1)如图,B1(3,1);(2)如图,A1走过的路径长:×2×π×2=π学科网9.在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点视为相连)(2)将选中的小正方行方格用黑色签字笔涂成阴影图形.(每画对一种方案得2分,若两个方案的图形经过翻折、平移、旋转后能够重合,均视为一种方案)【考点】R9:利用旋转设计图案;P8:利用轴对称设计图案;Q5:利用平移设计图案.【分析】利用轴对称图形的性质用5个小正方形组成一个轴对称图形即可.【解答】解:如图..10.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【考点】RB:几何变换综合题.【分析】(1)根据矩形的性质得到∠D=∠DAE=90°,由折叠的性质得得到AE=AD,∠AEF=∠D=90°,求得∠D=∠DAE=∠AEF=90°,得到四边形AEFD是矩形,由于AE=AD,于是得到结论;(2)连接HN,由折叠的性质得到∠AD′H=∠D=90°,HF=HD=HD′,根据正方形的想知道的∠HD′N=90°,根据全等三角形的性质即可得到结论;(3)根据正方形的性质得到AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,根据勾股定理列方程得到x=2,于是得到结论;(4)根据(3,4,5)型三角形的定义即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°,由折叠的性质得,AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形,∵AE=AD,∴矩形AEFD是正方形;(2)解:NF=ND′,理由:连接HN,由折叠得,∠AD′H=∠D=90°,HF=HD=HD′,∵四边形AEFD是正方形,∴∠EFD=90°,∵∠AD′H=90°,∴∠HD′N=90°,在Rt△HNF与Rt△HND′中,,∴Rt△HNF≌Rt△HND′,∴NF=ND′;(3)解:∵四边形AEFD是正方形,∴AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,在Rt△AEN中,∵AN2=AE2+EN2,∴(8+x)2=82+(8﹣x)2,解得:x=2,∴AN=8+x=10cm,EN=6cm,∴EN:AE:AN=3:4:5,∴△AEN是(3,4,5)型三角形;(4)解:图4中还有△MFN,△MD′H,△MDA是(3,4,5)型三角形,∵CF∥AE,∴△CFN∽△AEN,∵EN:AE:AN=3:4:5,∴FN:CF:CN=3:4:5,∴△MFN是(3,4,5)型三角形;同理,△MD′H,△MDA是(3,4,5)型三角形.11.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM ⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【考点】RB:几何变换综合题.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN= BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.12.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【考点】S8:相似三角形的判定;KD:全等三角形的判定与性质;KW:等腰直角三角形;LE:正方形的性质.【分析】①由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;②由第一问的全等三角形的对应角相等,根据等量代换得到∠BAG=∠BCF,再由对顶角相等,利用两对角相等的三角形相似即可得证.【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.13.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【考点】S9:相似三角形的判定与性质.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=14.如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA?PB;(2)若PT=TB=,求图中阴影部分的面积.【考点】S9:相似三角形的判定与性质;MC:切线的性质;MO:扇形面积的计算.【分析】(1)连接OT,只要证明△PTA∽△PBT,可得=,由此即可解决问题;(2)首先证明△AOT是等边三角形,根据S阴=S扇形OAT﹣S△AOT计算即可;【解答】(1)证明:连接OT.∵PT是⊙O的切线,∴PT⊥OT,∴∠PTO=90°,∴∠PTA+∠OTA=90°,∵AB是直径,∴∠ATB=90°,∴∠TAB+∠B=90°,∵OT=OA,∴∠OAT=∠OTA,∴∠PTA=∠B,∵∠P=∠P,∴△PTA∽△PBT,∴=,∴PT2=PA?PB.(2)∵TP=TB=,∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT,∠TAO=60°,∴△AOT是等边三角形,∴S阴=S扇形OAT﹣S△AOT=﹣?12=﹣.15.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB 的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM?PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.16.如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE?CP的值.【考点】S9:相似三角形的判定与性质;M4:圆心角、弧、弦的关系;MB:直线与圆的位置关系.【分析】(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE?CP的值.【解答】解:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP?CE=CA2=(2)2=8.。
2018中考吃透几何图形三大变换
(
)
D.电梯的升降运动
8.在旋转过程中,确定一个三角形旋转的位置所需的条件是
(
)
①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.
A. ①②④
B. ①②③ C. ②③④ D. ①③④
9. 如图,两个全等的长方形 ABCD 与 CDEF,旋转长方形 ABCD 能和长方形 CDEF 重合,则可以 作为旋转中心的点有( )
°,如果旋转后的图形能够与原来的图
图形,这个点就是它的
.
5. 把一个图形绕着某一个点旋转
°,如果它能够与另一个图形
,那么就说这
两个图形关于这个点
,这个点叫做
.这两个图形中的对应点叫做关
于中心的
.
6. 关于中心对称的两个图形,对称点所连线段都经过
所
.关于中心对称的两个图形是
,而且被对称中心 图形.
7. 两个点关于原点对称时,它们的坐标符号
知识点填空
1. 如果一个图形沿一条直线对折,对折后的两部分能
是
,这条直线就是它的
.
,那么这个图形就
2. 如果一个图形沿一条直线折叠,如果它能与另一个图形
,那么这两个图形
成
,这条直线就是
,折叠后重合的对应点就是
。
3. 如果两个图形关于
的
.
对称,那么对称轴是任何一对对应点所连线段
4. 把一个图形绕着某一个点旋转 形 ,那么这个图形叫做
14.两块大小一样斜边为 4 且含有 30°角的三角板如图水平放置.将△CDE 绕 C 点按逆时针 方向旋转,当 E 点恰好落在 AB 上时,△CDE 旋转了 _ 度,线段 CE 旋转过程中扫过的面积 为 _____.
【中考数学】2018中考数学专题复习(九)图形的变换与四边形
走进2018年中考初中数学基础巩固复习专题(九)图形的变换与四边形【知识要点】知识点1:图形的变换与镶嵌知识点2:四边形的定义、判定及性质知识点3:矩形、菱形及正方形的判定知识点4:矩形、菱形及正方形的性质知识点5:梯形的判定及性质【复习点拨】1、掌握平移、旋转、对称的性质,灵活地运用平移、旋转、对称解决生活中的问题。
2、掌握平行四边形、矩形、菱形、正方形及梯形的定义、判定、性质,利用这些特殊四边形进行综合计算和证明。
【典例解析】(2017山东枣庄)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,例题1:得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69 C.66 D.99【考点】R1:生活中的旋转现象.【分析】直接利用中心对称图形的性质结合69的特点得出答案.【解答】解:现将数字“69”旋转180°,得到的数字是:69.故选:B.例题2:(2017山东枣庄)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.1【考点】PB:翻折变换(折叠问题).【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM的值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F 处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,故选:B.例题3:(2017山东枣庄)在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【考点】LB:矩形的性质;KI:等腰三角形的判定;S9:相似三角形的判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC 得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:例题4:(2017山东枣庄)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A (2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.【考点】SD:作图﹣位似变换;Q4:作图﹣平移变换;T7:解直角三角形.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==2,∴sin∠ACB===,即sin∠A2C2B2=.例题5:例题6:(2017甘肃张掖)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【考点】LB:矩形的性质;L7:平行四边形的判定与性质;L8:菱形的性质.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BE⊥EF,设BE=x,则 DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.例题7:(2017重庆B)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.【分析】如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,△DEF是等腰直角三角形,利用勾理计算DE=EF=,PD==3,如图2,由平行相似证明△DGC∽△FGA,列比例式可得FG和CG的长,从而得EG的长,根据△GHF是等腰直角三角形,得GH和FH的长,利用DE∥GM证明△DEN∽△MNH,则,得EN=,从而计算出△EMN各边的长,相加可得周长.