定积分的近似计算

合集下载

定积分的近似计算方法

定积分的近似计算方法

定积分的近似计算方法定积分近似计算方法指的是利用数值计算方法来估算给定函数在一定区间上的积分值。

这些方法常常用于当函数在该区间内无法求得解析式时,或者解析式难以求得的情况下。

下面将介绍常用的数值积分近似计算方法。

一、矩形法矩形法即将积分区间等分为若干小区间,然后在每个小区间中选择一个代表点,将函数在该点的函数值作为近似积分的值。

具体可以分为左矩形法、右矩形法和中矩形法。

1.左矩形法左矩形法即取每个小区间的左端点作为代表点,近似积分的值为:∫[a, b]f(x)dx ≈ Δx * [f(a) +f(a+Δx) + … + f(a+(n-1)Δx)]其中,Δx=(b-a)/n,n为区间的等分数。

2.右矩形法右矩形法即取每个小区间的右端点作为代表点,近似积分的值为:∫[a, b]f(x)dx ≈ Δx * [f(a+Δx) + f(a+2Δx) + … +f(a+nΔx)]其中,Δx=(b-a)/n,n为区间的等分数。

3.中矩形法中矩形法即取每个小区间的中点作为代表点,近似积分的值为:∫[a, b]f(x)dx ≈ Δx * [f(a+Δx/2) + f(a+3Δx/2) + … +f(a+(2n-1)Δx/2)]其中,Δx=(b-a)/n,n为区间的等分数。

二、梯形法梯形法是通过将积分区间上的曲线拟合为多个梯形来近似计算定积分的方法。

将积分区间[a,b]等分为n个小区间,然后在每个小区间上用两个端点处的函数值拟合成一个梯形,然后将这些梯形的面积加起来即可得到近似的定积分的值。

具体计算公式为:∫[a, b]f(x)dx ≈ Δx/2 * [f(a) + 2f(a+Δx) + 2f(a+2Δx)+ … + 2f(a+(n-1)Δx) + f(b)]其中,Δx=(b-a)/n,n为区间的等分数。

三、辛普森法辛普森法是通过将积分区间上的曲线拟合为多个二次多项式的方法。

将积分区间[a,b]等分为n个小区间,每两个相邻区间拟合成一个二次多项式。

定积分算法

定积分算法

定积分算法定积分算法定积分是微积分中的一个重要概念,它可以用来求解曲线下方的面积、体积等问题。

在实际应用中,定积分也被广泛应用于物理、经济、工程等领域。

本文将介绍定积分的定义及其算法。

一、定积分的定义定积分是一个数学概念,它描述了一个函数在一段区间上的面积大小。

具体来说,设函数f(x)在区间[a,b]上连续,则[a,b]上f(x)与x轴所围成的曲边梯形面积为:其中a和b是曲边梯形底边两端点的x坐标,f(x)是曲边梯形边界上每个点的纵坐标。

当n趋向于无穷大时,Δx趋向于0,则上式右侧称为函数f(x)在区间[a,b]上的定积分,记作:二、定积分算法1. 矩形法矩形法是最简单易懂的一种求解定积分的方法。

其基本思想是将区间[a,b]等分成n个小区间,并在每个小区间中取一个代表点xi(i=1,2,...,n),然后用xi代替f(xi)计算出每个小区间的面积,最后将这些面积相加即可得到定积分的近似值。

具体来说,设函数f(x)在区间[a,b]上连续,则将区间[a,b]等分成n个小区间,每个小区间的长度为Δx=(b-a)/n。

然后,在每个小区间中取一个代表点xi(i=1,2,...,n),用xi代替f(xi)计算出每个小区间的面积:最终,将这些面积相加即可得到定积分的近似值:其中,Rn表示用矩形法求解定积分时所得到的近似值。

2. 梯形法梯形法是比矩形法更精确的一种求解定积分的方法。

其基本思想是将区间[a,b]等分成n个小区间,并在每个小区间中取两个代表点xi和xi+1(i=0,1,...,n-1),然后用这两个点对应的函数值f(xi)和f(xi+1)计算出每个小梯形的面积,最后将这些面积相加即可得到定积分的近似值。

具体来说,设函数f(x)在区间[a,b]上连续,则将区间[a,b]等分成n个小区间,每个小区间的长度为Δx=(b-a)/n。

然后,在每个小区间中取两个代表点xi和xi+1(i=0,1,...,n-1),用这两个点对应的函数值f(xi)和f(xi+1)计算出每个小梯形的面积:最终,将这些面积相加即可得到定积分的近似值:其中,Tn表示用梯形法求解定积分时所得到的近似值。

定积分定义的四要素分割近似求和

定积分定义的四要素分割近似求和

定积分定义的四要素分割近似求和积分是数学中的一种重要的操作。

它的基本概念是“定积分”,即把一段区间分割为若干小段,逐个处理每一小段,最后将每一小段的处理结果累加,从而得到全局结果。

定积分通常有四个要素,即函数f(x)、上下限a、b、以及分割数n,因此它也可以简称为“四要素定积分”,即f(x)、a、b、n。

定积分的基本思想是,把一段区间[a,b]分割为n个相近的小段,即将区间[a,b]分割为n个相等的子区间[x0,x1,…,xn-1]。

然后用区间[x0,x1]来计算函数f(x)在[x0,x1]上的积分值,再用区间[x1,x2]来求解f(x)在[x1,x2]上的积分值,以此类推,最后将各区间上的积分值累加起来,就可以得到函数f(x)在区间[a,b]上的积分值。

由于定积分是一种细长的计算,为了更有效地求解,科学家们开发出了“近似求和”的方法,即利用以某种适当的算法,分割区间[a,b],使得每一小段上的函数f(x)的大小值都比较接近,然后将每一小段上的函数f(x)值累加,从而得到函数f(x)在区间[a,b]的近似积分值。

近似求和方法与四要素定积分有着很大的不同,四要素定积分完全依赖于n,也就是区间[a,b]分割多少段,只有当n足够大时,才能最精确地求解函数f(x)在区间[a,b]上的积分值,而近似求和方法却不受n的限制,可以快速有效地求解函数f(x)在区间[a,b]上的积分值。

目前对近似求和方法的研究越来越深入,已有许多在实践中得到验证的算法,核心思想是把一个区间分割成若干小的区间,利用一定的方法来求解每一段的积分值,使得每一段的积分值都比较接近。

比如,改进的梯形法是一种常见的近似求和方法,它利用梯形计算函数f(x)在每一段区间上的积分值,然后将每段区间上的积分值累加,就可以得到函数f(x)在整个区间上的积分值。

