36_常微分方程教程(第二版) 习题6.2 丁同仁 李承治,高等教育出版社
常微分方程教程+第二版+丁同仁+李承志+答案和练习第2章习题 第二章答案

习 题 2-1判断下列方程是否为恰当方程,并且对恰当方程求解: 1.0)12()13(2=++-dy x dx x解:13),(2-=x y x P , 12),(+=x y x Q ,则0=∂∂y P ,2=∂∂x Q , 所以 xQy P ∂∂≠∂∂ 即 原方程不是恰当方程.2.0)2()2(=+++dy y x dx y x解:,2),(y x y x P += ,2),(y x y x Q -=则,2=∂∂y P ,2=∂∂x Q 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则,0)22(=-++ydy xdy ydx xdx两边积分得:.22222C y xy x =-+ 3.0)()(=+++dy cy bx dx by ax (a,b 和c 为常数). 解:,),(by ax y x P += ,),(cy bx y x Q +=则,b y P =∂∂,b x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则,0=+++cydy bxdy bydx axdx两边积分得:.2222C cy bxy ax =++ 4.)0(0)()(≠=-+-b dy cy bx dx by ax解:,),(by ax y x P -= ,),(cy bx y x Q -=则,b y P -=∂∂,b x Q =∂∂ 因为 0≠b , 所以xQ y P ∂∂≠∂∂,即 原方程不为恰当方程5.0sin 2cos )1(2=++udt t udu t解:,cos )1(),(2u t u t P += u t u t Q sin 2),(=则,cos 2u t t P =∂∂,cos 2u t x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则,0cos )sin 2cos (2=++udu udt t udu t两边积分得:.sin )1(2C u t =+ 6.0)2()2(2=++++dy xy e dx y e ye x x x解: xy e y x Q y e ye y x P x x x 2),(,2,(2+=++=,则,2y e y P x +=∂∂,2y e x Q x +=∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则,0])2()[(22=++++dy xy e dx y ye dx e x x x 两边积分得:.)2(2C xy e y x =++7.0)2(ln )(2=-++dy y x dx x xy解:,2ln ),(),(2y x y x Q x xy y x P -=+=则,1x y P =∂∂,1x x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则02)ln (2=-++ydy dx x xdy dx xy两边积分得:23ln 3y x y x -+.C = 8.),(0)(22为常数和c b a cxydy dx by ax =++解:,),(,),(22cxy y x Q by ax y x P =+=则,2by y P =∂∂,cy x Q =∂∂ 所以 当xQy P ∂∂=∂∂,即 c b =2时, 原方程为恰当方程则0)(22=++cxydy dx by dx ax两边积分得:233bxy ax +.C = 而当c b ≠2时原方程不是恰当方程.9.01222=-+-dt ts s ds t s 解:,),(,12),(22ts s s t Q t s s t P -=-= 则,212t s t P -=∂∂,212t s s Q -=∂∂ 所以xQ y P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:C ts s =-2.10.,0)()(2222=+++dy y x yf dx y x xf 其中)(⋅f 是连续的可微函数.解:),(),(),(),(2222y x yf y x Q y x xf y x P +=+=则,2f xy y P '=∂∂,2f xy x Q '=∂∂ 所以xQy P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:22()f xy dx C +=⎰,即原方程的解为C y x F =+)(22 (其中F 为f 的原积分).习 题 2-2. 1. 求解下列微分方程,并指出这些方程在平面上的有意义 的区域::(1)yx dx dy 2=解:原方程即为:dx x ydy 2= 两边积分得:0,2332≠=-y C x y .(2))1(32x y x dx dy += 解:原方程即为:dx xx ydy 321+=两边积分得:1,0,1ln 2332-≠≠=+-x y C x y .(3)0sin 2=+x y dxdy解: 当0≠y 时原方程为:0sin 2=+xdx y dy两边积分得:0)cos (1=++y x c .又y=0也是方程的解,包含在通解中,则方程的通解为0)cos (1=++y x c .(4)221xy y x dxdy+++=; 解:原方程即为:2(1)1dyx dx y=++ 两边积分得:c x x arctgy ++=22, 即 )2(2c x x tg y ++=. (5)2)2cos (cos y x dxdy= 解:①当02cos ≠y 时原方程即为:dx x y dy 22)(cos )2(cos = 两边积分得:2222sin 2tg y x x c --=. ②y 2cos =0,即42ππ+=k y 也是方程的解. (N k ∈) (6)21y dxdyx-= 解:①当1±≠y 时 原方程即为:xdx y dy =-21 两边积分得:c x y =-ln arcsin . ② 1±=y 也是方程的解.(7).yxe y e x dx dy +-=- 解.原方程即为:dx e x dy e y xy)()(--=+两边积分得:c e x e y x y ++=+-2222, 原方程的解为:c e e x y x y =-+--)(222.2. 解下列微分方程的初值问题.(1),03cos 2sin =+ydy xdx 3)2(ππ=y ;解:两边积分得:c yx =+-33sin 22cos , 即 c x y =-2cos 33sin 2因为 3)2(ππ=y , 所以 3=c .所以原方程满足初值问题的解为:32cos 33sin 2=-x y .(2).0=+-dy ye xdx x, 1)0(=y ;解:原方程即为:0=+ydy dx xe x,两边积分得:c dy y dx e x x=+-2)1(2, 因为1)0(=y , 所以21-=c , 所以原方程满足初值问题的解为:01)1(22=++-dy y dx e x x .(3).r d dr=θ, 2)0(=r ; 解:原方程即为:θd rdr=,两边积分得:c r =-θln , 因为2)0(=r , 所以2ln =c ,所以原方程满足初值问题的解为:2ln ln =-θr 即θe r 2=.(4).,1ln 2yx dx dy+= 0)1(=y ; 解:原方程即为:dx x dy y ln )1(2=+,两边积分得:3ln 3y y x x x c ++-=, 因为0)1(=y , 所以1=c ,所以原方程满足初值为:3ln 13y y x x x ++-=(5).321xy dxdyx=+, 1)0(=y ; 解:原方程即为:dx xx y dy 231+=, 两边积分得:c x y ++=--22121, 因为1)0(=y , 所以23-=c ,所以原方程满足初值问题的解为:311222=++yx .1. 解下列微分方程,并作出相应积分曲线的简图. (1).x dxdycos = 解:两边积分得:c x y +=sin . 积分曲线的简图如下:(2).ay dxdy=, (常数0≠a ); 解:①当0≠y 时,原方程即为:dx aydy= 积分得:c x y a +=ln 1,即 )0(>=c ce y ax②0=y 也是方程的解. 积分曲线的简图如下:y(3).21y dxdy-=; 解:①当1±≠y 时,原方程即为:dx y dy =-)1(2 积分得:c x yy+=-+211ln ,即 1122+-=x x ce ce y .②1±=y 也是方程的解.积分曲线的简图如下:(4).n y dx dy =, )2,1,31(=n ; 解:①0≠y 时,ⅰ)2,31=n 时,原方程即为 dx ydyn =, 积分得:c y n x n=-+-111.ⅱ)1=n 时,原方程即为dx ydy=积分得:c x y +=ln ,即)0(>=c ce y x.②0=y 也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为)(x y y =,由题意及导数的几何意义,则有22yb ydx dy --=,所以求B 的运动轨迹即是求此微分方程满足b y =)0(的解.解之得:222222ln 21y b y b b y b b b x ----++=.5. 设微分方程)(y f dxdy=(2.27),其中f(y) 在a y =的某邻域(例如,区间ε<-a y )内连续,而且a y y f =⇔=0)(,则在直线a y =上的每一点,方程(2.27)的解局部唯一,当且仅当瑕积分∞=⎰±εa ay f dy)((发散). 证明:(⇒)首先经过域1R :,+∞<<∞-x a y a <≤-ε 和域2R :,+∞<<∞-x ε+≤<a y a内任一点(00,y x )恰有方程(2.13)的一条积分曲线, 它由下式确定00)(x x y f dyyy-=⎰. (*) 这些积分曲线彼此不相交. 其次,域1R (2R )内的所有 积分曲线c x y f dy +=⎰)(都可由其中一条,比如0)(c x y f dy+=⎰ 沿着 x 轴的方向平移而得到。
常微分方程教程_丁同仁(第二版)_习题解答