【解答】解:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=,Rt△DAF中,DF==2,∵DE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EF==,∴PD==3,如图2,∵DC∥AB,∴△DGC∽△FGA,∴==2,∴CG=2AG,DG=2FG,∴FG=×=,∵AC==4,∴CG=×=,∴EG=﹣=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH==,∴EH=EF﹣FH=﹣=,由折叠得:GM⊥EF,MH=GH=,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴,∴==3,∴EN=3NH,∵EN+NH═EH=,∴EN=,∴NH=EH﹣EN=﹣=,Rt△GNH中,GN===,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=++=;故答案为:.【点评】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数,计算比较复杂,作辅助线,构建全等三角形,计算出PE的长是关键.(2017山东枣庄)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,例题8:使点F在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.【考点】LO:四边形综合题.【分析】(1)根据正方形的性质证明△APE≌△CFE,可得结论;(2)分别证明∠PAE=45°和∠BAC=45°,则∠CAE=90°,即△ACE是直角三角形;(3)分别计算PG和BG的长,利用平行线分线段成比例定理列比例式得:,即,解得:a=b,得出a与b的比,再计算GH和BG的长,根据角平分线的逆定理得:∠HCG=∠BCG,由平行线的内错角得:∠AEC=∠ACB=45°.【解答】证明:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵,∴△APE≌△CFE,∴EA=EC;(2)△ACE是直角三角形,理由是:如图2,∵P为AB的中点,∴PA=PB,∵PB=PE,∴PA=PE,∴∠PAE=45°,又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;(3)设CE交AB于G,∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a,∵PE∥CF,∴,即,解得:a=b,∴a:b=:1,作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=(2b﹣2b)=(2﹣)b,又∵BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.【达标检测】一、选择题1. (2017浙江义乌)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7°B.21° C.23° D.24°【考点】LB:矩形的性质;JA:平行线的性质.【分析】由矩形的性质得出∠D=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,在Rt△ACD 中,由互余两角关系得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴∠D=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,在Rt△ACD中,3x+21°=90°,解得:x=23°;故选:C.2. (2017甘肃张掖)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.3.4.5.二、填空题:6.7.8. (2017浙江义乌)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为4600 m.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;LD:矩形的判定与性质.【分析】连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE.在矩形GECF中,EF=CG.要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【解答】解:连接GC,∵四边形ABCD为正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,∴△AGD≌△GDC∴AG=CG在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF﹣BA﹣AG﹣GE=AD=1500m.∵小敏共走了3100m,∴小聪行走的路程为3100+1500=4600(m)故答案为:46009.(2017浙江衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B 落在点E处,CE交AD于点F,则DF的长等于()A.B.C.D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6﹣x)2,解方程求出x.【解答】解:∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF与△CDF中,,∴△AEF≌△CDF(AAS),∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6﹣x)2,解得x=,则FD=6﹣x=.故选:B.10. (2017张家界)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为6﹣10 .【考点】R2:旋转的性质;LE:正方形的性质.【分析】根据旋转的想知道的PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(4﹣2)=6﹣10,故答案为:6﹣10.三、解答题11. (2017湖南岳阳)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD .求证:四边形ABCD是菱形.【分析】由命题的题设和结论可填出答案,由平行四边形的性质可证得AC为线段BD的垂直平分线,可求得AB=AD,可得四边形ABCD是菱形.【解答】已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD,求证:四边形ABCD是菱形.证明:∵四边形ABCD为平行四边形,∴BO=DO,∵AC⊥BD,∴AC垂直平分BD,∴AB=AD,∴四边形ABCD为菱形.故答案为:AC⊥BD;四边形ABCD是菱形.【点评】本题主要考查菱形的判定及平行四边形的性质,利用平行四边形的性质证得AB=AD 是解题的关键.12. 如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.13. 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB 时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.14.(2017浙江衢州)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.【考点】LO:四边形综合题.【分析】(1)当t=3时,点E为AB的中点,由三角形中位线定理得出DE∥OA,DE=OA=4,再由矩形的性质证出DE⊥AB,得出∠OAB=∠DEA=90°,证出四边形DFAE是矩形,得出DF=AE=3即可;(2)作DM⊥OA于M,DN⊥AB于N,证明四边形DMAN是矩形,得出∠MDN=90°,DM∥AB,DN∥OA,由平行线得出比例式, =,由三角形中位线定理得出DM=AB=3,DN=OA=4,证明△DMF∽△DNE,得出=,再由三角函数定义即可得出答案;(3)作作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),求出AF=4+MF=﹣t+,得出G(, t),求出直线AD的解析式为y=﹣x+6,把G(, t)代入即可求出t的值;②当点E越过中点之后,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),求出AF=4﹣MF=﹣t+,得出G(, t),代入直线AD的解析式y=﹣x+6求出t的值即可.【解答】解:(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴, =,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴=,∵∠EDF=90°,∴tan∠DEF==;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵点G为EF的三等分点,∴G(, t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直线AD的解析式为y=﹣x+6,把G(, t)代入得:t=;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵点G为EF的三等分点,∴G(, t),代入直线AD的解析式y=﹣x+6得:t=;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或15. (2017浙江义乌)如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)【考点】FI:一次函数综合题.【分析】(1)由题意点P与点C重合,可得点P坐标为(3,4);(2)分两种情形①当点P在边AD上时,②当点P在边AB上时,分别列出方程即可解决问题;(3)分三种情形①如图1中,当点P在线段CD上时.②如图2中,当点P在AB上时.③如图3中,当点P在线段AD上时.分别求解即可;【解答】解:(1)∵CD=6,∴点P与点C重合,∴点P坐标为(3,4).(2)①当点P在边AD上时,∵直线AD的解析式为y=﹣2x﹣2,设P(a,﹣2a﹣2),且﹣3≤a≤1,若点P关于x轴的对称点Q1(a,2a+2)在直线y=x﹣1上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3.4).若点P关于y轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P在边AB上时,设P(a,﹣4)且1≤a≤7,若等P关于x轴的对称点Q2(a,4)在直线y=x﹣1上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P关于y轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).(3)①如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′==2,在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(2+m)2=m2,解得m=﹣,∴P(﹣,4)根据对称性可知,P(,4)也满足条件.②如图2中,当点P在AB上时,易知四边形PMGM′是正方形,边长为2,此时P(2,﹣4).③如图3中,当点P在线段AD上时,设AD交x轴于R.易证∠M′RG=∠M′GR,推出M′R=M′G=GM,设M′R=M′G=GM=x.∵直线AD的解析式为y=﹣2x﹣2,∴R(﹣1,0),在Rt△OGM′中,有x2=22+(x﹣1)2,解得x=,∴P(﹣,3).点P坐标为(2,﹣4)或(﹣,3)或(﹣,4)或(,4).。