除此之外,还可以使用其它的改进方法,例如Simpson规则、Lagrange插值法等。

最后,四要素定积分和近似求和方法各有特点,定积分的优势在于可以求出很精确的积分值,但是其计算量较大,而近似求和方法则可以求出大致的积分值,节省计算量。

定积分近似计算方法

定积分近似计算方法

定积分的近似计算方法摘要 本文主要讨论了一元函数常见的数值积分方法,例如插值型求积公式、龙贝格求积公式、高斯求积公式等近似计算方法,在用这些方法计算定积分时,会产生一些误差,为了减少误差, 可以利用复化求积公式、复化高斯公式等.本文围绕这些方法,系统介绍它们的计算公式以及截断误差,并用例题分析它们产生误差的大小、计算量等.关键词 插值型积分 龙贝格积分 高斯积分 误差分析 近似计算1引言在计算定积分的值()b aI f x dx =⎰时,常常根据微积分学基本定理求出)(x f 的一个原函数)(x F ,再用牛顿-莱布尼茨公式求的积分,()()()baI f x dx F b F a ==-⎰.但在实际应用中,这种方法只限于解决一小部分定积分的求值问题.当函数没有具体表达式,只是一些实验测得数据形成的表格或图形或者是()F x 无法用初等函数表示,例如,2bx ae dx ⎰,2sin ba x dx ⎰等等,这就需要我们用一些近似方法求的积分值.与数值积分一样,把积分区间细分,在每个小区间上,找到简单函数)(x ϕ来近似代替()f x ,且()b a x dx ϕ⎰的值容易求的.这样就把计算复杂的()ba f x dx ⎰转化为求简单的积分值()bax dx ϕ⎰.因此,定积分的近似计算实质上是就是被积函数的近似计算问题.2常见数值方法 2.1牛顿-科茨数值方法牛顿-科茨求积公式是求积节点等距离分布的插值型求积公式.利用插值多项式来构造数值积分公式是最常用、最基本的方法,具体做法是:给定区间[,]a b 上一组节点01...n a x x x b =<<<=,以及节点处函数()(0,1,2,i f x i n =,作()f x 的n 次拉格朗日多项式()()()nn i i i x f x l x ϕ==∑,其中 011011()()()()()()()()()i i n i i i i i i i n x x L x x x x L x x l x x x L x x x x L x x -+-+----=----,将插值公式(1)1()()()()(1)!n n n f f x x x n ξϕω++=++.其中1012()()()()()n n x x x x x x x L x x ω+=----,[,]a b ξ∈,依赖于变量x , 上式积分得(1)1()()()()(1)!n bb bn n aa af f x dx x dx x dx n ξϕω++=++⎰⎰⎰(1)(1)0()()()()(1)!n nb biiin aai f f x l x dx x dx n ξω++==++∑⎰⎰(1)(1)0()()()()(1)!n nbbi i n aai f f x b l x dx x dxn ξω++==++∑⎰⎰若记 (),(0,1,2,bi ia A l x dx i ==⎰….. )n (1)(1)1()[]()(1)!n bn af R f x dxn ξω++=+⎰, (2)则有()()[]nbi i ai f x dx A f x R f ==+∑⎰(3)称式(3)为插值求型公式,其中(0,1,2,i A i =…. )n 与()f x 无关,叫求积系数, i x 为求积节点,[]R f 为求积公式余项,其中求积系数由(1)决定.2.1.1梯形求积公式1梯形公式当插值节点01,x x 分别选取区间端点,a b 时,由式(3)分别求出求积系数10012bb aa x x xb b aA dx dx x x a b ---===--⎰⎰,01102bb aa x x x ab a A dx dx x x b a ---===--⎰⎰.从而的求积公式()[()()]2bab a f x dx f a f b -≈+⎰. (4) 称求积公式(4)为梯形求积公式,简称梯形公式.2梯形公式截断误差: 3*()[](),12b a R f f ξ-''=- *[,]a b ξ∈. (5) 3梯形求积公式的代数精度:1 当()1f x =时,式(5)中 1(1)2bab adx b a x b a -=-=+=-⎰. 精确成立.2.1.2 辛普森求积公式1辛普森求积公式当选取节点为012,,2a bx a x x b +===时,由式(1)求下列求积系数 1200102()()()()2()()6()()2b b a a a b x x b x x x x b a A dx dx a b x x x x a a b +-----===+----⎰⎰,0211002()()()()2()()()3()()22bb aa x x x x x a xb b a A dx dx a b a b x x x x a b -----===++----⎰⎰.0122021()()()()2()()6()()22b b a a a bx a x x x x x b a A dx dx a b a b x x x x a b +-----===++----⎰⎰ .从而求积公式()[()4()()]62bab a a bf x dx f a f f b -+≈++⎰. (6)称式(6)为抛物线积分公式或辛普森积分公式.2抛物线求积公式误差估计定理1.若()f x 在[,]a b 上有四阶连续导数,则抛物线公式(6)的余项为:5(4)**()[](),[,]2880b a R f f a b ξξ--=∈. (7) 3抛物线公式的代数精度为3.易验证,当23()1,,,f x x x x =时,式(6)精确成立,而当4()f x x =时,式(6)不能精确成立.2.1.3 牛顿-科茨公式1牛顿-科茨公式在等距离节点i x a ih =+下,其中(0,1,2b ah i n-==…. )n .作为变量替换x a th =+,那么由求积公式(1),得系数:10(1)(1)(1)()!(1)(1)!ni n t t t i t i t n A h dt i n ---+---==--⎰10(1)(1)...(1)(1)...()(0,1,2,...)!(1)!n nb a t t t i t i t n dt i n n i n -----+---=-⎰ (8)则 ()()n i i A b a C =- (9) 于是差值求积公式为:()0()()()[]nbn i i ai f x dx b a C f x R f ==-+∑⎰(10)称公式(10)为牛顿-科茨求积公式,其中()n iC 称为科茨系数.显然,科茨系数与被积函数()f x 及积分区间[,]a b 无关,它指依赖于n ,且为多项式积分.因此,只要给出n ,就能看出i A ,并写出相应地牛顿-科茨公式.2牛顿-科茨公式的截断误差与代数精度.当1n =与2n =情况分析牛顿-科茨公式的截断误差为(1)()[]()()()(1)!n b b bn aaaf R f f x dx x dx x dxn ξϕω+=-=+⎰⎰⎰牛顿-科茨公式的截断误差还可以写成(2)*1()[]()((2)!n bn a f R f x dx n n ξω++=+⎰为偶数)(1)*1()[]()(1)!n bn a f R f x dx n ξω++=+⎰ (n 为奇数) (11) 其中*[,]a b ξ∈,且不依赖于x ,101()()()...()n n x x x x x x x ω+=---,对()f x 为任何并不超过n 次多项式,均有(1)()0n fx +≡,因而[]0R f ≡,即0()()nbi i ai f x dx A f x ==∑⎰精确成立,也就是说,牛顿-科茨公式的代数精度至少为n ,牛顿-科茨公式在n 为偶数时,至少具有1n +次代数精度,在n 为奇数情况时,至少具有n 次代数精度.2.1.4复化梯形求积公式将区间[,]a b 等分,节点为i x a ih =+ (步长b ah n-=),0,1,2...,i n =)在每个小区间1[,]i i x x -上采用梯形公式(4)得11111()()[(()()]2ii nnbx i i i i ax i i x x f x dx f x dx f x f x ---==-=≈+=∑∑⎰⎰11[()()]2ni i i hf x f x +=+=∑11[()2()()]2n i n i hf a f x f b T -=++=∑ (12)称式(12)为复化梯形公式. 复化梯形公式余项为()2()()()12i n b a R f h f η-''=-(13) 2.1.5复化辛普森求积公式在每个小区间],[1+i i x x 上,辛普森公式(6)得11102()[()4()()]6n bi i ai i hf x dx f x f x f x -++==++∑⎰(14)111012[()4()2((6)]6n n i i i i hf a f x f x f --+===+++∑∑记 )]()(2)(4)([6111021b f x f x f a f hS n i i n i i n +++=∑∑-=-=+ (15)式中,21+i x为],[1+i i x x 的中点,即h x x i i 2121+=+.式(15)称为复化辛普森公式,其余项为∑-=-=-=10)4(4)()2(180)()(n i i n n f h h S f I f R η, 1(,).i i i x x η+∈故 ),(),()2(180)(R )4(4b a f h a b f n ∈--=ηη (16) 为复化辛普森的截断误差. 2.1.6复化科茨求积公式将区间[,]a b n 等分, 4n m =,m 为正整数,在每个子区间444[,]k k x x -上用科茨求积公式得到复化求积公式:412()[7()7()32()45mbk ak hf x dx f a f b f x -≈++∑⎰14241411112()32()14()mmm k k k N k k k f xf x f x C ---===+++=∑∑∑ (17)其中 4b a b a h n m--==, k x a kh =+ 其截断误差为6(6)2()[,](),()945n b a R f C h f a b ηη-=-<. 2.1.7 变步长复化求积方法复化求积公式虽然计算简单,也达到了提高精度的目的,但为了满足精度要求必须顾及误差,利用误差公式往往很困难,因为误差表达式中含有未知函数的导数,而估计各阶导数的最大值不太容易.我们可以采取把积分的区间[,]a b 细分的办法,在计算积分时将步长逐步折半,利用前后两次结果进行误差估计,如此继续,直到相邻两次结果相差不大,取最小的步长算出的结果为积分值,这种方法称为变步长积分法.以复化梯形公式为例,把区间[,]a b 分成n 等分,设复化梯形公式的近似值为n T ,原积分值为I ,由复化梯形公式误差公式(14)知:2"11()()()n b a b a I T f a b N N ηη--=-<<再把区间[,]a b 分成2n 等分,得近似值2n T ,则2222()()()122k b a b a I T f a b nηη--''=-<< 假定()f x ''在[,]a b 上变化不大,既有12()()f f ηη''''≈. 由上式得 .24kkI T I T -≈-于是 222211()()341n n n n n n I T T T T T T ≈+-=+-- (18) 式(18)表明若用2n T 作为I 的近似值,其截断误差约为2()3n n T T - (19)2.2 龙贝格求积公式龙贝格积分法的基本思想是采用复化梯形求积方法不断折半步长过程中,在积分结果中加入时候误差估计值进行补偿,使积分计算的收敛性加速,就可以加工出,,,...n n n S C R 精度较高的积分结果.由式(19), 2n T 的误差大致为23n nT T -,因此,可用这个误差值作为2n T 的一种补偿,加到2n T 上,则可得到积分准确值I ,比2n T 的更好近似值~T .222141()333n n n n nT T T T T T =+-=- 2221(2)21n n T T =-- (20)式(20)左端1n =时 记122121141()333S T T T T T =+-=- 112()()332a b T b a f +=+- [()4()()]62b a a b f a f f b -+=++恰好为[,]a b 上应用辛普生公式(16)的结果.在每个小区间应用辛普生公式:11[()2()()]2n n k k hT f a f x f b -==++∑121()112[()2()()2()]4n n n k k k k hT f a f x f b f x --===+++∑∑代入式(20)的左端得11111[()2()()2()32n nk k k k h f a f x f b f x -==+++--∑∑ 11[()2()()]2n k k h f a f x f b -++∑11111[()4()2()()]62n n k k k k f a f x f x f b -===+-++∑∑n S =从而复化辛普森公式与复化梯形公式公式有以下关系式2441n nn T T S -=- (21)类似也可以推证,在辛普森序列基础上,利用以下关系式22242161151541n n n n n S S C S S -=-=- (22)可以造出收敛速度更快的科茨序列12,...,...n C C C 将此推行下去,在科茨序列基础上,通过243431n nn C C R -=- (23)构造出收敛速度比科茨序列更快的龙贝格序列12,,......n R R R .以上这种通过逐步构造龙贝格序列的积分近似值法就称为龙贝格积分法.2.3高斯求积公式由定理()()()baf x F b F a =-⎰知,插值型求积公式的代数精度与求积节点的个数有关,具有1n +个节点的插值型求积公式至少具有n 次代数精度.不仅如此,代数精度与节点的选取有关,在构造牛顿-科茨求积公式时,为了简化处理过程,限定用等分节点作为求积节点,这样做,虽然公式确实得到简化,但同时也限制了公式的代数精度. 