遗传算法与优化问题(重要,有代码)
遗传算法优化技巧
遗传算法是一种优化技术,基于生物进化原理,包括交叉、突变和自然选择等过程。
遗传算法通常用于解决复杂的优化问题,例如机器学习、数据挖掘和控制系统等。
以下是一些遗传算法的优化技巧:1.选择合适的编码方案:编码方案是将问题的解空间映射到遗传算法能够处理的搜索空间的方法。
对于某些问题,二进制编码可能更适合,而其他问题可能需要实数编码或有序编码。
选择合适的编码方案可以使遗传算法更加有效。
2.合理设计适应度函数:适应度函数是用来评估每个个体的优劣程度的函数。
适应度函数的设计应该与问题的目标函数相匹配,并且应该尽可能简单和高效。
同时,适应度函数还应该具有明确的物理意义或实际意义,以便更好地理解算法的性能和结果。
3.选择合适的交叉和突变算子:交叉和突变算子是遗传算法中的两个重要操作,它们可以增加种群的多样性,并有助于算法跳出局部最优解。
选择合适的交叉和突变算子可以提高算法的性能和效率。
4.使用精英策略:精英策略是一种保留优秀个体的策略,即将每一代中的最优个体直接复制到下一代中。
使用精英策略可以加快算法的收敛速度,并提高找到的解的质量。
5.控制种群大小:种群大小是影响遗传算法性能的一个重要参数。
种群大小太小可能会导致算法陷入局部最优解,而种群大小太大则可能会导致计算时间和内存消耗增加。
因此,需要根据问题的规模和复杂度选择合适的种群大小。
6.合理设置终止条件:终止条件是控制遗传算法运行时间和终止条件的方法。
常见的终止条件包括达到最大迭代次数、找到满意的解或达到某个收敛标准等。
选择合适的终止条件可以平衡算法的运行时间和找到的解的质量。
7.并行化遗传算法:对于大规模的优化问题,可以将遗传算法并行化以提高计算效率和性能。
并行化遗传算法可以通过将种群分成多个子种群,并在不同的处理器上同时进行进化来实现。
8.与其他优化方法结合使用:遗传算法可以与其他优化方法结合使用,例如梯度下降法、模拟退火法等。
这些方法可以弥补遗传算法的不足之处,提高算法的性能和效率。
遗传算法代码python
遗传算法代码python一、简介遗传算法是一种通过模拟自然选择和遗传学原理来寻找最优解的优化算法。
它广泛应用于各种领域,包括优化问题、搜索和机器学习等。
二、代码概述以下是一个简单的遗传算法的Python代码示例,用于解决简单的优化问题。
该算法使用一个简单的二进制编码方式,并使用适应度函数来评估每个个体的适应度。
三、代码实现```pythonimportnumpyasnp#遗传算法参数POPULATION_SIZE=100#种群规模CROSSOVER_RATE=0.8#交叉概率MUTATION_RATE=0.1#变异概率MAX_GENERATIONS=100#最大迭代次数#适应度函数deffitness(individual):#在这里定义适应度函数,评估每个个体的适应度#这里简单地返回个体值的平方,可以根据实际问题进行调整returnnp.sum(individual**2)#初始种群生成pop=np.random.randint(2,size=(POPULATION_SIZE,))#迭代过程forgenerationinrange(MAX_GENERATIONS):#评估种群中每个个体的适应度fitness_values=np.apply_along_axis(fitness,1,pop)#选择种群selected_idx=np.random.choice(np.arange(POPULATION_SIZE), size=POPULATION_SIZE,replace=True,p=fitness_values/fitness_va lues.sum())selected_pop=pop[selected_idx]#交叉操作ifCROSSOVER_RATE>np.random.rand():cross_points=np.random.rand(POPULATION_SIZE,2)<0.5#随机选择交叉点cross_pop=np.array([np.hstack((individual[cross_points[i, 0]:cross_points[i,1]]+individual[cross_points[i,1]:],other))f ori,otherinenumerate(selected_pop)]).T#合并个体并随机交叉得到新的个体cross_pop=cross_pop[cross_points]#将交叉后的个体重新排列成原始种群大小selected_pop=np.vstack((selected_pop,cross_pop))#将新个体加入种群中#变异操作ifMUTATION_RATE>np.random.rand():mutated_pop=selected_pop+np.random.randn(POPULATION_SIZE, 1)*np.sqrt(np.log(POPULATION_SIZE))*(selected_pop!=pop).astyp e(np.float)#根据变异概率对个体进行变异操作,得到新的个体种群mutated_pop=mutated_pop[mutated_pop!=0]#将二进制种群中值为0的个体去掉,因为这些个体是随机的二进制串,不是解的一部分,不应该参与变异操作selected_pop=mutated_pop[:POPULATION_SIZE]#将新种群中除最后一个以外的部分加入原始种群中(即新的种群被排除了适应度最差的个体)#选择当前最好的个体(用于更新最优解)best_idx=np.argmax(fitness_values)best_solution=selected_pop[best_idx]print(f"Generation{generation}:Bestsolution:{best_solutio n}")```四、使用示例假设要解决一个简单的优化问题:求一个一维函数的最小值。
遗传算法代码
遗传算法代码遗传算法是一种基于自然选择和遗传学原理的优化算法,用于解决许多复杂的优化问题,如机器学习、图像处理、组合优化等。
以下是一个简单的遗传算法代码示例:1. 初始化种群首先,我们需要创建一组初始个体,称为种群。
每个个体都是由一组基因表示的,这些基因可能是一些数字、布尔值或其他类型的值。
我们可以使用随机数生成器生成这些基因,并将它们组合成一个个体。
2. 适应度函数为了衡量每个个体的表现,我们需要编写一个适应度函数。
该函数将计算每个个体的适应度得分,该得分反映了该个体在解决优化问题方面的能力。
适应度函数将对每个个体进行评分,并将其分配到一个适应度等级。
3. 选择操作选择操作是基于每个个体的适应度得分来选择哪些个体将被选择并用于生成下一代种群。
较高适应度的个体将有更高的概率被选择,而较低适应度的个体将有更低的概率被选择。
这通常是通过轮盘赌选择方法实现的。
4. 交叉操作交叉操作是将两个个体的基因组合并以生成新的个体。
我们可以将两个随机个体中的某些基因进行交换,从而创建新的个体。
这样的交叉操作将增加种群的多样性,使其更有可能找到最优解。
5. 变异操作变异操作是用于引入种群中的随机性的操作。
在变异操作中,我们将随机选择一个个体,并随机更改其中的一个或多个基因。
这将引入新的、未经探索的基因组合,从而增加种群的多样性。
6. 迭代随着种群不断进化,每个个体的适应度得分也将不断提高。
我们将重复执行选择、交叉和变异操作,以生成新的个体,并淘汰旧的个体。
这个不断迭代的过程将继续,直到达到预设的迭代次数或找到最优解为止。
这是一个简单的遗传算法代码示例,它演示了如何使用遗传算法来解决优化问题。
在实际应用中,我们可以进一步对算法进行优化,以获得更好的结果。
遗传算法解释及代码(一看就懂)
遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
python遗传算法代码
python遗传算法代码遗传算法是一种模拟生物进化过程的优化算法,常用于解决复杂的优化问题。
Python是一种简单易用且功能强大的编程语言,非常适合实现遗传算法。
下面是一个简单的Python遗传算法代码示例,用于求解一个二进制字符串中最长连续1的长度。
```pythonimport random# 设置遗传算法的参数POPULATION_SIZE = 100 # 种群大小GENERATION_COUNT = 50 # 迭代次数MUTATION_RATE = 0.01 # 变异率# 初始化种群def initialize_population():population = []for i in range(POPULATION_SIZE):individual = []for j in range(10): # 假设二进制字符串长度为10gene = random.randint(0, 1)individual.append(gene)population.append(individual)return population# 计算适应度def calculate_fitness(individual):fitness = 0current_streak = 0for gene in individual:if gene == 1:current_streak += 1fitness = max(fitness, current_streak)else:current_streak = 0return fitness# 选择操作:轮盘赌选择def selection(population):total_fitness = sum([calculate_fitness(individual) for individual in population])probabilities = [calculate_fitness(individual) /total_fitness for individual in population]selected_population = []for _ in range(POPULATION_SIZE):selected_individual = random.choices(population, weights=probabilities)[0]selected_population.append(selected_individual)return selected_population# 交叉操作:单点交叉def crossover(parent1, parent2):point = random.randint(1, len(parent1) - 1)child1 = parent1[:point] + parent2[point:]child2 = parent2[:point] + parent1[point:]return child1, child2# 变异操作def mutation(individual):for i in range(len(individual)):if random.random() < MUTATION_RATE:individual[i] = 1 - individual[i] # 变异位点翻转return individual# 主函数def genetic_algorithm():population = initialize_population()for _ in range(GENERATION_COUNT):population = selection(population)# 交叉操作new_population = []for i in range(0, POPULATION_SIZE, 2):parent1 = population[i]parent2 = population[i + 1]child1, child2 = crossover(parent1, parent2)new_population.append(child1)new_population.append(child2)# 变异操作population = [mutation(individual) for individual in new_population]best_individual = max(population, key=calculate_fitness) return best_individual# 运行遗传算法best_individual = genetic_algorithm()best_fitness = calculate_fitness(best_individual)print('Best individual:', best_individual)print('Best fitness:', best_fitness)```该代码首先初始化一个种群,然后通过选择、交叉和变异操作迭代地更新种群,并最终返回适应度最高的个体。
遗传算法多目标优化matlab源代码
遗传算法多目标优化matlab源代码遗传算法(Genetic Algorithm,GA)是一种基于自然选择和遗传学原理的优化算法。
它通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。
在多目标优化问题中,GA也可以被应用。
本文将介绍如何使用Matlab实现遗传算法多目标优化,并提供源代码。
一、多目标优化1.1 多目标优化概述在实际问题中,往往存在多个冲突的目标函数需要同时优化。
这就是多目标优化(Multi-Objective Optimization, MOO)问题。
MOO不同于单一目标优化(Single Objective Optimization, SOO),因为在MOO中不存在一个全局最优解,而是存在一系列的Pareto最优解。
Pareto最优解指的是,在不降低任何一个目标函数的情况下,无法找到更好的解决方案。
因此,在MOO中我们需要寻找Pareto前沿(Pareto Front),即所有Pareto最优解组成的集合。
1.2 MOO方法常见的MOO方法有以下几种:(1)加权和法:将每个目标函数乘以一个权重系数,并将其加和作为综合评价指标。
(2)约束法:通过添加约束条件来限制可行域,并在可行域内寻找最优解。
(3)多目标遗传算法:通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。
1.3 MOO评价指标在MOO中,我们需要使用一些指标来评价算法的性能。
以下是常见的MOO评价指标:(1)Pareto前沿覆盖率:Pareto前沿中被算法找到的解占总解数的比例。
(2)Pareto前沿距离:所有被算法找到的解与真实Pareto前沿之间的平均距离。
(3)收敛性:算法是否能够快速收敛到Pareto前沿。
二、遗传算法2.1 遗传算法概述遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的优化算法。
它通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。
(完整版)遗传算法c语言代码
srand((unsigned)time(NULL));
for(i=0;i<num;i++)
{
bianyip[i]=(rand()%100);
bianyip[i]/=100;
}
//确定可以变异的染色体
t=0;
for(i=0;i<num;i++)
{
if(bianyip[i]<pm)
printf("\n******************是否想再一次计算(y or n)***********************\n");
fflush(stdin);
scanf("%c",&choice);
}while(choice=='y');
return 0;
}
{
flag=0;
break;
}
}
if(flag)
{
group[i].city[j]=t;
j++;
}
}
}
printf("************初始种群如下****************\n");
for(i=0;i<num;i++)
{
for(j=0;j<cities;j++)