(3). dy = 1 − y 2 ; dx
解:①当 y ≠ ±1时,
原方程即为: dy = dx 积分得: ln 1 + y = 2x + c ,
(1 − y 2 )
1− y
即
y
=
ce 2 x
−1
.
ce2x + 1
② y = ±1也是方程的解.
积分曲线的简图如下:
(4). dy = y n , (n = 1 , 1, 2) ;
内连续,而且 f ( y) = 0 ⇔ y = a ,则在直线 y = a 上的每一点,方程(2.27)的解局部唯一,
∫a±ε dy
当且仅当瑕积分
= ∞ (发散).
a f (y)
证明:( ⇒ )
首 先 经 过 域 R1 : − ∞ < x < +∞,
a − ε ≤ y < a 和 域 R2 : − ∞ < x < +∞,
∂y
∂x
∂y ∂x
∫ 两边积分得: f (x2 + y2 )dx = C ,
即原方程的解为 F (x 2 + y 2 ) = C (其中 F 为 f 的原积分).
-3-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
习题 2-2 1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域::
(6) x dy = 1 − y 2 dx
解:①当 y ≠ ±1时 原方程即为: dy = dx
1− y2 x 两边积分得: arcsin y − ln x = c . ② y = ±1也是方程的解.来自(7).dy dx
=
x − e−x y +ey
《常微分方程》东师大第二版习题答案

(4) y′ = 2( y − 2 )2 x + y −1
解:令 u = x + 1, v = y − 2 则原方程变为 dv = 2( v )2 du u + v
再令 z = v ,则方程化为 z + u dz = 2( z )2
u
du 1 + z
分离变量 (1 + z)2 dz = − du (z ≠ 0)
ζ
dζ 1 + u
整理为
u + 1 du = − dζ (u ≠ 1,2)
(u −1)(u − 2)
ζ
积分,得 (u − 2)(u − 2)2 ζ = c u −1
5
代回变量,得通解 ( y − 2x)3 = c( y − x −1)2 , y = x + 1也是方程的解
(2) (2x + y + 1)dx − (4x + 2 y − 3)dy = 0
积分,得 ln ln y = x + c1, ln y = ±ec1 e x = ce x c ≠ 0 ,即 y = ecex (3) dy = e x−y
dx 解: 变形得 e y dy = e x dx 积分,得 e y − e x = c
(4) tan ydx − cot xdy = 0
解:变形得 dy = tan y , y = 0 为特解,当 y ≠ 0 时, cos y dy = sin x dx .
dy 2x + y + 1
解:方程改写为
=
dx 4x + 2y − 3
令
u = 2x + y ,有
du 5u − 5 =
dx 2u − 3
《常微分方程》东师大第二版习题答案

y = 0 也是方程的解
y x dy y y 解:方程改写为 − = tan dx x x y du sin u 令 u = ,有 x = tan u = x dx cos u 积分,得 sin u = cx y 代回变量,得通解 sin = cx x
4
即 cot udu =
dx x
(sin u ≠ 0)
令⎨
⎧− 2α + 4β = 0 ,解得 α = 1, β = 2 ⎩α + β − 3 = 0
作变换 x = ζ + 1,
y =η + 2
有
dη 4η − 2ζ = dζ η +ζ du 4u − 2 = dζ 1+ u
(u ≠ 1,2)
再令 u =
η ζ
上方程可化为 u + ζ
整理为
u +1 dζ du = − (u − 1)(u − 2) ζ u−2 2 ) ζ =c u −1
q(5) = q0 e 5 k = 4 × 10 4
ln 4 2
3 ln 4 3k 比较两式得 k = , 再由 q (3) = q 0 e = q 0 e 2
= 8q 0 = 10 4
得 q 0 = 1.25 × 10
3
3 1.3 习 题 1.
1 解下列方程: (2) ( y − 2 xy ) dx + x dy = 0 解:方程改写为
dy = 0
积分,得
1 − x 2 + 1 − y 2 = c(c > 0)
6.求一曲线,使其具有以下性质:曲线上各点处的切线与切点到原点的向径及 x 轴可围成 一个等腰三角形(以 x 轴为底),且通过点(1,2). 解:设所求曲线为 y = y ( x) 对其上任一点 ( x, y ) 的切线方程:
《常微分方程》东师大第二版习题答案

《常微分方程》习题解答东北师范大学微分方程教研室(第二版)高等教育出版社习题 1.21求下列可分离变量微分方程的通解:(1)xdx ydy =解:积分,得1222121c x y +=即cy x =−22(2)y y dxdyln =解:1,0==y y 为特解,当1,0≠≠y y 时,dx yy dy=ln ,积分,得0ln ,ln ln 11≠=±=+=c ce e e y c x y xx c ,即xcee y =(3)y x e dxdy−=解:变形得dx e dy e xy=积分,得c e e xy =−(4)0cot tan =−xdy ydx 解:变形得x y dx dy cot tan =,0=y 为特解,当0≠y 时,dx xxdy y y cos sin sin cos =.积分,得11cos sin ln ,cos ln sin ln c x y c x y =+−=,即0,cos sin 1≠=±=c c ex y c 2.求下列方程满足给定初值条件的解:(1)1)0(),1(=−=y y y dxdy解:1,0==y y 为特解,当1,0≠≠y y 时,dx dy yy =−−111(,积分,得0,1,1ln11≠=±=−+=−c ce e e yy c x yy x x c 将1)0(=y 代入,得0=c ,即1=y 为所求的解。
(2)1)0(,02)1(22==+′−y xy y x 解:0,1222=−−=y x xy dx dy 为特解,当0≠y 时,dx x xy dy 1222−−=,积分,得c x y+−−=−1ln 12将1)0(=y 代入,得1−=c ,即11ln 12+−=x y 为所求的解。
(3)0)2(,332==′y y y 解:0=y 为特解,当0≠y 时,dx ydy =323,积分,得331)(,c x y c x y +=+=将0)2(=y 代入,得2−=c ,即3)2(−=x y 和0=y 均为所求的解。
常微分方程教程(丁同仁、李承治第二版)习题解答—— 第6章63

习 题 6—31.证明函数组 ,⎩⎨⎧<≥=000)(21x x x x 当当ϕ220 0()0x x x x ϕ≥⎧=⎨<⎩当 当,在区间上线性无关,但它们的朗斯基行列式恒等于零。
这与本节的定理 6.2*是否矛盾?如果并不矛盾,那么它说明了什么?),(+∞−∞证 设有 1122()0c x c ϕϕ+≡ +∞<<∞−x ,则当时,有,从而推得 。
而当 时,有0≥x 21200c x c +≡01=c 0<x 120c c x 0⋅+≡,从而推得 。
因此在02=c +∞<<∞−x 上,只有时,才有 021==c c 1122()()0c x c x ϕϕ+≡,故12(), ()x x ϕϕ在上线性无关。
又当时, ),(+∞−∞0≥x 0002)(2≡=x x x w ,当0<x 时,0200)(2≡=x x x w 故当+∞<<∞−x 时,有。
这与本节定理6.2不矛盾,因为定理6.2*成立对函数有要求,即0)(≡x w )(1x ϕ,)(2x ϕ是某个二阶齐次线性方程的解组。
这说明不存在一个二阶齐次线性方程,它以)(1x ϕ,)(2x ϕ为解组。
3.考虑微分方程''()0y q x y +=(1)设)(x y ϕ=与)(x y ψ=是它的任意两个解,试证)(x y ϕ=与)(x y ψ=的朗斯基行列式恒等于一个常数。
(2)设已知方程有一个特解为,试求这方程的通解,并确定 x e y =()?q x =证: (1)在解)(x y ϕ=,)(x y ψ=的公共存在区间内任取一点x 。
由刘维尔公式,有 (常数)[])()()(),(000x w ex w x x w odxx x=∫=−ψϕ(2)由于是方程的一个非零特解,故可借助刘维尔公式,求与之线性无关的特解 x e y =x odx xx e dx e ee y −∫−−=⋅=∫21122,故方程的通解为 xx e c e c y −+=21又由于是方程的解,故有x e y =()0x x e q x e +≡, 所以 ()1q x =−。
常微分方程教程_丁同仁(第二版)_习题解答_1