设积分,1,1=-=b a 本段讨论如下求积公式11()()ni i i f x A f x -==∑⎰(24)对任意积分区间[,]a b ,通过变 22ba t ab x ++-= 可以转换到区间]1,1[-上,这时11()()222bab a b a a bf x dx f t dt ---+=+⎰⎰ 此时,求积公式写为0()()222n bii ai b a a b b af x dx A f t =-+-=+∑⎰若一组节点]1,1[.....,10-∈n x x x 使插值型求积公式(24)具有21n +次代数精度,则称此组节点为高斯点,并称相应求积公式(24)为高斯求积公式.2.3.1 高斯求积公式的余项(2)2()[]()()()(22)!n nbb k k aa k f R f f x dx A f x x dx n ηω+==-=+∑⎰⎰ 其中01()()()...(),[,]n x x x x x x x a b ωη=---∈,且不依赖于x .2.3.2 复化高斯求积公式复化高斯求积公式的基本思想是:将积分区间[,]a b 分成n 个等长小区间1[,](1,...)i i t t i m -=,然后在低阶(2n =)高斯求积公式算出近似值,最后将他们相加的积分()baf t dt ⎰的近似值m G ,即11111111()()[]222ii mmbt i i i i i i at i i t t t t t t f t dt f t dt dt -----==-+-==+∑∑⎰⎰⎰1111[()]222m i h ha i h x dx-==+-+∑⎰101[()]222m n j j mi j h hA f a i h x G ==≈+-+≈∑∑ (25)其中mab h -=,j A 与(0,1,2,...,)j t j n =可由书中表中查出. 3 应用3.1插值型积分的应用例1 用牛顿-科茨公式(1,2,4n =)计算积分12211I x =+⎰. 解 1n =时2210112[]0.4512101()2I -≈+=++2n =时22211112[4]0.463725116101()1()42I -≈++=+++4n =时2222111112[7321232]0.46363311390101()1()1()848I =++++≈++++例2 利用复化梯形求积公式计算积分 12211I dx x =+⎰解 设211)(xx f +=,分点个数为n =1,2,4,5时,求出相应积分n T , 111[(()())],21,2(),.n n i i i i i T f a f b f h b a h n n f x f x a ih ih -=⎧=++⎪⎪-⎪==⎨⎪=⎪⎪=+=⎩∑列表如下:n =1的计算结果见表1-1所列 n h0x 1x 0f1f1T10.50.00.51.00.80.45n =2的表格如下 n h0x1x2x0f1f 2f 2T20.250.000.250.501.000.941765 0.800.460294n =4时计算结果如下表 n h 0x1x2x3x4x40.1250.000.1250.250.3750.500f1f2f3f4f4T1.000.98461540.94117650.8767120.800.462813n = 5时计算结果如下 n h0x1x2x3x4x5x50.10.00.10.20.30.40.50f1f2f3f4f5f5T1.00.9900990.96153850.917430.8620690.80.463114例3 利用复化求积公式120x e dx ⎰,问积分区间为多少等分才能得证有5位有效数字?解 由式(14)知322()[],()()1212n b a b a R f h f n f n n--''''=-=- 有1(),(),2x xf x e f x e b a ''==-=,当]21,0[∈x 时,在12|()|f x e ''≤,所以122|[]|96n eR f n≤ 由于120x e dx ⎰的准确值具有一位整数,所以要使近似值具有5位有效数字,n 必须满足4242211048,102196⨯≥⨯≤-e n n e 或 取对数有 19=n .即将区间]21,0[19等分可满足给定的精度要求.例4 利用复化抛物线求积公式计算 120211I dx x =+⎰. 解 设11)(2+=x x f ,取m =1,2, 3时,公式()⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++=+=====-=+++=+---=-=+∑∑.)12(,2),(),(),(,,242[31221212221111,1222h i a x ih a x x f f x f f b f f a f f m a b n f f f f h S i i i i i i b a m i m i i b a m当m =1,2,3时结果如下表所示 当m =1时m h(0.0)f )25.0(f )5.0(f2S1 0.25 1.0 0.9411765 0.80 0.463725当m =2时mh(0.0)f(0.125)f (0.025)f (0.35)f )5.0(f4S20.125 1.0 0.9846154 0.9411765 0.8767123 0.80 0.463653当m =3时mh(0.0)f(0.08333)f (0.16667)f (0.35)f(0.33333)f (0.14166667)f )5.0(f4S30.83331.00.99310340.9729730.9411760.90.852070.80.4636例5 用复化梯形公式,辛普森公式和科茨公式计算积分10sin xdx x ⎰的近似值.解按精度要求确定]1,0[分多少等分,即确定步长,要使6441021)1(28801|],[|-⨯≤≤M m S f R n ,只需.4642880102M m ⨯≥令10sin ()cos xf x txdt x==⎰, 则1()0sin ()()(cos )k kk k k d xd fx tx dt dx xdx ==⎰1cos().2k t tx kdt π=+⎰dt ktx t x f k k |)2cos(|max )(|max 10)(π+≤⎰11.1k t d t t≤=+⎰)10(≤≤x (4)1max |()| 5.f x ≤所以只要,9.13831288010264=⨯⨯≥-m 取m =4即可, 当4n =时,在每个子区间上用式(25),或(14),或(17),结果.9460829.0,9460833.0,9456911.0888===C S T3.2 龙贝格积分公式应用例6 用龙贝格算法计算积分1241I dx x=+⎰的近似值,要求误差小于510-. 解 .3,0,14)(2==+=b a x x f 步骤如下:2)1(,4)0()1(==f f 得.3)]1()0([211=+=f f T )2(计算,1.3)]21([21,516)21(12=+==f T T f 由此得 301333334121=-=T T S . (3)算出),(43),41(f f 从而,3013118)]43()41([412124=++=f f T T,14157.334242=-=T T S.30142121516121=-=S S C (4)计算),87(),85(),83(),81(f f f f 从而得到:13899.3)]87()85()83()81([812148=++++=f f f f T T ,,14159.334482=-=T T S,14059.31516242=-=S S C .1458.36364121=-=C C R(5)再计算),1615(),1613(),1611(),169(),167(),165(),163(),161(f f f f f f f f从而得到: 14094.316=T30141598=S ,,14159.3,14159.324==R C 51210||-≤-R R , 所以12043.14159.1dx x ≈+⎰3.3高斯求积公式的应用例7 用两点复化高斯求积公式计算10,x I e dx =⎰要求允许误差.106-=ε解 在本算法中取21=+n 时,,110==A A 其中;,)(mab h e x f x -== =++--=∑=)22(2201j jj b a x a b f A a b G.87189637800.1][21)32121()32121(=++-eem =2时, h =21, ]4121)21([4120202j i j j x i f A G +⨯-=∑∑==.57182571650.1)(41341333413341333413=+++=++--eeee m =3时, h =31. .37182769352.1]631)21([6130203=+⨯-=∑∑==j i j j x i f A G .101027.71||||56323--<⨯≈+-G G G3.4 几种方法的比较分析例8 计算积分211ln 2dx x =⎰,精确到0.001.(1)利用矩形公式计算, 因为对于x x f 1)(=,有320()2f x x''<=<(如果1<x <2),所以按照公式0)2(S =+-dx b a x ba . 0<n R <2112n . 如果取n =10,则我们公式的余项的余数得31010.84101200R -<<⨯,我们还必须加进由于在计算函数值实行四舍五入所产生的误差的界限相差于0.16⨯310-,为了这个目的只要计算1x的值到四位小数精确到0.00005就够了.我们有1232527292132152172192 1.051.151.251.351.551.651.751.851.95x x x x x x x x x =========5128.05405.05714.06061.06897.07407.08.08696.09524.02192172152132927252321=========y y y y y y y y y 和6.928469284.0109284.6=(2) 按照梯形公式作同样的计算,在这种情况下,作公式 210,||6n n R R n<<在这儿也试一试取n =10,虽然此时仅可以证3107.16001||-⨯<<n R ,纵坐标是9.18.17.16.15.14.13.12.11.1987654321=========x x x x x x x x x 5263.05556.05882.06250.06667.07143.07692.08333.09091.0987654321=========y y y y y y y y y和1877.669377.01877.621500101=+)( (3) 用辛普森公式做同样的计算作公式 .0))(()2(180)()4(45<≤≤⨯--=n n R b a f n a b R ξξ 并且n =5时有55104.1||-⨯<R .实行计算到五位数字,精确到0.0000058.16.14.12.14321====x x x x 45636.555556.062500.071429.083333.04321和====y y y y 9.17.15.13.11.12927252321=====x x x x x83820.1352632.058824.066667.076923.090909.029********和=====y y y y y.20.150==x x 50000.150000.060000.150和==y y6931525.083820.345636.550000.1301=++)(. 由此可见,用辛普森公式计算得到的值误差最小,计算量相对一般;而用矩形公式计算得到的值误差较大,计算量也比较大;用梯形公式计算的值误差比用矩形公式得到的值要误差小,计算量也是如此.所以我们计算定积分时用辛普森公式往往得到的值误差小,而对没有要求误差大小的,则可以选择辛普森或者是梯形公式,因为这两种方法计算量相对较小.结 束 语本文只讨论了一些一维数值积分方法及其它们的应用,误差分析等有关内容.其中最常用的方法是插值型积分以及复化方法、龙贝格积分方法和高斯积分方法,并讨论了相关求积方法的代数精度和误差分析,并给出了一些例题,分析各种方法的近似值,得出误差分析最小的近似方法.由于篇幅有限,对于高维数值积分方法本文便不再讨论.参考文献[1] 华东师范大学数学系,数学分析(第一版)[M],北京:高等教育出版社,2001. [2] 李庆阳,关治,白峰杉,数值计算原理(第二版)[M],北京: 清华大学出版社, 2008. [3] 肖筱南,现代数值计算方法(第一版)[M],北京: 北京大学出版社, 1999.[4] 菲赫金格尔茨,微积分学教程(第三版)[M],北京: 高等教育出版社, 2005. [5] 裴礼文,数学分析中的典型问题与方法(第一版)[M] ,北京: 北京大学出版社,2004. [6] 李桂成,计算方法(第三版)[M],北京: 高等教育出版社,2010.[7] Yin Y uezhu ,Yang Zhonglian.Calculating Skillfully the Curve Integral and Surface Integral Type 2 bySymmetry, SCIENCE & TECHNOLOGY INFORMATION ,2008(30)The Approximate Numerical Method of the Definite IntegralAbstract This paper mainly discusses common numerical methods of unary function, such as approximate calculation method of interpolation integral, Lebesgue integral and Gauss integration. With these methods in calculating the integral, it will produce some error. In order to reduce the error, we can use after the formula for product and after the Gauss formula. This paper focus on these methods introducing formula of introduction and truncation errors .In addition they can provide examples to analysis size of the error and computation.Keywords interpolation integral Lebesgue integral Gauss integral error analysis approximate computation。