printf("%4d",group[i].city[j]);
{
group[i].p=1-(double)group[i].adapt/(double)biggestsum;
biggestp+=group[i].p;
遗传算法和粒子群算法结合代码python
遗传算法和粒子群算法结合代码python遗传算法和粒子群算法是两种非常实用的优化算法,在实际应用中具有广泛的适用性。
在本篇文章中,我们将介绍如何将遗传算法和粒子群算法结合起来,以实现更加高效和准确的优化过程。
具体来说,我们将以python语言为基础,编写代码来实现这种结合。
1. 遗传算法遗传算法是一种类似于进化过程的优化算法,它通过模拟生物进化过程来实现优化。
基本思路是将问题的可行解按照一定的方式编码成染色体序列,然后通过交叉、变异等操作产生新的染色体,按照适应度进行筛选,最终得出最优解。
在python中,我们可以使用遗传算法库DEAP(Distributed Evolutionary Algorithms in Python)快速地实现遗传算法。
以下是一段使用DEAP库实现遗传算法的代码:```import randomfrom deap import base, creator, tools# 定义一个求最小值的适应度函数def eval_func(individual):return sum(individual),# 创建遗传算法工具箱creator.create("FitnessMin", base.Fitness, weights=(-1.0,))creator.create("Individual", list, fitness=creator.FitnessMin)toolbox = base.Toolbox()# 注册染色体初始化函数(0或1)toolbox.register("attr_bool", random.randint, 0, 1)# 定义遗传算法实现函数def ga_algorithm():pop = toolbox.population(n=50)CXPB, MUTPB, NGEN = 0.5, 0.2, 50# 迭代遗传算法for gen in range(NGEN):# 交叉offspring = tools.cxBlend(pop, alpha=0.1)# 变异for mutant in offspring:if random.random() < MUTPB:toolbox.mutate(mutant)del mutant.fitness.values# 评估适应度fits = toolbox.map(toolbox.evaluate, offspring)for fit, ind in zip(fits, offspring):ind.fitness.values = fit# 选择pop = toolbox.select(offspring + pop, k=len(pop))gen_count += 1# 输出每代最小适应度和均值fits = [ind.fitness.values[0] for ind in pop]print("第 %d 代:最小适应度 %f, 平均适应度 %f" % (gen_count, min(fits), sum(fits) / len(pop)))# 返回最优解best_ind = tools.selBest(pop, 1)[0]print("最优解:", best_ind)```上述代码中,我们首先定义了一个求最小值的适应度函数,然后使用DEAP库创建了遗传算法工具箱。
遗传算法介绍并附上Matlab代码
1、遗传算法介绍遗传算法,模拟达尔文进化论的自然选择和遗产学机理的生物进化构成的计算模型,一种不断选择优良个体的算法。
谈到遗传,想想自然界动物遗传是怎么来的,自然主要过程包括染色体的选择,交叉,变异(不明白这个的可以去看看生物学),这些操作后,保证了以后的个基本上是最优的,那么以后再继续这样下去,就可以一直最优了。
2、解决的问题先说说自己要解决的问题吧,遗传算法很有名,自然能解决的问题很多了,在原理上不变的情况下,只要改变模型的应用环境和形式,基本上都可以。
但是遗传算法主要还是解决优化类问题,尤其是那种不能直接解出来的很复杂的问题,而实际情况通常也是这样的。
本部分主要为了了解遗传算法的应用,选择一个复杂的二维函数来进行遗传算法优化,函数显示为y=10*sin(5*x)+7*abs(x-5)+10,这个函数图像为:怎么样,还是有一点复杂的吧,当然你还可以任意假设和编写,只要符合就可以。
那么现在问你要你一下求出最大值你能求出来吗?这类问题如果用遗传算法或者其他优化方法就很简单了,为什么呢?说白了,其实就是计算机太笨了,同时计算速度又超快,举个例子吧,我把x等分成100万份,再一下子都带值进去算,求出对应的100万个y的值,再比较他们的大小,找到最大值不就可以了吗,很笨吧,人算是不可能的,但是计算机可以。
而遗传算法也是很笨的一个个搜索,只不过加了一点什么了,就是人为的给它算的方向和策略,让它有目的的算,这也就是算法了。
3、如何开始?我们知道一个种群中可能只有一个个体吗?不可能吧,肯定很多才对,这样相互结合的机会才多,产生的后代才会多种多样,才会有更好的优良基因,有利于种群的发展。
那么算法也是如此,当然个体多少是个问题,一般来说20-100之间我觉得差不多了。
那么个体究竟是什么呢?在我们这个问题中自然就是x值了。
其他情况下,个体就是所求问题的变量,这里我们假设个体数选100个,也就是开始选100个不同的x值,不明白的话就假设是100个猴子吧。
人工智能遗传算法及python代码实现
人工智能遗传算法及python代码实现人工智能遗传算法是一种基于生物遗传进化理论的启发式算法,常用于求解复杂的优化问题。
它的基本思想是通过自然选择和基因交叉等机制,在种群中不断进化出适应性更强的个体,最终找到问题的最优解。
遗传算法通常由以下几个步骤组成:1. 初始化种群:从问题空间中随机生成一组解作为初始种群。
2. 评价适应度:利用一个适应度函数来评价每个解的适应性,通常是优化问题的目标函数,如最小化代价、最大化收益等。
3. 选择操作:从种群中选择一些具有较高适应度的个体用于产生新的种群。
选择操作通常采用轮盘赌选择方法或精英选择方法。
4. 交叉操作:将两个个体的染色体进行交叉、重组,生成新的子代个体。
5. 变异操作:对新产生的子代个体随机变异一些基因,以增加种群的多样性。
6. 生成新种群:用选择、交叉和变异操作产生新的种群,并进行适应度评价。
7. 终止条件:如果达到终止条件,算法停止,否则返回步骤3。
遗传算法的优点是可以适应各种优化问题,并且求解精度较高。
但由于其需要进行大量的随机操作,因此效率相对较低,也较容易陷入局部最优解。
在实际应用中,遗传算法常与其他算法结合使用,以求得更好的结果。
以下是使用Python实现基本遗传算法的示例代码:import randomimport math# 定义适应度函数,用于评价每个个体的适应程度def fitness_func(x):return math.cos(20 * x) + math.sin(3 * x)# 执行遗传算法def genetic_algorithm(pop_size, chrom_len, pcross, pmutate, generations):# 初始化种群population = [[random.randint(0, 1) for j in range(chrom_len)] for i in range(pop_size)]# 迭代指定代数for gen in range(generations):# 评价种群中每个个体的适应度fits = [fitness_func(sum(population[i]) / (chrom_len * 1.0)) for i in range(pop_size)]# 选择操作:轮盘赌选择roulette_wheel = []for i in range(pop_size):fitness = fits[i]roulette_wheel += [i] * int(fitness * 100)parents = []for i in range(pop_size):selected = random.choice(roulette_wheel)parents.append(population[selected])# 交叉操作:单点交叉for i in range(0, pop_size, 2):if random.uniform(0, 1) < pcross:pivot = random.randint(1, chrom_len - 1)parents[i][pivot:], parents[i+1][pivot:] = parents[i+1][pivot:], parents[i][pivot:]# 变异操作:随机翻转一个基因for i in range(pop_size):for j in range(chrom_len):if random.uniform(0, 1) < pmutate:parents[i][j] = 1 - parents[i][j]# 生成新种群population = parents# 返回种群中适应度最高的个体的解fits = [fitness_func(sum(population[i]) / (chrom_len * 1.0)) for i in range(pop_size)]best = fits.index(max(fits))return sum(population[best]) / (chrom_len * 1.0)# 测试遗传算法print("Result: ", genetic_algorithm(pop_size=100, chrom_len=10, pcross=0.9, pmutate=0.1, generations=100))上述代码实现了遗传算法,以优化余弦函数和正弦函数的和在某个区间内的最大值。
遗传算法优化的matlab案例
遗传算法优化的Matlab案例引言遗传算法是一种基于自然选择和遗传机制的优化算法,广泛应用于工程、计算机科学以及数学领域。
通过模拟自然界的进化过程,遗传算法能够在搜索空间中寻找到最优解。
在本文中,将介绍如何使用Matlab来实现遗传算法优化,并提供一个具体的案例,以加深对这一算法的理解。
遗传算法优化基本原理遗传算法优化基于自然进化的原理,包括以下四个基本操作:1.初始化:生成一个随机的种群,种群中的每个个体都代表了解空间中的一个候选解。
2.选择:根据适应度函数,选择一部分较优的个体作为下一代种群的父代。
3.交叉:通过交叉操作,将父代中的个体进行配对,并产生子代。
4.变异:对子代中的个体进行变异操作,引入随机性,避免陷入局部最优解。
通过反复进行选择、交叉和变异操作,经过多个代际的演化,种群中的个体将逐渐趋向于更优解。
最终得到的个体即为所要寻找的最优解。
实现遗传算法优化的Matlab代码以下是一个实现遗传算法优化的Matlab代码的示例:function [bestSolution, bestFitness] = geneticAlgorithmOptimization(population Size, numOfGenes, fitnessFunction, crossoverRate, mutationRate, numOfGeneratio ns)population = initializePopulation(populationSize, numOfGenes);for generation = 1:numOfGenerationsfitness = evaluateFitness(population, fitnessFunction);[bestFitness(generation), bestIndex] = max(fitness);bestSolution(generation, :) = population(bestIndex, :);population = selectParents(population, fitness);population = performCrossover(population, crossoverRate);population = performMutation(population, mutationRate);endendfunction population = initializePopulation(populationSize, numOfGenes)population = randi([0 1], populationSize, numOfGenes);endfunction fitness = evaluateFitness(population, fitnessFunction)fitness = arrayfun(@(x) fitnessFunction(population(x, :)), 1:size(populati on, 1));endfunction parents = selectParents(population, fitness)probabilities = fitness / sum(fitness);accumulatedProbabilities = cumsum(probabilities);randomNumbers = rand(size(population, 1), 1);[~, parentIndexes] = histc(randomNumbers, accumulatedProbabilities);parents = population(parentIndexes, :);endfunction offspring = performCrossover(parents, crossoverRate)numOfParents = size(parents, 1);numOfGenes = size(parents, 2);matingPool = rand(numOfParents, 1) < crossoverRate;matingPool(1:2:end) = false;matingPool(2:2:end) = true;parentPairs = reshape(parents, 2, numOfParents / 2)';offspring = zeros(size(parents));for i = 1:size(parentPairs, 1)if matingPool(i)crossoverPoint = randi(numOfGenes - 1);offspring(i, :) = [parentPairs(i, 1:crossoverPoint) parentPairs(i+ 1, crossoverPoint+1:end)];offspring(i+1, :) = [parentPairs(i+1, 1:crossoverPoint) parentPair s(i, crossoverPoint+1:end)];elseoffspring(i, :) = parentPairs(i, :);offspring(i+1, :) = parentPairs(i+1, :);endendendfunction population = performMutation(offspring, mutationRate)numOfGenes = size(offspring, 2);numOfMutations = round(numOfGenes * mutationRate);mutationIndexes = rand(size(offspring, 1), numOfMutations) < mutationRate;for i = 1:size(offspring, 1)mutationPoints = randperm(numOfGenes, numOfMutations);offspring(i, mutationPoints) = ~offspring(i, mutationPoints);endpopulation = offspring;end一个遗传算法优化的Matlab案例以一个简单的函数优化问题为例,假设我们要优化以下函数:function y = fitnessFunction(x)y = -x^2 + 4;end其中x为待优化的变量。