中考压轴题几何图形变换的切入点
中考压轴题几何图形变换的切入点实践操作性试题正逐渐成为中考命题的热点,前两年的上海市数学中考中,压轴的都是这类题型。
下面,我们通过一个例题谈谈如何更好更快地找到解决问题的切入点。
例已知∠AOB=90°,OM是∠AOB的角平分线,按以下要求解答问题(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与OA,OB交于点C,E.①在图甲中,证明:PC=PD;②在图乙中,点G是CD与OP的交点,PG=PD,求△POD与△PDG的面积之比;(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长。
(见题图)切入点一:构造定理所需的图形或基本图形在解决问题的过程中,有时添辅助线是必不可少的。
中考对学生添线的要求不是很高,只需连接两点或作垂直、平行,而且添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形,如本例第一个证明就是利用角平分线上的点到角两边距离相等这一定理(如图甲);再如本市2019年压轴题的第①题构造图形也是利用这一定理。
切入点二:做不出、找相似,有相似,用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
如本题第(1)题的第②小题即证ΔPOD∽ΔPDG然后运用相似三角形的性质。
第②题则是直接使用相似三角形的性质。
再如2019年中考压轴题的第(3)题,也是先要利用相似三角形性质进行计算,再证明相似。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
如本例中,PC与PD始终保持相等关系,如果我们能认识到这一点,才可能考虑利用第①题的证明方法证PC=PD(如图丁)进而得到∠PCH=∠PDN,再结合相似三角形性质易得∠PCH=∠PDN=∠CDO=22.5°=∠OPC最后得到OP=OC,这样做比使用其他方法计算要简单得多,再如2019年、2019年压轴题第(2)小题,也都需要使用第(1)小题的证明方法或结论。
2018年中考数学基础复习专题(九)图形的变换与四边形
2018年中考数学基础复习专题(九)图形的变换与四边形【知识要点】知识点1:图形的变换与镶嵌知识点2:四边形的定义、判定及性质知识点3:矩形、菱形及正方形的判定知识点4:矩形、菱形及正方形的性质知识点5:梯形的判定及性质【复习点拨】1、掌握平移、旋转、对称的性质,灵活地运用平移、旋转、对称解决生活中的问题。
2、掌握平行四边形、矩形、菱形、正方形及梯形的定义、判定、性质,利用这些特殊四边形进行综合计算和证明。
【典例解析】1.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A.B. C. D.【考点】P3:轴对称图形.【分析】利用轴对称图形定义判断即可.【解答】解:下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是,故选A2.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A. B. C. D.﹣【考点】Q2:平移的性质.【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.3.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′【考点】R2:旋转的性质.【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,∵CB=CB',∴∠B=∠BB'C,又∵∠A'CB'=∠B+∠BB'C,∴∠A'CB'=2∠B,又∵∠ACB=∠A'CB',∴∠ACB=2∠B,故B正确;∵∠A′B′C=∠B,∴∠A′B′C=∠BB′C,∴B′C平分∠BB′A′,故D正确;故选C.4.已知2x=3y(y≠0),则下面结论成立的是()A.=B.=C.=D.=【考点】S1:比例的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边都除以2y,得=,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得=,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选:A.5.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】L3:多边形内角与外角.【分析】此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.6.如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.【考点】P8:利用轴对称设计图案;X6:列表法与树状图法.【分析】直接利用已知得出涂黑后是轴对称图形的位置,进而得出答案.【解答】解:由题意可得:空白部分有6个位置,只有在1,2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.7.如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),将正方形OABC沿着OB方向平移OB个单位,则点C的对应点坐标为(1,3).【考点】Q3:坐标与图形变化﹣平移.【分析】将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,根据平移规律即可求出点C的对应点坐标.【解答】解:∵在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A 的坐标为(2,0),∴OC=OA=2,C(0,2),∵将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,∴点C的对应点坐标是(1,3).故答案为(1,3).8.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正确结论是①②(填序号)【考点】R2:旋转的性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠1=∠2,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.【解答】解:设BE,DG交于O,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=2b2,则BG2+DE2=DO2+BO2+EO2+OG2=2a2+2b2,故③错误.故答案为:①②.9.如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为6.【考点】S4:平行线分线段成比例.【分析】由a∥b∥c,可得=,由此即可解决问题.【解答】解:∵a∥b∥c,∴=,∴=,∴EF=6,故答案为6.10.正六边形的每个内角等于120°.【考点】L3:多边形内角与外角.【分析】根据多边形内角和公式即可求出答案.【解答】解:六边形的内角和为:(6﹣2)×180°=720°,∴正六边形的每个内角为:=120°,故答案为:120°11.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108度.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.12.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E=45°.【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.13.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(﹣2,3).【考点】Q4:作图﹣平移变换;P5:关于x轴、y轴对称的点的坐标.【分析】(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A、O、B向左平移后的对应点A1、O1、B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可.【解答】解:(1)B点关于y轴的对称点坐标为(﹣3,2);(2)△A1O1B1如图所示;(3)A1的坐标为(﹣2,3).故答案为:(1)(﹣3,2);(3)(﹣2,3).14.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).【考点】R2:旋转的性质.【分析】(1)在Rt△ABE中,利用三角函数即可直接求得BE的长;(2)在Rt△CDE中,利用三角函数求得DE的长,然后利用DB=DE+EB求解.【解答】解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=AE=×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°﹣30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=≈=40(米),则BD=DE+BE=40+40=80(米).15.如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.①求证:CE∥BF;②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).【考点】S9:相似三角形的判定与性质;M2:垂径定理.【分析】①连接AC,BE,由等腰三角形的性质和三角形的外角性质得出∠F=∠AEB,由圆周角定理得出∠AEC=∠BEC,证出∠AEC=∠F,即可得出结论;②证明△ADE∽△CBE,得出,证明△CBE∽△CDB,得出,求出CB=2,得出AD=6,AB=8,由垂径定理得出OC⊥AB,AG=BG=AB=4,由勾股定理求出CG==2,即可得出△BCD的面积.【解答】①证明:连接AC,BE,作直线OC,如图所示:∵BE=EF,∴∠F=∠EBF;∵∠AEB=∠EBF+∠F,∴∠F=∠AEB,∵C是的中点,∴,∴∠AEC=∠BEC,∵∠AEB=∠AEC+∠BEC,∴∠AEC=∠AEB,∴∠AEC=∠F,∴CE∥BF;②解:∵∠DAE=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴,即,∵∠CBD=∠CEB,∠BCD=∠ECB,∴△CBE∽△CDB,∴,即,∴CB=2,∴AD=6,∴AB=8,∵点C为劣弧AB的中点,∴OC⊥AB,AG=BG=AB=4,∴CG==2,∴△BCD的面积=BD•CG=×2×2=2.学科网16.小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.