定积分分割近似求和取极限

定积分分割近似求和取极限

定积分分割近似求和取极限定积分是微积分中的一个重要概念,它表示曲线与x轴之间的面积。

在实际应用中,我们经常需要对曲线下的面积进行计算,这时就需要用到定积分。

定积分的求解方法有很多种,其中一种常用的方法是分割近似求和取极限。

分割近似求和取极限的方法是将曲线分成若干个小区间,然后在每个小区间内取一个代表点,将这些代表点的函数值相加,最后再将这些和的极限值作为定积分的值。

这个方法的基本思想是将曲线分成无限小的小区间,然后在每个小区间内用一个代表点来近似表示整个小区间的函数值,最后将所有小区间的函数值相加,得到整个曲线下的面积。

具体来说,我们可以将曲线分成n个小区间,每个小区间的长度为Δx,然后在每个小区间内取一个代表点xi,将这些代表点的函数值f(xi)相加,得到一个和S。

随着n的增大,Δx会越来越小,代表点的数量也会越来越多,这样得到的和S也会越来越接近曲线下的面积,最终将n趋近于无穷大,得到的和S就是定积分的值。

分割近似求和取极限的方法可以用数学公式来表示,即:∫a^b f(x)dx = lim(n→∞) Σ(i=1 to n) f(xi)Δx其中,a和b是积分区间的端点,f(x)是被积函数,Δx是小区间的长度,xi是每个小区间内的代表点。

分割近似求和取极限的方法虽然比较简单,但是需要注意的是,当小区间的数量n很大时,计算量会非常大,而且误差也会比较大。

因此,在实际应用中,我们需要根据具体情况来选择合适的分割方法和代表点,以保证计算结果的准确性和精度。

总之,分割近似求和取极限是一种常用的定积分求解方法,它的基本思想是将曲线分成若干个小区间,然后在每个小区间内取一个代表点,将这些代表点的函数值相加,最后再将这些和的极限值作为定积分的值。

这个方法虽然比较简单,但是需要注意计算量和误差问题,以保证计算结果的准确性和精度。

积分估算定理

积分估算定理

积分估算定理积分估算定理是微积分中的一个重要定理,它通过积分的方法来近似计算一个函数的定积分值。

在数学中,积分估算定理为我们提供了一种有效的方法,通过确定积分上下限并选择适当的分割点来估计一个函数在某个区间上的定积分值。

积分估算定理的核心思想是将函数的定积分值转化为分割区间上的求和问题。

具体来说,我们可以将区间[a, b]分割成n个小区间,然后在每个小区间上选择一个代表点,将每个小区间的函数值与该点处的函数值相乘,并将所有乘积相加。

通过求和的方式,我们可以近似计算出原始函数在整个区间上的定积分值。

在实际应用中,积分估算定理被广泛应用于面积、体积、物理量、概率等问题的计算中。

例如,当我们需要计算不规则图形的面积时,可以将该图形分割成若干个小矩形或小三角形,并通过求和的方式来估计总面积。

同样地,当我们需要计算物体的体积时,可以将物体分割成无数个微小的体积元,并通过求和的方式来估计总体积。

积分估算定理的应用不仅限于二维情况,它同样适用于三维空间中的问题。

例如,当我们需要计算曲线围成的曲面的面积时,可以将曲面分割成无数个微小的面积元,并通过求和的方式来估计总面积。

类似地,当我们需要计算物体的质量或重心时,可以将物体分割成无数个微小的质量元,并通过求和的方式来估计总质量或重心位置。

需要注意的是,积分估算定理在实际应用中往往需要选择合适的分割点和分割区间,以及决定分割的数量。

通常情况下,我们可以通过增加分割的数量来提高估计的精确度。

同时,在选择代表点时,我们也可以采用不同的策略,如等间距代表点、等函数值代表点等,以获得更准确的估计结果。

总结起来,积分估算定理为我们提供了一种有效的近似计算定积分值的方法。

通过分割区间、选择代表点并求和的方式,我们可以在不知道原函数解析表达式的情况下,通过数值计算来估算出定积分的值。

这一定理在数学和实际应用中都具有重要的意义,为我们解决各种计算问题提供了有力的工具。

定积分牛顿莱布尼茨公式

定积分牛顿莱布尼茨公式

定积分牛顿莱布尼茨公式牛顿-莱布尼茨公式(也称为牛莱公式)是微积分学中的一个重要定理,它连接了定积分和原函数之间的关系。

该公式在微积分起源和发展中起到了关键的作用,它的发现极大地推动了微积分学的发展。

首先,我们需要明确定积分的定义。

定积分是求一个函数在一个区间上的“积累量”,它可以看作是无穷多个微小的面积的总和。

设函数f(x)在[a,b]上连续,它的一个原函数为F(x)。

根据牛顿-莱布尼茨公式,定积分的值可以通过求函数的原函数在两个端点的值之差来计算。

具体而言,公式可以表达为:∫[a,b] f(x)dx = F(b) - F(a)这个公式的含义是,函数f(x)在区间[a,b]上的定积分等于它的一个原函数F(x)在b和a处的取值之差。

这个公式可用于求解定积分,而无需使用极限定义来进行计算。

牛顿-莱布尼茨公式可以通过微积分基本定理来证明。

微积分基本定理表明,如果一个函数在一个区间上连续,那么它必然有一个原函数。

这个定理的证明涉及到反函数的构造和连续函数的一些性质,它超出了本文的讨论范围。

牛顿-莱布尼茨公式的证明主要涉及到导数和微分的基本概念。

设a 和b为两个实数,函数F(x)在[a,b]上连续且可微。

根据导数的定义,我们有:F'(x) = lim(h->0) [F(x+h) - F(x)]/h我们可以根据这个式子来近似计算定积分的值。

我们可以将区间[a,b]等分为n个小区间,每个小区间的宽度为h=(b-a)/n。

记第i个小区间为[x_i-1,x_i]。

我们将每个小区间上的函数值F(x_i)与F(x_i-1)相减后再乘以区间宽度h,得到一个近似的定积分值。

如果我们取n趋近于无穷大,这个近似值将趋近于定积分的真正的值。

具体而言,我们可以写出这个近似值为:Σ {i=1 to n} [F(x_i) - F(x_i-1)] * h这个近似值可以表示为区间[a,b]上的一个数列的和。

当n趋近于无穷大时,这个数列的和将趋近于定积分的真正值。

第32讲 定积分的分部积分法与近似计算

第32讲 定积分的分部积分法与近似计算
2 所以: x f " x dx x f ' x f ' x 2 xdx 0 0
1 2
1
又 f x dx e C ,所以 f x e
x2
' 2 xe
x2
x2

再令 u1 x, v1 ' f ' x
2 0


2
I 1 2 sin xdx 1
0

续 当 n 2k 1 时,
n 1 n 3 4 2 In I1 n n2 5 3 n 1 n 3 4 2 n n2 5 3
当n 2k 时, n 1 n 3 3 1 In I0 n n2 4 2
n 1 n 3 3 1 n n2 4 2 2
令x

2
t 可得第二式显然也成立。
e 例4 设 f x 的一个原函数是
2
x2
,求 x 2 f " x dx
0
1
解 令 u x , v' f " x , 则 u ' 2 x, v f ' x
其误差分别为:
b a 2
2n
y ' ,
b a 3
12n 2
y" ,
b a 5
180n 4
y 4
a b
小结:

全面理解分部积分公式
熟练使用分部积分公式求积分
了解定积分的近似计算方法
作业:第P306Fra bibliotek习题5-5
4e 2e 2e

定积分的近似计算方法

定积分的近似计算方法

定积分的近似计算方法定积分是微积分中的重要概念,它代表了曲线与坐标轴之间的有限面积。

在实际问题中,有时候我们需要计算一些函数在一定范围内的定积分,以获得其中一种物理量或求解其中一种问题的解析解。

然而,有些函数的原函数较复杂甚至难以找到,这时候我们就需要使用定积分的近似计算方法。

下面将介绍几种常用的定积分近似计算方法:1.矩形法:矩形法是最简单的一种近似计算方法。

它的思想是将积分区间等分成若干个小区间,然后在每个小区间上选择一个代表点,通过函数在这些代表点处的函数值与小区间长度的乘积来近似计算定积分。

具体计算公式为:∫[a,b]f(x)dx ≈ Δx * (f(x₁) + f(x₂) + ... + f(xₙ))其中,Δx=(b-a)/n,n为小区间个数,x₁、x₂等为代表点。