基于遗传算法优化svm算法python代码
遗传算法优化支持向量机(SVM)是一种常用的机器学习算法,它在处理分类和回归问题上具有很高的效率和准确性。
遗传算法是一种模拟生物进化过程的优化方法,通过不断地迭代,寻找最优解。
结合遗传算法与SVM算法可以提高SVM的分类性能,使其更适用于复杂的实际问题。
本文将介绍使用Python语言实现基于遗传算法优化的SVM算法的代码,通过优化超参数、样本权重等方式,提高SVM的性能。
以下是优化SVM算法Python代码的步骤:1. 导入必要的库我们需要导入相关的Python库,包括numpy、pandas、sklearn等。
这些库将帮助我们实现SVM算法,并使用遗传算法进行优化。
2. 准备数据集接下来,我们需要准备用于训练和测试SVM算法的数据集。
在这一步中,我们将读取数据并做必要的预处理,例如对数据进行归一化、划分为训练集和测试集等。
3. 定义适应度函数在遗传算法中,适应度函数用于评估每个个体的适应度,从而决定其在繁殖过程中的选择概率。
在本文中,我们将定义一个适应度函数来评估SVM算法在数据集上的分类性能,例如准确率、召回率等。
4. 初始化种裙在遗传算法中,我们需要初始化一个种裙,其中包含多个个体(可能是一组超参数的组合)。
这些个体将通过交叉、变异等操作不断进化,以寻找最优解。
5. 选择操作在遗传算法的每一代中,我们需要选择一部分个体作为父代,并用它们繁殖下一代。
选择操作根据个体的适应度进行,通常适应度越高的个体被选择的概率越大。
6. 交叉操作交叉操作是遗传算法中的一种重要操作,它用于生成新的个体。
在本文中,我们可以使用不同的交叉方式,例如单点交叉、双点交叉等,来产生新的个体。
7. 变异操作变异操作可以帮助种裙跳出局部最优解,进而寻找全局最优解。
在本文中,我们将通过一定的概率对个体进行变异操作,例如对超参数进行微调。
8. 更新种裙经过选择、交叉、变异等操作后,我们将更新种裙,得到新的一代个体。
9. 迭代重复进行选择、交叉、变异和更新种裙的操作,直到达到迭代的终止条件。
python遗传算法代码
Python遗传算法代码概述遗传算法是一种用于解决优化问题的算法,它模拟了生物进化的过程,通过选择、交叉和变异等操作来逐步优化解的质量。
Python作为一种简单易学的编程语言,非常适合用于实现遗传算法。
在本文中,我们将介绍如何使用Python编写遗传算法的代码,并通过实例演示其应用。
具体而言,我们将通过一个二进制字符串的优化问题来讲解遗传算法的实现过程。
问题描述假设我们有一个由0和1组成的二进制字符串,长度为N。
我们的目标是找到一个最优的二进制字符串,使得其中1的个数最多。
算法思想遗传算法是基于自然进化的思想,模拟了物种进化的过程。
它通过选择、交叉和变异等操作来逐步优化解的质量。
具体而言,遗传算法包括以下几个关键步骤: 1. 初始化种群:随机生成一定数量的二进制字符串,作为初始种群。
2. 计算适应度:针对每个个体,计算其适应度值,即1的个数。
3. 选择操作:根据适应度值选取优秀的个体,用于产生下一代。
常用的选择策略有轮盘赌选择、锦标赛选择等。
4. 交叉操作:选取一对个体,按照一定的规则进行基因交叉,生成新个体。
常见的交叉方式有单点交叉、多点交叉等。
5. 变异操作:随机选取一个个体的某个基因位,进行基因突变,生成具有变异基因的个体。
6. 产生下一代:根据选择、交叉和变异的操作,生成下一代种群。
7. 重复执行:重复执行上述步骤,直到满足终止条件。
代码实现下面是使用Python编写的遗传算法代码:import random# 定义问题相关的参数N = 20 # 二进制串的长度POP_SIZE = 50 # 种群大小GENERATIONS = 100 # 迭代代数SELECT_RATE = 0.2 # 选择概率CROSS_RATE = 0.8 # 交叉概率MUTATE_RATE = 0.01 # 变异概率# 生成初始种群def generate_population(pop_size):return [random.choices([0, 1], k=N) for _ in range(pop_size)]# 计算个体的适应度def fitness(individual):return sum(individual)# 选择操作def select(population, select_rate):fitness_values = [fitness(individual) for individual in population]total_fitness = sum(fitness_values)probabilities = [fitness_value / total_fitness for fitness_value in fitnes s_values]selected_population = random.choices(population, probabilities, k=int(pop_ size * select_rate))return selected_population# 交叉操作def crossover(parent_a, parent_b):cross_point = random.randint(0, N-1)child_a = parent_a[:cross_point] + parent_b[cross_point:]child_b = parent_b[:cross_point] + parent_a[cross_point:]return child_a, child_b# 变异操作def mutate(individual, mutate_rate):mutated_individual = individual.copy()for i in range(N):if random.random() < mutate_rate:mutated_individual[i] = 1 - mutated_individual[i]return mutated_individual# 产生下一代种群def generate_next_population(population, select_rate, cross_rate, mutate_rate): selected_population = select(population, select_rate)next_population = selected_population.copy()while len(next_population) < len(population):parent_a = random.choice(selected_population)parent_b = random.choice(selected_population)if random.random() < cross_rate:child_a, child_b = crossover(parent_a, parent_b)else:child_a, child_b = parent_a, parent_bchild_a = mutate(child_a, mutate_rate)child_b = mutate(child_b, mutate_rate)next_population.append(child_a)next_population.append(child_b)return next_population# 主函数def main():population = generate_population(POP_SIZE)for generation in range(GENERATIONS):population = generate_next_population(population, SELECT_RATE, CROSS_R ATE, MUTATE_RATE)best_individual = max(population, key=fitness)print(f"Generation: {generation}, Best Individual: {best_individual}, Fitness: {fitness(best_individual)}")if __name__ == "__main__":main()实例演示假设我们将二进制串的长度设为20,种群大小为50,迭代代数为100,选择概率为0.2,交叉概率为0.8,变异概率为0.01。
遗传算法Matlab源代码
遗传算法Matlab源代码完整可以运行的数值优化遗传算法源代码function[X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSiz e,options,pCross,pMutation,pInversion)%[X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSiz e,options,pCross,pMutation,pInversion)% Finds a maximum of a function of several variables.% fga solves problems of the form:% max F(X) subject to: LB = X = UB (LB=bounds(:,1),UB=bounds(:,2))% X - 最优个体对应自变量值% MaxFval - 最优个体对应函数值% BestPop - 最优的群体即为最优的染色体群% Trace - 每代最佳个体所对应的目标函数值% FUN - 目标函数% bounds - 自变量范围% MaxEranum - 种群的代数,取50--500(默认200)% PopSize - 每一代种群的规模;此可取50--200(默认100)% pCross - 交叉概率,一般取0.5--0.85之间较好(默认0.8)% pMutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1)% pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编码,option(2)设定求解精度(默认1e-4)T1=clock;%检验初始参数if nargin2, error('FMAXGA requires at least three input arguments'); endif nargin==2, MaxEranum=150;PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==3, PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==4, options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==5, pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==6, pMutation=0.1;pInversion=0.25;endif nargin==7, pInversion=0.25;endif (options(1)==0|options(1)==1)find((bounds(:,1)-bounds(:,2))0)error('数据输入错误,请重新输入:');end% 定义全局变量global m n NewPop children1 children2 VarNum% 初始化种群和变量precision = options(2);bits = ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));%由设定精度划分区间VarNum = size(bounds,1);[Pop] = InitPop(PopSize,bounds,bits,options);%初始化种群[m,n] = size(Pop);fit = zeros(1,m);NewPop = zeros(m,n);children1 = zeros(1,n);children2 = zeros(1,n);pm0 = pMutation;BestPop = zeros(MaxEranum,n);%分配初始解空间BestPop,TraceTrace = zeros(1,MaxEranum);完整可以运行的数值优化遗传算法源代码Lb = ones(PopSize,1)*bounds(:,1)';Ub = ones(PopSize,1)*bounds(:,2)';%二进制编码采用多点交叉和均匀交叉,并逐步增大均匀交叉概率%浮点编码采用离散交叉(前期)、算术交叉(中期)、AEA重组(后期)OptsCrossOver = [ones(1,MaxEranum)*options(1);...round(unidrnd(2*(MaxEranum-[1:MaxEranum]))/MaxEranum)]';%浮点编码时采用两种自适应变异和一种随机变异(自适应变异发生概率为随机变异发生的2倍)OptsMutation = [ones(1,MaxEranum)*options(1);unidrnd(5,1,MaxEranum)]';if options(1)==3D=zeros(n);CityPosition=bounds;D = sqrt((CityPosition(:, ones(1,n)) - CityPosition(:, ones(1,n))').^2 +...(CityPosition(:,2*ones(1,n)) - CityPosition(:,2*ones(1,n))').^2 );end%========================================================================== % 进化主程序%%===================================== ===================================== eranum = 1;H=waitbar(0,'Please wait...');while(eranum=MaxEranum)for j=1:mif options(1)==1%eval(['[fit(j)]=' FUN '(Pop(j,:));']);%但执行字符串速度比直接计算函数值慢fit(j)=feval(FUN,Pop(j,:));%计算适应度elseif options(1)==0%eval(['[fit(j)]=' FUN '(b2f(Pop(j,:),bounds,bits));']);fit(j)=feval(FUN,(b2f(Pop(j,:),bounds,bits)));elsefit(j)=-feval(FUN,Pop(j,:),D);endend[Maxfit,fitIn]=max(fit);%得到每一代最大适应值Meanfit(eranum)=mean(fit);BestPop(eranum,:)=Pop(fitIn,:);Trace(eranum)=Maxfit;if options(1)==1Pop=(Pop-Lb)./(Ub-Lb);%将定义域映射到[0,1]:[Lb,Ub]--[0,1] ,Pop--(Pop-Lb)./(Ub-Lb)endswitch round(unifrnd(0,eranum/MaxEranum))%进化前期尽量使用实行锦标赛选择,后期逐步增大非线性排名选择case {0} [selectpop]=TournamentSelect(Pop,fit,bits);%锦标赛选择case {1}[selectpop]=NonlinearRankSelect(Pop,fit,bits);%非线性排名选择end完整可以运行的数值优化遗传算法源代码[CrossOverPop]=CrossOver(selectpop,pCross,OptsCrossOver(er anum,:));%交叉[MutationPop]=Mutation(CrossOverPop,fit,pMutation,VarNum,O ptsMutation(eranum,:)); %变异[InversionPop]=Inversion(MutationPop,pInversion);%倒位%更新种群if options(1)==1Pop=Lb+InversionPop.