∂y
∂x
∂y ∂x
2. (x + 2 y)dx + (2x + y)dy = 0
解: P(x, y) = x + 2 y, Q(x, y) = 2x − y,
∂P
则
=
2,
∂Q
=
2,
所以 ∂P = ∂Q ,即
原方程为恰当方程
∂y ∂x
∂y ∂x
则 xdx + (2 ydx + 2xdy) − ydy = 0,
解: P(x, y = ye x + 2e x + y 2 , Q(x, y) = e x + 2xy ,
则 ∂P = e x + 2 y, ∂Q = e x + 2 y, 所以 ∂P = ∂Q ,即 原方程为恰当方程
∂y
∂x
∂y ∂x
则 2e x dx + [( ye x + y 2 )dx + (e x + 2xy)dy] = 0,
两边积分得: (2 + y)e x + xy 2 = C.
7. ( y + x2 )dx + (ln x − 2 y)dy = 0 x
解: P(x, y) = y + x2 Q(x, y) = ln x − 2 y, x
则 ∂P = 1 , ∂Q = 1 , 所以 ∂P = ∂Q ,即 原方程为恰当方程
(1) dy = x 2 dx y 解:原方程即为: ydy = x 2dx 两边积分得: 3y 2 − 2x3 = C, y ≠ 0 .
dy
(2)
dx
=
x2 y(1 + x3 )
常微分方程丁同仁李承志第二版第一章答案

习 题 1-11.验证下列函数是右侧相应微分方程的解或通解: (1),2221x xe c e c y -+= .04=-''y y 证明:,2221x x e c e c y -+=则y '=,222221x x e c e c --,442221x x e c e c y -+=''.04=-''y y ∴ (2),sin xxy =x y y x cos =+'. 证明:∵,sin xx y =则2sin cos x x x x y -='x xxx x x x y y x cos sin sin cos =+-=+'(3)),(c dx xe x y x +=⎰ xxe y y x =-'.证明:∵),(c dx x e x y x +=⎰ 则 ,x e xc dx x e y xx ++='⎰ ∴=-'y y x x x e xc dx x e x x ++⎰x xxe c dx xe x =+-⎰)( (4) 2112221,,40,,2,,4()()x y x x x c c c c x c c ⎧⎪--∞<<⎪⎪=≤≤⎨⎪⎪<<+∞⎪⎩--'y =证明: (1)当1x c -∞<<时,y=214()x c --,'y =12x c --其他情况类似.2.求下列初值问题的解:(1),x y =''' ,)0(0a y = ,)0(1a y =' 2)0(a y =''.解:∵,x y =''' ∴,2112c x y +='' ∵2)0(a y ='',∴21a c =, ∴3221,6y x a x c '=++ ∵,)0(1a y =' ∴12a c =,∴422111242y x a x a x c =+++,∵,)0(0a y = 满足初值问题的解为:4221011242y x a x a x a =+++.(2)),(x f dxdy= ,0)0(=y (这里)(x f 是一个已知的连续函数)解:∵),(x f dxdy= 即 ,)(dx x f dy = ∴c dt t f dy xx+=⎰⎰0)(,∴,)()0()(0c dt t f y x y x+=-⎰ ∵0)0(=y , ∴0=c∴ 满足初值问题的解为:dt t f x y x⎰=)()(.(3),aR dtdR-= ,1)0(=R 解:① 若,0≠R 则 ∵adt RdR-=, 两边积分得:c at R +-=ln ∵1)0(=R ∴1=c∴满足初值问题的解为:ateR -=(4)21y dxdy+=, 00)(y x y =, 解:∵21y dxdy+=, ∴dx y dy =+21,两边积分得:c x arctgy +=.∵00)(y x y =, ∴00x y arctg c -=.∴满足初值问题的解为:)(00x y arctg x tg y -+=. 3.假设(1) 函数12(,,,,)n y x c c c φ=是微分方程()(,,,,)0n F x y y y '=的通解,其中12,,n c c c 是独立的任意常数,(2) 存在一组常数12(,,,)n n c c c R ∈和空间中的点(1)0000(,,,,)n M x y y y-'(3) 满足001001(1)(1)0011(,,,)(,,,)(,,,)n n n n n n y x c c y x c c xy x c c x φφφ---=⎧⎪∂⎪'=⎪∂⎨⎪⎪∂=⎪∂⎩试证明:存在点0M 的某一邻域 U ,使得对任意一点(1)00000(,,,,)n M x y y y -',可确定一组数0(),1,2,,i i c c M i n ==,使得10200(,(),(),,())n y x c M c M c M φ=是初值问题(1)(1)000000(1)(),(),,()(,,,,)0n n n y x y y x y y x y F x y y y---'⎧===⎪⎨'=⎪⎩ 的解. 证明:因为12(,,,,)n y x c c c φ=是微分方程()(,,,,)0n F x y y y '=的通解,所以初值问题(1)(1)000000(1)(),(),,()(,,,,)0n n n y x y y x y y x y F x y y y---'⎧===⎪⎨'=⎪⎩ 的解应具有形式12(,,,,)n y x c c c φ***=,其中12(,,,)n c c c ***应满足:001001(1)(1)0011(,,,)(,,,)(,,,)n nn n n n y x c c y x c c x y x c c x φφφ****--**-⎧=⎪∂⎪'=⎪∂⎨⎪⎪∂=⎪∂⎩,(*) 如何确定12(,,,)n c c c ***呢?由条件(2)及隐函数定理知,存在点 0M 的某一邻域U ,使得对任意一点(1)00000(,,,,)n M x y y y-'可确定一组数0(),1,2,,i i c c M i n **==,使得(*)成立.得证.4. 求出:(1) 曲线族2x cx y +=所满足的微分方程;解:2x cx y +=, x c y 2+=', 22x cx y x +=', 则有:y x y x =-'2.(2) 曲线族xx xe c e c y 21+=所满足的微分方程;解:由xx xe c e c y 21+=⇒⎪⎩⎪⎨⎧++=''++='xx x xx x xec e c e c y xe c e c e c y 1211212,联立消去21,c c 得:02=+'-''y y y .(3) 平面上以原点为中心的一切圆所满足的微分方程;解:平面上以原点为中心的圆的方程为)0(222≠=+r r y x 将视y 为x 的函数,对x 求导得:022='+y y x平面上以原点为中心的一切圆所满足的微分方程为0='+y y x .(4) 平面上一切圆所满足的微分方程.解:平面上圆的方程为:),0()()(222≠=-+-r r b y a x 将y 视为x 的函数,对x 求导得:()22()2()022()202()40'x a y b y y b y y b y y y '-+-=⎧⎪⎪''+-+=⎨⎪'''''-+=⎪⎩联立消去b a ,得,0)(3])(1[22='''-''''+y y y y .习 题 1-21.作出如下方程的线素场:(1)xyxy y ='(2)2)1(-='y y(3)22y x y +='2. 利用线素场研究下列微分方程的积分曲线族:(1)xy y +='1。
[理学]常微分方程教程_丁同仁第二版_习题解答
![[理学]常微分方程教程_丁同仁第二版_习题解答](https://img.taocdn.com/s3/m/9130f7b5763231126fdb11b9.png)
∂y x ∂x x
∂y ∂x
则 ( y dx + ln xdy) + x2dx − 2 ydy = 0 x
两边积分得: x3 + y ln x − y 2 = C. 3
8. (ax2 + by 2 )dx + cxydy = 0 (a,b和c为常数)
解: P(x, y) = ax2 + by 2 , Q(x, y) = cxy,
两边积分得: (2 + y)e x + xy 2 = C.
7. ( y + x2 )dx + (ln x − 2 y)dy = 0 x
解: P(x, y) = y + x2 Q(x, y) = ln x − 2 y, x
则 ∂P = 1 , ∂Q = 1 , 所以 ∂P = ∂Q ,即 原方程为恰当方程
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-对恰当方程求解:
1. (3x2 −1)dx + (2x + 1)dy = 0
解: P(x, y) = 3x2 −1, Q(x, y) = 2x + 1 ,
则 ∂P = 0 , ∂Q = 2 ,所以 ∂P ≠ ∂Q 即,原方程不是恰当方程.
则 ∂P = 2by, ∂Q = cy, 所以 当 ∂P = ∂Q ,即 2b = c 时, 原方程为恰当方程
∂y
∂x
∂y ∂x
-2-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
则 ax2dx + (by 2dx + cxydy) = 0
两边积分得: ax3 + bxy 2 = C. 3
∂y
∂x
常微分方程教程丁同仁第二版解答完整版