当n越大时,近似结果越接近真实结果。

2.梯形法:梯形法是将积分区间分成若干个小区间,然后在每个小区间上构造一个梯形,通过计算梯形的面积来近似计算定积分。

具体计算公式为:∫[a,b]f(x)dx ≈ Δx * (f(x₁) + f(x₂))/2 + Δx * (f(x₂) +f(x₃))/2 + ... + Δx * (f(xₙ-1) + f(xₙ))/2其中,Δx=(b-a)/n,n为小区间个数,x₁、x₂等为小区间的端点。

3.辛普森法:辛普森法是一种比矩形法和梯形法更精确的近似计算方法。

它的思想是将积分区间分成若干个小区间,然后在每个小区间上构造一个二次多项式,通过计算这些二次多项式的面积来近似计算定积分。

具体计算公式为:∫[a,b]f(x)dx ≈ Δx * (f(x₀)+4f(x₁)+f(x₂))/3 + Δx *(f(x₂)+4f(x₃)+f(x₄))/3 + ... + Δx * (f(xₙ-2)+4f(xₙ-1)+f(xₙ))/3其中,Δx=(b-a)/n,n为小区间个数,x₀、x₁、x₂等为小区间的端点。

4.蒙特卡洛法:蒙特卡洛法是通过随机抽取点的方法来近似计算定积分。

定积分近似计算方法

定积分近似计算方法

定积分的近似计算方法摘要 本文主要讨论了一元函数常见的数值积分方法,例如插值型求积公式、龙贝格求积公式、高斯求积公式等近似计算方法,在用这些方法计算定积分时,会产生一些误差,为了减少误差, 可以利用复化求积公式、复化高斯公式等.本文围绕这些方法,系统介绍它们的计算公式以及截断误差,并用例题分析它们产生误差的大小、计算量等.关键词 插值型积分 龙贝格积分 高斯积分 误差分析 近似计算1引言在计算定积分的值()b aI f x dx =⎰时,常常根据微积分学基本定理求出)(x f 的一个原函数)(x F ,再用牛顿-莱布尼茨公式求的积分,()()()baI f x dx F b F a ==-⎰.但在实际应用中,这种方法只限于解决一小部分定积分的求值问题.当函数没有具体表达式,只是一些实验测得数据形成的表格或图形或者是()F x 无法用初等函数表示,例如,2bx ae dx ⎰,2sin ba x dx ⎰等等,这就需要我们用一些近似方法求的积分值.与数值积分一样,把积分区间细分,在每个小区间上,找到简单函数)(x ϕ来近似代替()f x ,且()bax dx ϕ⎰的值容易求的.这样就把计算复杂的()baf x dx ⎰转化为求简单的积分值()bax dx ϕ⎰.因此,定积分的近似计算实质上是就是被积函数的近似计算问题.2常见数值方法 2.1牛顿-科茨数值方法牛顿-科茨求积公式是求积节点等距离分布的插值型求积公式.利用插值多项式来构造数值积分公式是最常用、最基本的方法,具体做法是:给定区间[,]a b 上一组节点01...n a x x x b =<<<=,以及节点处函数()(0,1,2,i f x i n =,作()f x 的n 次拉格朗日多项式()()()nn i i i x f x l x ϕ==∑,其中 011011()()()()()()()()()i i n i i i i i i i n x x L x x x x L x x l x x x L x x x x L x x -+-+----=----,将插值公式(1)1()()()()(1)!n n n f f x x x n ξϕω++=++. 其中 1012()()()()()n n x xx x xx x L x x ω+=----,[,]a b ξ∈,依赖于变量x , 上式积分得(1)1()()()()(1)!n bb bn n aa af f x dx x dx x dx n ξϕω++=++⎰⎰⎰(1)(1)0()()()()(1)!n nb biiin aai f f x l x dx x dx n ξω++==++∑⎰⎰(1)(1)0()()()()(1)!n nb bi i n aai f f x b l x dx x dxn ξω++==++∑⎰⎰若记 (),(0,1,2,bi ia A l x dx i ==⎰….. )n (1)(1)1()[]()(1)!n bn af R f x dxn ξω++=+⎰, (2)则有()()[]nbi i ai f x dx A f x R f ==+∑⎰(3)称式(3)为插值求型公式,其中(0,1,2,i A i =…. )n 与()f x 无关,叫求积系数, i x 为求积节点,[]R f 为求积公式余项,其中求积系数由(1)决定.2.1.1梯形求积公式1梯形公式当插值节点01,x x 分别选取区间端点,a b 时,由式(3)分别求出求积系数10012bb aa x x xb b aA dx dx x x a b ---===--⎰⎰,01102bb aa x x x ab a A dx dx x x b a ---===--⎰⎰.从而的求积公式()[()()]2bab af x dx f a f b -≈+⎰. (4) 称求积公式(4)为梯形求积公式,简称梯形公式.2梯形公式截断误差: 3*()[](),12b a R f f ξ-''=- *[,]a b ξ∈. (5) 3梯形求积公式的代数精度:1 当()1f x =时,式(5)中 1(1)2bab adx b a x b a -=-=+=-⎰. 精确成立.2.1.2 辛普森求积公式1辛普森求积公式当选取节点为012,,2a bx a x x b +===时,由式(1)求下列求积系数 1200102()()()()2()()6()()2b b a a a b x x b x x x x b a A dx dx a b x x x x a a b +-----===+----⎰⎰,0211002()()()()2()()()3()()22bb aa x x x x x a xb b a A dx dx a b a b x x x x a b -----===++----⎰⎰.0122021()()()()2()()6()()22b b a a a bx a x x x x x b a A dx dx a b a b x x x x a b +-----===++----⎰⎰ .从而求积公式()[()4()()]62bab a a bf x dx f a f f b -+≈++⎰. (6)称式(6)为抛物线积分公式或辛普森积分公式.2抛物线求积公式误差估计定理1.若()f x 在[,]a b 上有四阶连续导数,则抛物线公式(6)的余项为:5(4)**()[](),[,]2880b a R f f a b ξξ--=∈. (7) 3抛物线公式的代数精度为3.易验证,当23()1,,,f x x x x =时,式(6)精确成立,而当4()f x x =时,式(6)不能精确成立.2.1.3 牛顿-科茨公式1牛顿-科茨公式在等距离节点i x a ih =+下,其中(0,1,2b ah i n-==…. )n .作为变量替换x a th =+,那么由求积公式(1),得系数:10(1)(1)(1)()!(1)(1)!ni n t t t i t i t n A h dt i n ---+---==--⎰10(1)(1)...(1)(1)...()(0,1,2,...)!(1)!n nb a t t t i t i t n dt i n n i n -----+---=-⎰ (8)则 ()()n i iA b a C =- (9)于是差值求积公式为:()0()()()[]nbn i i ai f x dx b a C f x R f ==-+∑⎰(10)称公式(10)为牛顿-科茨求积公式,其中()n iC 称为科茨系数.显然,科茨系数与被积函数()f x 及积分区间[,]a b 无关,它指依赖于n ,且为多项式积分.因此,只要给出n ,就能看出i A ,并写出相应地牛顿-科茨公式.2牛顿-科茨公式的截断误差与代数精度.当1n =与2n =情况分析牛顿-科茨公式的截断误差为(1)()[]()()()(1)!n b b bn aaaf R f f x dx x dx x dxn ξϕω+=-=+⎰⎰⎰牛顿-科茨公式的截断误差还可以写成(2)*1()[]()((2)!n bn a f R f x dx n n ξω++=+⎰为偶数)(1)*1()[]()(1)!n bn af R f x dx n ξω++=+⎰ (n 为奇数) (11) 其中*[,]a b ξ∈,且不依赖于x ,101()()()...()n n x x x x x x x ω+=---,对()f x 为任何并不超过n 次多项式,均有(1)()0n fx +≡,因而[]0R f ≡,即0()()nbi i ai f x dx A f x ==∑⎰精确成立,也就是说,牛顿-科茨公式的代数精度至少为n ,牛顿-科茨公式在n 为偶数时,至少具有1n +次代数精度,在n 为奇数情况时,至少具有n 次代数精度.2.1.4复化梯形求积公式将区间[,]a b 等分,节点为i x a ih =+ (步长b ah n-=),0,1,2...,i n =)在每个小区间1[,]i i x x -上采用梯形公式(4)得11111()()[(()()]2ii nnbx i i i i ax i i x x f x dx f x dx f x f x ---==-=≈+=∑∑⎰⎰11[()()]2ni i i hf x f x +=+=∑11[()2()()]2n i n i hf a f x f b T -=++=∑ (12)称式(12)为复化梯形公式. 复化梯形公式余项为()2()()()12i n b a R f h f η-''=-(13) 2.1.5复化辛普森求积公式在每个小区间],[1+i i x x 上,辛普森公式(6)得11102()[()4()()]6n bi i ai i hf x dx f x f x f x -++==++∑⎰(14)111012[()4()2((6)]6n n i i i i hf a f x f x f --+===+++∑∑记 )]()(2)(4)([6111021b f x f x f a f hS n i i n i i n +++=∑∑-=-=+ (15)式中,21+i x为],[1+i i x x 的中点,即h x x i i 2121+=+.式(15)称为复化辛普森公式,其余项为∑-=-=-=10)4(4)()2(180)()(n i i n n f h h S f I f R η, 1(,).i i i x x η+∈ 故 ),(),()2(180)(R )4(4b a f h a b f n ∈--=ηη (16) 为复化辛普森的截断误差. 2.1.6复化科茨求积公式将区间[,]a b n 等分, 4n m =,m 为正整数,在每个子区间444[,]k k x x -上用科茨求积公式得到复化求积公式:412()[7()7()32()45mbk ak hf x dx f a f b f x -≈++∑⎰14241411112()32()14()mmm k k k N k k k f xf x f x C ---===+++=∑∑∑ (17)其中 4b a b ah n m--==, k x a kh =+ 其截断误差为6(6)2()[,](),()945n b a R f C h f a b ηη-=-<. 2.1.7 变步长复化求积方法复化求积公式虽然计算简单,也达到了提高精度的目的,但为了满足精度要求必须顾及误差,利用误差公式往往很困难,因为误差表达式中含有未知函数的导数,而估计各阶导数的最大值不太容易.我们可以采取把积分的区间[,]a b 细分的办法,在计算积分时将步长逐步折半,利用前后两次结果进行误差估计,如此继续,直到相邻两次结果相差不大,取最小的步长算出的结果为积分值,这种方法称为变步长积分法.以复化梯形公式为例,把区间[,]a b 分成n 等分,设复化梯形公式的近似值为n T ,原积分值为I ,由复化梯形公式误差公式(14)知:2"11()()()n b a b a I T f a b N N ηη--=-<<再把区间[,]a b 分成2n 等分,得近似值2n T ,则2222()()()122k b a b a I T f a b nηη--''=-<< 假定()f x ''在[,]a b 上变化不大,既有12()()f f ηη''''≈. 由上式得 .24kkI T I T -≈-于是 222211()()341n n n n n n I T T T T T T ≈+-=+-- (18) 式(18)表明若用2n T 作为I 的近似值,其截断误差约为2()3n n T T - (19)2.2 龙贝格求积公式龙贝格积分法的基本思想是采用复化梯形求积方法不断折半步长过程中,在积分结果中加入时候误差估计值进行补偿,使积分计算的收敛性加速,就可以加工出,,,...n n n S C R 精度较高的积分结果.由式(19), 2n T 的误差大致为23n nT T -,因此,可用这个误差值作为2n T 的一种补偿,加到2n T 上,则可得到积分准确值I ,比2n T 的更好近似值~T .222141()333n n n n nT T T T T T =+-=-2221(2)21n n T T =-- (20)式(20)左端1n =时 记122121141()333S T T T T T =+-=- 112()()332a b T b a f +=+- [()4()()]62b a a b f a f f b -+=++恰好为[,]a b 上应用辛普生公式(16)的结果.在每个小区间应用辛普生公式:11[()2()()]2n n k k hT f a f x f b -==++∑121()112[()2()()2()]4n n n k k k k hT f a f x f b f x --===+++∑∑代入式(20)的左端得11111[()2()()2()32n nk k k k h f a f x f b f x -==+++--∑∑ 11[()2()()]2n k k h f a f x f b -++∑11111[()4()2()()]62n n k k k k f a f x f x f b -===+-++∑∑nS =从而复化辛普森公式与复化梯形公式公式有以下关系式2441n nn T T S -=- (21)类似也可以推证,在辛普森序列基础上,利用以下关系式22242161151541n n n n n S S C S S -=-=- (22)可以造出收敛速度更快的科茨序列12,...,...n C C C 将此推行下去,在科茨序列基础上,通过243431n nn C C R -=- (23)构造出收敛速度比科茨序列更快的龙贝格序列12,,......n R R R .以上这种通过逐步构造龙贝格序列的积分近似值法就称为龙贝格积分法.2.3高斯求积公式由定理()()()baf x F b F a =-⎰知,插值型求积公式的代数精度与求积节点的个数有关,具有1n +个节点的插值型求积公式至少具有n 次代数精度.不仅如此,代数精度与节点的选取有关,在构造牛顿-科茨求积公式时,为了简化处理过程,限定用等分节点作为求积节点,这样做,虽然公式确实得到简化,但同时也限制了公式的代数精度. 