*(Ub-Lb);%还原PopelsePop=InversionPop;endpMutation=pm0+(eranum^3)*(pCross/2-pm0)/(eranum^4); %逐步增大变异率至1/2交叉率percent=num2str(round(100*eranum/MaxEranum));waitbar(eranum/MaxEranum,H,['Evolution complete ',percent,'%']);eranum=eranum+1;endclose(H);% 格式化输出进化结果和解的变化情况t=1:MaxEranum;plot(t,Trace,t,Meanfit);legend('解的变化','种群的变化');title('函数优化的遗传算法');xlabel('进化世代数');ylabel('每一代最优适应度');[MaxFval,MaxFvalIn]=max(Trace);if options(1)==1|options(1)==3X=BestPop(MaxFvalIn,:);elseif options(1)==0X=b2f(BestPop(MaxFvalIn,:),bounds,bits);endhold on;plot(MaxFvalIn,MaxFval,'*');text(MaxFvalIn+5,MaxFval,['FMAX=' num2str(MaxFval)]);str1=sprintf(' Best generation:\n %d\n\n Best X:\n %s\n\n MaxFval\n %f\n',...MaxFvalIn,num2str(X),MaxFval);disp(str1);% -计时T2=clock;elapsed_time=T2-T1;if elapsed_time(6)0elapsed_time(6)=elapsed_time(6)+60;elapsed_time(5)=elapsed_time(5)-1;endif elapsed_time(5)0elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_t ime(4)-1;end完整可以运行的数值优化遗传算法源代码str2=sprintf('elapsed_time\n %d (h) %d (m) %.4f (s)',elapsed_time(4),elapsed_time(5),elapsed_time(6));disp(str2);%===================================== ===================================== % 遗传操作子程序%%===================================== ===================================== % -- 初始化种群--% 采用浮点编码和二进制Gray编码(为了克服二进制编码的Hamming悬崖缺点)function [initpop]=InitPop(popsize,bounds,bits,options)numVars=size(bounds,1);%变量数目rang=(bounds(:,2)-bounds(:,1))';%变量范围if options(1)==1initpop=zeros(popsize,numVars);initpop=(ones(popsize,1)*rang).*(rand(popsize,numVars))+(ones (popsize,1)*bounds(:,1)');elseif options(1)==0precision=options(2);%由求解精度确定二进制编码长度len=sum(bits);initpop=zeros(popsize,len);%The whole zero encoding individualfor i=2:popsize-1pop=round(rand(1,len));pop=mod(([0 pop]+[pop 0]),2);%i=1时,b(1)=a(1);i1时,b(i)=mod(a(i-1)+a(i),2)%其中原二进制串:a(1)a(2)...a(n),Gray串:b(1)b(2)...b(n)initpop(i,:)=pop(1:end-1);endinitpop(popsize,:)=ones(1,len);%The whole one encoding individualelsefor i=1:popsizeinitpop(i,:)=randperm(numVars);%为Tsp问题初始化种群endend% -- 二进制串解码--function [fval] = b2f(bval,bounds,bits)% fval - 表征各变量的十进制数% bval - 表征各变量的二进制编码串% bounds - 各变量的取值范围% bits - 各变量的二进制编码长度scale=(bounds(:,2)-bounds(:,1))'./(2.^bits-1); %The range of the variablesnumV=size(bounds,1);cs=[0 cumsum(bits)];for i=1:numVa=bval((cs(i)+1):cs(i+1));fval(i)=sum(2.^(size(a,2)-1:-1:0).*a)*scale(i)+bounds(i,1);end% -- 选择操作--完整可以运行的数值优化遗传算法源代码% 采用基于轮盘赌法的非线性排名选择% 各个体成员按适应值从大到小分配选择概率:% P(i)=(q/1-(1-q)^n)*(1-q)^i, 其中P(0)P(1)...P(n), sum(P(i))=1function [NewPop]=NonlinearRankSelect(OldPop,fit,bits) global m n NewPopfit=fit';selectprob=fit/sum(fit);%计算各个体相对适应度(0,1)q=max(selectprob);%选择最优的概率x=zeros(m,2);x(:,1)=[m:-1:1]';[y x(:,2)]=sort(selectprob);r=q/(1-(1-q)^m);%标准分布基值newfit(x(:,2))=r*(1-q).^(x(:,1)-1);%生成选择概率newfit=[0 cumsum(newfit)];%计算各选择概率之和rNums=rand(m,1);newIn=1;while(newIn=m)NewPop(newIn,:)=OldPop(length(find(rNums(newIn)newfit)),:);newIn=newIn+1;end% -- 锦标赛选择(含精英选择) --function [NewPop]=TournamentSelect(OldPop,fit,bits)global m n NewPopnum=floor(m./2.^(1:10));num(find(num==0))=[];L=length(num);a=sum(num);b=m-a;PopIn=1;while(PopIn=L)r=unidrnd(m,num(PopIn),2^PopIn);[LocalMaxfit,In]=max(fit(r),[],2);SelectIn=r((In-1)*num(PopIn)+[1:num(PopIn)]');NewPop(sum(num(1:PopIn))-num(PopIn)+1:sum(num(1:PopIn)),:)=OldPop(SelectIn,:);PopIn=PopIn+1;r=[];In=[];LocalMaxfit=[];endif b1NewPop((sum(num)+1):(sum(num)+b-1),:)=OldPop(unidrnd(m,1,b-1),:);end[GlobalMaxfit,I]=max(fit);%保留每一代中最佳个体NewPop(end,:)=OldPop(I,:);% -- 交叉操作--function [NewPop]=CrossOver(OldPop,pCross,opts)global m n NewPopr=rand(1,m);完整可以运行的数值优化遗传算法源代码y1=find(rpCross);y2=find(r=pCross);len=length(y1);if len==1|(len2mod(len,2)==1)%如果用来进行交叉的染色体的条数为奇数,将其调整为偶数y2(length(y2)+1)=y1(len);y1(len)=[];endi=0;if length(y1)=2if opts(1)==1%浮点编码交叉while(i=length(y1)-2)NewPop(y1(i+1),:)=OldPop(y1(i+1),:);NewPop(y1(i+2),:)=OldPop(y1(i+2),:);if opts(2)==0n1%discret crossoverPoints=sort(unidrnd(n,1,2));NewPop(y1(i+1),Points(1):Points(2))=OldPop(y1(i+2),Points(1):Po ints(2));NewPop(y1(i+2),Points(1):Points(2))=OldPop(y1(i+1),Points(1):Po ints(2));elseif opts(2)==1%arithmetical crossoverPoints=round(unifrnd(0,pCross,1,n));CrossPoints=find(Points==1);r=rand(1,length(CrossPoints));NewPop(y1(i+1),CrossPoints)=r.*OldPop(y1(i+1),CrossPoints)+(1 -r).*OldPop(y1(i+2),CrossPoints);NewPop(y1(i+2),CrossPoints)=r.*OldPop(y1(i+2),CrossPoints)+(1 -r).*OldPop(y1(i+1),CrossPoints); else %AEA recombination Points=round(unifrnd(0,pCross,1,n));CrossPoints=find(Points==1);v=unidrnd(4,1,2);NewPop(y1(i+1),CrossPoints)=(floor(10^v(1)*OldPop(y1(i+1),Cro ssPoints))+...10^v(1)*OldPop(y1(i+2),CrossPoints)-floor(10^v(1)*OldPop(y1(i+2),CrossPoints)))/10^v(1);NewPop(y1(i+2),CrossPoints)=(floor(10^v(2)*OldPop(y1(i+2),Cro ssPoints))+...10^v(2)*OldPop(y1(i+1),CrossPoints)-floor(10^v(2)*OldPop(y1(i+1),CrossPoints)))/10^v(2);endi=i+2;endelseif opts(1)==0%二进制编码交叉while(i=length(y1)-2)if opts(2)==0[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=EqualCrossOver(OldPop( y1(i+1),:),OldPop(y1(i+2),:)); else[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=MultiPointCross(OldPop( y1(i+1),:),OldPop(y1(i+2),:)); endi=i+2;endelse %Tsp问题次序杂交for i=0:2:length(y1)-2xPoints=sort(unidrnd(n,1,2));NewPop([y1(i+1)y1(i+2)],xPoints(1):xPoints(2))=OldPop([y1(i+2)y1(i+1)],xPoints(1):xPoints(2));完整可以运行的数值优化遗传算法源代码%NewPop(y1(i+2),xPoints(1):xPoints(2))=OldPop(y1(i+1),xPo ints(1):xPoints(2));temp=[OldPop(y1(i+1),xPoints(2)+1:n)OldPop(y1(i+1),1:xPoints(2))];for del1i=xPoints(1):xPoints(2)temp(find(temp==OldPop(y1(i+2),del1i)))=[];endNewPop(y1(i+1),(xPoints(2)+1):n)=temp(1:(n-xPoints(2)));NewPop(y1(i+1),1:(xPoints(1)-1))=temp((n-xPoints(2)+1):end);temp=[OldPop(y1(i+2),xPoints(2)+1:n)OldPop(y1(i+2),1:xPoints(2))];for del2i=xPoints(1):xPoints(2)temp(find(temp==OldPop(y1(i+1),del2i)))=[];endNewPop(y1(i+2),(xPoints(2)+1):n)=temp(1:(n-xPoints(2)));NewPop(y1(i+2),1:(xPoints(1)-1))=temp((n-xPoints(2)+1):end);endendendNewPop(y2,:)=OldPop(y2,:);% -二进制串均匀交叉算子function[children1,children2]=EqualCrossOver(parent1,parent2) global n children1 children2hidecode=round(rand(1,n));%随机生成掩码crossposition=find(hidecode==1);holdposition=find(hidecode==0);children1(crossposition)=parent1(crossposition);%掩码为1,父1为子1提供基因children1(holdposition)=parent2(holdposition);%掩码为0,父2为子1提供基因children2(crossposition)=parent2(crossposition);%掩码为1,父2为子2提供基因children2(holdposition)=parent1(holdposition);%掩码为0,父1为子2提供基因% -二进制串多点交叉算子function[Children1,Children2]=MultiPointCross(Parent1,Parent2)%交叉点数由变量数决定global n Children1 Children2 VarNumChildren1=Parent1;Children2=Parent2;Points=sort(unidrnd(n,1,2*VarNum));for i=1:VarNumChildren1(Points(2*i-1):Points(2*i))=Parent2(Points(2*i-1):Points(2*i));Children2(Points(2*i-1):Points(2*i))=Parent1(Points(2*i-1):Points(2*i));end% -- 