【考点】T4:互余两角三角函数的关系;T5:特殊角的三角函数值.【分析】(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.【解答】解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.17.A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据:≈1.414,≈1.732)【考点】T8:解直角三角形的应用.【分析】过点C作CD⊥AB与D,根据AC=20km,∠CAB=30°,求出CD、AD,根据∠CBA=45°,求出BD、BC,最后根据AB=AD+BD列式计算即可.【解答】解:过点C作CD⊥AB与D,∵AC=10km,∠CAB=30°,∴CD=AC=×20=10km,AD=cos∠CAB•AC=cos∠30°×20=10km,∵∠CBA=45°,∴BD=CD=10km,BC=CD=10≈14.14km∴AB=AD+BD=10+10≈27.32km.则AC+BC﹣AB≈20+14.14﹣27.32≈6.8km.答:从A地到B地的路程将缩短6.8km.18.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是5(立方单位),表面积是22(平方单位)(2)画出该几何体的主视图和左视图.【考点】U4:作图﹣三视图.【分析】(1)几何体的体积为5个正方体的体积和,表面积为20个正方形的面积;(2)主视图从左往右看3列正方形的个数依次为2,1,2;左视图1列正方形的个数为2.【解答】解:(1)每个正方体的体积为1,∴组合几何体的体积为5×1=5;∵组合几何体的前面和后面共有5×2=10个正方形,上下共有6个正方形,左右共6个正方形(外面4个加里面2个),每个正方形的面积为1,∴组合几何体的表面积为22.故答案为:5,22;(2)作图如下:19.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示)【考点】U6:中心投影.【分析】(1)根据小军和小丽的身高与影长即可得到光源所在;(2)根据光源所在和小华的身高即可得到相应的影长.【解答】解:如图所示:(1)点P就是所求的点;(2)EF就是小华此时在路灯下的影子.20.如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°.求∠B的度数.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】(1)利用平行四边形的性质得出AD∥BC,AD=BC,证出∠D=∠ECF,由ASA即可证出△ADE≌△FCE;(2)证出AB=FB,由等腰三角形的性质和三角形内角和定理即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠D=∠ECF,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA);(2)解:∵△ADE≌△FCE,∴AD=FC,∵AD=BC,AB=2BC,∴AB=FB,∴∠BAF=∠F=36°,∴∠B=180°﹣2×36°=108°.21.已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由平行四边形的性质得出AB∥CD,AB=CD,证出AE=CF,∠E=∠F,∠OAE=∠OCF,由ASA证明△AOE≌△COF,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.22.如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】连接AC,交BD于点O,由“平行四边形ABCD的对角线互相平分”得到OA=OC,OB=OD;然后结合已知条件证得OE=OF,则“对角线互相平分的四边形是平行四边形”,即可得出结论.【解答】证明:连接AC,交BD于点O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BF=ED,∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∴AE∥CF.Zxxk。
【K12学习】XX中考数学知识点:几何图形变换的切入点
XX中考数学知识点:几何图形变换的切入点
切入点一:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的。
对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。
中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点二:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。
有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。
中考压轴题几何图形变换的切入点-
中考压轴题几何图形变换的切入点实践操作性试题正逐渐成为中考命题的热点,前两年的上海市数学中考中,压轴的都是这类题型。
下面,我们通过一个例题谈谈如何更好更快地找到解决问题的切入点。
例已知∠AOB=90°,OM是∠AOB的角平分线,按以下要求解答问题(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与OA,OB交于点C,E.①在图甲中,证明:PC=PD;②在图乙中,点G是CD与OP的交点,PG=PD,求△POD与△PDG的面积之比;(2)将三角板的直角顶点P 在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长。
(见题图)切入点一:构造定理所需的图形或基本图形在解决问题的过程中,有时添辅助线是必不可少的。
中考对学生添线的要求不是很高,只需连接两点或作垂直、平行,而且添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形,如本例第一个证明就是利用角平分线上的点到角两边距离相等这一定理(如图甲);再如本市2002年压轴题的第①题构造图形也是利用这一定理。
切入点二:做不出、找相似,有相似,用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
如本题第(1)题的第②小题即证ΔPOD∽ΔPDG然后运用相似三角形的性质。
第②题则是直接使用相似三角形的性质。
再如2003年中考压轴题的第(3)题,也是先要利用相似三角形性质进行计算,再证明相似。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
如本例中,PC与PD始终保持相等关系,如果我们能认识到这一点,才可能考虑利用第①题的证明方法证PC=PD(如图丁)进而得到∠PCH=∠PDN,再结合相似三角形性质易得∠PCH=∠PDN=∠CDO=22.5°=∠OPC最后得到OP=OC,这样做比使用其他方法计算要简单得多,再如2002年、2003年压轴题第(2)小题,也都需要使用第(1)小题的证明方法或结论。
2018中考数学知识点:几何图形变换的切入点
2018中考数学知识点:几何图形变换的切入
点
切入点一:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的。
对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。
中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点二:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。
有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。
精选-专家为你解析中考压轴题几何图形变换的切入点
专家为你解析中考压轴题几何图形变换的切入点切入点一:构造定理所需的图形或基本图形在解决问题的过程中,有时添辅助线是必不可少的。
中考对学生添线的要求不是很高,只需连接两点或作垂直、平行,而且添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形,如本例第一个证明就是利用角平分线上的点到角两边距离相等这一定理(如图甲);再如本市2019年压轴题的第①题构造图形也是利用这一定理。
切入点二:做不出、找相似,有相似,用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
如本题第(1)题的第②小题即证ΔPOD∽ΔPDG然后运用相似三角形的性质。
第②题则是直接使用相似三角形的性质。
再如2019年中考压轴题的第(3)题,也是先要利用相似三角形性质进行计算,再证明相似。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
如本例中,PC与PD始终保持相等关系,如果我们能认识到这一点,才可能考虑利用第①题的证明方法证PC=PD(如图丁)进而得到∠PCH=∠PDN,再结合相似三角形性质易得∠PCH=∠PDN =∠CDO=22.5°=∠OPC最后得到OP=OC,这样做比使用其他方法计算要简单得多,再如2019年、2019年压轴题第(2)小题,也都需要使用第(1)小题的证明方法或结论。
切入点四:展开联想,寻找解决过的问题尽管已经做过了许多复习题,但考试中碰到的压轴题又往往是新的面孔,如何在新老问题之间找到联系呢?请同学们牢记,在题目中你总可以找到与你解决过的问题有相类似的情况,可能图形相似,可能条件相似,可能结论相似,此时你就应考虑原来题目是怎样解决的,与现题目有何不同。
原有的题目是如何解决的,所使用的方法或结论在这里是不是可以使用,或有借鉴之处。
2018年湖南中考数学复习资料 20 图形的变换
考点二十:图形的变换聚焦考点☆温习理解一、平移1、定义把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2、性质(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动(2)连接各组对应点的线段平行(或在同一直线上)且相等。
二、轴对称1、定义把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
三、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
四、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
2018中考数学:中考中的图形变换
2018中考数学:中考中的图形变换随着新课改的实施,中考命题趋势逐步削弱了对传统数学问题的单纯考查,试题情境一般存在开放性、探索性、操作性(平移、旋转、翻折),许多问题是以发现、猜测和探究为主线的新式题型。
下面我们谈谈近几年中考的热点问题——图形变换。
图形变换包含平移、轴对称、旋转、位似四大变换,近年全国各地的中考数学试题出现了不少有关图形变换的试题。
作为新增加的内容,图形与变换对于培养同学们空间观念、拓展几何的活动视野和研究途径,都具有其他内容无法替代的作用,因而,图形与变换在近年来的中考数学试题中占有较大的比重,近几年在天津市中考试卷中也出现了许多有关图形与变换的新题型,纵观三年天津卷可知:2008年有关图形变换的题目共占14分;2009年共16分;2010年共占19分。