设积分,1,1=-=b a 本段讨论如下求积公式11()()ni i i f x A f x -==∑⎰(24)对任意积分区间[,]a b ,通过变 22ba t ab x ++-= 可以转换到区间]1,1[-上,这时11()()222bab a b a a bf x dx f t dt ---+=+⎰⎰ 此时,求积公式写为0()()222n bii ai b a a b b af x dx A f t =-+-=+∑⎰若一组节点]1,1[.....,10-∈n x x x 使插值型求积公式(24)具有21n +次代数精度,则称此组节点为高斯点,并称相应求积公式(24)为高斯求积公式.2.3.1 高斯求积公式的余项(2)2()[]()()()(22)!n nbb k k aa k f R f f x dx A f x x dx n ηω+==-=+∑⎰⎰ 其中 01()()()...(),[,]n x x x x x x x ab ωη=---∈,且不依赖于x .2.3.2 复化高斯求积公式复化高斯求积公式的基本思想是:将积分区间[,]a b 分成n个等长小区间1[,](1,...)i i t t i m -=,然后在低阶(2n =)高斯求积公式算出近似值,最后将他们相加的积分()baf t dt ⎰的近似值m G ,即11111111()()[]222ii mmbt i i i i i i at i i t t t t t t f t dt f t dt dt -----==-+-==+∑∑⎰⎰⎰1111[()]222m i h ha i h x dx-==+-+∑⎰101[()]222m n j j mi j h hA f a i h x G ==≈+-+≈∑∑ (25)其中mab h -=,j A 与(0,1,2,...,)j t j n =可由书中表中查出. 3 应用3.1插值型积分的应用例1 用牛顿-科茨公式(1,2,4n =)计算积分12211I x =+⎰. 解 1n =时2210112[]0.4512101()2I -≈+=++2n =时22211112[4]0.463725116101()1()42I -≈++=+++4n =时2222111112[7321232]0.46363311390101()1()1()848I =++++≈++++例2 利用复化梯形求积公式计算积分 12211I dx x =+⎰解 设211)(xx f +=,分点个数为n =1,2,4,5时,求出相应积分n T , 111[(()())],21,2(),.n n i i i i i T f a f b f h b a h n n f x f x a ih ih -=⎧=++⎪⎪-⎪==⎨⎪=⎪⎪=+=⎩∑列表如下:n =1的计算结果见表1-1所列 n h0x 1x 0f1f1T10.50.00.51.0 0.8 0.45n =2的表格如下 n hx1x2xf1f2f2T20.250.00 0.25 0.50 1.00 0.941765 0.80 0.460294n =4时计算结果如下表 n h 0x1x2x3x4x40.1250.00 0.125 0.25 0.375 0.50f1f2f3f4f4T1.00 0.9846154 0.9411765 0.876712 0.80 0.462813n = 5时计算结果如下 n hx1x2x3x4x5x50.10.0 0.1 0.2 0.3 0.40.5f1f2f3f4f5f5T1.0 0.990099 0.9615385 0.91743 0.862069 0.80.463114例3 利用复化求积公式120x e dx ⎰,问积分区间为多少等分才能得证有5位有效数字?解 由式(14)知322()[],()()1212n b a b a R f h f n f n n--''''=-=- 有1(),(),2x x f x e f x e b a ''==-=,当]21,0[∈x 时,在12|()|f x e ''≤,所以122|[]|96n eR f n≤ 由于120x e dx ⎰的准确值具有一位整数,所以要使近似值具有5位有效数字,n 必须满足4242211048,102196⨯≥⨯≤-e n n e 或 取对数有 19=n .即将区间]21,0[19等分可满足给定的精度要求.例4 利用复化抛物线求积公式计算 120211I dx x =+⎰. 解 设11)(2+=x x f ,取m =1,2, 3时,公式()⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++=+=====-=+++=+---=-=+∑∑.)12(,2),(),(),(,,242[31221212221111,1222h i a x ih a x x f f x f f b f f a f f m a b n f f f f h S i i i i i i b a m i m i i b a m当m =1,2,3时结果如下表所示 当m =1时m h(0.0)f )25.0(f )5.0(f2S1 0.25 1.0 0.9411765 0.80 0.463725当m =2时mh(0.0)f(0.125)f (0.025)f (0.35)f )5.0(f4S20.125 1.0 0.9846154 0.9411765 0.8767123 0.80 0.463653当m =3时mh(0.0)f(0.08333)f (0.16667)f (0.35)f(0.33333)f (0.14166667)f )5.0(f4S30.83331.00.99310340.9729730.9411760.90.852070.80.4636例5 用复化梯形公式,辛普森公式和科茨公式计算积分10sin xdx x ⎰的近似值.解按精度要求确定]1,0[分多少等分,即确定步长,要使6441021)1(28801|],[|-⨯≤≤M m S f R n ,只需.4642880102M m ⨯≥令10sin ()cos xf x txdt x==⎰,则1()0sin ()()(cos )k kk k k d xd fx tx dt dx x dx==⎰ 1cos().2k t tx kdt π=+⎰dt ktx t x f k k |)2cos(|max )(|max 10)(π+≤⎰11.1k t d t t≤=+⎰)10(≤≤x (4)1max |()| 5.f x ≤所以只要,9.13831288010264=⨯⨯≥-m 取m =4即可, 当4n =时,在每个子区间上用式(25),或(14),或(17),结果.9460829.0,9460833.0,9456911.0888===C S T3.2 龙贝格积分公式应用例6 用龙贝格算法计算积分1241I dx x=+⎰的近似值,要求误差小于510-. 解 .3,0,14)(2==+=b a x x f 步骤如下:2)1(,4)0()1(==f f 得.3)]1()0([211=+=f f T )2(计算,1.3)]21([21,516)21(12=+==f T T f 由此得301333334121=-=T T S . (3)算出),(43),41(f f 从而,3013118)]43()41([412124=++=f f T T,14157.334242=-=T T S .30142121516121=-=S S C(4)计算),87(),85(),83(),81(f f f f 从而得到:13899.3)]87()85()83()81([812148=++++=f f f f T T ,,14159.334482=-=T T S ,14059.31516242=-=S S C.1458.36364121=-=C C R (5)再计算),1615(),1613(),1611(),169(),167(),165(),163(),161(f f f f f f f f 从而得到: 14094.316=T30141598=S ,,14159.3,14159.324==R C 51210||-≤-R R , 所以12043.14159.1dx x ≈+⎰3.3高斯求积公式的应用例7 用两点复化高斯求积公式计算10,x I e dx =⎰要求允许误差.106-=ε解 在本算法中取21=+n 时,,110==A A 其中;,)(mab h e x f x-== =++--=∑=)22(2201j jj b a x a b f A a b G.87189637800.1][21)32121()32121(=++-eem =2时, h =21, ]4121)21([4120202j i j j x i f A G +⨯-=∑∑==.57182571650.1)(41341333413341333413=+++=++--eeee m =3时, h =31. .37182769352.1]631)21([6130203=+⨯-=∑∑==j i j j x i f A G.101027.71||||56323--<⨯≈+-G G G3.4 几种方法的比较分析例8 计算积分211ln 2dx x =⎰,精确到0.001.(1)利用矩形公式计算, 因为对于x x f 1)(=,有320()2f x x''<=<(如果1<x <2),所以按照公式0)2(S =+-dx ba xb a . 0<n R <2112n . 如果取n =10,则我们公式的余项的余数得31010.84101200R -<<⨯,我们还必须加进由于在计算函数值实行四舍五入所产生的误差的界限相差于0.16⨯310-,为了这个目的只要计算1x的值到四位小数精确到0.00005就够了.我们有1232527292132152172192 1.051.151.251.351.551.651.751.851.95x x x x x x x x x =========5128.05405.05714.06061.06897.07407.08.08696.09524.02192172152132927252321=========y y y y y y y y y和6.928469284.0109284.6= (2) 按照梯形公式作同样的计算,在这种情况下,作公式 210,||6n n R R n<<在这儿也试一试取n =10,虽然此时仅可以证3107.16001||-⨯<<n R ,纵坐标是9.18.17.16.15.14.13.12.11.1987654321=========x x x x x x x x x 5263.05556.05882.06250.06667.07143.07692.08333.09091.0987654321=========y y y y y y y y y和1877.669377.01877.621500101=+)( (3) 用辛普森公式做同样的计算作公式 .0))(()2(180)()4(45<≤≤⨯--=n n R b a f n a b R ξξ 并且n =5时有55104.1||-⨯<R .实行计算到五位数字,精确到0.0000058.16.14.12.14321====x x x x 45636.555556.062500.071429.083333.04321和====y y y y 9.17.15.13.11.12927252321=====x x x x x83820.1352632.058824.066667.076923.090909.029********和=====y y y y y.20.150==x x 50000.150000.060000.150和==y y6931525.083820.345636.550000.1301=++)(. 由此可见,用辛普森公式计算得到的值误差最小,计算量相对一般;而用矩形公式计算得到的值误差较大,计算量也比较大;用梯形公式计算的值误差比用矩形公式得到的值要误差小,计算量也是如此.所以我们计算定积分时用辛普森公式往往得到的值误差小,而对没有要求误差大小的,则可以选择辛普森或者是梯形公式,因为这两种方法计算量相对较小.结 束 语本文只讨论了一些一维数值积分方法及其它们的应用,误差分析等有关内容.其中最常用的方法是插值型积分以及复化方法、龙贝格积分方法和高斯积分方法,并讨论了相关求积方法的代数精度和误差分析,并给出了一些例题,分析各种方法的近似值,得出误差分析最小的近似方法.由于篇幅有限,对于高维数值积分方法本文便不再讨论.参考文献[1] 华东师范大学数学系,数学分析(第一版)[M],北京:高等教育出版社,2001. [2] 李庆阳,关治,白峰杉,数值计算原理(第二版)[M],北京: 清华大学出版社, 2008. [3] 肖筱南,现代数值计算方法(第一版)[M],北京: 北京大学出版社, 1999.[4] 菲赫金格尔茨,微积分学教程(第三版)[M],北京: 高等教育出版社, 2005. [5] 裴礼文,数学分析中的典型问题与方法(第一版)[M] ,北京: 北京大学出版社,2004. [6] 李桂成,计算方法(第三版)[M],北京: 高等教育出版社,2010.[7] Yin Y uezhu ,Yang Zhonglian.Calculating Skillfully the Curve Integral and Surface Integral Type 2 bySymmetry, SCIENCE & TECHNOLOGY INFORMATION ,2008(30)The Approximate Numerical Method of the Definite IntegralAbstract This paper mainly discusses common numerical methods of unary function, such as approximate calculation method of interpolation integral, Lebesgue integral and Gauss integration. With these methods in calculating the integral, it will produce some error. In order to reduce the error, we can use after the formula for product and after the Gauss formula. This paper focus on these methods introducing formula of introduction and truncation errors .In addition they can provide examples to analysis size of the error and computation.Keywords interpolation integral Lebesgue integral Gauss integral error analysis approximate computation。