变异操作--function[NewPop]=Mutation(OldPop,fit,pMutation,VarNum,opts) global m n NewPopNewPop=OldPop;r=rand(1,m);MutIn=find(r=pMutation);L=length(MutIn);完整可以运行的数值优化遗传算法源代码i=1;if opts(1)==1%浮点变异maxfit=max(fit);upfit=maxfit+0.05*abs(maxfit);if opts(2)==1|opts(2)==3while(i=L)%自适应变异(自增或自减)Point=unidrnd(n);T=(1-fit(MutIn(i))/upfit)^2;q=abs(1-rand^T);%if q1%按严格数学推理来说,这段程序是不能缺少的% q=1%endp=OldPop(MutIn(i),Point)*(1-q);if unidrnd(2)==1NewPop(MutIn(i),Point)=p+q;elseNewPop(MutIn(i),Point)=p;endi=i+1;endelseif opts(2)==2|opts(2)==4%AEA变异(任意变量的某一位变异)while(i=L)Point=unidrnd(n);T=(1-abs(upfit-fit(MutIn(i)))/upfit)^2;v=1+unidrnd(1+ceil(10*T));%v=1+unidrnd(5+ceil(10*eranum/MaxEranum));q=mod(floor(OldPop(MutIn(i),Point)*10^v),10);NewPop(MutIn(i),Point)=OldPop(MutIn(i),Point)-(q-unidrnd(9))/10^v;i=i+1;endelsewhile(i=L)Point=unidrnd(n);if round(rand)NewPop(MutIn(i),Point)=OldPop(MutIn(i),Point)*(1-rand);elseNewPop(MutIn(i),Point)=OldPop(MutIn(i),Point)+(1-OldPop(MutIn(i),Point))*rand; endi=i+1;endendelseif opts(1)==0%二进制串变异if L=1while i=Lk=unidrnd(n,1,VarNum); %设置变异点数(=变量数)for j=1:length(k)if NewPop(MutIn(i),k(j))==1NewPop(MutIn(i),k(j))=0;else完整可以运行的数值优化遗传算法源代码NewPop(MutIn(i),k(j))=1;endendi=i+1;endendelse%Tsp变异if opts(2)==1|opts(2)==2|opts(2)==3|opts(2)==4numMut=ceil(pMutation*m);r=unidrnd(m,numMut,2);[LocalMinfit,In]=min(fit(r),[],2);SelectIn=r((In-1)*numMut+[1:numMut]');while(i=numMut)mPoints=sort(unidrnd(n,1,2));if mPoints(1)~=mPoints(2)NewPop(SelectIn(i),1:mPoints(1)-1)=OldPop(SelectIn(i),1:mPoints(1)-1);NewPop(SelectIn(i),mPoints(1):mPoints(2)-1)=OldPop(SelectIn(i),mPoints(1)+1:mPoints(2));NewPop(SelectIn(i),mPoints(2))=OldPop(SelectIn(i),mPoints(1));NewPop(SelectIn(i),mPoints(2)+1:n)=OldPop(SelectIn(i),mPoints( 2)+1:n);elseNewPop(SelectIn(i),:)=OldPop(SelectIn(i),:);endi=i+1;endr=rand(1,m);MutIn=find(r=pMutation);L=length(MutIn);while i=LmPoints=sort(unidrnd(n,1,2));rIn=randperm(mPoints(2)-mPoints(1)+1);NewPop(MutIn(i),mPoints(1):mPoints(2))=OldPop(MutIn(i),mPoin ts(1)+rIn-1);i=i+1;endendend% -- 倒位操作--function [NewPop]=Inversion(OldPop,pInversion)global m n NewPopNewPop=OldPop;r=rand(1,m);PopIn=find(r=pInversion);len=length(PopIn);if len=1while(i=len)d=sort(unidrnd(n,1,2));完整可以运行的数值优化遗传算法源代码NewPop(PopIn(i),d(1):d(2))=OldPop(PopIn(i),d(2):-1:d(1)); i=i+1;。
遗传算法解释及代码(一看就懂)
遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
遗传算法优化的matlab案例
遗传算法(Genetic Algorithm,GA)是一种模拟生物进化过程的搜索和优化算法,通过模拟生物的遗传、交叉和变异操作来寻找问题的最优解。
它以一种迭代的方式生成和改进解决方案,并通过评估每个解决方案的适应度来选择下一代解决方案。
在Matlab中,遗传算法优化工具箱提供了方便的函数和工具,可以帮助用户快速开发和实现遗传算法优化问题。
下面,我们以一个简单的最优化问题为例,演示在Matlab中如何使用遗传算法优化工具箱进行优化。
假设我们要优化一个简单的函数f(x),其中x是一个实数。
我们的目标是找到使得f(x)取得最小值的x值。
具体来说,我们将优化以下函数: f(x) = x² - 4x + 4首先,我们在Matlab中定义目标函数f(x)的句柄(用于计算函数值)和约束条件(如果有的话)。
代码如下:function y = testfunction(x)y = x^2 - 4*x + 4;end接下来,我们需要使用遗传算法优化工具箱的函数ga来进行优化。
我们需要指定目标函数的句柄、变量的取值范围和约束条件(如果有的话),以及其他一些可选参数。
以下是一个示例代码:options = gaoptimset('Display', 'iter'); % 设置显示迭代过程lb = -10; % 变量下界ub = 10; % 变量上界[x, fval] = ga(@testfunction, 1, [], [], [], [], lb, ub, [], options);在上面的代码中,gaoptimset函数用于设置遗传算法的参数。
在这里,我们使用了可选参数'Display',它的值设置为'iter',表示显示迭代过程。
变量lb和ub分别指定了变量的取值范围,我们在这里将其设置为-10到10之间的任意实数。
横线[]表示没有约束条件。
(完整版)遗传算法简介及代码详解
遗传算法简述及代码详解声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。
遗传算法基本内容遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。
遗传学与遗传算法中的基础术语比较染色体:又可以叫做基因型个体(individuals)群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数量叫做群体大小。
初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。
适应度(fitness):各个个体对环境的适应程度优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。
SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。
遗传算法的准备工作:1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。
前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding)2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。
非常重要的过程。
遗传算法基本过程为:1) 编码,创建初始群体2) 群体中个体适应度计算3) 评估适应度4) 根据适应度选择个体5) 被选择个体进行交叉繁殖6) 在繁殖的过程中引入变异机制7) 繁殖出新的群体,回到第二步实例一:(建议先看实例二)求 []30,0∈x 范围内的()210-=x y 的最小值1) 编码算法选择为"将x 转化为2进制的串",串的长度为5位(串的长度根据解的精度设 定,串长度越长解得精度越高)。
遗传算法优化程序设计中的常见问题与解决方法
遗传算法优化程序设计中的常见问题与解决方法遗传算法是一种模拟生物进化过程的优化算法,被广泛应用于程序设计领域。
然而,在实际应用中,遗传算法可能会遇到一些常见问题,如收敛速度慢、局部最优解等。
本文将探讨这些问题,并提出相应的解决方法。
1. 收敛速度慢遗传算法的收敛速度取决于种群的多样性和变异率。
如果种群中的个体过于相似,那么算法将很难找到更好的解。
解决这个问题的方法之一是增加种群的多样性。
可以通过增加初始种群的大小、改变交叉和变异的概率,或者引入随机因素来增加多样性。
另外,可以尝试使用多种遗传算法的变体,如遗传算法与模拟退火算法的结合,以加快收敛速度。
2. 局部最优解遗传算法在搜索解空间时容易陷入局部最优解,而无法找到全局最优解。
为了解决这个问题,可以采用多种策略。
一种常见的方法是引入精英保留策略,即保留每一代中的最优个体,以防止最优解的丢失。
另外,可以尝试增加变异概率,以增加搜索空间的探索度。
还可以使用自适应算法,根据当前解的质量调整交叉和变异的概率,以平衡探索和利用的能力。
3. 参数设置困难遗传算法中有许多参数需要设置,如种群大小、交叉概率、变异概率等。
不同的参数设置可能导致不同的结果。
为了解决这个问题,可以使用经验法则进行初始参数设置,然后通过试验和调整来优化参数。
还可以使用自适应算法,根据问题的特性和算法的表现,动态调整参数。
另外,可以使用启发式算法,如遗传算法与粒子群优化算法的结合,来自动调整参数。
4. 复杂度高遗传算法在处理大规模问题时,往往需要较长的运行时间。
为了降低算法的复杂度,可以采用并行化技术。
将种群分成多个子种群,并行地进行交叉和变异操作,可以加快算法的执行速度。
另外,可以使用近似算法或启发式算法来替代遗传算法,以降低算法的复杂度。
总之,遗传算法在程序设计中具有广泛的应用前景。
然而,在实际应用中,也会遇到一些常见问题。
通过增加种群的多样性、引入精英保留策略、动态调整参数以及采用并行化技术等方法,可以有效解决这些问题,提高遗传算法的性能和效果。
遗传算法java代码
遗传算法java代码遗传算法(Genetic Algorithm)是一种基于生物进化的启发式算法,通过模拟自然选择、交叉和突变等基因操作来优化问题的解。
以下是一个基于Java的遗传算法示例代码:```javaimport java.util.ArrayList;import java.util.List;import java.util.Random;//假设我们要求解的问题是求一个二进制序列的最大值,这个序列的长度为10public class GeneticAlgorithm//染色体长度private static final int CHROMOSOME_LENGTH = 10;//种群大小private static final int POPULATION_SIZE = 100;//迭代次数private static final int MAX_GENERATIONS = 100;//交叉概率private static final double CROSSOVER_RATE = 0.8;//变异概率private static final double MUTATION_RATE = 0.1; //随机数生成器private static final Random RANDOM = new Random(; //个体类private static class Individual//染色体private int[] chromosome;//适应度private double fitness;public Individuachromosome = new int[CHROMOSOME_LENGTH];fitness = 0.0;}//初始化染色体public void initializeChromosomfor (int i = 0; i < CHROMOSOME_LENGTH; i++) chromosome[i] = RANDOM.nextInt(2);}}//计算个体的适应度public void calculateFitnesint decimalValue = 0;for (int i = CHROMOSOME_LENGTH - 1; i >= 0; i--) decimalValue += chromosome[i] * Math.pow(2, CHROMOSOME_LENGTH - i - 1);}fitness = decimalValue;}//获取个体的适应度public double getFitnesreturn fitness;}//获取染色体public int[] getChromosomreturn chromosome;}//设置染色体public void setChromosome(int[] chromosome)this.chromosome = chromosome;}}//生成初始种群private static List<Individual> createInitialPopulatioList<Individual> population = new ArrayList<>(;for (int i = 0; i < POPULATION_SIZE; i++)Individual individual = new Individual(;individual.initializeChromosome(;population.add(individual);}return population;}//选择父母个体private static Individual selectParent(List<Individual> population)double sumFitness = 0.0;for (Individual individual : population)sumFitness += individual.getFitness(;}double randomFitness = RANDOM.nextDouble( * sumFitness;double cumulativeFitness = 0.0;for (Individual individual : population)cumulativeFitness += individual.getFitness(;if (cumulativeFitness > randomFitness)return individual;}}return population.get(0);}//交叉操作private static Individual crossover(Individual parent1, Individual parent2)Individual offspring = new Individual(;int[] parent1Chromosome = parent1.getChromosome(;int[] parent2Chromosome = parent2.getChromosome(;int crossoverPoint = RANDOM.nextInt(CHROMOSOME_LENGTH - 1) + 1;int[] offspringChromosome = new int[CHROMOSOME_LENGTH];System.arraycopy(parent1Chromosome, 0, offspringChromosome, 0, crossoverPoint);System.arraycopy(parent2Chromosome, crossoverPoint, offspringChromosome, crossoverPoint, CHROMOSOME_LENGTH - crossoverPoint);offspring.setChromosome(offspringChromosome);return offspring;}//变异操作private static void mutate(Individual individual)int[] chromosome = individual.getChromosome(;for (int i = 0; i < CHROMOSOME_LENGTH; i++)if (RANDOM.nextDouble( < MUTATION_RATE)chromosome[i] = chromosome[i] == 0 ? 