由此可见,所含分值在逐年提高,不但如此,题目的灵活性和综合运用能力要求也在提高。
天津卷连续三年在解答题第25题都考查了图形变换的相关内容,本文列举旋转变换和轴对称变换题型加以分析说明:旋转问题旋转问题要明确旋转的三要素:旋转中心(绕着哪个点)、旋转方向(顺时针、逆时针)、旋转角度。
除此之外,还要始终把握旋转的性质:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等(旋转前后两图形的对应线段、对应角分别相等)。
旋转问题可归结为点的旋转、线段的旋转和图形(一般为三角形)的旋转。
在旋转问题中往往将陌生问题转化为我们熟知的三角形问题去解决,即要去寻找或构造等边三角形、等腰直角三角形、等腰三角形等,将题目由繁化简。
例1.(2010天津)如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1。
以点A为中心,把△ADE顺时针旋转90°,得△ABE’,连接EE’,则EE’的长等于。
【答案】EE’=2■分析:此题是对学生勾股定理、等腰直角三角形和旋转的性质综合运用能力的考查。
中考压轴题几何图形变换的切入点
中考压轴题几何图形变换的切入点实践操作性试题正逐渐成为中考命题的热点,前两年的上海市数学中考中,压轴的都是这类题型。
下面,我们通过一个例题谈谈如何更好更快地找到解决问题的切入点。
例∠AOB=90°,OM是∠AOB的角平分线,按以下要求解答问题〔1〕将三角板的直角顶点P在射线OM上移动,两直角边分别与OA,OB交于点C,E.①在图甲中,证明:PC=PD;②在图乙中,点G是CD与OP的交点,PG=PD,求△POD与△PDG的面积之比;〔2〕将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长。
〔见题图〕切入点一:构造定理所需的图形或基本图形在解决问题的过程中,有时添辅助线是必不可少的。
中考对学生添线的要求不是很高,只需连接两点或作垂直、平行,而且添辅助线几乎都遵循这样一个原那么:构造定理所需的图形或构造一些常见的基本图形,如本例第一个证明就是利用角平分线上的点到角两边距离相等这一定理〔如图甲〕;再如本市2019年压轴题的第①题构造图形也是利用这一定理。
切入点二:做不出、找相似,有相似,用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
如此题第〔1〕题的第②小题即证ΔPOD∽ΔPDG然后运用相似三角形的性质。
第②题那么是直接使用相似三角形的性质。
再如2019年中考压轴题的第〔3〕题,也是先要利用相似三角形性质进行计算,再证明相似。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
如本例中,PC与PD始终保持相等关系,如果我们能认识到这一点,才可能考虑利用第①题的证明方法证PC=PD〔如图丁〕进而得到∠PCH=∠PDN,再结合相似三角形性质易得∠PCH=∠PDN=∠CDO=22.5°=∠OPC最后得到OP=OC,这样做比使用其他方法计算要简单得多,再如2019年、2019年压轴题第〔2〕小题,也都需要使用第〔1〕小题的证明方法或结论。
中考数学:几何图形变换的切入点
中考数学:几何图形变换的切入点切入点一:构造定理所需的图形或基本图形在解决问题的过程中,有时添加辅助线是必不可少的。
对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。
中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点二:做不出、找相似,有相似、用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。
有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。
2019-2020学年数学中考模拟试卷一、选择题1.计算:2--2的结果是( )A .4B .1C .0D .-42.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,则下列结论不一定成立的是( )A.AD =BDB.BD =CDC.∠BAD =∠CADD.∠B =∠C3.下列四个三角形中,与图中的三角形相似的是( )A .B .C .D .4.下列方程中,没有实数根的是( )A .2x 2x 30--=B .2x 2x 30-+=C .2x 2x 10-+=D .2x 2x 10--= 5.在实数﹣2,|﹣2|,(﹣2)0,0中,最大的数是( )A .﹣2B .|﹣2|C .(﹣2)0D .06.我们知道:用形状,大小完全相同的一种或几种平面图形进行拼接,彼此间不留空隙,不重叠地铺成一片,就是平面图形的镶嵌.那么从若干正三角形,正四边形,正五边形,正六边形中,只选择一种正多边形进行拼接,能够镶嵌的概率是( ) A.14 B.12 C.34 D.17.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB =120°,半径OA 为9m ,那么花圃的面积为( )A .54πm 2B .27πm 2C .18πm 2D .9πm 28.对于一次函数y =2x+4,下列结论中正确的是( )①若两点A(x 1,y 1),B(x 2,y 2)在该函数图象上,且x 1<x 2,则y 1<y 2.②函数的图象不经过第四象限.③函数的图象与x 轴的交点坐标是(0,4).④函数的图象向下平移4个单位长度得y =2x 的图象.A .1个B .2个C .3个D .4个9.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为( ).A .50°B .60°C .70°D .80°10.正比例函数y =kx(k≠0)的图象上一点A 到x 轴的距离与到y 轴的距离之比为2 : 3,且y 随x 的增大而减小,则k 的值是 ( )A .23B .32C .32-D .23- 11.如图,⊙O 以AB 为直径,PB 切⊙O 于B ,近接AP ,交⊙O 于C ,若∠PBC =50°,∠ABC =( )A .30°B .40°C .50°D .60°12.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A.0个B.1个C.2个D.3个二、填空题 13.如图,两弦AB 、CD 相交于点E ,且AB ⊥CD ,若∠B =60°,则∠A 等于_____度.14.写一个解为21x y =⎧⎨=-⎩的二元一次方程组____.15.已知关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,则a﹣b的值为________.16.分解因式:a2b﹣b3= .17.已知扇形的弧长为2π,面积为8π,则扇形的半径为_____.18.计算:(﹣1)2019+(4﹣π)0﹣()﹣2=_____.三、解答题19.在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB 的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.20.我们约定,在平面直角坐标系中两条抛物线有且只有一个交点时,我们称这两条抛物线为“共点抛物线”,这个交点为“共点”.(1)判断抛物线y=x2与y=﹣x2是“共点抛物线”吗?如果是,直接写出“共点”坐标;如果不是,说明理由;(2)抛物线y=x2﹣2x与y=x2﹣2mx﹣3是“共点抛物线”,且“共点”在x轴上,求抛物线y=x2﹣2mx ﹣3的函数关系式;(3)抛物线L1:y=﹣x2+2x+1的图象如图所示,L1与L2:y=﹣2x2+mx是“共点抛物线”;①求m的值;②点P是x轴负半轴上一点,设抛物线L1、L2的“共点”为Q,作点P关于点Q的对称点P′,以PP′为对角线作正方形PMP′N,当点M或点N落在抛物线L1上时,直接写出点P的坐标.21.如图,某中学依山而建,校门A处有一斜坡AB,长度为13米。
2018中考吃透几何图形三大变换
初中---几何图形变换考点一、平移1、定义把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2、性质(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动。
(2)连接各组对应点的线段平行(或在同一直线上)且相等。
考点二、轴对称1、定义把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
考点三、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
考点四、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
专家为你解析中考压轴题几何图形变换的切入点
专家为你解析中考压轴题几何图形变换的切入点切入点一:结构定理所需的图形或基本图形在处置效果的进程中,有时添辅佐线是必不可少的。
中考对先生添线的要求不是很高,只需衔接两点或作垂直、平行,而且添辅佐线简直都遵照这样一个原那么:结构定理所需的图形或结构一些罕见的基本图形,如本例第一个证明就是应用角平分线上的点到角两边距离相等这一定理(如图甲);再如本市2021年压轴题的第①题结构图形也是应用这一定理。
切入点二:做不出、找相似,有相似,用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
先生往往不知道该怎样入手,这时往往应依据题意去寻觅相似三角形。
如此题第(1)题的第②小题即证ΔPOD∽ΔPDG然后运用相似三角形的性质。
第②题那么是直接运用相似三角形的性质。
再如2021年中考压轴题的第(3)题,也是先要应用相似三角形性质停止计算,再证明相似。
切入点三:紧扣不变量,并擅长运用前题所采用的方法或结论在图形运动变化时,图形的位置、大小、方向能够都有所改动,但在此进程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发作改动。
如本例中,PC与PD一直坚持相等关系,假设我们能看法到这一点,才干够思索应用第①题的证明方法证PC=PD(如图丁)进而失掉∠PCH=∠PDN,再结合相似三角形性质易得∠PCH=∠PDN =∠CDO=22.5°=∠OPC最后失掉OP=OC,这样做比运用其他方法计算要复杂得多,再如2021年、2021年压轴题第(2)小题,也都需求运用第(1)小题的证明方法或结论。
切入点四:展开联想,寻觅处置过的效果虽然曾经做过了许多温习题,但考试中碰到的压轴题又往往是新的面孔,如何在新老效果之间找到联络呢?请同窗们牢记,在标题中你总可以找到与你处置过的效果有相相似的状况,能够图形相似,能够条件相似,能够结论相似,此时你就应思索原来标题是怎样处置的,与现标题有何不同。
原有的标题是如何处置的,所运用的方法或结论在这里是不是可以运用,或有自创之处。
中考数学:几何图形变换的切入点
中考数学:几何图形变换的切入点切入点一:构造定理所需的图形或基本图形在解决问题的过程中,有时添加辅助线是必不可少的。
对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。
中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点二:做不出、找相似,有相似、用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。