习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解:1.(3x 2 −1)dx +(2x +1)dy =0 解:P (x , y ) =3x 2 −1,Q (x , y ) =2x +1 ,则∂∂P y =0 ,∂∂Q x =2 ,所以∂∂P y ≠∂∂Q x即,原方程不是恰当方程.2.(x +2y )dx +(2x +y )dy =0 解:P (x , y ) =x +2y , Q (x , y ) =2x −y , 则∂∂P y =2, ∂∂Q x =2, 所以∂∂P y =∂∂Q x,即原方程为恰当方程则xdx +(2ydx +2xdy ) −ydy =0,2 2两边积分得:x +2xy −y =C . 2 23.(ax +by )dx +(bx +cy )dy =0 (a,b 和c 为常数).解:P (x , y ) =ax +by , Q (x , y ) =bx +cy , 则∂∂P y =b , ∂∂Q x =b , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则axdx +bydx +bxdy cydy =0,()+两边积分得:ax 2 +bxy +cy 2=C . 2 24.(ax −by )dx +(bx −cy )dy =0(b ≠0) 解:P (x , y ) =ax −by , Q (x , y ) =bx −cy ,则∂∂P y=−b , ∂∂Q x =b , 因为 b ≠0, 所以∂∂P y ≠∂∂Q x ,即,原方程不为恰当方程5.(t 2 +1)cos udu +2 t sin udt =0 解:P (t ,u ) =(t 2 +1)cos u , Q (t ,u ) =2t sin u 则∂∂P t =2t cos u , ∂∂Q x =2t cos u , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则(t 2 cos udu +2t sin udt ) +cos udu =0,两边积分得:(t 2 +1)sin u =C .6.( ye x +2e x +y 2)dx +(e x +2xy )dy =0 解:P (x , y =ye x +2e x +y 2, Q (x , y ) =e x +2xy ,则∂∂P y =e x +2y , ∂∂Q x =e x +2y , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则2e x dx +[(ye x +y 2)dx +(e x +2xy )dy ] =0,两边积分得:(2 +y )e x +xy 2 =C .7.( y +x 2)dx +(ln x −2y )dy =0 x 解:P (x , y ) =y +x 2 Q (x , y ) =ln x −2y ,x则∂∂P y =1 x , ∂∂Q x =1 x , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则( ydx +ln xdy ) +x 2 dx −2ydy =0 x 3两边积分得:x 3+y ln x −y 2 =C .8.(ax 2+by 2)dx +cxydy =0(a ,b 和c 为常数) 解:P (x , y ) =ax 2 +by 2, Q (x , y ) =cxy ,则∂∂P y =2by , ∂∂Q x =cy , 所以当∂∂P y =∂∂Q x,即2b =c 时,原方程为恰当方程则ax 2 dx +(by 2 dx +cxydy ) =0 3两边积分得:ax +bxy 2 =C .3而当2b ≠c 时原方程不是恰当方程.9.2s −1 ds +s −2 s 2 dt =0 t t解:P (t , s ) =2s −1, Q (t , s ) =s −2 s 2,t t则∂∂P t =1−t 22s , ∂∂Q s =1−t22s , 所以∂∂P y =∂∂Q x ,即原方程为恰当方程,两边积分得:s −s 2=C .t10.xf (x 2 +y 2)dx +yf (x 2 +y 2)dy =0, 其中f (⋅)是连续的可微函数.解:P (x , y ) =xf (x 2 +y 2 ), Q (x , y ) =yf (x 2 +y 2 ), 则∂∂P y =2xyf ′, ∂∂Q x =2xyf ′, 所以∂∂P y =∂∂Q x,即原方程为恰当方程,两边积分得:∫f (x 2 +y 2)dx =C ,即原方程的解为F (x 2 +y 2) =C (其中F 为f 的原积分).习题2-2 1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域::dy x 2(1) dx =y解:原方程即为:ydy =x 2 dx 两边积分得:3y 2 −2x 3 =C , y ≠0 .dy x 2(2) dx =y (1+x )3 2解:原方程即为:ydy =1+x x 3dx 两边积分得:3y 2 −2ln1+x 3=C , y ≠0,x ≠−1 .(3) dy +y 2 sin x =0dx解:当y ≠0时原方程为:dy +sin xdx =0y2 两边积分得:1+(c +cos x ) y =0 .又y=0也是方程的解,包含在通解中,则方程的通解为1+(c +cos x ) y =0 .dy 22(4) dx=1+x +y +xy ;解:原方程即为:1+dy y 2=)(1+x dx 2两边积分得:arctgy =x +x 2+c ,即y =tg (x +x 22+c ) .(5) dy =(cos x cos 2y )2 dx解:①当cos 2y ≠0 时原方程即为:(cos dy 2y )2 =(cos x )2 dx 两边积分得:2tg 2y −2x −2sin 2 x =c .②cos 2y =0,即y =k π+π也是方程的解.( k ∈N )2 4 (6) x dy =1−y 2 dx解:①当y ≠±1时dydx 原方程即为:1−y 2 =x两边积分得:arcsin y −ln x =c .②y =±1也是方程的解. dy x −e −x(7).dx =y +e y解.原方程即为:( y +e y )dy =(x −e −x )dx 2 2两边积分得:y +e y =x +e −x +c ,22原方程的解为:y 2 −x 2 +2(e y −e −x ) =c .2. 解下列微分方程的初值问题.(1) sin 2xdx +cos3ydy =0, y (π) =π;2 3解:两边积分得:−cos 22x +sin 33y =c ,即2sin 3y −3cos 2x =c 因为y (π2) =π3,所以 c =3.所以原方程满足初值问题的解为:2sin 3y −3cos 2x =3.x (2).xdx +ye −dy =0 ,y (0) =1;解:原方程即为:xe x dx +ydy =0 ,两边积分得:(x −1)e xdx +y 22dy =c ,因为y (0) =1,所以c =−12,所以原方程满足初值问题的解为:2(x −1)e x dx +y 2 dy +1 =0 .(3).dr =r ,r (0) =2 ;d θ解:原方程即为:dr =d θ,两边积分得:ln r −θ=c ,r因为r (0) =2 ,所以c =ln 2 ,所以原方程满足初值问题的解为:ln r −θ=ln 2 即r =2e θ.dy ln x (4).dx =1+y2, y (1) =0;解:原方程即为:(1+y 2)dy =ln x dx , 两边积分得:y 3x x ln y ++−x =c ,3因为y (1) =0 ,所以c =1, 3 所以原方程满足初值为:y x x ln y ++−x =1 3 2 dy 3(5).1+x dx=xy ,y (0) =1;dy x 解:原方程即为:y 3 =1+x 2 dx ,2两边积分得:−12y −2 =1+x +c ,因为y (0) =1,所以c =−3 ,2 所以原方程满足初值问题的解为:21+x 2 +y1 =3 .2 3. 解下列微分方程,并作出相应积分曲线的简图.(1).dy =cos x dx解:两边积分得:y =sin x +c .积分曲线的简图如下:(2).dxdy =ay ,(常数a ≠0 );解:①当y ≠0时,原方程即为:aydy =dx 积分得:a 1ln y =x c +,即y =ce ax (c >0) ②y =0也是方程的解.积分曲线的简图如下:y(3).dy =1−y 2 ;dx解:①当y ≠±1时,1+y 原方程即为:(1−dy y 2)=dx 积分得:ln =2x +c ,1−y 即y =ce 2 x −1 .ce 2 x +1②y =±1也是方程的解.积分曲线的简图如下:dy n 1(4).dx=y ,(n =3,1, 2) ;解:①当y ≠0时,1 dy ⅰ) n =3, 2 时,原方程即为yn =dx ,积分得:x +1y 1−n =c .n −1ⅱ) n =1时,原方程即为dy y=dx 积分得:ln y =x +c ,即y =ce x(c >0) .②y =0也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为y =y (x ),由题意及导数的几何意义,则有dy y dx b 2 −y2 ,所以求B 的运动轨迹即是求此微分方程满足y (0) =b 的解.=−解之得:x =12 b ln b b +−b b 22 +−y y 22 −b 2 −y 2 .5. 设微分方程dy =f ( y ) (2.27),其中f(y) 在y =a 的某邻域(例如,区间y −a <ε)dx 内连续,而且f ( y )=0 ⇔y =a ,则在直线y =a 上的每一点,方程(2.27)的解局部唯一,±εdy 当且仅当瑕积分=∞(发散).∫a a f ( y )证明:( ⇒)首先经过域R 1:−∞<x <+∞, a −ε≤y <a 和域R 2:−∞<x <+∞,a <y ≤a +ε内任一点( x 0, y 0)恰有方程(2.13)的一条积分曲线,它由下式确定dy =x −x 0 . (*)∫y y 0 f ( y )这些积分曲线彼此不相交. 其次,域R 1( R 2)内的所有积分曲线∫f dy ( y )=x +c 都可由其中一条,比如∫f dy ( y ) =x +c 0 沿着x 轴的方向平移而得到。
常微分方程丁同仁李承志第二版第一章答案