1 : 0;}}individual.setChromosome(chromosome);}//遗传算法主函数public static void main(String[] args)List<Individual> population = createInitialPopulation(;for (int generation = 0; generation < MAX_GENERATIONS; generation++)for (Individual individual : population)individual.calculateFitness(;}Individual bestIndividual = population.get(0);for (Individual individual : population)if (individual.getFitness( > bestIndividual.getFitness() bestIndividual = individual;}}System.out.println("Generation: " + generation + " Best Individual: " + bestIndividual.getFitness();List<Individual> newPopulation = new ArrayList<>(;while (newPopulation.size( < POPULATION_SIZE)Individual parent1 = selectParent(population);Individual parent2 = selectParent(population);Individual offspring = crossover(parent1, parent2);mutate(offspring);newPopulation.add(offspring);}population = newPopulation;}}```以上示例代码实现了一个简单的二进制序列的最大化遗传算法。
遗传算法解决函数优化问题
实验一 遗传算法解决函数优化问题一、实验目的1.掌握遗传算法的基本原理和步骤。
2. 复习VB 、VC 的基本概念、基本语法和编程方法,并熟练使用VB 或VC 编写遗传算法程序。
二、实验内容1. 上机编写程序,解决以下函数优化问题:()1021min 100i i i f x x =⎛⎫=≤ ⎪⎝⎭∑X2. 调试程序。
3. 根据实验结果,撰写实验报告。
三、实验原理遗传算法是一类随机优化算法,但它不是简单的随机比较搜索,而是通过对染色体的评价和对染色体中基因的作用,有效地利用已有信息来指导搜索有希望改善优化质量的状态。
标准遗传算法流程图如下图所示,主要步骤可描述如下: ① 随机产生一组初始个体构成初始种群。
② 计算每一个体的适配值(fitness value ,也称为适应度)。
适应度值是对染色体(个体)进行评价的一种指标,是GA 进行优化所用的主要信息,它与个体的目标值存在一种对应关系。
③ 判断算法收敛准则是否满足,若满足,则输出搜索结果;否则执行以下步骤。
④ 根据适应度值大小以一定方式执行复制操作(也称为选择操作)。
⑤ 按交叉概率p c 执行交叉操作。
⑥ 按变异概率p m 执行变异操作。
⑦ 返回步骤②。
图1.1 标准遗传算法流程图四、程序代码#include <stdio.h>#include <math.h>#include <stdlib.h>#include<time.h>#define byte unsigned char#define step 200 //步长#define MAX 50#define N 10 //随机数个数#define Pc 0.74 //被选择到下一代的概率,个数=Pc*N,小于N 下一代数=上一代,不用处理#define Pt 0.25 //交叉的概率,个数=Pt*N 舍,小于N 0~(n2+1)随机数,之后部分开始交叉#define Pm 0.01 //变异的概率,个数=Pm*N*n2 入,小于N 0~(N*(n2+1))随机数/(n2+1)=个体,0~(N*(n2+1))随机数%(n2+1)=该个体基因位置#define n2 15//2的15次方,共16位#define next_t (int)(Pt*N)//交叉个数#define next_m (int)(Pm*N+1)//变异个数向后约等于#define e 0.001//次数限制阈值/*int N=10; //随机数个数float Pc=0.74; //被选择到下一代的概率,个数=Pc*N,小于N 下一代数=上一代,不用处理float Pt=0.25; //交叉的概率,个数=Pt*N 舍,小于N 0~(n2+1)随机数,之后部分开始交叉float Pm=0.01; //变异的概率,个数=Pm*N*n2 入,小于N 0~(N*(n2+1))随机数/(n2+1)=个体,0~(N*(n2+1))随机数%(n2+1)=该个体基因位置*/bytebitary[N][n2+1],bitary0[N][n2+1];//二进制int src1[N];float ShowType(int a);//表现型void BinNum(int a);//二进制位数n2 float fit_func(float a);//适应度void DecToBin (int src,int num);//十进制转二进制void BinToDec (void);//十进制转二进制int selectT(float a,float b[10]);//选择交叉个体int selectM(float a,float b[10]);//选择变异个体void main(void){//范围是[-100,100]*************************** intsrc[N],i=0,j=0,k=0,count=0;//十进制float show[N];//表现型float fit[N],sumfit=0;//适应度float pcopy[N];//优胜劣汰,遗传到下一代的概率fit[i]/总和(fit[i]) float pacc[N];//pcopy[i]累加概率值float prand[N];//随机产生N个0~1的下一代概率int iselect;//根据概率选择到的个体序号int new_select[N];//根据概率选择到的个体int new_T[next_t],new_M[next_m];float min,min1;printf("随机数(原始母体),表现型, 适配值\n");srand( (unsigned)time(NULL) );for(i=0;i<N;i++){src[i]=rand()%32768;//rand()%201-100===>-100~100的十进制随机数随时间递增show[i]=ShowType(src[i]);//转化成表现型fit[i]=fit_func(show[i]);//计算各个适配值(适应度)sumfit=sumfit+fit[i]; //种群的适应度总和printf("%5d, %f, %f\n",src[i],s how[i],fit[i]);}printf("\n第%d代适配总值\n%f\n",count,sumfit);//第0代count++;min=sumfit;printf("\n遗传到下一代的概率\n");for(i=0;i<N;i++){pcopy[i]=fit[i]/sumfit;printf("%f, ",pcopy[i]);}// 求选择(被复制)的累加概率,用于轮盘赌产生随机数区域,选择下一代个体printf("\n遗传到下一代的累加概率\n");pacc[0]=pcopy[0];for(i=1;i<N;i++){pacc[i]=pacc[i-1]+pcopy[i];printf("%f, ",pacc[i]);}//每个src[N]都随机取其中一个pcopy,取得的值pcopy[i]跟pcopy概率大小有关//模拟轮盘赌方式选择新一代printf("\n\n新产生的第%d代,表现型, 适配值\n",count);srand( (unsigned)time(NULL) );for(i=0;i<N;i++){prand[i]=(float)( (rand()%101)*0.01 );//0~1的十进制小数,精确到0.01iselect=selectT(prand[i],pacc);new_select[i]=src[iselect];//产生的新一代,十进制show[i]=ShowType(new_select[i]);/ /转化成表现型fit[i]=fit_func(show[i]);DecToBin (new_select[i],i);sumfit=sumfit+fit[i]; //种群的适应度总和printf(" %d %f %f\n",new_selec t[i],show[i],fit[i]);}printf("\n第%d代适配总值\n%f\n",count,sumfit);//第1代min1=sumfit;if (min>sumfit){min1=min;min=sumfit;}while(fabs(min-min1)>e&&count<MAX ){//从新一代选择个体交叉printf("\n随机产生交叉个体号");srand( (unsigned)time(NULL) );for(i=0;i<2;i++) //简单起见交叉数设为2{new_T[i]=rand()%N;//0~10的十进制数产生的交叉个体if (i>0)//两个不同个体交叉while(new_T[i]==new_T[i-1])new_T[i]=rand()%N;printf("%d, ",new_T[i]);}srand( (unsigned)time(NULL) );//随机产生交叉位置k=rand()%n2;//0~14的十进制数printf("\n随机产生交叉位置 %d\n",k);printf("\n原编码\n");for(j=n2;j>=0;j--)printf("%c",bitary[new_T[0]][j]);printf("\n");for(j=n2;j>=0;j--)printf("%c",bitary[new_T[1]][j]);printf("\n位置%d后交叉编码\n",k);char temp;for(i=k+1;i<n2+1;i++)//交叉{temp=bitary[new_T[0]][i];bitary[new_T[0]][i]=bitary[new_T[ 1]][i];bitary[new_T[1]][i]=temp;}for(j=n2;j>=0;j--)printf("%c",bitary[new_T[0]][j]);printf("\n");for(j=n2;j>=0;j--)printf("%c",bitary[new_T[1]][j]);//从新一代选择个体变异printf("\n随机产生变异个体号");srand( (unsigned)time(NULL) );for(i=0;i<1;i++) //简单起见变异数设为1个{new_M[i]=rand()%N;//0~9的十进制数产生的变异个体k=rand()%(n2+1);//0~15的十进制数printf("%d\n编码位置 %d\n原编码\n",new_M[i],k);for(j=n2;j>=0;j--)printf("%c",bitary[new_M[i]][j]);if(bitary[new_M[i]][k]=='0')//变异取反bitary[new_M[i]][k]='1';elsebitary[new_M[i]][k]='0';printf("\n位置%d变异后编码\n",k);for(j=n2;j>=0;j--)printf("%c",bitary[new_M[i]][j]);}printf("\n");count++;//新的bitary即产生第二代printf("\n新产生的第%d代\n",count);for(i=0;i<N;i++){for(j=n2;j>=0;j--)printf("%c",bitary[i][j]);printf("\n");}BinToDec ();//二进制转十进制 for(i=0;i<N;i++){new_select[i]=src1[i];show[i]=ShowType(src[i]);//转化成表现型fit[i]=fit_func(show[i]);//计算各个适配值(适应度)sumfit=sumfit+fit[i]; //种群的适应度总和printf("%5d, %f, %f\n",src1[i], show[i],fit[i]);}printf("\n第%d代适配总值\n%f\n",count,sumfit);if (sumfit<min){min1=min;min=sumfit;}}printf("\n\n\n*****************\n over\n*****************\n",sumfit);}//////////////////////////子函数////////////////float ShowType(int a){float temp;temp=(float)(a*200.0/32767-100);/ /(2的15次方减1)=32767return temp;}float fit_func(float a){float temp;temp=a*a;return temp;}void DecToBin (int src,int num){int i;//注意负数的补码if (src<0){src=(int)pow(2,16)-abs(src);}for (i=0;i<=n2;i++){bitary[num][i]='0';bitary0[num][i]='0';if(src){bitary[num][i]=(src%2)+48;bitary0[num][i]=(src%2)+48;src=(int)(src/2);}}}void BinToDec (void){int i,j;for(i=0;i<N;i++){src1[i]=0;for(j=0;j<n2+1;j++){src1[i]=src1[i]+(bitary[i][j]-48) *(int)pow(2,j);}}}int selectT(float a,float b[10]) {int i;for(i=0;i<N;i++){if (a<b[i])return i;}return -1;} 五、实验结果分析:随机性大,精度不高六、实验心得理论指导实践,在实践中得以提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十遗传算法与优化问题一、问题背景与实验目的遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位.