有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。
2019-2020学年数学中考模拟试卷一、选择题1.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA2.若2是一元二次方程x2+mx﹣4m=0的一个根,则另一个根是()A.﹣4 B.4 C.﹣6 D.63.如图,在Rt△ABC中,BC=3cm,AC=4cm,动点P从点C出发,沿C→B→A→C运动,点P在运动过程中速度始终为1cm/s,以点C为圆心,线段CP长为半径作圆,设点P的运动时间为t(s),当⊙C与△ABC 有3个交点时,此时t的值不可能是()A.2.4B.3.6C.6.6D.9.64.使分式33x有意义的x的取值范围是()A.x≤3B.x≥3C.x≠3D.x=35.如图,在正六边形ABCDEF中,若△ACD的面积为12cm2,则该正六边形的面积为()A.24cm2B.36cm2C.48cm2D.72cm26.若a=326,b=11,则实数a,b的大小关系为()A.a>b B.a<b C.a=b D.a≥b7.如图,小明想用长为12米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是()平方米.A .16B .18C .20D .248.将一副直角三角板如图放置,点C 在FD 的延长上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,则CD 的长为( )A .43B .12﹣43C .12﹣63D .639.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)k y k x=≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4C .25D .610.下列式子运算正确的是( )A.3231-=-B.235+=C.13223= D.()()3103101+-=- 11.如图,AB 为O e 的切线,切点为A ,BO 交O e 于点C ,点D 在O e 上,若32ABO ∠=︒,则ADC ∠的度数为( )A.48︒B.29︒C.36︒D.72︒12.如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35°,则∠DBC=()A.20°B.35°C.15°D.45°二、填空题13.如图,在平面直角坐标系中,直线l2:313y x=+与x轴交于点A;与y轴交于点B,以x轴为对称轴作直线313y x=+的轴对称图形的直线l2,点A1,A2,A3…在直线l1上,点B1,B2,B3…在x正半轴上,点C1,C2,C3…在直线l2上,若△A1B1O、△A2B2B1、△A2B1B2、…△A n B n B n﹣1均为等边三角形,四边形A1B1C1O、四边形A2B2C2B1、四边形A2B1C2B2…、四边形A n B n∁n B n﹣1的面积分别是S1、S2、S3、…、S n,则S n为_____.(用含有n的代数式表示)14.分解因式:a3﹣a=_____.15.如图,A,B,C,D是⊙O上的四个点,∠C=110°,则∠BOD= 度.16.若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是°.17.如图,在正方形ABCD 中,点P 是AB 上一动点(不写A B 、重合),对角线AC BD 、相交于点O ,过点P 分别作AC BD 、的垂线,分别交AC BD 、于点E F 、,交AD BC 、于点M N 、,下列结论:①APE ∆≌AME ∆;②PM PN AC +=;③POF ∆∽BNF ∆;④当PMN ∆∽AMP ∆时,点P 是AB 的中点,其中一定正确的结论有_______.(填上所有正确的序号)18.若关于x 的方程226111k x x x -=+--有增根,则k 的值为_____. 三、解答题 19.先化简,再求值:2443111x x x x x -+⎛⎫÷+- ⎪--⎝⎭,其中x 的值是不等式组3215x x -<⎧⎨+≤⎩的一个整数解. 20.某中学欲开设A 实心球、B 立定跳远、C 跑步、D 足球四种体育活动,为了了解学生们对这些项目的选择意向,随机抽取了部分学生,并将调查结果绘制成图1、图2,请结合图中的信,解答下列问题:(1)本次共调查了 名学生;(2)将条形统计图圉补充完整;(3)求扇形C 的圆心角的度数;(4)随机抽取了3名喜欢“跑步”的学生,其中有1名男生,2名女生,现从这3名学生中选取2名,请用画辩状图或列表的方法,求出刚好抽到一名男生一名女生的概率.21.如图,AB 是⊙O 的直径,以OA 为直径的⊙O 1与⊙O 的弦AC 相交于点D .(1)设弧BC 的长为m 1,弧OD 的长为m 2,求证:m 1=2m 2;(2)若BD 与⊙O 1相切,求证:BC =2AD .22.定义:长宽比为n :1(n 为正整数)的矩形称为n 矩形.下面,我们通过折叠的方式折出一个2矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为2矩形.(1)证明:四边形ABCD为2矩形;(2)点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN的值;②若AM=AD,点N在边BC上,当△DMN的周长最小时,求CNNB的值;③连接CM,作BR⊥CM,垂足为R.若AB=22,则DR的最小值= .23.如图,已知∠ABC,射线BC上有一点D.求作:以BD为底边的等腰△MBD,点M在∠ABC内部,且到∠ABC两边的距离相等.24.解不等式组,并把它们的解集在数轴上表示出来:2803(2)4xx x-<⎧⎨--⎩….25.群芳雅苑花卉基地出售两种花卉,其中马蹄莲每株4.5元,康乃馨每株6元.如果同一客户所购的马蹄莲数量多于1000株,那么所有的马蹄莲每株还可优惠0.3元.现某鲜花店向群芳雅苑花卉基地采购马蹄莲800~1200株、康乃馨若干株本次采购共用了9000元.然后再以马蹄莲每株5.5元、康乃馨每株8元的价格卖出.(注:800~1200株表示采购株数大于或等于800株,且小于或等于1200株;利润=销售所得金额﹣进货所需金额)(1)设鲜花店销售完这两种鲜花获得的利润为y元,采购马蹄莲x株,求y与x之间的函数关系式;(2)若该鲜花店购进的马蹄莲多于1000株,采购马蹄莲多少时才能使获得的利润不少于2890元?【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D A B C B B B B B DB A二、填空题13.23233n -⋅ 14.a (a+1)(a ﹣1)15.16.17.①②④ 18.3三、解答题19.当1x =-时,原式=3-;当0x =时,原式=1-【解析】【分析】原式括号中两项通分并利用同分母分式的加减法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式组的解集,找出整数解得到x 的值,代入计算即可求出值.【详解】 2443111x x x x x -+⎛⎫÷+- ⎪--⎝⎭ 22(2)13111x x x x x ⎛⎫--=÷- ⎪---⎝⎭2(2)(2)(2)11x x x x x -+-=÷-- 2(2)11(2)(2)x x x x x --=⨯-+-22x x -=+ 解不等式组3215x x -<⎧⎨+≤⎩得32x -<≤,其整数解:21012212x --≠-、、 、 、 、、 、 x 可以等于10-、当1x =-时,原式=3-;当0x =时,原式=1-【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(1)150(2)60(3)144°(4)23【解析】【分析】(1)用B 项目的人数除以它所占的百分比可得到调查的总人数;(2)先计算出C项目人数,然后补全条件统计图;(3)用360°乘以C项目所占的百分比得到扇形C的圆心角的度数;(4)画树状图展示所有6种等可能的结果数,找出抽到一名男生一名女生的结果数,然后根据概率公式求解.【详解】解:(1)调查的总人数为45÷30%=150(人);故答案为150;(2)C项目的人数为150﹣15﹣45﹣30=60(人),条形统计图圉补充为:(3)扇形C的圆心角的度数=360°×(1﹣20%﹣30%﹣10%)=144°;(4)画树状图为:共有6种等可能的结果数,其中抽到一名男生一名女生的结果数为4,所以抽到一名男生一名女生的概率=42 63 .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(1)见解析;(2)见解析.【解析】【分析】(1)连接OC,O1D,根据已知条件和圆心角与圆周角的关系可以得到弧BC,弧OD所对的弧的度数相同,根据弧长公式计算就可以证明结论;(2)利用切线的性质和直径所对的圆周角是90°可以证明∠DAO1=∠CBD,然后证明△ACB∽△BCD,再根据相似三角形对应边成比例得到BC2=AC•CD,而OD⊥AC,据垂径定理知道D是AC的中点,这样就可以证明题目结论.【详解】解:(1)连接OC,O1D.∵∠COB=2∠CAB,∠DO1O=2∠DAO,∴∠COB=∠DO1O设∠COB 的度数为n ,则∠DO 1O 的度数也为n ,设⊙O 1的半径为r ,⊙O 的半径为R ,由题意得,R =2r ,∴m 1=2180180n R n r ππ==2m 2. (2)连接OD ,∵BD 是⊙O 1的切线,∴BD ⊥O 1D .∴∠BDO 1=90°.而∴∠CBD+∠BDC =90°,∠ADO 1=∠CBD ,又∵∠DAO 1=∠ADO 1,∴∠DAO 1=∠CBD ,∴△ACB ∽△BCD, ∴AC BC BC CD=, ∵AO 是⊙O 1的直径,∴∠ADO =90°.∴OD ⊥AC .∴D 是AC 的中点,即AC =2CD =2AD .∴BC 2=AC•CD=2AD 2,∴BC =2AD .【点睛】此题主要利用了垂径定理,切线的性质定理,圆的弧长公式,利用它们构造相似三角形相似的条件,然后利用相似三角形的性质解决问题.22.(1)见解析;(2) 2, 2.【解析】【分析】(1)先判断出∠DAG=45°,进而判断出四边形ABCD 是矩形,再求出AB :AD 的值,即可得出结论;(2)①如图b ,先判断出四边形BQOP 是矩形,进而得出,OP AO OQ CO BC AC AB CA ==,再判断出Rt △QON ∽Rt △POM ,进而判断出2ON OQ AB OM OP BC===,即可得出结论;②作M 关于直线BC 对称的点P ,则△DMN 的周长最小,判断出CN DC NB BP =,得出AB=CD=2a .进而得出BP=BM=AB-AM=(2-1)a .即可得出结论; ③先求出BC=AD=2,再判断出点R 是BC 为直径的圆上,即可得出结论.【详解】证明:(1)设正方形ABEF 的边长为a ,∵AE 是正方形ABEF 的对角线, ∴∠DAG=45°,由折叠性质可知AG=AB=a ,∠FDC=∠ADC=90°,则四边形ABCD 为矩形,∴△ADG 是等腰直角三角形.∴2a AD DG ==, ∴::2:12a AB AD a ==. ∴四边形ABCD 为2矩形;(2)①解:如图,作OP ⊥AB ,OQ ⊥BC ,垂足分别为P ,Q .∵四边形ABCD 是矩形,∠B=90°,∴四边形BQOP 是矩形.∴∠POQ=90°,OP ∥BC ,OQ ∥AB .∴,OP AO OQ CO BC AC AB CA==. ∵O 为AC 中点, ∴OP=12BC ,OQ=12AB . ∵∠MON=90°,∴∠QON=∠POM .