常微分方程丁同仁李承志第二版第一章答案篇一:常微分方程教程(丁同仁、李承治第二版)第四章奇解第四章奇异解习题4-11.求解以下微分方程:(1).2y?p2?4px?2x2,(p?解:y?p22dydx);2pxx2数据处理p?pdp?2p?2x?2x数据处理(p?2x)dp?(p?2x)?0(p?2x)(?1)?0a.p?2x?0?p??2x(特解)?y?2x2?4x2?x2??x2(特解)b.dp?1?0??x22数据处理1.P十、CY(?x?c)?2(?x?c)x?x2?y?二cx12c(通解)dydx(2). Ypxlnx?(xp)2,(p(lnx?2xp)(xdp?p)?0);Dp22解决方案:P?xlnxdp?p(lnx?1)?2xp?2xpxa。
lnx?2xp?0 lnx??2xp?Pln2xxlnx2lnx?Ylnxlnx?[x(?2x2x)]?Y2.2ln2x4十、ln42b、 xxdp?P0便士??Yclnx?c2cYc2xlnx?(xc)(3).2xp?2tany?p3cos2y.解:x?1tany?x?qtany?cos2y2q2p2cos2y问?1?dx,,2科西(?西尼)2q二2二q?tanydq?qsecy?2?tanydqdy?qtany?cos3Q2dq?舒适q22ycos3qdqdycosydqtany(dqqtany)(dyqtany)0dyq3cosy(dqqtany)(tanyq3)0二a.dqdy?qtany?0?b.tany?二dqdyqtany?q?ccosy?x?csiny?三cos3y2c2cos2yq0q二Qcosy伊辛?十、cosy辛塔尼?cos2t2舒适3Yy33sin3y2siny2siny2.用参数法求解下列微分方程: 2(1) 2y2?5(dy)?4dx解:令y?由p?dy2225cost,p?sintdy2525sint,y?2cost,p?二百五十五sint,x,a.当sint?0?dx??y?2sintd(2cost)2522辛特25辛特dt?十、dt?c(?x?c)]?2cos[(?x?c)] b当sint?0?cost??1?y??(2).x2?3( dy2)?1.dx嘘et?e?tet?e?t,红隧?,嘘?22解决方案:制造x?cht,p?dyshtshtshtsh2t阿迪?dx?d(xht)?Dtx333 ysh2t1c812t?2t(e?e?2)d(2t)?c?811t?(sh2t?)?C2422(3).(dy)?y?x?0.dx(e2t?e?2t?4t)?C解:令x?u,p?v,y?u2?v2,dy?pdx2udu?2vdv?vdu?(2u?v)du?2vdv? dvdu2u?v2vuv二2?uV2u齐次方程令v?t,u?vt,?dvt1二2t?12t?1.tdv?vdt?2dvvdtTvdv?dtvdv2.2t2?T2t?12t?12?2t2?tdtlnv??2t?一c2.2t2?T2t?12dt?C2t?t?22t?112tdt??2t2?T2.2t2?T2dt2t2?T二 1dt12tdt222(t?2(t?4)?164)?16二)?171d[(t?11dt1dt]222171717 2(t?14?(t?12?(t?1))?)?)?11171dtln(t?)?21724164(t?1)1dt12174.(t?14)?(t?4164?dt4)(t?4?444)4一百和二十一(4.T4.12磅?1.T1四|1t?4.)dtT一百一十七故??2t2dt??22ln(t?)?16??t?2二42ln|t?1?t??44一|.五、Ec一t?4?四t?4?4(t?4?t?4?)2121?121?21?12c(t??)(t??)4444确保你准备好了吗4. 1二4,4?一百四十四11四,v?c(t??)一1141122一,五、c(t??)(t??) uc(??)四v14?u(??) 4vc(u??v)v一441(u??v)v144一11??4411??44?14411一44一故一1?c(u??v)(u??v)1?44?1(u??v)c(uv)c(uv)c(uv)1.44?? 141?? 44(u??v)4(u??v)1.44(u??v)??c(u??v)?Yx2?p2(通解),(x??p)?C(x×P)特解:2?2t2?T0吨??Yx2?1?u1?4五、u4v41?16162? 二千二百二十二x?x(1?)?x22(1?) (1?) 18? 21? 9?? 1.22? 2a。
常微分方程丁同仁李承志第二版第一章答案_0