本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议).(1)遗传算法中的生物遗传学概念由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念.首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation).遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过程产生更适应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解.下面给出遗传算法的具体步骤,流程图参见图1:第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间;第二步:定义适应函数,便于计算适应值;第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数;第四步:随机产生初始化群体;第五步:计算群体中的个体或染色体解码后的适应值;第六步:按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体;第七步:判断群体性能是否满足某一指标、或者是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步.图1 一个遗传算法的具体步骤遗传算法有很多种具体的不同实现过程,以上介绍的是标准遗传算法的主要步骤,此算法会一直运行直到找到满足条件的最优解为止.2.遗传算法的实际应用例1:设2()20.5f x x x =-++,求 max (), [1,2]f x x ∈-.注:这是一个非常简单的二次函数求极值的问题,相信大家都会做.在此我们要研究的不是问题本身,而是借此来说明如何通过遗传算法分析和解决问题.在此将细化地给出遗传算法的整个过程.(1)编码和产生初始群体首先第一步要确定编码的策略,也就是说如何把1-到2这个区间内的数用计算机语言表示出来.编码就是表现型到基因型的映射,编码时要注意以下三个原则:完备性:问题空间中所有点(潜在解)都能成为GA 编码空间中的点(染色体位串)的表现型;健全性:GA 编码空间中的染色体位串必须对应问题空间中的某一潜在解; 非冗余性:染色体和潜在解必须一一对应.这里我们通过采用二进制的形式来解决编码问题,将某个变量值代表的个体表示为一个{0,1}二进制串.当然,串长取决于求解的精度.如果要设定求解精度到六位小数,由于区间长度为2(1)3--=,则必须将闭区间 [1,2]-分为6310⨯等分.因为216222097152231024194304=<⨯<= 所以编码的二进制串至少需要22位.将一个二进制串(b 21b 20b 19…b 1b 0)转化为区间[1,2]-内对应的实数值很简单,只需采取以下两步(Matlab 程序参见附录4):1)将一个二进制串(b 21b 20b 19…b 1b 0)代表的二进制数化为10进制数:21212019102100()(2)'i i i b b b b b b x =⋯=⋅=∑2)'x 对应的区间[1,2]-内的实数:12)1(2'122---⋅+-=x x 例如,一个二进制串a=<1000101110110101000111>表示实数0.637197.'x =(1000101110110101000111)2=2288967637197.01232288967122=-⋅+-=x 二进制串<0000000000000000000000>,<1111111111111111111111>,则分别表示区间的两个端点值-1和2.利用这种方法我们就完成了遗传算法的第一步——编码,这种二进制编码的方法完全符合上述的编码的三个原则.首先我们来随机的产生一个个体数为4个的初始群体如下:pop(1)={<1101011101001100011110>, %% a1<1000011001010001000010>, %% a2<0001100111010110000000>, %% a3<0110101001101110010101>} %% a4(Matlab 程序参见附录2)化成十进制的数分别为:pop(1)={ 1.523032,0.574022 ,-0.697235 ,0.247238 }接下来我们就要解决每个染色体个体的适应值问题了.(2)定义适应函数和适应值由于给定的目标函数2()20.5f x x x =-++在[1,2]-内的值有正有负,所以必须通过建立适应函数与目标函数的映射关系,保证映射后的适应值非负,而且目标函数的优化方向应对应于适应值增大的方向,也为以后计算各个体的入选概率打下基础.对于本题中的最大化问题,定义适应函数()g x ,采用下述方法:min min (), ()0()0,f x F f x F g x -->⎧=⎨⎩若其他 式中min F 既可以是特定的输入值,也可以是当前所有代或最近K 代中()f x 的最小值,这里为了便于计算,将采用了一个特定的输入值.若取min 1F =-,则当()1f x =时适应函数()2g x =;当() 1.1f x =-时适应函数()0g x =.由上述所随机产生的初始群体,我们可以先计算出目标函数值分别如下(Matlab 程序参见附录3):f [pop(1)]={ 1.226437 , 1.318543 , -1.380607 , 0.933350 }然后通过适应函数计算出适应值分别如下(Matlab 程序参见附录5、附录6): 取min 1F =-,g[pop(1)]= { 2.226437 , 2.318543 , 0 , 1.933350 }(3)确定选择标准这里我们用到了适应值的比例来作为选择的标准,得到的每个个体的适应值比例叫作入选概率.其计算公式如下:对于给定的规模为n 的群体pop={123,,,,n a a a a },个体i a 的适应值为()i g a ,则其入选概率为1()(),1,2,3,,()i s i n ii g a P a i n g a ===⋯∑由上述给出的群体,我们可以计算出各个个体的入选概率.首先可得 41() 6.478330ii g a ==∑, 然后分别用四个个体的适应值去除以41()i i g a =∑,得:P (a 1)=2.226437 / 6.478330 = 0.343675 %% a 1P (a 2)=2.318543 / 6.478330 = 0.357892 %% a 2P (a 3)= 0 / 6.478330 = 0 %% a 3P (a 4)=1.933350 / 6.478330 = 0.298433 %% a 4(Matlab 程序参见附录7)(4)产生种群计算完了入选概率后,就将入选概率大的个体选入种群,淘汰概率小的个体,并用入选概率最大的个体补入种群,得到与原群体大小同样的种群(Matlab 程序参见附录8、附录11).要说明的是:附录11的算法与这里不完全相同.为保证收敛性,附录11的算法作了修正,采用了最佳个体保存方法(elitist model),具体内容将在后面给出介绍.由初始群体的入选概率我们淘汰掉a3,再加入a2补足成与群体同样大小的种群得到newpop(1)如下:newpop(1)={<1101011101001100011110>,%% a1<1000011001010001000010>,%% a2<1000011001010001000010>,%% a2<0110101001101110010101>} %% a4(5)交叉交叉也就是将一组染色体上对应基因段的交换得到新的染色体,然后得到新的染色体组,组成新的群体(Matlab程序参见附录9).我们把之前得到的newpop(1)的四个个体两两组成一对,重复的不配对,进行交叉.(可以在任一位进行交叉)<110101110 1001100011110>,<1101011101010001000010>交叉得:<100001100 1010001000010>,<1000011001001100011110><10000110010100 01000010>,<1000011001010010010101>交叉得:<01101010011011 10010101>,<0110101001101101000010>通过交叉得到了四个新个体,得到新的群体jchpop (1)如下:jchpop(1)={<1101011101010001000010>,<1000011001001100011110>,<1000011001010010010101>,<0110101001101101000010>}这里采用的是单点交叉的方法,当然还有多点交叉的方法,不过有些烦琐,这里就不着重介绍了.(6)变异变异也就是通过一个小概率改变染色体位串上的某个基因(Matlab程序参见附录10).现把刚得到的jchpop(1)中第3个个体中的第9位改变,就产生了变异,得到了新的群体pop(2)如下:pop(2)= {<1101011101010001000010>,<1000011001001100011110>,<1000011011010010010101>,<0110101001101101000010> }然后重复上述的选择、交叉、变异直到满足终止条件为止.(7)终止条件遗传算法的终止条件有两类常见条件:(1)采用设定最大(遗传)代数的方法,一般可设定为50代,此时就可能得出最优解.此种方法简单易行,但可能不是很精确(Matlab 程序参见附录1);(2)根据个体的差异来判断,通过计算种群中基因多样性测度,即所有基因位相似程度来进行控制.3.遗传算法的收敛性前面我们已经就遗传算法中的编码、适应度函数、选择、交叉和变异等主要操作的基本内容及设计进行了详细的介绍.作为一种搜索算法,遗传算法通过对这些操作的适当设计和运行,可以实现兼顾全局搜索和局部搜索的所谓均衡搜索,具体实现见下图2所示.图2 均衡搜索的具体实现图示应该指出的是,遗传算法虽然可以实现均衡的搜索,并且在许多复杂问题的求解中往往能得到满意的结果,但是该算法的全局优化收敛性的理论分析尚待解决.目前普遍认为,标准遗传算法并不保证全局最优收敛.但是,在一定的约束条件下,遗传算法可以实现这一点.下面我们不加证明地罗列几个定理或定义,供读者参考(在这些定理的证明中,要用到许多概率论知识,特别是有关马尔可夫链的理论,读者可参阅有关文献).定理1 如果变异概率为)1,0(∈m P ,交叉概率为]1,0[∈c P ,同时采用比例选择法(按个体适应度占群体适应度的比例进行复制),则标准遗传算法的变换矩阵P 是基本的.定理2 标准遗传算法(参数如定理1)不能收敛至全局最优解.由定理2可以知道,具有变异概率)1,0(∈m P ,交叉概率为]1,0[∈c P 以及按比例选择的标准遗传算法是不能收敛至全局最最优解.我们在前面求解例1时所用的方法就是满足定理1的条件的方法.这无疑是一个令人沮丧的结论.然而,庆幸的是,只要对标准遗传算法作一些改进,就能够保证其收敛性.具体如下:我们对标准遗传算法作一定改进,即不按比例进行选择,而是保留当前所得的最优解(称作超个体).该超个体不参与遗传.最佳个体保存方法(elitist model )的思想是把群体中适应度最高的个体不进行配对交叉而直接复制到下一代中.此种选择操作又称复制(copy ).De Jong 对此方法作了如下定义:定义设到时刻t(第t代)时,群体中a*(t)为最佳个体.又设A(t+1)为新一代群体,若A(t+1)中不存在a*(t),则把a*(t)作为A(t+1)中的第n+1个个体(其中,n为群体大小)(Matlab程序参见附录11).采用此选择方法的优点是,进化过程中某一代的最优解可不被交叉和变异操作所破坏.但是,这也隐含了一种危机,即局部最优个体的遗传基因会急速增加而使进化有可能限于局部解.也就是说,该方法的全局搜索能力差,它更适合单峰性质的搜索空间搜索,而不是多峰性质的空间搜索.所以此方法一般都与其他选择方法结合使用.定理3具有定理1所示参数,且在选择后保留当前最优值的遗传算法最终能收敛到全局最优解.当然,在选择算子作用后保留当前最优解是一项比较复杂的工作,因为该解在选择算子作用后可能丢失.但是定理3至少表明了这种改进的遗传算法能够收敛至全局最优解.有意思的是,实际上只要在选择前保留当前最优解,就可以保证收敛,定理4描述了这种情况.定理4具有定理1参数的,且在选择前保留当前最优解的遗传算法可收敛于全局最优解.例2:设2=-+,求max(),[0,2]f x x x()3f x x∈,编码长度为5,采用上述定理4所述的“在选择前保留当前最优解的遗传算法”进行.此略,留作练习.二、相关函数(命令)及简介本实验的程序中用到如下一些基本的Matlab函数:ones, zeros, sum, size, length, subs, double 等,以及for, while 等基本程序结构语句,读者可参考前面专门关于Matlab的介绍,也可参考其他数学实验章节中的“相关函数(命令)及简介”内容,此略.三、实验内容上述例1的求解过程为:群体中包含六个染色体,每个染色体用22位0—1码,变异概率为0.01,变量区间为[1,2]-,取Fmin=2-,遗传代数为50代,则运用第一种终止条件(指定遗传代数)的Matlab程序为:[Count,Result,BestMember]=Genetic1(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,50)执行结果为:Count =50Result =1.0316 1.0316 1.0316 1.0316 1.0316 1.03161.4990 1.4990 1.4990 1.4990 1.4990 1.4990BestMember =1.03161.4990图2 例1的计算结果(注:上图为遗传进化过程中每一代的个体最大适应度;而下图为目前为止的个体最大适应度——单调递增)我们通过Matlab软件实现了遗传算法,得到了这题在第一种终止条件下的最优解:当x取1.0316时,Max () 1.4990f x=.当然这个解和实际情况还有一点出入(应该是x取1时,Max () 1.5000f x=),但对于一个计算机算法来说已经很不错了.我们也可以编制Matlab程序求在第二种终止条件下的最优解.此略,留作练习.实践表明,此时的遗传算法只要经过10代左右就可完成收敛,得到另一个“最优解”,与前面的最优解相差无几.四、自己动手1.用Matlab编制另一个主程序Genetic2.m,求例1的在第二种终止条件下的最优解.提示:一个可能的函数调用形式以及相应的结果为:[Count,Result,BestMember]=Genetic2(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,0.00001) Count =13Result =1.0392 1.0392 1.0392 1.0392 1.0392 1.03921.4985 1.4985 1.4985 1.4985 1.4985 1.4985 BestMember =1.03921.4985可以看到:两组解都已经很接近实际结果,对于两种方法所产生的最优解差异很小.可见这两种终止算法都是可行的,而且可以知道对于例1的问题,遗传算法只要经过10代左右就可以完成收敛,达到一个最优解.2.按照例2的具体要求,用遗传算法求上述例2的最优解.3.附录9子程序Crossing.m中的第3行到第7行为注解语句.