∴Rt △QON ∽Rt △POM .∴2ON OQ AB OM OP BC===. ∴tan 2ON OMN OM ∠==. ②解:如图c ,作M 关于直线BC 对称的点P ,连接DP 交BC 于点N ,连接MN .则△DMN 的周长最小,∵DC ∥AP , ∴CN DC NB BP =, 设AM=AD=a ,则AB=CD=2a .∴BP=BM=AB-AM=(2-1)a .∴222(21)CN CD a NB BP a===+-, ③如备用图,∵四边形ABCD 为2矩形,AB=22,∴BC=AD=2,∵BR ⊥CM ,∴点R 在以BC 为直径的圆上,记BC 的中点为I ,∴CI=12BC=1, ∴DR 最小=22CD CI +-1=2故答案为:2【点睛】此题相似形综合题,主要考查了新定义,相似三角形的判定和性质,勾股定理,矩形的性质和判定,利用对称性和垂线段最短确定出最小值是解本题的关键.23.详见解析【解析】【分析】先作∠ABC 的平分线,再作BD 的垂直平分线,它们相交于M ,则△MBD 满足条件.【详解】解:如图,△MBD 为所作.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质.24.1≤x<4,见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【详解】解:2803(2)4 xx x-<⎧⎨--⎩①②…解不等式①得:x<4,解不等式②得:x≥1,所以不等式组的解集是:1≤x<4,表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.(1)当800≤x≤1000时,y=3000﹣0.5x,当1000<x≤1200时,y=3000﹣0.1x;(2)采购马蹄莲多于1000株且不多于1100株时才能使获得的利润不少于2890元.【解析】【分析】(1)根据题意,利用分类讨论的方法可以求得y与x的函数关系式;(2)根据(1)中的函数关系式,令3000﹣0.1x≥2890,即可求得x的取值范围,本题得以解决.【详解】解:(1)当800≤x≤1000时,y=(5.5﹣4.5)x+(8﹣6)×9000 4.56x-=3000﹣0.5x,当1000<x≤1200时,y=(5.5﹣4.5+0.3)x+9000(4.50.3)6x--=3000﹣0.1x;(2)令3000﹣0.1x≥2890,解得,x≤1100,答:采购马蹄莲多于1000株且不多于1100株时才能使获得的利润不少于2890元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.2019-2020学年数学中考模拟试卷一、选择题1.七巧板是我们祖先的一项卓越创造,被西方人誉为“东方魔板”.已知如图1所示的“正方形”和如图2所示的“风车型”都是由同一副七巧板拼成的,若图中正方形ABCD 的面积为16,则正方形EFGH 的面积为( )A .22B .24C .26D .282.(11·孝感)如图,二次函数2y ax bx c =++的图像与y 轴正半轴相交,其顶点坐标为(1,12),下列结论:①0ac <;②0a b +=; ③244ac b a -=;④0a b c ++<.其中正确结论的个数是( )A.1B.2C.3D.43.如图,以边长为a 的等边三角形各定点为圆心,以a 为半径在对边之外作弧,由这三段圆弧组成的曲线是一种常宽曲线.此曲线的周长与直径为a 的圆的周长之比是( )A .1:1B .1:3C .3:1D .1:24.我国古代《易经》一书中记载:远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A.515B.346C.1314D.84 5.抛物线y =x 2向下平移一个单位,向左平移两个单位,得到的抛物线关系式为( )A .y =x 2+4x+3B .y =x 2+2x ﹣1C .y =x 2+2xD .y =x 2﹣4x+36.如图,AB ∥CD ∥EF ,AC=4,CE=6,BD=3,则DF 的值是( ).A.4.5B.5C.2D.1.57.如图,一块直角三角板和一张光盘竖放在桌面上,其中A 是光盘与桌面的切点,∠BAC =60°,光盘的直径是80cm ,则斜边AB 被光盘截得的线段AD 长为( )A.20cmB.40cmC.80cmD.80cm8.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表: 每天使用零花钱(单位:元) 510 15 20 25 人数 2 5 8 x 6 则这30名同学每天使用的零花钱的众数和中位数分别是( )A .15、15B .20、17.5C .20、20D .20、159.下列运算正确的是( )A.2(5) =﹣5B.(x 3)2=x 5C.x 6÷x 3=x 2D.(﹣14)-2=16 10.下列命题中,真命题是( )A .四边都相等的四边形是矩形B .对角线相等的四边形是矩形C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直的平行四边形是菱形11.下列几道题目是小明同学在黑板上完成的作业,他做错的题目有( )①a 3÷a ﹣1=a 2②(2a 3)2=4a 5③(12ab 2)3=16a 3b 6④2﹣5=132⑤(a+b )2=a 2+b 2 A .2道 B .3道 C .4道 D .5道12.下列图形中,不是轴对称图形的为( )A .B .C .D .二、填空题13.如图,已知▱ABCD 中,AB =3,BC =5,∠BAC =90°,E 、F 分别是AB ,BC 上的动点,EF ⊥BC ,△BEF 与△PEF 关于直线EF 对称,若△APD 是直角三角形,则BF 的长为_____.14.如图,在O e 中,»»AB AC =,若40AOB ∠=︒,点D 在O e 上,连结CD 、AD ,则ADC ∠=_____︒.15.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是_____.16.用反证法证明命题“三角形中至少有两个锐角”,第一步应假设_____.17.已知关于x 的一元二次方程kx 2﹣(k ﹣1)x+14k =0有两个不相等的实数根,求k 的取值范围_____. 18.如图,AB 为半圆的直径,且AB =4,半圆绕点B 顺时针旋转36°,点A 旋转到A'的位置,则图中阴影部分的面积为_____(结果保留π).三、解答题19.计算:2sin30°+(π-3.14)0+|1-2|+(12)-1+(-1)2019 20.如图,在菱形ABCD 中,AC ,BD 相交于点O ,BC =2OC ,E 为AB 边上一点.(1)若CE =6,∠ACE =15°,求BC 的长;(2)若F 为BO 上一点,且BF =EF ,G 为CE 中点,连接FG ,AG ,求证:3AG FG =21.在平面直角坐标系xOy 中,抛物线2y x bx c =++交x 轴于()1,0A -,()3,0B 两点,交y 轴于点C . (1)如图,求抛物线的解析式;(2)如图,点P 是第一象限抛物线上的一个动点,连接CP 交x 轴于点E ,过点P 作//PK x 轴交抛物线于点K ,交y 轴于点N ,连接AN 、EN 、AC ,设点P 的横坐标为t ,四边形ACEN 的面积为S ,求S 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)如图,在(2) 的条件下,点F 是PC 中点,过点K 作PC 的垂线与过点F 平行于x 轴的直线交于点H , KH CP =,点Q 为第一象限内直线KP 下方抛物线上一点,连接KQ 交y 轴于点G ,点M 是KP 上一点,连接MF 、KF ,若MFK PKQ ∠=∠,5 12MP AE GN =+,求点Q 坐标22.父亲节即将到来之际,某商店准备购进A 、B 两种男装进行销售,其中每套B 种男装的进价比每套A 种男装的进价多40元用6000元购进A 种男装的数量是用2400元购进B 种男装数量的3倍.(1)求每套A 种男装和每套B 种男装的进价各是多少元:(2)若该商店本次购进B 种男装的数量比购进A 种男装的数量的2倍还多3套,该商店每套A 种男装的销售价格为280元,每套B 种男装的销售价格为350元,若将本次购进的A 、B 两种男装全部售出后获得的利润不少于6930元,那么该商店至少需要购进A 种男装多少套?23.我国古代有一道著名的算术题,原文为:吾问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,问几房几客?意为:一批客人来到李三的旅店住宿,如果每个房间住7人,那么有7位客人没房住;如果每个房间住9人,那么有1间空房,问共有多少位客人?多少间房?请你用初中数学知识方法求出上述问题的解.24.已知:a 、b 、c 满足2(8)5|32|0a b c -+-+-=求:(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.25.如图,在四边形OABC 中,AB ∥OC ,O 为坐标原点,点A 在y 轴的正半轴上,点C 在x 轴的正半轴上,点B 坐标为(2,23),∠BCO =60°,OH ⊥BC ,垂足为H .动点P 从点H 出发,沿线段HO 向点O 运动;动点Q 从点O 出发,沿线段OA 向点A 运动.两点同时出发,速度都为每秒1个单位长度.设点P 运动的时间为t 秒.(1)求OH 的长.(2)设PQ 与OB 交于点M .①探究:当t 为何值时,△OPM 为等腰三角形;②线段OM 长度的最大值为 .【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C C A A A A B B D D C A二、填空题13.910或95 14.20o15.1216.同一三角形中最多有一个锐角 . 17.k <12且k≠0. 18.π三、解答题19.2+2.【解析】【分析】依次计算特殊角的三角函数值,零次幂,去绝对值,负整数幂,再合并即可. 【详解】原式=2×12+1+2-1+2-1 =2+2【点睛】本题运用了实数的运算法则和三角函数的特殊值,注意运算的准确性.20.(1)BC=32+6;(2)见解析;【解析】【分析】(1)过点E 作EM ⊥BC 于点M ,由菱形的性质和已知条件可得AB=BC=AC ,进一步利用锐角三角函数解RT △CEM 和RT △BEM,求出BM 和CM 的值,相加即可得到BC 的长;(2)延长FG 至点H ,使GH =FG ,连接CH ,AH .先证△EFG ≌△CHG 得到CH =BF ,CH ∥EF ,再延长EF 交BC 于点K ,证△AFB ≌△AHC ,进一步证得∠AFH=60°,最后由三角函数可得出A 3G FG .【详解】(1)过点E 作EM ⊥BC 于点M,∵四边形ABCD是菱形,AC与BD交于点O ∴AB=BC,AC=2CO∵BC=2CO∴AB=BC=AC∴∠ACB=∠ABC=60°∵∠ACE=15°∴∠ECB=∠ACB—∠ACE=45°∴CM=EM=2 2CE=32∴BM=33EM=6∴BC= CM+BM=32+6(2)证明:延长FG至点H,使GH=FG,连接CH,AH.