常微分方程丁同仁李承志第二版第一章答案篇一:常微分方程丁同仁李承志第二版第一章答案习题 1-11.验证下列函数是右侧相应微分方程的解或通解: (1)y?c2x1e?c2e?2x, y???4y?0.证明:?y?cx1e2?c?2x2e,则y?=2c2x1e2x?2c2e?,y4cx1e2?4cx2e?2,y???4y?0.∴ y?sinxx, xy??y?cosx.证明:∵y?sinx, y??xcosx?sinxx则x2xy??y?xcosx?sinxx?sinxx?cosx(3)y?x(?exxdx?c), xy??y?xex.证明:∵y?x(?exxdx?c), 则 yexex x?c?xx, exex∴xy??y?x?x?c?xxx(?ex?x?c)?xex ??(x?2)(4) ??4,x?c1,y???0,cy’?1?x??c2,??(x?2)?4,c2?x,证明:(1)当x?c1时2y=?(x?)14,y’=?x?2其他情况类似.2.求下列初值问题的解:(1)yx, y(0)?a0, y?(0)?a1, y??(0)?a2.解:∵yx, ∴y12x2?c1, ∵y??(0)?a2,∴c1?a2,∴y??x3?a2x?c2, ∵y?(0)?a1, ∴c2?a1,(2),∴y?124x4?12a2x2?a1x?c,∵y(0)?a0, 满足初值问题的解为:y?14124x?2a22x?a1x?a0. dydx?f(x), y(0)?0, (这里f(x)是一个已知的连续函数)解:∵dydx?f(x), 即 dy?f(x)dx, ∴xx?dy??f(t)dt?c,x∴y(x)?y(0)??f(t)dt?c, ∵y(0)?0, ∴c?0 0x∴满足初值问题的解为:y(x)?f(t)dt.(3)dRdt??aR, R(0)?1,解:①若R?0, 则∵dRR??adt,两边积分得:lnR??at?c ∵R(0)?1 ∴c?1 ∴满足初值问题的解为:R?e?at(4)dydx?1?y2, y(x0)?y0,解:∵dydx?1?y2,∴dy1?y2?dx,两边积分得:arctgy?x?c.∵y(x0)?y0,∴c?arctgy0?x0.∴满足初值问题的解为:y?tg(x?arctgy0?x0). (1)函数y??(x,c1,c2,,cn)是微分方程F(x,y,y?,,y(n))?0的通解,其中c1,c2,cn是独立的任意常数,(2)存在一组常数(1,2,,cn)?Rn和空间中的点0(0,0,0,,y(n?1)0)(3)满足3.假设??0??(0,1,,cn)0?(0,1,,cn)???x??(n?1)?(n?1)??xn?1(0,1,,cn)试证明:存在点0的某一邻域 U,使得对任意一点M0(x?,(n?1)0,y0,y0,y0),可确定一组数ci?ci(M0),i?1,2,,n,使得y??(x,c1(M0),c2(M0),,cn(M0))是初值问题y(x,y?(x,y(n?1)(x1)0)?y00)?y0,0)?y(n?0??F(x,y,y?,,y(n?1))?0 的解.证明:因为y??(x,c1,c2,,cn)是微分方程F(x,y,y?, ,y(n))?0的通解,所以初值问题y(x(n?1)0)?y0,y?(x0)?y0,,y(x(n?1)0)?y0 ??F(x,y,y?,,y(n?1))?0的解应具有形式y??(x,c??1,c2,,c?,其中(c??n)1,c2,,c?n)应满足:??y0??(x0,c?1,,c?n)?y(x,c?1,,c??0??x0n),(*) ??(n?1)?(n?1)??y0xn?1(x0,c?1,,c?n)如何确定(c?1,c?2,,c?n)呢?由条件(2)及隐函数定理知,存在点 0的某一邻域U,使得对任意一点M?1)0(x0,y0,y?0,,y(n0)可确定一组数c??i?ci(M0),i?1,2,,n,使得(*)成立.得证.4. 求出:(1)曲线族y?cx?x2所满足的微分方程;解:y?cx?x2, y??c?2x, xy??cx?2x2则有:xy??x2?y.(2)曲线族y?c1ex?cx2xe所满足的微分方程;xx解:由y?c??y??c1e?cx2e?c1xe1ex?c2xexy???cxxx, 1e?2c2e?c1xe联立消去c1,c2得:y2y??y?0.(3)平面上以原点为中心的一切圆所满足的微分方程;解:平面上以原点为中心的圆的方程为x2?y2?r2(r?0)将视y为x的函数,对x求导得:2x?2yy??0平面上以原点为中心的一切圆所满足的微分方程为x?yy??0.(4)平面上一切圆所满足的微分方程.解:平面上圆的方程为:(x?a)2?(y?b)2?r2(r?0),将y视为x 的函数,对x求导得:??2(x?a)?2(y?b)y??0?2?2?2(y?b)y2?y’??0联立消去a,b得,2(y?b)y?4y0[1?(y?)2]y3y?(y??)2?0.习题 1-2作出如下方程的线素场:(1)y??xyxy(2)y??(y?1)2(3)y??x2?y22. 利用线素场研究下列微分方程的积分曲线族:(1)y??1?xy篇二:常微分方程教程+第二版+丁同仁+李承志+答案和练习第2章习题第二章答案习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解:1.(3x2?1)dx?(2x?1)dy?0解:P(x,y)?3x2?1, Q(x,y)?2x?1,则?P?y?0,?Q?x?2,所以 ?P?Q?y??x即原方程不是恰当方程.2.(x?2y)dx?(2x?y)dy?0解:P(x,y)?x?2y,Q(x,y)?2x?y,则?P?y?2,?Q?x?2, 所以?P?Q?y??x,即原方程为恰当方程则xdx?(2ydx?2xdy)?ydy?0,两边积分得:x222xy?y2?2?C. 3.(ax?by)dx?(bx?cy)dy?0 (a,b和c为常数).解:P(x,y)?ax?by,Q(x,y)?bx?cy,则?P?y?b,?Q?x?b, 所以?P?Q?y??x,即原方程为恰当方程则axdx?bydx?bxdy?cydy?0,ax2cy2两边积分得:2?bxy?2?C. 4.(ax?by)dx?(bx?cy)dy?0(b?0)解:P(x,y)?ax?by,Q(x,y)?bx?cy,则?P?Q?y??b,?x?b, 因为 b?0, 所以?P?Q?y??x,即原方程不为恰当方程5.(t2?1)cosudu?2tsinudt?0解:P(t,u)?(t2?1)cosu,Q(t,u)?2tsinu则?P?t?2tcosu,?Q?x?2tcosu, 所以?P?y??Q?x,即原方程为恰当方程则(t2cosudu?2tsinudt)?cosudu?0,两边积分得:(t2?1)sinu?C. 6.(yex?2ex?y2)dx?(ex?2xy)dy?0解: P(x,y?yex?2ex?y2,Q(x,y)?ex?2xy,则?P?y?ex?2y,?Q?x?ex?2y, 所以?P?y??Q?x,即原方程为恰当方程则2exdx?[(yex?y2)dx?(ex?2xy)dy]?0, 两边积分得:(2?y)ex?xy2?C.7.(yx?x2)dx?(lnx?2y)dy?0 解:P(x,y)?yx?x2Q(x,y)?lnx?2y,则?P1?Q?y?x,?x?1x, 所以?P?Q?y??x,即原方程为恰当方程则(yxdx?lnxdy)?x2dx?2ydy?0两边积分得:x33?ylnx?y2?C. 8.(ax2?by2)dx?cxydy?0(a,b和c为常数) 解:P(x,y)?ax2?by2,Q(x,y)?cxy,则?P?Q?y?2by,?x?cy, 所以当?P?Q?y??x,即方程为恰当方程则ax2dx?(by2dx?cxydy)?0两边积分得:ax3?bxy23?C. 而当2b?c时原方程不是恰当方程.9.2s?1s?t?s2dst2dt?0 解:P(t,s)?2s?1t)?s?s2,Q(t,st2, 则?P?t?1?2s?Q1?2s?P?Qt2,?s?t2, 所以?y??x,方程,s?s2两边积分得:t?C. 2b?c时,原即原方程为恰当10.xf(x2?y2)dx?yf(x2?y2)dy?0, 其中f(?)是连续的可微函数.解:P(x,y)?xf(x2?y2),Q(x,y)?yf(x2?y2),则?P?Q?y?2xyf?,?x?2xyf?, 所以?P?y??Q?x,即原方程为恰当方程,两边积分得:?f(x2?y2)dx?C,即原方程的解为F(x2?y2)?C (其中F为f的原积分).习题2-2.1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域::dyx2(1)dx?y解:原方程即为:ydy?x2dx 两边积分得:3y2 ?2x3?C,y?0.dyx2(2)dx?y(1?x3)解:原方程即为:ydy?x21?x3dx两边积分得:3y2?2ln?x3?C,y?0,x??1.(3)dydx?y2sinx?0解:当y?0时原方程为:dyy2?sinxdx?0 两边积分得:1?(c?cosx)y?0.又y=0也是方程的解,包含在通解中,则方程的通解为1?(c?cosx)y?0.(4)dydx?1?x?y2?xy2;解:原方程即为:dy1?y2?(1?x)dx 两边积分得:arctgy?x?x22?c,即 y?tg(x?x22?c).(5)dydx?(cosxcos2y)2 解:①当cos2y?0时原方程即为:dy(cos2y)2?(cosx)2dx 两边积分得:2tg2y?2x?2sin2x?c.②cos2y=0,即y? k?2??4也是方程的解. (6)xdx??y2解:①当y??1时原方程即为:dydx?y2?x两边积分得:arcsiny?lnx?c.② y??1也是方程的解. dyx?e?x(7).dx?y?ey解.原方程即为:(y?ey)dy?(x?e?x)dxk?N)(22两边积分得:y2?ey?x2?e?x?c,原方程的解为:y2?x2?2(ey?e?x)?c.2. 解下列微分方程的初值问题.(1)sin2xdx?cos3ydy?0, y(?)??23解:两边积分得:?cos2x2?sin3y3?c,即 2sin3y?3cos2x?c因为 y(?2)??3, 所以 c?3.所以原方程满足初值问题的解为:2sin3y?3cos2x?3.(2).xdx?ye?xdy?0, y(0)?1;解:原方程即为:xexdx?ydy?0,两边积分得:(x?1)exdx?y22dy?c,因为y(0)?1,所以c??12,所以原方程满足初值问题的解为:2(x?1)exdx?y2dy?1?0.(3).d??r, r(0)?2;解:原方程即为:drr?d?,两边积分得:lc,因为r(0)?2,所以c?ln2,所以原方程满足初值问题的解为:lln2 即r?2e?.(4).dydx?lnx1?y2,y(1)?0;解:原方程即为:(1?y2)dy?lnxdx,两边积分得:y?y33?x?xlnx?c, 因为y(1)?0,所以c?1,所以原方程满足初值为:y?y33?x?xlnx?1篇三:第2章习题 2第二章答案常微分方程教程+第二版+丁同仁+李承志+答案和练习(1)y?1)3. v?1?2, 2v?1ln1?u?1?u ?x?c,?8y??c. ?3 ,(2), x2z?ce. ?x2?1(v?u)?2.(1)y??cos(x?y)2x?v,y2?u,①当cosu?11 两边积分得:ctg2 解:令u?x?y ②当cosu?1(2)(3uv?v)du?(u 解:方程两边同时乘以22?u??1 得?,令v??2?m?z,则m?zn,令n n,?2x2?y2?3)3.(3u2v?uv2)du?即 (3uvdu?u2322, u?y,v?xdy(3)(x?y?3)?dx22?m?n?,?udx+p(x)ue?udx?q(x)e?udx.即有:u2?u??p(x)u5.c?2x).45?.解:设此曲线为y?y(x)dyy?dxx?tg45??1dyy1?dxx6. 探照灯的反光镜(旋转面)反射成平行线束?维坐标系.设所求曲面由曲线??0;?3e3xy2)dy?0,?ey?c. 3x3?y??z?结为求 xy 平面上的曲线1?(2xe2y?)dy?0 y即(edx?2y1?)dy?0, y26(3).(3x?)dxy?2dy)?0,y (3x2y即 (3x2x?c. (4).ydx?(x2? 2)?dy?0, ylny?c(5).2xydx?(x3 2?0 ,。
常微分方程教程_第二版_(丁同仁)版_khdaw