若去掉前面的%号,则程序的算法思想有什么变化?4.附录9子程序Crossing.m中的第8行至第13行的程序表明,当Dim(1)>=3时,将交换数组Population的最后两行,即交换最后面的两个个体.其目的是什么?5.仿照附录10子程序Mutation.m,修改附录9子程序Crossing.m,使得交叉过程也有一个概率值(一般取0.65~0.90);同时适当修改主程序Genetic1.m或主程序Genetic2.m,以便代入交叉概率.6.设2f x x∈-,要设定求解精度到15位小数.=--+,求max(),[2,2]f x x x()41五、附录附录1:主程序Genetic1.mfunction[Count,Result,BestMember]=Genetic1(MumberLength,MemberNumber,FunctionFitn ess,MinX,MaxX,Fmin,MutationProbability,Gen)Population=PopulationInitialize(MumberLength,MemberNumber);global Count;global CurrentBest;Count=1;PopulationCode=Population;PopulationFitness=Fitness(PopulationCode,FunctionFitness,MinX,MaxX,Mumbe rLength);PopulationFitnessF=FitnessF(PopulationFitness,Fmin);PopulationProbability=Probability(PopulationFitnessF);[Population,CurrentBest,EachGenMaxFitness]=Elitist(PopulationCode,Populatio nFitness,MumberLength);EachMaxFitness(Count)=EachGenMaxFitness;MaxFitness(Count)=CurrentBest(length(CurrentBest));while Count<GenNewPopulation=Select(Population,PopulationProbability,MemberNumber);Population=NewPopulation;NewPopulation=Crossing(Population,FunctionFitness,MinX,MaxX,MumberLength);Population=NewPopulation;NewPopulation=Mutation(Population,MutationProbability);Population=NewPopulation;PopulationFitness=Fitness(Population,FunctionFitness,MinX,MaxX,MumberLength);PopulationFitnessF=FitnessF(PopulationFitness,Fmin);PopulationProbability=Probability(PopulationFitnessF);Count=Count+1;[NewPopulation,CurrentBest,EachGenMaxFitness]=Elitist(Population,PopulationFitn ess,MumberLength);EachMaxFitness(Count)=EachGenMaxFitness;;MaxFitness(Count)=CurrentBest(length(CurrentBest));Population=NewPopulation;endDim=size(Population);Result=ones(2,Dim(1));for i=1:Dim(1)Result(1,i)=Translate(Population(i,:),MinX,MaxX,MumberLength);endResult(2,:)=PopulationFitness;BestMember(1,1)=Translate(CurrentBest(1:MumberLength),MinX,MaxX,Mumb erLength);BestMember(2,1)=CurrentBest(MumberLength+1);close allsubplot(211)plot(EachMaxFitness)subplot(212)plot(MaxFitness)【程序说明】主程序Genetic1.m包含了8个输入参数:(1) MumberLength:表示一个染色体位串的二进制长度.(例1中取22)(2) MemberNumber:表示群体中染色体的个数.(例1中取6个)(3) FunctionFitness:表示目标函数,是个字符串,因此用表达式时,用单引号括出.(例1中是2=-++)f x x x()20.5(4) MinX:变量区间的下限.(例1中是[1,2]-中的)(5) MaxX:变量区间的上限.(例1中是[1,2]-中的2)(6) Fmin:定义适应函数过程中给出的一个目标函数的可能的最小值,由操作者自己给出.(例1中取Fmin=2-)(7) MutationProbability:表示变异的概率,一般都很小.(例1中取0.01)(8) Gen:表示遗传的代数,也就是终止程序时的代数.(例1中取50)另外,主程序Genetic1.m包含了3个输出值:Count 表示遗传的代数;Result 表示计算的结果,也就是最优解;BestMember表示最优个体及其适应值.附录2:子程序PopulationInitialize.mfunction Population=PopulationInitialize(MumberLength,MemberNumber)Temporary=rand(MemberNumber,MumberLength);Population=(Temporary>=0.5*ones(size(Temporary)));【程序说明】子程序PopulationInitialize.m用于产生一个初始群体.这个初始群体含有MemberNumber个染色体,每个染色体有MumberLength个基因(二进制码).附录3:子程序Fitness.mfunction PopulationFitness=Fitness(PopulationCode,FunctionFitness,MinX,MaxX,MumberLength) Dim=size(PopulationCode);PopulationFitness=zeros(1,Dim(1));for i=1:Dim(1)PopulationFitness(i)=Transfer(PopulationCode(i,:),FunctionFitness,MinX,MaxX,MumberLength);end【程序说明】子程序Fitness.m用于计算群体中每一个染色体的目标函数值.子程序中含有5个输入参数:PopulationCode表示用0—1代码表示的群体,FunctionFitness 表示目标函数,它是一个字符串,因此写入调用程序时,应该用单引号括出,MumberLength表示染色体位串的二进制长度.MinX和MaxX 分别指变量区间的上下限.附录4:子程序Translate.mfunction PopulationData=Translate(PopulationCode,MinX,MaxX,MumberLength) PopulationData=0;Dim=size(PopulationCode);for i=1:Dim(2)PopulationData=PopulationData+PopulationCode(i)*(2^(MumberLength-i));endPopulationData=MinX+PopulationData*(MaxX-MinX)/(2^Dim(2)-1);【程序说明】子程序Translate.m把编成码的群体翻译成变量的数值.含有4个输入参数,PopulationCode, MinX, MaxX, MumberLength.附录5:子程序Transfer.mfunction PopulationFitness=Transfer(PopulationCode,FunctionFitness,MinX,MaxX,MumberLength) PopulationFitness=0;PopulationData=Translate(PopulationCode,MinX,MaxX,MumberLength);PopulationFitness=double(subs(FunctionFitness,'x',sym(PopulationData)));【程序说明】子程序Transfer 把群体中的染色体的目标函数值用数值表示出来,它是Fitness的重要子程序.其有5个输入参数分别为PopulationCode, FunctionFitness, MinX, MaxX,MumberLength.附录6:子程序FitnessF.mfunction PopulationFitnessF=FitnessF(PopulationFitness,Fmin)Dim=size(PopulationFitness);PopulationFitnessF=zeros(1,Dim(2));for i=1:Dim(2)if PopulationFitness(i)>FminPopulationFitnessF(i)=PopulationFitness(i)-Fmin;endif PopulationFitness(i)<=FminPopulationFitnessF(i)=0;endend【程序说明】子程序FitnessF.m是用于计算每个染色体的适应函数值的.其输入参数如下:PopulationFitness 为群体中染色体的目标函数值,Fmin为定义适应函数过程中给出的一个目标函数的可能的最小值.附录7:子程序Probability.mfunction PopulationProbability=Probability(PopulationFitness)SumPopulationFitness=sum(PopulationFitness);PopulationProbability=PopulationFitness/SumPopulationFitness;【程序说明】子程序Probability.m 用于计算群体中每个染色体的入选概率,输入参数为群体中染色体的适应函数值PopulationFitness.附录8:子程序Select.mfunction NewPopulation=Select(Population,PopulationProbability,MemberNumber)CProbability(1)=PopulationProbability(1);for i=2:MemberNumberCProbability(i)=CProbability(i-1)+PopulationProbability(i);endfor i=1:MemberNumberr=rand(1);Index=1;while r>CProbability(Index)Index=Index+1;endNewPopulation(i,:)=Population(Index,:);end【程序说明】子程序Select.m 根据入选概率(计算累计概率)在群体中按比例选择部分染色体组成种群,该子程序的3个输入参数分别为:群体Population,入选概率PopulationProbability,群体中染色体的个数MemberNumber.附录9:子程序Crossing.mfunction NewPopulation=Crossing(Population,FunctionFitness,MinX,MaxX,MumberLength)%%PopulationFitness=%% Fitness(Population,FunctionFitness,MinX,MaxX,MumberLength);%%PopulationProbability=Probability(PopulationFitness);%%[SortResult,SortSite]=sort(PopulationProbability);%%Population=Population(SortSite,:);Dim=size(Population);if Dim(1)>=3Temp=Population(Dim(1),:);Population(Dim(1),:)=Population(Dim(1)-1,:);Population(Dim(1)-1,:)=Temp;endfor i=1:2:Dim(1)-1SiteArray=randperm(Dim(2));Site=SiteArray(1);Temp=Population(i,1:Site);Population(i,1:Site)=Population(i+1,1:Site);Population(i+1,1:Site)=Temp;endNewPopulation=Population;【程序说明】子程序Crossing.m 用于群体中的交叉并产生新群体.其输入参数为:Population, FunctionFitness,MinX,MaxX,MumberLength.附录10:子程序Mutation.mfunction NewPopulation=Mutation(Population,MutationProbability)Dim=size(Population);for i=1:Dim(1)Probability=rand(1);Site=randperm(Dim(2));if Probability<MutationProbabilityif Population(i,Site(1))==1Population(i,Site(1))=0;endif Population(i,Site(1))==0Population(i,Site(1))=1;endendendNewPopulation=Population;【程序说明】子程序Mutation.m用于群体中少量个体变量并产生新的群体.输入参数为:群体Population和变异概率MutationProbability.附录11:子程序Elitist.mfunction [NewPopulationIncludeMax,CurrentBest,EachGenMaxFitness]=Elitist(Population,PopulationFitness,MumberLength)global Count CurrentBest;[MinFitness,MinSite]=min(PopulationFitness);[MaxFitness,MaxSite]=max(PopulationFitness);EachGenMaxFitness=MaxFitness;if Count==1CurrentBest(1:MumberLength)=Population(MaxSite,:);CurrentBest(MumberLength+1)=PopulationFitness(MaxSite);elseif CurrentBest(MumberLength+1)<PopulationFitness(MaxSite);CurrentBest(1:MumberLength)=Population(MaxSite,:);CurrentBest(MumberLength+1)=PopulationFitness(MaxSite);endPopulation(MinSite,:)=CurrentBest(1:MumberLength);endNewPopulationIncludeMax=Population;【程序说明】子程序Elitist.m用到最佳个体保存方法(“优胜劣汰”思想).输入参数为:群体Population, 目标函数值PopulationFitness和染色体个数MumberLength.。