第七讲-定积分的近似计算

第七讲-定积分的近似计算
将自变量看成是向量
quad 举例
例:用 quad 计算定积分:
dx 0 1 x 2
1
解:
>> quad('1./(1+x.^2)',0,1)
>> quad('1./(1+x.^2)',0,1,10e-10) 函数表达式一定要用 单引号 括起来! 涉及的运算一定要用 数组运算!
dblquad
i 1
n
通常我们取
x1 x2 xn
h ba n
点 i [ xi 1, xi ] 可以任意选取,常见的取法有: 左端点 xi 1 ,右端点
xi 和中点 ( xi 1 xi ) / 2 。
中点法
左点法
右点法
左点法、右点法和中点法
步长
xi h (b a) / n xi a ih, i 1,2, n
抛物线法
设过以上三点的抛物线方程为: y = x2 + x + = p1(x)
则在区间 [x0, x2] 上,有

x2
x0
f ( x)dx p1 ( x)dx x ( x2 x )dx
x2
0
x2
x0
x x x
3 2
x2
x2 x0 (y0 4y1 y2 ) 6 ba (y0 4 y1 y2 ) 6n
i 1 n
x2 i 2
f ( x )dx
ba ( y2i 2 4 y2i 1 y2i ) i 1 6n
抛物线法
整理后可得:

baຫໍສະໝຸດ b a f ( x)dx [ y0 y2n 4( y1 y3 y2n1 ) 6n 2( y2 y4 y2n2 )]

2018考研高数必会公式:定积分的近似计算

2018考研高数必会公式:定积分的近似计算

2018考研高数必会公式:定积分的近似计算
备注说明,非正文,实际使用可删除如下部分。

本内容仅给予阅读编辑指点:
1、本文件由微软OFFICE办公软件编辑而成,同时支持WPS。

2、文件可重新编辑整理。

3、建议结合本公司和个人的实际情况进行修正编辑。

4、因编辑原因,部分文件文字有些微错误的,请自行修正,并不影响本文阅读。

Note: it is not the text. The following parts can be deleted for actual use. This content only gives reading and editing instructions:
1. This document is edited by Microsoft office office software and supports WPS.
2. The files can be edited and reorganized.
3. It is suggested to revise and edit according to the actual situation of the company and individuals.
4. Due to editing reasons, some minor errors in the text of some documents should be corrected by yourself, which does not affect the reading of this article.。

simpson法

simpson法

simpson法Simpson 法,也被称为 Newton-Cotes 公式,是一种数值积分法,用于近似计算函数的定积分。

它的原理基于将函数在积分区间内分割成若干小区间,然后在每个小区间上使用一个二次多项式来近似原函数。

这种方法更加准确,特别适用于曲线较为复杂的函数。

Simpson 法的基本思想是使用二次 Lagrange 插值多项式来逼近函数的形状。

插值多项式的形式如下:P(x) = f(x0) * L0(x) + f(x1) * L1(x) + f(x2) * L2(x)其中,f(x0)、f(x1) 和 f(x2) 是函数在小区间的三个取样点上的函数值,L0(x)、L1(x) 和 L2(x) 是 Lagrange 插值多项式的基函数。

这些基函数是通过下列公式计算出来的:L0(x) = ((x - x1) * (x - x2)) / ((x0 - x1) * (x0 - x2))L1(x) = ((x - x0) * (x - x2)) / ((x1 - x0) * (x1 - x2))L2(x) = ((x - x0) * (x - x1)) / ((x2 - x0) * (x2 - x1))Simpson 法利用插值多项式的性质,将原函数 f(x) 替代为近似的插值多项式 P(x),然后在小区间内计算 P(x) 的定积分。