网 案 答 后 课
ห้องสมุดไป่ตู้
网 案 答 后 课
网 案 答 后 课
网 案 答 后 课
网 案 答 后 课
网 案 答 后 课
网 案 答 后 课
课后答案网,用心为你服务!
大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网()! Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点,
om 旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 www.khdaw.c 爱校园() 课后答案网() 淘答案()
网 案 答 后 课
网 案 答 后 课
网 案 答 后 课
网 案 答 后 课
网 案 答 后 课
网 案 答 后 课
网 案 答 后 课
网 案 答 后 课
网 案 答 后 课
网 案 答 后 课
常微分方程教程_丁同仁(第二版)_习题解答_5

习 题 6—31.证明函数组 ,⎩⎨⎧<≥=000)(21x x x x 当当ϕ220 0()0x x x x ϕ≥⎧=⎨<⎩当 当,在区间上线性无关,但它们的朗斯基行列式恒等于零。
这与本节的定理 6.2*是否矛盾?如果并不矛盾,那么它说明了什么?),(+∞−∞证 设有 1122()0c x c ϕϕ+≡ +∞<<∞−x ,则当时,有,从而推得 。
而当 时,有0≥x 21200c x c +≡01=c 0<x 120c c x 0⋅+≡,从而推得 。
因此在02=c +∞<<∞−x 上,只有时,才有 021==c c 1122()()0c x c x ϕϕ+≡,故12(), ()x x ϕϕ在上线性无关。
又当时, ),(+∞−∞0≥x 0002)(2≡=x x x w ,当0<x 时,0200)(2≡=x x x w 故当+∞<<∞−x 时,有。
这与本节定理6.2不矛盾,因为定理6.2*成立对函数有要求,即0)(≡x w )(1x ϕ,)(2x ϕ是某个二阶齐次线性方程的解组。
这说明不存在一个二阶齐次线性方程,它以)(1x ϕ,)(2x ϕ为解组。
3.考虑微分方程''()0y q x y +=(1)设)(x y ϕ=与)(x y ψ=是它的任意两个解,试证)(x y ϕ=与)(x y ψ=的朗斯基行列式恒等于一个常数。
(2)设已知方程有一个特解为,试求这方程的通解,并确定 x e y =()?q x =证: (1)在解)(x y ϕ=,)(x y ψ=的公共存在区间内任取一点x 。
由刘维尔公式,有 (常数)[])()()(),(000x w ex w x x w odxx x=∫=−ψϕ(2)由于是方程的一个非零特解,故可借助刘维尔公式,求与之线性无关的特解 x e y =x odx xx e dx e ee y −∫−−=⋅=∫21122,故方程的通解为 xx e c e c y −+=21又由于是方程的解,故有x e y =()0x x e q x e +≡, 所以 ()1q x =−。
常微分方程教程(丁同仁、李承治第二版)习题解答——第6章6-2

习题6—21.求出常系数齐次性微分方程组Ay dxdy=的通解,其中的矩阵A 分别为 1)⎪⎪⎭⎫ ⎝⎛2543 2)⎪⎪⎭⎫⎝⎛-o a a o 3)⎪⎪⎪⎭⎫ ⎝⎛---4010100114)⎪⎪⎪⎭⎫⎝⎛---942105520105 5)⎪⎪⎪⎪⎪⎭⎫⎝⎛-------1111111111111111解:1) 特征方程3452λλ-- 即 0)2)(7(=+-λλ矩阵A 有特征根,71=λ 22-=λ对应于71=λ所有的特征向量⎪⎪⎭⎫ ⎝⎛21v v 满足0)7(21=⎪⎪⎭⎫ ⎝⎛-v v E A 即1244055v v -⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭。
取11=v ,则12=v 那么对应的实值解为xe y 7111⎪⎪⎭⎫ ⎝⎛=;对应22-=λ的特征向量⎪⎪⎭⎫ ⎝⎛21v v 满足0)2(21=⎪⎪⎭⎫⎝⎛+v v E A 即0454521=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛v v ,取41=v ,则52-=v ,那么对应的实值解为 zxe y -⎪⎪⎭⎫ ⎝⎛-=542。
于是该方程组的通解为x x e c e c y y 2271215411-⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛ 2)特征方程为0=---λλa a即022=+a λ矩阵A 有特征根ai =1λ 2ai λ=-对应ai =1λ的特征向量⎪⎪⎭⎫ ⎝⎛21r r 应满足021=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---v v ai aa ai取11=v ,则i v =2 即么对应的特解为1211(cos sin )aix y e ax i ax y i i ⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos sin sin cos ax ax i ax ax ⎛⎫⎛⎫=+ ⎪ ⎪-⎝⎭⎝⎭由此得ai =1λ所对应的两个特解为(对2X2的方程组取一个特解的实部和虚部就可,因为虚根都是成对出现的。
)12cos sin y ax y ax ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭ 122sin cos y ax y ax ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 它们在),(+∞-∞上线性无关,故得方程组的通解:1122cos sin sin cos y ax ax c c y ax ax ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭3)0401010011=------λλλ即0)1)(4(2=++λλ 矩阵A 有特征根 41-=λ,121-==λλ。
常微分方程教程_丁同仁(第二版)_习题解答_2

常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
习题 4-1 1.求解下列微分方程 1) 2 y = p + 4 px + 2 x
y = xp + f ( p )
(p =
dy ) (1) dx
dp =0 dx
dp =0 dx
即 p = c时 (2)
代入(1)得(1)的通解
y = cx + f (c)
它的 C—判别式为
y = cx + f (c) x + f ' (c ) = 0
由此得
Λ:x = − f '(c)) = ϕ (c ) , y = −cf '(c) + f (c) = ψ (c )
1 = dy 2 cos t 5
5 1 ( 2 sin t ) = d 2 cos t
5 dt 从而得 2
x=
5 2
t+c 5 t + c , y = 2 sin t 2
x 因此方程的通解为 =
消去参数 t,得通解
= y
2 sin
2 (x − C) 5 dy = 0 ,显然 dx
对于方程除了上述通解,还有 y = ± 2 ,
检验知
y = 2x +
Fy' ( x, y, p) = 1 ,
" Fpp ( x, y , p ) = 2 p ,
Fp' ( x, y, p) =−1 + p 2
常微分方程教程(丁同仁、李承治第二版)习题解答——第3章