∵G为CE中点,∴EG=GC,在△EFG与△CHG中,FG GHEGF CGH,EG GC=⎧⎪∠=∠⎨⎪=⎩,△EFG≌△CHG(SAS),∴EF=CH,∠CHG=∠EFG,∴CH=BF,CH∥EF,延长EF交BC于点K∵菱形ABCD 中,BD 平分∠ABC ∴∠ABF=12∠ABC=30° ∵BF=EF ∴∠BEF=∠ABF =30°又∵∠ABC=60°∴∠EKB =90°∵CH//EF ∴∠HCB =∠EKB =90° ∴∠ACH =∠HCB —∠ACB =90°﹣60°=30°,∴∠ABF =∠ACH∵BF=EF,EF=CH∴BF=CH在△AFB 与△AHC 中,AB AC ABF ACH BF CH =⎧⎪∠=∠⎨⎪=⎩△AFB ≌△AHC (SAS ),∴AF =AH ,∠BAF =∠CAH∵FG =GH ,∴AG ⊥FG∵∠BAC =∠BAF+∠FAC =60°,∴∠CAH+∠FAC =60°,即∠FAH =60°,∴∠AFH=60°∴AG=3FG【点睛】本题考查了菱形的性质,熟练运用特殊的直角三角形的性质是解题的关键.21.(1)223y x x =--;(2)21122S t t =+;(3)1744,525Q ⎛⎫ ⎪⎝⎭【解析】【分析】(1)把A,B 点代入解析式即可(2)过点P 作PH y ⊥轴,交y 轴于点H ,点()2,23P t t t --,可得32OE t =-,即可解答 (3)过点K 作KR FH ⊥于点R ,KH CP =,HK PC ⊥,求出点()4,5P ,再根据对称轴1x =,由对称性得()2,5K -,然后设点()2,23Q m m m --过点Q 作QW KP ⊥交KP 于W ,得到NG,MP,KM 的值,过点F 作FL KP ⊥于点L ,()2,1F 得到tan tan 4MFK QKP m ∠=∠=-,过点M 作MT FK ⊥于点T ,251266KT MT m ⎛⎫==+ ⎪⎝⎭,求出m 即可解答 【详解】 (1)解Q 抛物线2y x bx c =++过点()1,0A -,()3,0B ()2210330b c b c ⎧-++=⎪⎨++=⎪⎩解得32c b =-⎧⎨=-⎩ ∴抛物线解析式为223y x x =--(2)过点P 作PH y ⊥轴,交y 轴于点H ,点()2,23P t t t --, 222332CN t t t t =--+=-Q ,21tan 252PH t PCH CH t t ∴∠===-- 123OE OE t OC ==- 32OE t ∴=- 2111222NCE NAC S S S AE CN t t ∆∆=+=⋅=+ (3)过点K 作KR FH ⊥于点R ,KH CP =,HK PC ⊥NCP H ∴∠=∠90R PNC ∠=∠=︒ CNP KRH ∴∆≅∆ PN KR NS ∴== 点F 是CP 中点//SF NP 12PN KR NS CN ∴=== 212t t t ∴=-,10t =(舍),24t =. ∴点()4,5P ,()222314y x x x =--=--Q ,∴对称轴1x =,由对称性得()2,5K -. 32OE =,52AE =,设点()2,23Q m m m --过点Q 作QW KP ⊥交KP 于W . ()2252328WQ m m m m =---=-++2WK t =+228tan 42WQ m m QKP m WK m -++∠===-+,tan 42NG NG QPK m NK ∠===-,82NG m =- ()555535821221266MP AE GN m m =+=+-=-+ 5355166666m KM KP MP m ⎛⎫=-=-+=+ ⎪⎝⎭ 过点F 作FL KP ⊥于点L ,()2,1F4FL KL ∴==45LKF ∴∠=︒ MFK QKP ∠=∠tan tan 4MFK QKP m ∠=∠=-过点M 作MT FK ⊥于点T ,251266KT MT m ⎛⎫==+ ⎪⎝⎭ 25142266m TF ⎛⎫=-+ ⎪⎝⎭ 251266tan 425142266m MFT m m ⎛⎫+ ⎪⎝⎭∠==-⎛⎫-+ ⎪⎝⎭解得111m =(舍),2175m = 1744,525Q ⎛⎫= ⎪⎝⎭【点睛】此题考查二次函数的综合题,运用三角函数和做辅助线是解题关键22.(1)每套种A 男装进价为200元,每套B 种男装进价为()23a +元;(2)该商店至少需要购进A 种男装22套.【解析】【分析】(1)关键语是"其中每套B 种男装的进价比每套A 种男装的进价多40元用6000元购进A 种男装的数量是用2400元购进B 种男装数量的3倍.”可根据此列出方程(2)本题中“购进B 种男装的数量比购进A 种男装的数量的2倍还多3套,该商店每套A 种男装的销售价格为280元,每套B 种男装的销售价格为350元,若将本次购进的A 、B 两种男装全部售出后获得的利润不少于6930元"看得出关于利润的不等式方程,组成方程组后得出未知数的取值范围,然后根据取值的不同情况,列出不同的方案【详解】(1)解:设每套A 种男装进价为x 元,则每套B 种男装的()40x +元.根据题意 得60002400340x x =⨯+ 解得200x =检验:经检验200x =是原方验程的解.4020040240x ∴+=+=元答:每套种A 男装进价为200元,每套B 种男装进价为()23a +元.(2)解:设该商店需要购进种男装 套,则需要购进种男装 套根据题意得()()()280200350240236930a a -+-+≥解得:22a ≥答:该商店至少需要购进A 种男装22套.【点睛】此题考查一元一次不等式的应用分式方程的应用,解题关键在于列出方程23.共有63位客人,8间房.【解析】【分析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【详解】解:设有x 间房,则7x+7=9(x ﹣1),x =8,所以7x+7=63(人)答:共有63位客人,8间房.【点睛】本题考查了一元一次方程的应用,解题的关键是找到关键描述语,列出等量关系.24.(1)a=22,b=5,c=32;(2)能,52+5.【解析】【分析】(1)根据非负数的性质列式求解即可;(2)根据三角形的任意两边之和大于第三边进行验证即可.【详解】解:(1)根据题意得,a-8=0,b-5=0,c-32=0,解得a=22,b=5,c=32;(2)能.∵22+32=52>5,∴能组成三角形,三角形的周长=22+5+32=52+5.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,三角形的三边关系.25.(1)23OH=;(2)①233t=或t=2;②线段OM长的最大值为32【解析】【分析】(1)根据题意得出△BOC为等边三角形,进而得出OH的长;(2)①利用(i)若OM=PM,(ii)若OP=OM,(iii)若OP=PM,分别分析得出即可;②PQ⊥OB时,OM长度的值最大,即△OPQ是等边三角形,根据等边三角形的性质即可得到结论.【详解】解:(1)由已知在Rt△OAB中,AB=2,OA=23,∴OB=4,tan∠AOB=33,∴∠AOB=30°,∴∠BOC=60°,又∵∠BCO=60°,∴△BOC是等边三角形∵OH⊥BC,∠BCO=60°,∴OH=23,(2)①△OPM为等腰三角形时,则:(i)若OM=PM,则∠MPO=∠MOP=∠POC∴PQ∥OC,此时△OPQ是直角三角形,且∠MPO=30°∴OP=2OQ,即23-t=2t∴t=233,(ii)若OP=OM,则∠OPM=∠OMP=75°,∴∠OQP=45°过点P作PE⊥OA,垂足为E,则有EQ=EP∴EP=OQ-OE,即32(23-t) =t-12(23-t)解得t=2.(iii)若OP=PM,则∠PMO=∠POM=30°,这时PQ∥OA,这种情况不可能②当PQ⊥OB时,OM长度的值最大,即△OPQ是等边三角形,∴t=23-t,∴t=3,∴OP=OQ=PQ=3,∴OM=32,∴线段OM长的最大值为32.【点睛】此题主要考查了四边形综合以及锐角三角函数关系和等边三角形、等腰三角形的性质等知识,利用分类讨论得出是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018中考数学考点指导:几何图形变换的切入
点
2018中考是九年义务教育的终端显示与成果展示,2018中考是一次选拔性考试,其竞争较为激烈。
为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在2018中考中取得理想的成绩,下文为大家准备了2018中考数学考点。
实践操作性试题正逐渐成为2018中考命题的热点,前两年的上海市数学2018中考中,压轴的都是这类题型。
下面,我们通过一个例题谈谈如何更好更快地找到解决问题的切入点。
例已知∠AOB=90°,OM是∠AOB的角平分线,按以下要求解答问题
(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与OA,OB交于点C,E.
①在图甲中,证明:PC=PD;②在图乙中,点G是CD与OP的交点,PG=PD,求△POD与△PDG的面积之比;(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长。
(见题图)
紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
如本例中,PC与PD始终保持相等关系,如果我们能认识到这一点,才可能考虑利用第①题的证明方法证PC=PD(如图丁)进而得到∠PCH=∠PDN,再结合相似三角形性质易得
∠PCH=∠PDN=∠CDO=22.5°=∠OPC最后得到OP=OC,这样做比使用其他方法计算要简单得多,再如2018年、2018年压轴题第(2)小题,也都需要使用第(1)小题的证明方法或结论。
展开联想,寻找解决过的问题
尽管已经做过了许多复习题,但考试中碰到的压轴题又往往是新的面孔,如何在新老问题之间找到联系呢?
请同学们牢记,在题目中你总可以找到与你解决过的问题有相类似的情况,可能图形相似,可能条件相似,可能结论相似,此时你就应考虑原来题目是怎样解决的,与现题目有何不同。
原有的题目是如何解决的,所使用的方法或结论在这里是不是可以使用,或有借鉴之处。
比如2018年压轴题与本例就是以同一问题为背景,从不同的角度去讨论问题,但图形的实质,解决问题的方法是一致的。
再比如2018年压轴题的最后一小题只需联想到翻折问题需利用轴对称性质去解即可。
构造定理所需的图形或基本图形
在解决问题的过程中,有时添辅助线是必不可少的。
2018中考对学生添线的要求不是很高,只需连接两点或作垂直、平行,而且添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形,如本例第一个证明就是利用角平分线上的点到角两边距离相等这一定理(如图甲);再如本市2018年压轴题的第①题构造图形也是利用这一定理。
做不出、找相似,有相似,用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
如本题第(1)题的第②小题即证ΔPOD∽ΔPDG然后运用相似三角形的性质。
第②题则是直接使用相似三角形的性质。
再如2018年2018中考压轴题的第(3)题,也是先要利用相似三角形性质进行计算,再证明相似。
在题目中寻找多解的信息图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到。
如本例第②题中,“直角边与直线OA,直线OB 分别交于点C、E”,与第①题的叙述“与OA,OB交于C、E”,有明显差别,从射线变为直线,所以分别产生图丙和图丁,
因此考生在读题时千万注意此类变化,看清楚是“边”还是“射线”或是“直线”。
再如2018年压轴题,也是此类情况。
总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。
有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。
为大家推荐的2018中考数学考点的内容,还满意吗?相信大家都会仔细阅读,加油哦!。