这个过程可以通过下列公式表示:∫[a,b] f(x) dx ≈ ∫[a,b] P(x) dx = (b - a) / 6 * (f(a) + 4 * f((a + b) / 2) + f(b))上述公式中的 (b - a) / 6 是常数系数,保证了积分结果的准确性。

从公式中可以看到,Simpson 法采用了每个小区间上三个采样点的函数值进行计算,因此可以较好地逼近原函数的形状,从而得到更加准确的积分结果。

需要注意的是,为了使用 Simpson 法,积分区间必须被平均地分成偶数个小区间。

高等数学-第五章-定积分

高等数学-第五章-定积分

则有
ab
c
c
b
c
a f (x)dx a f (x)dx b f (x)dx
b
c
c
a f (x)dx a f (x)dx b f (x)dx
c
b
a f (x)dx c f (x)dx
6. 若在 [a , b] 上

a<b
n
证: f (i ) xi 0
i1
b
n
a
f
( x) d
x
lim
d (x)
dx a
f (t) d t
f
[ ( x)] ( x)
d
dx
( x) (x)
f
(t) d t
d dx
a
f (t) d t
(x)
( x)
a
f
(t) d t
f [(x)](x) f [ (x)] (x)
例1. 求
0
0
解: 原式 洛 lim ecos2 x ( sin x) 1
x
ba n
,
xi a i x (i 0,1, ,n)
记 f (xi ) yi (i 0,1, ,n)
1. 左矩形公式
O a xi1xi
bx
ab f (x)dx y0x y1x yn1x
2. 右矩形公式
ba n
(
y0
y1
yn1)
ab f (x)dx y1x y2x ynx
)

π 2 0
2
dx
π
2 f (x) dx
0
π
2 1dx
0

1
π
2 0

求定积分的四种方法

求定积分的四种方法

求定积分的四种方法在微积分中,确定定积分的值是一个重要的问题。

定积分是一个实函数在给定区间上的积分,表示该函数在该区间上的总体积。

在本文中,我将介绍四种常见的方法来确定定积分的值。

这些方法分别是:几何解释法、Riemann和法、换元积分法和分部积分法。

一、几何解释法例如,如果要计算函数f(x)=x^2在区间[0,1]上的定积分,我们可以将该区间分成无限个小矩形,并计算每个小矩形的面积。

然后将所有小矩形的面积相加,即可得到定积分的值。

对于该例子,我们可以将区间[0,1]分成无限个宽度为dx的小矩形,其高度为f(x)=x^2、因此,定积分的值为∫[0,1]x^2dx=1/3二、Riemann和法Riemann和法是一种将定积分转化为求和的方法。

它使用一个区间分割,把整个区间分成无限个小区间。

然后,通过对每个小区间让其长度趋近于零,计算每个小区间的函数值和相加,从而求得定积分的近似值。

当小区间的数量无限增加时,所得的近似值将趋近于定积分的真正值。

例如,如果要计算函数f(x)=x^2在区间[0,1]上的定积分,我们可以将该区间分成n个小区间,每个区间的宽度为Δx=(1-0)/n,其中n为正整数。

然后,我们可以计算每个小区间的函数值并相加,即可得到定积分的近似值。

当使用Riemann和法时,分割区间的选择对于确定近似值的精确性非常重要。

如果区间分割得足够细,近似值将趋近于定积分的真正值。

三、换元积分法换元积分法是一种通过进行变量替换来简化定积分的方法。

它利用函数的链式法则,将原函数中的自变量替换为新的变量,然后计算新函数的微分。

通过进行适当的变量替换,我们可以将原本复杂的定积分转化为更简单的形式,从而易于计算。

例如,如果要计算函数f(x)=x^2在区间[0,1]上的定积分,我们可以进行变量替换,令u=x^2,则du=2xdx。

通过将原函数中的自变量替换为新变量,我们可以将原本的定积分转化为∫[0,1]u(1/2√u)du。

定积分的近似计算 矩形法 教学PPT课件

定积分的近似计算 矩形法 教学PPT课件

1 4 0 1 x2
dx
1 10
(
y0
y1
y9 )
3.2400,
1 4 d x 1 ( y y y ) 3.0400.
0 1 x2
10 1 2
10
梯形法
b a
f
(x)d
x
b
a n
(y0
y 1
y) n1
b
n
a( y1
y2
y) n

y
y f (x)
Oa
bx
b a
f
(x) d
x
b
a n
利用矩形法( n 10 )计算
14 0 1 x2
d
x.
解 记 x i , y 4 (i 0,1, 2,,10) ,
i 10
i 1 xi2
xi
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
yi 4.0000 3.9604 3.8462 3.6697 3.4483 3.2 2.9412 2.6846 2.4390 2.2099 2.0000
2
n
i xi
定积分 b f (x) d x ( f (x) 0) 的几何意义 a b f (x)d x A. a
y
y f (x)
Oa
A
bx
b a
f
(x)d
x
b
a n
( y0
y1
yn1 )
b a(y y y ) .
n
1
2
n
y
y f (x)
左矩形法 右矩形法
矩形法
Oa
bx

y0

积分的计算方法

积分的计算方法

积分的计算方法积分是数学中的一个重要概念,它在微积分中有着广泛的应用。

在实际问题中,我们经常需要计算曲线下的面积、求解定积分等,而这些都需要用到积分的计算方法。

接下来,我们将介绍一些常见的积分计算方法,希望能够对大家有所帮助。

首先,我们来介绍一下定积分的计算方法。

对于一个函数f(x),如果我们需要求解其在区间[a, b]上的定积分,可以使用定积分的定义公式进行计算。

即∫[a, b]f(x)dx = lim(n→∞) Σf(xi)Δx,其中Δx = (b a)/n,xi为区间[a, b]上的任意取点。

这是定积分的最基本的计算方法,通过将区间[a, b]分成n个小区间,然后在每个小区间上取一个点,最后求和并取极限,即可得到定积分的近似值。

其次,我们来介绍一些常见的积分计算公式。

在实际计算中,我们经常会遇到一些常见函数的积分,比如幂函数、三角函数、指数函数等。

对于这些函数,我们可以利用它们的积分计算公式来进行计算,而不需要每次都使用定积分的定义公式。

比如,对于幂函数f(x) = x^n,其积分计算公式为∫x^n dx = x^(n+1)/(n+1) + C,其中C为积分常数。

对于三角函数sin(x)、cos(x)的积分计算公式也有相应的表达式,同样,指数函数e^x的积分计算公式也是已知的。

这些常见函数的积分计算公式在实际计算中有着重要的作用,能够大大简化计算过程。

另外,我们还可以利用一些积分的性质来简化积分的计算。

比如,积分的线性性质、积分的换元积分法、分部积分法等,都是在积分计算中常用的方法。

通过灵活运用这些性质和方法,我们可以将复杂的积分化简为简单的形式,从而更加方便地进行计算。

最后,我们还需要注意一些特殊函数的积分计算方法。

比如,有理函数的积分计算、反三角函数的积分计算、分段函数的积分计算等,都需要我们根据具体的函数形式来选择合适的计算方法。

对于一些特殊函数,我们可能需要利用部分分式分解、三角恒等变换等方法来进行积分计算,这就需要我们对这些特殊函数有一定的了解和掌握。

定积分的近似计算之矩形法

定积分的近似计算之矩形法

知识文库 第14期189定积分的近似计算之矩形法李 喆一、新课导入上节课我们学习了定积分的定义,由定积分的定义可知,通过求特定和式的极限,可以计算定积分,然而在许多实际应用中,被积函数没有解析表达式,仅仅是一组离散采样值,这时只能利用近似方法计算定积分的近似值,计算定积分的近似值方法非常多,本节课学习其中最基础的一种方法,矩形法。

二、引例首先看一个具体的例子,汽车做直线运动,用84s 的时间从起点到终点,每隔6s 用雷达测速仪测速度(见下表), 求起点到终点的距离。

it iv分析:汽车从起点到终点的运动过程分为14个小时间段,每个时间段都是6s, 总距离为这14个小时间段所走过的距离之和。

在每个小时间段,汽车做变速直线运动,仅知道左端点和右端点的瞬时速度,方案一:用每个时间段左端点的速度近似这个小时间段的平均速度,左端点速度乘以小时间段的长度近似代替该小时间段汽车所走过的距离,求和累加,从而得到总距离的近似值。

方案二:用每个小时间段右端点的速度近似这个小时间段的平均速度,右端点速度*小时间段的长度,近似代替该小时间段汽车所走过的距离,求和累加,得到总距离的近似值。

借助于这种方法,来解决连续量的定积分的近似计算问题。

三、知识点回顾回顾定积分的定义,由定积分的定义给出定积分的近似计算公式,1()()nbi i ai f x dx f x ξ=≈∆∑⎰问题[a, b]如何划分,i ξ如何选取?四、讲授新课1、左矩形法和右矩形法通常将区间[a, b]n 等分, h 为每个小区间的长度, 取1i i x ξ-= ,得出定积分近似计算的左矩形法11()()nbi ai f x dx h f x -=≈∑⎰。

取i i x ξ= ,得出定积分近似计算的左矩形法1()()nbi ai f x dx h f x =≈∑⎰。

几何上,左矩形法和右矩形法是分别用这样的红色小矩形的面积近似代替第i 个小曲边梯形的面积,整体上用台阶形的面积作为曲边梯形面积的近似值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档