第三章习题习题3—11. 判断下列方程在什么区域上保证初值解存在且唯一.1)y x y sin '+=; 2)31'-=xy ; 3)y y ='. 解 1)因为y x y x f sin ),(+=及y y x f y cos ),('=在整个xOy 平面上连续,所以在整个xOy 平面上满足存在唯一性定理的条件,因此在整个xOy 平面上初值解存在且唯一.2)因为31),(-=x y x f 除y 轴外,在整个xOy 平面上连续,0),('=y x f y 在在整个xOy 平面上有界,所以除y 轴外,在整个xOy 平面上初值解存在且唯一.3)设y y x f =),(,则⎪⎪⎩⎪⎪⎨⎧<-->=∂∂,0,21,0,21),(y yy y y y x f 故在0≠y 的任何有界闭区域上,),(y x f 及yy x f ∂∂),(都连续,所以除x 轴外,在整个xOy 平面上初值解存在且唯一. 2. 求初值问题⎪⎩⎪⎨⎧=--=,0)1(,22y y x dx dy R :1,11≤≤+y x . 的解的存在区间.并求第二次近似解,给出在解的存在区间的误差估计.解 设22),(y x y x f -=,则4),(m ax ),(==∈y x f M R y x ,1,1==b a ,所以41)41,1min(),min(===M b a h . 显然,方程在R 上满足解的存在唯一性定理,故过点)0,1(-的解的存在区间为:411≤+x . 设)(x ϕ是方程的解,)(2x ϕ是第二次近似解,则0)1()(0=-=y x ϕ,3131)0(0)(3121-=-+=⎰-x dx x x x ϕ,4211931863])3131([0)(34712322+-+--=--+=⎰-x x x x dx x x x x ϕ. 在区间411≤+x 上,)(2x ϕ与)(x ϕ的误差为 322)!12()()(h ML x x +≤-ϕϕ. 取22),(max max ),(),(=-=∂∂=∈∈y y y x f L R y x R y x ,故241)41()!12(24)()(322=+⨯≤-x x ϕϕ.3. 讨论方程3123y dx dy =在怎样的区域中满足解的存在唯一性定理的条件.并求通过点)0,0(O 的一切解.解 设3123),(y y x f =,则3221-=∂∂y y f )0(≠y .故在0≠y 的任何有界闭区域上),(y x f 及y y x f ∂∂),(都是连续的,因而方程在这种区域中满足解的存在唯一性定理的条件.显然,0=y 是过)0,0(O 的一个解.又由3123y dx dy =解得23)(C x y -±=.其中0≥-C x . 所以通过点)0,0(O 的一切解为0=y 及,,,)(,023C x C x C x y >≤⎪⎩⎪⎨⎧-=.,,)(,023C x C x C x y >≤⎪⎩⎪⎨⎧--=如图. 4. 试求初值问题 1++=y x dxdy ,0)0(=y , 的毕卡序列,并由此取极限求解.解 按初值问题取零次近似为0)(0=x y ,一次近似为 20121)10()(x x ds s x y x +=++=⎰, 二次近似为 3220261]1)21([)(x x x ds s s s x y x ++=+++=⎰, 三次近似为 432320324131]1)61([)(x x x x ds s s s s x y x +++=++++=⎰, 四次近似为 !5)!5!4!3!2(2!5134131)(5543254324x x x x x x x x x x x x x y --++++=+⨯+++=, 五次近似为 !6)!6!5!4!3!2(2)(6654325x x x x x x x x x y --+++++=,一般地,利用数学归纳法可得n 次近似为)!1()!1(!4!3!22)(11432+--⎥⎦⎤⎢⎣⎡++++++=++n x x n x x x x x x y n n n 2)!1()!1(!4!3!21211432-+--⎥⎦⎤⎢⎣⎡+++++++=++n x x n x x x x x n n , 所以取极限得原方程的解为22)()(lim --==+∞→x e x y x y x n n .5. 设连续函数),(y x f 对y 是递减的,则初值问题),(y x f dxdy =,00)(y x y =的右侧解是唯一的. 证 设)(1x y ϕ=,)(2x y ϕ=是初值问题的两个解,令)()()(21x x x ϕϕϕ-=,则有0)(000=-=y y x ϕ.下面要证明的是当0x x ≥时,有0)(≡x ϕ.用反证法.假设当0x x ≥时,)(x ϕ不恒等于0,即存在01x x ≥,使得0)(1≠x ϕ,不妨设0)(1>x ϕ,由)(x ϕ的连续性及0)(0=x ϕ,必有100x x x <≤,使得0)(0=x ϕ,0)(>x ϕ,10x x x ≤<.又对于],[10x x x ∈,有00201)()(y x x ==ϕϕ,⎰+=x x dx x x f y x 0)](,[)(101ϕϕ,⎰+=x x dx x x f y x 0)](,[)(202ϕϕ,则有 )()()(21x x x ϕϕϕ-=⎰-=xx dx x x f x x f 0)]}(,[)](,[{21ϕϕ,10x x x ≤<.由0)()()(21>-=x x x ϕϕϕ(10x x x ≤<)以及),(y x f 对y 是递减的,可以知道:上式左端大于零,而右端小于零.这一矛盾结果,说明假设不成立,即当0x x ≥时,有0)(≡x ϕ.从而证明方程的右侧解是唯一的.习题3—31. 利用定理5证明:线性微分方程 )()(x b y x a dxdy += (I x ∈) )1( 的每一个解)(x y y =的(最大)存在区间为I ,这里假设)(),(x b x a 在区间I 上是连续的.证 )()(),(x b y x a y x f +=在任何条形区域{}∞<<-∞≤≤y x y x ,),(βα(其中I ∈βα,)中连续,取[])(max ,x a M x βα∈=,[])(max ,x b N x βα∈=,则有 N y M x b y x a y x f +≤+≤)()(),(.故由定理5知道,方程)1(的每一个解)(x y y =在区间],[βα中存在,由于βα,是任意选取的,不难看出)(x y 可被延拓到整个区间I 上.2. 讨论下列微分方程解的存在区间:1))1(-=y y dx dy ; 2))sin(xy y dx dy =; 3)21y dxdy +=. 解 1)因)1(),(-=y y y x f 在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.这个方程的通解为x Cey -=11.显然0=y ,1=y 均是该方程在),(∞-∞上的解.现以0=y ,1=y 为界将整个xOy 平面分为三个区域来讨论.ⅰ)在区域1R {}10,),(<<+∞<=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与0=y ,1=y 两直线相交,因而解的存在区间为),(∞-∞.又在1R 内,0),(<y x f ,则方程满足00)(y x y =的解)(x y ϕ=递减,当-∞→x 时,以1=y 为渐近线,当+∞→x 时,以0=y 为渐近线.ⅱ)在区域2R {}1,),(>+∞<=y x y x 中,对任意常数0>C ,由通解可推知,解的最大存在区间是)ln ,(C --∞,又由于0),(>y x f ,则对任意200),(R y x ∈,方程满足00)(y x y =的解)(x y ϕ=递增.当-∞→x 时,以1=y 为渐近线,且每个最大解都有竖渐近线,每一条与x 轴垂直的直线皆为某解的竖渐近线.ⅲ)在区域3R {}0,),(<+∞<=y x y x 中,类似2R ,对任意常数0>C ,解的最大存在区间是),ln (+∞-C ,又由于0),(>y x f ,则对任意300),(R y x ∈,方程满足00)(y x y =的解)(x y ϕ=递增.当+∞→x 时,以0=y 为渐近线,且每个最大解都有竖渐近线.其积分曲线分布如图( ).2)因)sin(),(xy y y x f =在整个xOy 平面上连续,且满足不等式y xy y y x f ≤=)sin(),(,从而满足定理5的条件,故由定理5知,该方程的每一个解都以+∞<<∞-x 为最大存在区间.3)变量分离求得通解)tan(C x y -=,故解的存在区间为)2,2(ππ+-C C . 3.设初值问题)(E :2)(2)32(y x e y y dx dy +--=,00)(y x y = 的解的最大存在区间为b x a <<,其中),(00y x 是平面上的任一点,则-∞=a 和+∞=b 中至少有一个成立.证明 因2)(2)32(),(y x e y y y x f +--=在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.很显然3=y ,1-=y 均是该方程在),(∞-∞上的解.现以3=y ,1-=y 为界将整个xOy 平面分为三个区域来进行讨论.ⅰ)在区域1R {}31,),(<<-+∞<<∞-=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与3=y ,1-=y 两直线相交,因而解的存在区间为),(∞-∞.这里有-∞=a ,+∞=b .ⅱ)在区域2R {}1,),(-<+∞<<∞-=y x y x 中,由于0)1)(3(),(2)(>+-=+y x e y y y x f ,积分曲线单调上升.现设),(000y x P 位于直线1-=y 的下方,即10-<y ,则利用)(E 的右行解的延伸定理,得出)(E 的解Γ可以延伸到2R 的边界.另一方面,直线1-=y 的下方,积分曲线Γ是单调上升的,并且它在向右延伸时不可能从直线1-=y 穿越到上方.因此它必可向右延伸到区间+∞<<x a .故至少+∞=b 成立.类似可证,对3R {}3,),(>+∞<<∞-=y x y x ,至少有-∞=a 成立.4. 设二元函数),(y x f 在全平面连续.求证:对任何0x ,只要0y 适当小,方程),()(22y x f e y dxdy x -= )1( 的满足初值条件00)(y x y =的解必可延拓到+∞<≤x x 0.证明 因为),(y x f 在全平面上连续,令),()(),(22y x f e y y x F x -=,则),(y x F 在全平面上连续,且满足0),(),(≡-≡x x e x F e x F .对任何0x ,选取0y ,使之满足00xe y <.设方程)1(经过点),(00y x 的解为)(x y ϕ=,在平面内延伸)(x y ϕ=为方程的最大存在解时,它的最大存在区间为),[0βx ,由延伸定理可推知,或+∞=β或为有限数且+∞=-→)(lim 0x x ϕβ.下证后一种情形不可能出现. 事实上,若不然,则必存在β<x ,使βϕe x >)(.不妨设βϕe x >)(.于是必存在),(00βx x ∈,使00()x x e ϕ=,x e x <)(ϕ(00x x x <≤).此时必有0)(000'>=≥x x x x e dx de x ϕ, 但0),())(,()(00000'===x x e x F x x F x ϕϕ,从而矛盾.因此,+∞=β,即方程)1(的解)(x y ϕ=(00)(y x y =)必可延拓到+∞<≤x x 0.。